1
|
Myrmel LS, Fjære E, Han M, Jensen BAH, Rolle-Kampczyk U, Danneskiold-Samsøe NB, Ho QT, Smette A, von Bergen M, Xiao L, Kristiansen K, Madsen L. The Food Sources in Western Diets Modulate Obesity Development, Insulin Sensitivity, and the Plasma and Cecal Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2400246. [PMID: 39107912 DOI: 10.1002/mnfr.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024]
Abstract
SCOPE Dietary constituents modulate development of obesity and type 2 diabetes. The metabolic impact from different food sources in western diets (WD) on obesity development is not fully elucidated. This study aims to identify dietary sources that differentially affect obesity development and the metabolic processes involved. METHODS AND RESULTS Mice were fed isocaloric WDs with protein and fat from different food groups, including egg and dairy, terrestrial meat, game meat, marine, vegetarian, and a mixture of all. This study evaluates development of obesity, glucose tolerance, insulin sensitivity, and plasma and cecal metabolome. WD based on marine or vegetarian food sources protects male mice from obesity development and insulin resistance, whereas meat-based diets promote obesity. The intake of different food sources induces marked differences in the lipid-related plasma metabolome, particularly impacting phosphatidylcholines. Fifty-nine lipid-related plasma metabolites are positively associated with adiposity and a distinct cecal metabolome is found in mice fed a marine diet. CONCLUSION This study demonstrates differences in obesity development between the food groups. Diet specific metabolomic signatures in plasma and cecum associated with adiposity, where a marine based diet modulates the level of plasma and cecal phosphatidylcholines in addition to preventing obesity development.
Collapse
Affiliation(s)
| | - Even Fjære
- Institute of Marine Research, Bergen, 5817, Norway
| | - Mo Han
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | | | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
| | | | - Quang Tri Ho
- Institute of Marine Research, Bergen, 5817, Norway
| | - Anita Smette
- Institute of Marine Research, Bergen, 5817, Norway
| | - Martin von Bergen
- Department of Molecular Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lise Madsen
- Institute of Marine Research, Bergen, 5817, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, 5200, Norway
| |
Collapse
|
2
|
Hands JM, Frame LA. Omega-3 Fatty Acid Therapy: Is the Vehicle Important? A Hypothesis. J Diet Suppl 2024; 21:563-566. [PMID: 38591992 DOI: 10.1080/19390211.2024.2336212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Jacob M Hands
- The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Leigh A Frame
- The George Washington University School of Medicine & Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Ahmmed MK, Carne A, Wu H, El-Din Ahmed Bekhit A. Navigating the depths of marine lipids: From extraction efficiency to flavour enhancement. Food Chem X 2023; 20:100958. [PMID: 38022736 PMCID: PMC10661498 DOI: 10.1016/j.fochx.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Haizhou Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
5
|
Heyen S, Schneider V, Hüppe L, Meyer B, Wilkes H. Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn. PLoS One 2023; 18:e0295677. [PMID: 38157351 PMCID: PMC10756546 DOI: 10.1371/journal.pone.0295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The biochemical composition of Antarctic krill, Euphausia superba, is largely determined by their feeding behaviour. As they supply energy for animals of a higher trophic level and are also commercialized for human consumption, the interest in research on the species is high. Lipids, especially phospholipids, make up a high proportion of dry weight in krill. Seasonal changes are well documented in the fingerprint of free fatty acids analysed after hydrolysis of phospholipids, but the underlying intact polar lipids are rarely considered. In this study, we evaluated the compositions of intact phospholipids (IPLs) in the stomach, digestive gland and hind gut of Antarctic krill caught in summer and autumn at the Antarctic Peninsula region. Using high-resolution mass spectrometry, the fatty acid composition of 179 intact phospholipids could be resolved. Most IPLs were phosphatidylcholines, followed by phosphatidylethanolamines. Several very long chain polyunsaturated fatty acids up to 38:8, which have not been reported in krill before, were identified. The composition shifted to higher molecular weight IPLs with a higher degree of unsaturation for summer samples, especially for samples of the digestive gland. The data supplied in this paper provides new insights into lipid dynamics between summer and autumn usually described by free fatty acid biomarkers.
Collapse
Affiliation(s)
- Simone Heyen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Vivien Schneider
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lukas Hüppe
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Marine Functional Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Caffrey C, Leamy A, O’Sullivan E, Zabetakis I, Lordan R, Nasopoulou C. Cardiovascular Diseases and Marine Oils: A Focus on Omega-3 Polyunsaturated Fatty Acids and Polar Lipids. Mar Drugs 2023; 21:549. [PMID: 37999373 PMCID: PMC10672651 DOI: 10.3390/md21110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence, establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health systems. Dietary modification is an effective primary prevention strategy against CVD. Research regarding dietary supplementation has become increasingly popular. This review focuses on the current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore, this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However, the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting evidence, future human trials must be completed to confirm whether PL supplementation may be more effective than n-3 PUFA supplementation to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cliodhna Caffrey
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Anna Leamy
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ellen O’Sullivan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry—Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, University of the Aegean, 814 00 Lemnos, Greece
| |
Collapse
|
7
|
Wang Q, Wang R, Zhao X, Lu H, Zhang P, Dong X, Wang Y. Comparison of the Effect of Phospholipid Extracts from Salmon and Silver Carp Heads on High-Fat-Diet-Induced Metabolic Syndrome in C57BL/6J Mice. Mar Drugs 2023; 21:409. [PMID: 37504940 PMCID: PMC10381321 DOI: 10.3390/md21070409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Metabolic syndrome (MetS) is a global health problem, and EPA/DHA-enriched phospholipids (EPA/DHA-PLs) have been found to have positive effects on MetS improvement. Currently, research on EPA/DHA-PL mainly focuses on special and rare seafood, such as phospholipids derived from krill, sea cucumber, squid, and fish roe. However, it has been recently demonstrated that abundant EPA/DHA-PL can also be found in bulk fish and its by-products. Nonetheless, there is still limited research on the biological activities of EPA/DHA-PL derived from these sources. The aim of this study was to investigate the effect of phospholipid extracts from the heads of salmon and silver carp (S-PLE and SC-PLE) on the high-fat-diet-induced MetS in C57/BL mice. After an 8-week intervention, both SC-PLE and S-PLE had a significant ameliorating effect on MetS. Moreover, SC-PLE was more effective than S-PLE in reducing liver inflammation and fasting glucose. Both of the PL extracts were able to regulate the expression of key genes in lipid synthesis, fatty acid β-oxidation, and insulin signaling pathways. Compared with S-PLE, dietary SC-PLE had a greater influence on liver metabolomics. Pathway enrichment analysis showed that the differential metabolites of SC-PLE were mainly involved in arachidonic acid metabolism and glutathione metabolism. The results indicated that the different metabolic regulation methods of S-PLE and SC-PLE could be related to their variant molecular composition in EPA/DHA-PL.
