1
|
Yin YY, Yan JZ, Wei QQ, Sun SR, Ding YQ, Zhang LM, Li YF. Serotonergic transmission plays differentiated roles in the rapid and sustained antidepressant-like effects of ketamine. Br J Pharmacol 2024; 181:4874-4889. [PMID: 39238235 DOI: 10.1111/bph.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5-HT in the antidepressant effects of ketamine remains unclear. EXPERIMENTAL APPROACH The chronic restraint stress procedure was performed to induce depression-like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant-like effects of ketamine. Tph2 knockout or depletion of 5-HT by PCPA and 5,7-DHT were used to manipulate the brain 5-HT system. ELISA and fibre photometry recordings were used to measure extracellular 5-HT levels in the brain. KEY RESULTS 60 min after injection, ketamine (10 mg·kg-1, i.p.) produced rapid antidepressant-like effects and increased brain 5-HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5-HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant-like effects of ketamine were abrogated by PCPA and 5,7-DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg-1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5-HT levels and abolished the sustained antidepressant-like effects of ketamine in naïve or CRS-treated mice. CONCLUSION AND IMPLICATIONS This study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant-like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qian-Qian Wei
- School of Medicine, Nantong University, Nantong, China
| | - Si-Rui Sun
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Surve TAN, Sharma DD, Khan KG, Ghanie N, Charanrak R, Sharifa M, Begum S, Auz MJ, Akbarova N, Mylavarapu M. A comprehensive review of the intersection between asthma and depression. J Asthma 2024; 61:895-904. [PMID: 38415695 DOI: 10.1080/02770903.2024.2324862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To emphasize the necessity for increased research in this field, incorporating depression into the preventative, diagnostic, and therapeutic considerations for asthma. Additionally, we seek to highlight upcoming advancements that can be applied to simultaneously address these comorbidities, ultimately improving the overall well-being and quality of life for individuals coping with these conditions. METHODS A rigorous search in PubMed using the MeSH terms "asthma" and "depression" was performed, and papers were screened by the authors in view of their eligibility to contribute to the study. RESULTS There exists a correlation between these two conditions, with specific biological mechanisms and genetic factors playing a crucial role in their concurrent occurrence. In this review, we present preclinical and clinical research data, shed light on the possible mechanisms contributing to the co-occurrence of symptoms associated with both asthma and depression, and explore the intricate relationship between both conditions. CONCLUSION The evidence presented here supports the existence of a correlation between asthma and depression. By acknowledging these shared biological mechanisms, genetic factors, and epidemiological trends, we can formulate more efficacious strategies for addressing the dual impact of asthma and depression.
Collapse
Affiliation(s)
| | - DhruviKumari D Sharma
- Department of Internal Medicine, Spartan Health Sciences University, Vieux Fort, Saint Lucia
| | - Kiyan Ghani Khan
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | - Neisha Ghanie
- Department of Internal Medicine, American University of Antigua, Osbourn, Antigua and Barbuda
| | - Riley Charanrak
- Department of Internal Medicine, University of Lublin, Lublin, Poland
| | - Mouhammad Sharifa
- Department of Internal Medicine, University of Aleppo Faculty of Medicine, Aleppo, Syria
| | - Samreen Begum
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Maria Jose Auz
- Department of Internal Medicine, Pontificia Universidad Catolica Argentina, Buenos Aires, Argentina
| | - Nozima Akbarova
- Department of Internal Medicine, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
| | - Maneeth Mylavarapu
- Graduate Research Assistant, Department of Public Health, Adelphi University, Garden City, NY, USA
| |
Collapse
|
4
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Cao H, Sun J, Hua Q, Huang T, Wei Y, Zhan Y, Yao X, Zhang T, Yang Y, Xu W, Bai T, Tian Y, Zhang L, Wang K, Ji GJ. Decreased inter-hemispheric cooperation in major depressive disorder and its association with neurotransmitter profiles. J Affect Disord 2024; 359:109-116. [PMID: 38768823 DOI: 10.1016/j.jad.2024.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inter-hemispheric cooperation is a prominent feature of the human brain, and previous neuroimaging studies have revealed aberrant inter-hemispheric cooperation patterns in patients with major depressive disorder (MDD). Typically, inter-hemispheric cooperation is examined by calculating the functional connectivity (FC) between each voxel in one hemisphere and its anatomical (structurally homotopic) counterpart in the opposite hemisphere. However, bilateral hemispheres are actually asymmetric in anatomy. METHODS In the present study, we utilized connectivity between functionally homotopic voxels (CFH) to investigate abnormal inter-hemispheric cooperation in 96 MDD patients compared to 173 age- and sex-matched healthy controls (HCs). In addition, we analyzed the spatial correlations between abnormal CFH and the density maps of 13 neurotransmitter receptors and transporters. RESULTS The CFH values in bilateral orbital frontal gyri and bilateral postcentral gyri