Collapse
Affiliation(s)
- Qi Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education (Wuhan Polytechnic University), Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuju Zhao
- School of Biology and Pharmaceutical Engineering, Hubei Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Lu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education (Wuhan Polytechnic University), Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education (Wuhan Polytechnic University), Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinjie Dong
- School of Biology and Pharmaceutical Engineering, Hubei Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Lu LW, Quek SY, Lu SP, Chen JH. Potential Benefits of Omega-3 Polyunsaturated Fatty Acids (N3PUFAs) on Cardiovascular Health Associated with COVID-19: An Update for 2023. Metabolites 2023; 13:630. [PMID: 37233671 PMCID: PMC10222821 DOI: 10.3390/metabo13050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The accumulating literature demonstrates that omega-3 polyunsaturated fatty acid (n-3 polyunsaturated fatty acid, N3PUFA) can be incorporated into the phospholipid bilayer of cell membranes in the human body to positively affect the cardiovascular system, including improving epithelial function, decreasing coagulopathy, and attenuating uncontrolled inflammatory responses and oxidative stress. Moreover, it has been proven that the N3PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors of some potent endogenous bioactive lipid mediators that mediate some favorable effects attributed to their parent substances. A dose-response relationship between increased EPA and DHA intake and reduced thrombotic outcomes has been reported. The excellent safety profile of dietary N3PUFAs makes them a prospective adjuvant treatment for people exposed to a higher risk of cardiovascular problems associated with COVID-19. This review presented the potential mechanisms that might contribute to the beneficial effects of N3PUFA and the optimal form and dose applied.
Collapse
Affiliation(s)
- Louise Weiwei Lu
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Siew-Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand;
- Riddet Institute, New Zealand Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand
| | - Shi-Ping Lu
- Pharma New Zealand PNZ Limited, Hamilton 3210, New Zealand;
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Mohamad Ali D, Hogeveen K, Orhant RM, Le Gal de Kerangal T, Ergan F, Ulmann L, Pencreac'h G. Lysophosphatidylcholine-DHA Specifically Induces Cytotoxic Effects of the MDA-MB-231 Human Breast Cancer Cell Line In Vitro-Comparative Effects with Other Lipids Containing DHA. Nutrients 2023; 15:2137. [PMID: 37432249 DOI: 10.3390/nu15092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω-3) is a dietary polyunsaturated fatty acid that has an important role in human health. Epidemiological studies linked a high intake of DHA to a reduced risk of certain cancers. Recently, attention focused on how the lipid carrier in which DHA is delivered, i.e., esterified on acylglycerols, phospholipids, or free, affects its biological effects. However, studies comparing the effects of these different forms for DHA supply to cancer cells in vitro are limited. In this study, the effect of free DHA and five lipids carrying one to three DHA chains (LPC-DHA, PC-DHA, MAG-DHA, DAG-DHA and TAG-DHA) on the viability of the MDA-MB-231 breast cancer cell line was compared. Our results revealed a strong structure-function relationship of DHA-carrying lipids on the viability of MDA-MB-231 cells. Glycerophosphocholine-based lipids are the most effective DHA carriers in reducing the viability of MDA-MB-231 cells, with LPC-DHA being more effective (IC50 = 23.7 µM) than PC-DHA (IC50 = 67 µM). The other tested lipids are less toxic (MAG-DHA, free DHA) or even not toxic (DAG-DHA, TAG-DHA) under our conditions. Investigating the mechanism of cell death induced by LPC-DHA revealed increased oxidative stress and membrane cell damage.
Collapse
Affiliation(s)
- Dalal Mohamad Ali
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
- Toulouse Biotechnology Institute, Equipe CIMEs, Université de Toulouse, CNRS, INRAE, INSA, F-31077 Toulouse, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, ANSES, F-35306 Fougères, France
| | - Rose-Marie Orhant
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Tiphaine Le Gal de Kerangal
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Françoise Ergan
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Gaëlle Pencreac'h
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
10
|
Ahmmed MK, Hachem M, Ahmmed F, Rashidinejad A, Oz F, Bekhit AA, Carne A, Bekhit AEDA. Marine Fish-Derived Lysophosphatidylcholine: Properties, Extraction, Quantification, and Brain Health Application. Molecules 2023; 28:molecules28073088. [PMID: 37049852 PMCID: PMC10095705 DOI: 10.3390/molecules28073088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer’s. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Ataturk University, Yakutiye 25030, Turkey
| | - Adnan A. Bekhit
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir 32038, Bahrain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-3-479-4994
| |
Collapse
|
11
|
Akram W, Rihan M, Ahmed S, Arora S, Ahmad S, Vashishth R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar Drugs 2023; 21:md21030193. [PMID: 36976242 PMCID: PMC10052127 DOI: 10.3390/md21030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Swamita Arora
- Department of Pharmacology, R. V. Northland Institute of Pharmacy, Dadri 203207, India
| | - Sameer Ahmad
- Department of Food Technology Jamia Hamdard, New Delhi 110062, India
| | - Rahul Vashishth
- School of BioSciences and Technology-Food Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
12
|
Stipcich P, Beca-Carretero P, Álvarez-Salgado XA, Apostolaki ET, Chartosia N, Efthymiadis PT, Jimenez CE, La Manna G, Pansini A, Principato E, Resaikos V, Stengel DB, Ceccherelli G. Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? MARINE ENVIRONMENTAL RESEARCH 2023; 184:105854. [PMID: 36577310 DOI: 10.1016/j.marenvres.2022.105854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leaves.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, 1678, Cyprus
| | | | - Carlos E Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus; Energy, Environment and Water Research Center (EEWRC) of the Cyprus Institute, Nicosia, Cyprus
| | - Gabriella La Manna
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy; MareTerra Onlus, Environmental Research and Conservation, 07041, Alghero, SS, Italy
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Elena Principato
- Area Marina Protetta "Isole Pelagie", Via Cameroni, s.n.c., 92031, Lampedusa, Italy
| | - Vasilis Resaikos
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus
| | - Dagmar B Stengel
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| |
Collapse
|
13
|
Song Y, Wang H, Wang X, Wang X, Cong P, Xu J, Xue C. Comparative Lipidomics Study of Four Edible Red Seaweeds Based on RPLC-Q-TOF. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2183-2196. [PMID: 36669856 DOI: 10.1021/acs.jafc.2c07988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Red seaweeds (Rhodophyta) are becoming increasingly important as a food and medicine source in blue biotechnology applications such as functional foods, feeds, and pharmaceuticals. Compared to fatty acid composition and sterols, the lipidome in red seaweeds is still in an early disclosure stage. In this study, the lipidomes of four red seaweeds (Gracilaria sjoestedtii, Gracilaria verrucosa, Gelidium amansii, and Chondrus ocellatus) collected from the coastal area in north China were characterized using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF). Hundreds of lipid molecular species including glycolipids, phospholipids, sphingolipids, glycerolipids, and betaine lipids were identified and quantified. Novel lipids with unique molecular structures such as glucuronosyldiacylglycerols (GlcADG), head-group acylated GlcADG (acGlcADG), and hexose-inositol-phosphoceramides (Hex-IPC) were discovered in red seaweeds for the first time, greatly expanding our knowledge on glycolipids and sphingolipids in seaweeds. Glycolipids were the dominant components (45.6-67.7% of total lipids) with a high proportion of polyunsaturated fatty acids (PUFA) including arachidonic acid (AA) and eicosapentaenoic acid (EPA), indicating the potential nutritional value of the four red seaweeds. The investigated red seaweeds showed a distinctive sphingolipid profile with the t18:1 being the predominant LCB in Cer (41.1-71.5%) and HexCer (91.3-97.9%) except for Gelidium amansii, which had the highest proportion of t18:0. Comparison of lipid profiles among the four red seaweeds revealed that AA- and EPA-glycolipids are good lipid markers for the differentiation of red seaweed samples. The AA proportion in glycolipids of Gracilaria genus was much higher than Gelidium genus and Chondrus genus. This study acquired comprehensive lipid profiles from four red seaweeds, revealing the uniqueness of natural biochemical fingerprints of red seaweeds and further promoting their utilization.
Collapse
Affiliation(s)
- Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Haitang Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao 266237, Shandong, China
| |
Collapse
|
14
|
Applications of liposomes in nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
15
|
Zhong R, Zhu Y, Zhang H, Huo Y, Huang Y, Cheng W, Liang P. Integrated lipidomic and transcriptomic analyses reveal the mechanism of large yellow croaker roe phospholipids on lipid metabolism in normal-diet mice. Food Funct 2022; 13:12852-12869. [PMID: 36444685 DOI: 10.1039/d2fo02736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large yellow croaker roe phospholipids (LYCRPLs) could regulate the accumulation of triglycerides and blood lipid levels. However, there exists little research on the mechanism of LYCRPLs on lipid metabolism in normal-diet mice. In this work, the mice on a normal diet were given low-dose, medium-dose, and high-dose LYCRPLs by intragastric administration for 6 weeks. At the same time, the physiological and biochemical indicators of the mice were determined, and the histomorphological observation of the liver and epididymal fat was carried out. In addition, we examined the gene expression and lipid metabolites in the liver of mice using transcriptomic and lipidomic and performed a correlation analysis. The results showed that LYCRPLs regulated the lipid metabolism of normal-diet mice by affecting the expression of the glycerolipid metabolism pathway, insulin resistance pathway, and cholesterol metabolism pathway. This study not only elucidated the main pathway by which LYCRPLs regulate lipid metabolism, but also laid a foundation for exploring LYCRPLs as functional food supplements.
Collapse
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Yujie Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Huadan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Yuming Huo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| |
Collapse
|
16
|
Pascual-Silva C, Alemán A, López-Caballero ME, Montero MP, Gómez-Guillén MDC. Physical and Oxidative Water-in-Oil Emulsion Stability by the Addition of Liposomes from Shrimp Waste Oil with Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2022; 11:2236. [PMID: 36421422 PMCID: PMC9686809 DOI: 10.3390/antiox11112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/05/2023] Open
Abstract
Liposomes made of partially purified phospholipids (PL) from Argentine red shrimp waste oil were loaded with two antioxidant lipid co-extracts (hexane-soluble, Hx and acetone-soluble, Ac) to provide a higher content of omega-3 fatty acids. The physical properties of the liposomes were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The antioxidant and anti-inflammatory activity of the lipid extracts and liposomal suspensions were evaluated in terms of Superoxide and ABTS radical scavenging capacities and TNF-α inhibition. Uni-lamellar spherical liposomes (z-average ≈ 145 nm) with strong negative ζ potential (≈ -67 mV) were obtained in all cases. The high content of neutral lipids in the Hx extract caused structural changes in the bilayer membrane and decreased entrapment efficiency regarding astaxanthin and EPA + DHA contents. The liposomes loaded with the Hx/Ac extracts showed higher antioxidant and anti-inflammatory activity compared with empty liposomes. The liposomal dispersions improved the physical and oxidative stability of water-in-oil emulsions as compared with the PL extract, inducing pronounced close packing of water droplets. The liposomes decreased hydroperoxide formation in freshly made emulsions and prevented thio-barbituric acid-reactive substances (TBARS) accumulation during chilled storage. Liposomes from shrimp waste could be valuable nanocarriers and stabilizers in functional food emulsions.
Collapse
|
17
|
Hong ES, Kim JH, So HJ, Park EA, Park YL, Lee JH, Shin JA, Lee KT. Compositional Study of Phospholipids from the Dried Big Head and Opossum Shrimp, Mussel, and Sea Cucumber Using 31P NMR Spectroscopy: Content and Fatty Acid Composition of Plasmalogen. Molecules 2022; 27:molecules27196250. [PMID: 36234786 PMCID: PMC9571261 DOI: 10.3390/molecules27196250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we present a qualitative and quantitative analysis of the compositions of plasmalogens and phospholipids (PLs) in dried big head shrimp (Solenocera melantho), opossum shrimp (Neomysis awatschensis), mussel (Mytilus galloprovincialis), and sea cucumber (Apostichopus japonicus). We also analyze the fatty acid composition of the extracted lipids, phosphatidyl choline (PtdCho), and plasmalogen choline (PlsCho) from each sample. In big head shrimp, opossum shrimp, and mussel, phosphatidyl choline (PtdCho) was the most abundant PL at 1677.9, 1603, and 1661.6 mg/100 g of dried sample, respectively, whereas the most abundant PL in sea cucumber was PlsCho (206.9 mg/100 g of dried sample). In all four samples, plasmalogen ethanolamine (PlsEtn) was higher than phosphatidyl ethanolamine (PtdEtn). The content (mg/100 g of dried sample) of PlsCho was highest in mussel (379.0), and it was higher in big head shrimp (262.3) and opossum shrimp (245.6) than sea cucumber (206.9). The contents (mg/100 g of dried sample) of PlsEtn were in the order of mussel (675.4) > big head shrimp (629.5) > opossum shrimp (217.9) > sea cucumber (51.5). For analyzing the fatty acids at the sn-2 position of PlsCho, the consecutive treatment with phospholipase A1, solid phase extraction, thin-layer chromatography (TLC), and GC-FID were applied. The most abundant fatty acid was eicosapentaenoic acid (EPA, C20:5, n-3) in big head shrimp and sea cucumber, palmitoleic acid (C16:1, n-7) in opossum shrimp, and docosadienoic acid (C22:2, n-6) in mussel.
Collapse
Affiliation(s)
- Eun-Sik Hong
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Solus Biotech, 10 Suji-ro, Suji-gu, Yongin 16858, Gyeonggi-do, Korea
| | - Ji-Hyun Kim
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Hee-Jin So
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Eun-Ah Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Ye-Lim Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, 201 Daegudae-ro, Gyeonsan-si 38453, Gyeongsangbuk-do, Korea
| | - Jung-Ah Shin
- Department of Food Processing and Distribution, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Korea
| | - Ki-Teak Lee
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Korea
- Correspondence: ; Tel.: +82-042-821-6729
| |
Collapse
|
18
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Song L, Leng K, Xiao K, Zhang S. Administration of krill oil extends lifespan of fish Nothobranchius guentheri via enhancement of antioxidant system and suppression of NF-κB pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1057-1073. [PMID: 35834112 DOI: 10.1007/s10695-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated β-galactosidase (SA-β-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, 266071, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
20
|
Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest 2022; 52:e13650. [PMID: 34291454 DOI: 10.1111/eci.13650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.
Collapse
Affiliation(s)
- Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022; 12:metabo12020096. [PMID: 35208171 PMCID: PMC8877676 DOI: 10.3390/metabo12020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.
Collapse
|
22
|
Son HK, Kim BH, Lee J, Park S, Oh CB, Jung S, Lee JK, Ha JH. Partial Replacement of Dietary Fat with Krill Oil or Coconut Oil Alleviates Dyslipidemia by Partly Modulating Lipid Metabolism in Lipopolysaccharide-Injected Rats on a High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:843. [PMID: 35055664 PMCID: PMC8775371 DOI: 10.3390/ijerph19020843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
This study investigated the effects of partial replacement of dietary fat with krill oil (KO) or coconut oil (CO) on dyslipidemia and lipid metabolism in rats fed with a high-fat diet (HFD). Sprague Dawley rats were divided into three groups as follows: HFD, HFD + KO, and HFD + CO. The rats were fed each diet for 10 weeks and then intraperitoneally injected with phosphate-buffered saline (PBS) or lipopolysaccharide (LPS) (1 mg/kg). The KO- and CO-fed rats exhibited lower levels of serum lipids and aspartate aminotransferases than those of the HFD-fed rats. Rats fed with HFD + KO displayed significantly lower hepatic histological scores and hepatic triglyceride (TG) content than rats fed with HFD. The KO supplementation also downregulated the adipogenic gene expression in the liver. When treated with LPS, the HFD + KO and HFD + CO groups reduced the adipocyte size in the epididymal white adipose tissues (EAT) relative to the HFD group. These results suggest that KO and CO could improve lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Hee-Kyoung Son
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
| | - Bok-Hee Kim
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea;
| | - Jisu Lee
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Seohyun Park
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Chung-Bae Oh
- Office of Technical Liaison, Industry Support Team, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - Sunyoon Jung
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Jung-Heun Ha
- Research Center for Industrialization of Natural Neutralization, Dankook University, Cheonan 31116, Korea; (H.-K.S.); (J.L.); (S.P.); (S.J.)
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
23
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, González Moreno PA, Navarro López E, Esteban Cerdán L, Molina Grima E. Supercritical fluid extraction and pressurized liquid extraction processes applied to eicosapentaenoic acid-rich polar lipid recovery from the microalga Nannochloropsis sp. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Roy S. A review on the efficacy of fish oil and its components in alleviating the symptoms of primary dysmenorrhea. BLDE UNIVERSITY JOURNAL OF HEALTH SCIENCES 2022. [DOI: 10.4103/bjhs.bjhs_128_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Rezvani M, Manca ML, Muntoni A, De Gioannis G, Pedraz JL, Gutierrez G, Matos M, Fadda AM, Manconi M. From process effluents to intestinal health promotion: Developing biopolymer-whey liposomes loaded with gingerol to heal intestinal wounds and neutralize oxidative stress. Int J Pharm 2021; 613:121389. [PMID: 34923053 DOI: 10.1016/j.ijpharm.2021.121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
As a sustainable strategy to valorize the main effluent of the cheese industry and potent environmental pollutant, whey, several biopolymer-whey vesicles loaded with gingerol were tailored for counteracting intestinal oxidative stress and boosting wound healing. An eco-friendly method was used to combine whey with four different water-dispersible biopolymers (xanthan gum, tragacanth, Arabic gum and sodium alginate), phospholipid and a natural antioxidant (gingerol). The results of cryogenic transmission microscopy and dynamic light scattering indicated that the vesicles were mostly unilamellar and small in size (∼100 nm) with low polydispersity index, high negative zeta potential and ability to entrap a high amount of gingerol (up to 94%). The vesicles could maintain their structures in acidic and neutral media and Turbiscan® technology confirmed their stability during the storage. Vesicles prepared with whey and tragacanth exhibited the highest capability to protect intestinal cells from damages induced by hydrogen peroxide. When Arabic and tragacanth gums were added to the whey vesicles, the closure rate of the scratched area was fast and no trace of the wound was observed after 72 h of treatment. These promising findings could open a new horizon in the application of whey in nanomedicine for the treatment of intestinal damages.
Collapse
Affiliation(s)
- Maryam Rezvani
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gemma Gutierrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Maria Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
26
|
Krill-Oil-Dependent Increases in HS-Omega-3 Index, Plasma Choline and Antioxidant Capacity in Well-Conditioned Power Training Athletes. Nutrients 2021; 13:nu13124237. [PMID: 34959789 PMCID: PMC8708578 DOI: 10.3390/nu13124237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
There is evidence that both omega-3 polyunsaturated fatty acids (n-3 PUFAs) and choline can influence sports performance, but information establishing their combined effects when given in the form of krill oil during power training protocols is missing. The purpose of this study was therefore to characterize n-3 PUFA and choline profiles after a one-hour period of high-intensity physical workout after 12 weeks of supplementation. Thirty-five healthy power training athletes received either 2.5 g/day of Neptune krill oilTM (550 mg EPA/DHA and 150 mg choline) or olive oil (placebo) in a randomized double-blind design. After 12 weeks, only the krill oil group showed a significant HS-Omega-3 Index increase from 4.82 to 6.77% and a reduction in the ARA/EPA ratio (from 50.72 to 13.61%) (p < 0.001). The krill oil group showed significantly higher recovery of choline concentrations relative to the placebo group from the end of the first to the beginning of the second exercise test (p = 0.04) and an 8% decrease in total antioxidant capacity post-exercise versus 21% in the placebo group (p = 0.35). In conclusion, krill oil can be used as a nutritional strategy for increasing the HS-Omega-3 Index, recover choline concentrations and address oxidative stress after intense power trainings.
Collapse
|
27
|
Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Mar Drugs 2021; 19:md19110593. [PMID: 34822464 PMCID: PMC8624173 DOI: 10.3390/md19110593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.
Collapse
|
28
|
Non-polar lipid from greenshell mussel (Perna canaliculus) inhibits osteoclast differentiation. Bone Rep 2021; 15:101132. [PMID: 34632003 PMCID: PMC8493498 DOI: 10.1016/j.bonr.2021.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/23/2022] Open
Abstract
The osteoclast-dependent bone resorption process is a crucial part of the bone regulatory system. The excessive function of osteoclasts can cause diseases of bone, joint, and other tissues such as osteoporosis and osteoarthritis. Greenshell mussel oil (GSM), a good source of long chain omega-3 polyunsaturated fatty acids (LCn-3PUFAs), was fractionated into total lipid, polar lipid, and non-polar lipid components and their anti-osteoclastogenic activity tested in RAW 264.7 cell cultures. Osteoclast differentiation process was achieved after 5 days of incubation with RANKL in 24-well culture plates. Introducing the non-polar lipid fraction into the culture caused a lack of cell differentiation, and a reduction in tartrate-resistant acid phosphatase (TRAP) activity and TRAP cell numbers in a dose-dependent manner (50% reduction at the concentration of 20 μg/mL, p < 0.001). Moreover, actin ring formation was significantly diminished by non-polar lipids at 10-20 μg/mL. The bone digestive enzymes released by osteoclasts into the pit formation were also compromised by downregulating gene expression of cathepsin K, carbonic anhydrase II (CA II), matrix metalloproteinase 9 (MMP-9), and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). This study revealed that the non-polar lipid fraction of GSM oil contains bioactive substances which possess potent anti-osteoclastogenic activity.
Collapse
Key Words
- AA, Arachidonic acid
- ALA, Alpha linolenic acid
- CAII, Carbonic anhydrase II
- DHA, Docosahexaenoic acid
- DMSO, dimethyl sulfoxide
- DPA, Docosapentaenoic acid
- EPA, Eicosapentaenoic acid
- FFAR, Free fatty acid receptor
- GSM, Greenshell mussel
- Greenshell mussel
- LA, Linoleic acid
- LPS, Lipopolysaccharide
- MMP-9, Matrix metalloproteinase 9
- MUFA, Monounsaturated fatty acid
- NF-κB, Nuclear factor κB
- NFATc1, Nuclear factor of activated T-cells, cytoplasmic 1
- OA, Osteoarthritis
- Omega 3 fatty acid
- Osteoarthritis
- Osteoclasts
- Osteoporosis
- PA, Palmitic acid
- PPAR, Peroxisome proliferator activated receptor
- PUFA, Polyunsaturated fatty acid
- RANKL, Receptor activator of nuclear factor κB ligand
- SFA, Saturated fatty acid
- TRAP, Tartrate-resistant acid phosphatase
Collapse
|
29
|
Subramanian P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021; 26:5510. [PMID: 34576981 PMCID: PMC8468612 DOI: 10.3390/molecules26185510] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Nutraceuticals possess several health benefits and functions; however, most nutraceuticals are prone to degradation in the gastrointestinal environment and have poor bioavailability. Application of a novel carrier system is of increasing importance to overcome obstacles and provide efficient applicability. Lipid-based nanocarriers provide a large surface-to-mass ratio, enhanced intestinal absorption by solubilization in the intestinal milieu, intestinal lymphatic transport, and altering enterocyte-based transport. A critical overview of the current limitation, preparation, and application of lipid-based nanocarriers (liposomes and niosomes) and lipid nanoparticles (SLNs and NLCs) is discussed. Physical and gastrointestinal stability and bioavailability of nanoencapsulated nutraceuticals are considered as well.
Collapse
|
30
|
da Costa E, Melo T, Reis M, Domingues P, Calado R, Abreu MH, Domingues MR. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia turuturu. Mar Drugs 2021; 19:md19080414. [PMID: 34436254 PMCID: PMC8401436 DOI: 10.3390/md19080414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2'-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS●+) radical (IC50 ca. 130.4 μg mL-1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) radical (IC25 ca. 129.1 μg mL-1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL-1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Elisabete da Costa
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-370-696
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mariana Reis
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
| | - Ricardo Calado
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Maria Helena Abreu
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Li P, Zhang M, Xie D, Zhang X, Zhang S, Gao F, Wang Y, Hsiao CD, Li X, Liu K. Characterization and bioactivities of phospholipids from squid viscera and gonads using ultra-performance liquid chromatography-Q-exactive orbitrap/mass spectrometry-based lipidomics and zebrafish models. Food Funct 2021; 12:7986-7996. [PMID: 34259702 DOI: 10.1039/d1fo00796c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been great interest in phospholipids (PLs) from marine by-products due to their long-chain polyunsaturated fatty acids with unique health and functional properties. Here, marine PLs from squid viscera and gonads were comprehensively characterized and compared by UPLC-Q-Exactive Orbitrap/MS-based lipidomics analysis. A total of thirteen phospholipid classes including 1223 molecular species were identified and quantified in both resources. PC, PE and SM were further isolated from the total PLs of squid viscera and gonads, respectively. All isolated squid PL components were first evaluated for anti-inflammatory, antioxidant and cardiovascular effects using in vivo zebrafish models. Our results showed the diversity, content and physiological functions of PLs from squid by-products, which provided a basis for their future application in the nutritional and pharmaceutical industry.
Collapse
Affiliation(s)
- Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sánchez CO, Zavaleta EB, García GU, Solano GL, Díaz MR. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Liu W, Liu J, Xing S, Li X, Han L, Liu K, Wei T, Zhou M. Marine Phospholipids from Fishery By‐Products Attenuate Atherosclerosis. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Jianmin Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Shu Xing
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Liwen Han
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Kechun Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Tao Wei
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| |
Collapse
|
34
|
Krishnegowda R, Ravindra MR, Sharma M. Application of supercritical fluid extraction for extraction or enrichment of phospholipids in egg and dairy products: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajesh Krishnegowda
- Dairy Engineering Section ICAR‐National Dairy Research Institute, SRS Bangalore Karnataka India
| | - Menon Rekha Ravindra
- Dairy Engineering Section ICAR‐National Dairy Research Institute, SRS Bangalore Karnataka India
| | - Monika Sharma
- Dairy Engineering Section ICAR‐National Dairy Research Institute, SRS Bangalore Karnataka India
| |
Collapse
|
35
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
36
|
Phosphorus-31 nuclear magnetic resonance (31P NMR) for quantitative measurements of phospholipids derived from natural products: Effect of analysis conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Robert C, Buisson C, Laugerette F, Abrous H, Rainteau D, Humbert L, Vande Weghe J, Meugnier E, Loizon E, Caillet F, Van Dorsselaer B, Urdaci M, Vaysse C, Michalski MC. Impact of Rapeseed and Soy Lecithin on Postprandial Lipid Metabolism, Bile Acid Profile, and Gut Bacteria in Mice. Mol Nutr Food Res 2021; 65:e2001068. [PMID: 33742729 DOI: 10.1002/mnfr.202001068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/16/2021] [Indexed: 01/01/2023]
Abstract
SCOPE Synthetic emulsifiers have recently been shown to promote metabolic syndrome and considerably alter gut microbiota. Yet, data are lacking regarding the effects of natural emulsifiers, such as plant lecithins rich in essential α-linolenic acid (ALA), on gut and metabolic health. METHODS AND RESULTS For 5 days, male Swiss mice are fed diets containing similar amounts of ALA and 0, 1, 3, or 10% rapeseed lecithin (RL) or 10% soy lecithin (SL). Following an overnight fast, they are force-fed the same oil mixture and euthanized after 90 minutes. The consumption of lecithin significantly increased fecal levels of the Clostridium leptum group (p = 0.0004), regardless of origin or dose, without altering hepatic or intestinal expression of genes of lipid metabolism. 10%-RL increased ALA abundance in plasma triacylglycerols at 90 minutes, reduced cecal bile acid hydrophobicity, and increased their sulfatation, as demonstrated by the increased hepatic RNA expression of Sult2a1 (p = 0.037) and cecal cholic acid-7 sulfate (CA-7S) concentration (p = 0.05) versus 0%-lecithin. CONCLUSION After only 5 days, nutritional doses of RL and SL modified gut bacteria in mice, by specifically increasing C. leptum group. RL also increased postprandial ALA abundance and induced beneficial modifications of the bile acid profile. ALA-rich lecithins, especially RL, may then appear as promising natural emulsifiers.
Collapse
Affiliation(s)
- Chloé Robert
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Charline Buisson
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Fabienne Laugerette
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Hélène Abrous
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Univ. Paris 6, ENS, PSL Research University, CNRS, INSERM, APHP, Laboratory of BioMolecules (LBM), Paris, FR-75005, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Univ. Paris 6, ENS, PSL Research University, CNRS, INSERM, APHP, Laboratory of BioMolecules (LBM), Paris, FR-75005, France
| | - Justine Vande Weghe
- UMR5248, Laboratory of Microbiology and Applied Biochemistry, Bordeaux Sciences Agro, Gradignan, FR-33170, France
| | - Emmanuelle Meugnier
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Emmanuelle Loizon
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - François Caillet
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Benjamin Van Dorsselaer
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Maria Urdaci
- UMR5248, Laboratory of Microbiology and Applied Biochemistry, Bordeaux Sciences Agro, Gradignan, FR-33170, France
| | - Carole Vaysse
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Marie-Caroline Michalski
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| |
Collapse
|
38
|
Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes (Basel) 2021. [DOI: 10.3390/pr9040703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cucumaria frondosa is the main sea cucumber species harvested from Newfoundland waters. During processing, the viscera of sea cucumber are usually discarded as waste. As a matter of fact, sea cucumber viscera are abundant in various nutrients and promising for valorization. In the present study, sea cucumber viscera were pretreated by air drying and freeze drying, and the nutritional compositions of the dried products were investigated, including proximate composition, lipid class, fatty acid profile, and amino acid composition. The dried viscera had similar levels of ash, lipids, and proteins compared to fresh viscera. Both air- and freeze-dried viscera had total fatty acid composition similar to fresh viscera, with high levels of omega-3 polyunsaturated fatty acids (PUFAs) (30–31%), especially eicosapentaenoic acid (27–28%), and low levels of omega-6 PUFAs (~1%). The dried samples were abundant in essential amino acids (46–51%). Compared to air-dried viscera, freeze-dried viscera contained a lower content of moisture and free fatty acids, and higher content of glycine and omega-3 PUFAs in phospholipid fraction. The high content of nutritious components in dried viscera of Cucumaria frondosa indicates their great potential for valorization into high-value products.
Collapse
|
39
|
Dietary aflatoxin impairs flesh quality through reducing nutritional value and changing myofiber characteristics in yellow catfish (Pelteobagrus fulvidraco). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Abd Elhameed AG. Krill oil and low-dose aspirin combination mitigates experimentally induced silicosis in rats: role of NF-κB/TGF-β1/MMP-9 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19272-19284. [PMID: 33398741 DOI: 10.1007/s11356-020-11921-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study is an attempt to assess pulmonary protective and antifibrotic potentials of a combination of aspirin, a widely used anti-inflammatory and cardioprotective agent, and krill oil, a naturally occurring omega-3 fatty acid source, against silica-induced pulmonary injury. For silicosis induction, silica particles (50 mg/rat, 0.1 mL 0.9% NaCl) were instilled intranasally into rats. Aspirin (10 mg/kg/day), krill oil (40 mg/kg/day), or their combination was administered orally for 56 days following silica exposure. Results showed that oral aspirin and krill oil combination significantly mitigated silica-induced pulmonary injury. Bronchoalveolar lavage fluid examination showed a decreased lactate dehydrogenase activity, total protein content, and accumulation of total and differential inflammatory cells. Oral aspirin and krill oil combination significantly attenuated silica-induced oxidative stress through the restoration of reduced glutathione concentration and catalase activity in addition to alleviation of elevated malondialdehyde and total nitric oxide contents. Moreover, aspirin and krill oil combination revealed considerable mitigation of silica-induced upregulated expression of the inflammatory and fibrotic mediators: nuclear factor kappa-B, transforming growth factor-β1, and matrix metalloproteinase-9. The antifibrotic effect was also evidenced through the decreased hydroxyproline content and the obvious restoration of lung architecture, as demonstrated upon histopathological examination. In conclusion, oral aspirin and krill oil combination can confer pulmonary protective, anti-inflammatory, and antifibrotic potentials against silica-induced pulmonary injury. This impact could be credited to the ability of this combination to activate resolution mechanisms, which, in turn, suppress the expression of inflammatory and fibrotic biomarkers and replenish antioxidant stores.
Collapse
Affiliation(s)
- Ahmed G Abd Elhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt.
| |
Collapse
|
41
|
Conde TA, Couto D, Melo T, Costa M, Silva J, Domingues MR, Domingues P. Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids. Sci Rep 2021; 11:4355. [PMID: 33623097 PMCID: PMC7902829 DOI: 10.1038/s41598-021-83455-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
There is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC-HR-ESI-MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tiago A. Conde
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - M. Rosário Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
The effects of cooking salmon sous-vide on its antithrombotic properties, lipid profile and sensory characteristics. Food Res Int 2021; 139:109976. [PMID: 33509521 DOI: 10.1016/j.foodres.2020.109976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/22/2022]
Abstract
Fish contains bioactive polar lipids (PL) and is mainly consumed cooked. The aim of this study was to evaluate the sensory characteristics of sous-vide cooked salmon and the in vitro cardio-protective properties of its PL. PL were extracted from brined and un-brined sous-vide preparations in 52 °C, 65 °C, and 80 °C, while their antithrombotic cardio-protective properties were assessed in human platelets and their fatty acid (FA) content was evaluated by LC-MS. Sensory tests were performed using napping followed by check-all-that apply (CATA). Mild temperatures (52 °C, 65 °C) did not affect the inhibitory effect of PL from brined and un-brined salmon, against human platelet aggregation induced by platelet-activating factor (PAF), thrombin, adenosine diphosphate (ADP) or collagen. In higher temperatures used for pasteurization (80 °C), a reduction of antithrombotic properties was observed in PL from both un-brined and brined salmon samples. This reduction was accompanied by a decrease of their n3 eicosapentaenoic acid (EPA) and overall polyunsaturated FA (PUFA) content, but only in the PL of the un-brined salmon preparations. Thus, changes in the fatty acid content of PL of all sous vide salmon preparations, and especially of specific PUFA, seem to be associated with the observed changes in their antithrombotic potency. Changes in the content of the n-3 docosapentaenoic acid (DPA), a precursor of EPA and docosahexaenoic acid (DHA), seem to be associated with differences observed in the antithrombotic potency of PL from different sous vide salmon preparations. Taste attributes were not affected by the conditions of sous-vide preparations, whereas slight textural differences were observed in samples treated at 65 °C and 80 °C. These outcomes, if combined with the observed low values of the n-6/n-3 PUFA ratio in PL of all sous-vide preparations, further suggest a beneficial role for such a mild cooking procedure for preserving the antithrombotic and cardio-protective properties of salmon without affecting its sensory characteristics.
Collapse
|
43
|
Efficient synthesis of DHA/EPA-rich phosphatidylcholine by inhibition of hydrolysis reaction using immobilized phospholipase A1 on macroporous SiO2/cationic polymer nano-composited support. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Donoso F, Schverer M, Rea K, Pusceddu MM, Roy BL, Dinan TG, Cryan JF, Schellekens H. Neurobiological effects of phospholipids in vitro: Relevance to stress-related disorders. Neurobiol Stress 2020; 13:100252. [PMID: 33344707 PMCID: PMC7739190 DOI: 10.1016/j.ynstr.2020.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marina Schverer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
46
|
Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
48
|
Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A, Min ZC, Singh-Makkar S, Sana MK, Sanchez-Dopazo R, Desir R, Fahem MMM, Manella S, Rodriguez I, Alvarez A, Abreu R. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Infect Chemother 2020; 52:478-495. [PMID: 33377319 PMCID: PMC7779984 DOI: 10.3947/ic.2020.52.4.478] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid international spread of severe acute respiratory syndrome coronavirus 2 responsible for coronavirus disease 2019 (COVID-19) has posed a global health emergency in 2020. It has affected over 52 million people and led to over 1.29 million deaths worldwide, as of November 13th, 2020. Patients diagnosed with COVID-19 present with symptoms ranging from none to severe and include fever, shortness of breath, dry cough, anosmia, and gastrointestinal abnormalities. Severe complications are largely due to overdrive of the host immune system leading to "cytokine storm". This results in disseminated intravascular coagulation, acute respiratory distress syndrome, multiple organ dysfunction syndrome, and death. Due to its highly infectious nature and concerning mortality rate, every effort has been focused on prevention and creating new medications or repurposing old treatment options to ameliorate the suffering of COVID-19 patients including the immune dysregulation. Omega-3 fatty acids are known to be incorporated throughout the body into the bi-phospholipid layer of the cell membrane leading to the production of less pro-inflammatory mediators compared to other fatty acids that are more prevalent in the Western diet. In this article, the benefits of omega-3 fatty acids, especially eicosapentaenoic acid and docosahexaenoic acid, including their anti-inflammatory, immunomodulating, and possible antiviral effects have been discussed.
Collapse
Affiliation(s)
- Donald Hathaway
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA.
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Madhusudan Patel
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Adrian Riva-Moscoso
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Bishnu Mohan Singh
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Aayushi Patel
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Zar Chi Min
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Muhammad Khawar Sana
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Rockeven Desir
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | | | - Susan Manella
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Ivan Rodriguez
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Alina Alvarez
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Rafael Abreu
- Division of Research & Academic Affairs, Larkin Health System, South Miami, FL, USA
| |
Collapse
|
49
|
Robert C, Couëdelo L, Knibbe C, Fonseca L, Buisson C, Errazuriz-Cerda E, Meugnier E, Loizon E, Vaysse C, Michalski MC. Rapeseed Lecithin Increases Lymphatic Lipid Output and α-Linolenic Acid Bioavailability in Rats. J Nutr 2020; 150:2900-2911. [PMID: 32937654 DOI: 10.1093/jn/nxaa244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized. OBJECTIVES We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats. METHODS Male Wistar rats (8 weeks old) undergoing a mesenteric lymph duct cannulation were intragastrically administered 1 g of an oil mixture containing 4% ALA and 0, 1, 3, 10, or 30% RL (5 groups). Lymph fractions were collected for 6 h. Lymph lipids and chylomicrons (CMs) were characterized. The expression of genes implicated in intestinal lipid metabolism was determined in the duodenum at 6 h. Data was analyzed using either sigmoidal or linear mixed-effects models, or one-way ANOVA, where appropriate. RESULTS RL dose-dependently increased the lymphatic recovery (AUC) of total lipids (1100 μg/mL·h per additional RL%; P = 0.010) and ALA (50 μg/mL·h per additional RL%; P = 0.0076). RL induced a faster appearance of ALA in lymph, as evidenced by the exponential decrease of the rate of appearance of ALA with RL (R2 = 0.26; P = 0.0064). Although the number of CMs was unaffected by RL, CM diameter was increased in the 30%-RL group, compared to the control group (0% RL), by 86% at 3-4 h (P = 0.065) and by 81% at 4-6 h (P = 0.0002) following administration. This increase was positively correlated with the duodenal mRNA expression of microsomal triglyceride transfer protein (Mttp; ρ= 0.63; P = 0.0052). The expression of Mttp and secretion-associated, ras-related GTPase 1 gene homolog B (Sar1b, CM secretion), carnitine palmitoyltransferase IA (Cpt1a) and acyl-coenzyme A oxidase 1 (Acox1, beta-oxidation), and fatty acid desaturase 2 (Fads2, bioconversion of ALA into long-chain n-3 PUFAs) were, respectively, 49%, 29%, 74%, 48%, and 55% higher in the 30%-RL group vs. the control group (P < 0.05). CONCLUSIONS In rats, RL enhanced lymphatic lipid output, as well as the rate of appearance of ALA, which may promote its subsequent bioavailability and metabolic fate.
Collapse
Affiliation(s)
- Chloé Robert
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France.,ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Leslie Couëdelo
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Carole Knibbe
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France.,Inria "Beagle" team, Antenne Lyon la Doua, Villeurbanne, France
| | - Laurence Fonseca
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Charline Buisson
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | | | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Carole Vaysse
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Marie-Caroline Michalski
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
50
|
Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. COSMETICS 2020. [DOI: 10.3390/cosmetics7040087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to review the reported information about the phospholipid composition of lecithins derived from several natural sources (lipids of plant, animal, and marine origin) and describe their main applications for the cosmetic, food, and pharmaceutical sectors. This study was carried out using specialized search engines and according to the following inclusion criteria: (i) documents published between 2005 and 2020, (ii) sources of lecithins, (iii) phospholipidic composition of lecithins, and (iv) uses and applications of lecithins. Nevertheless, this work is presented as a narrative review. Results of the review indicated that the most studied source of lecithin is soybean, followed by sunflower and egg yolk. Contrarily, only a few numbers of reports focused on lecithins derived from marine animals despite the relevance of this source in association with an even higher composition of phospholipids than in case of those derived from plant sources. Finally, the main applications of lecithins were found to be related to their nutritional aspects and ability as emulsion stabilizers and lipid component of liposomes.
Collapse
|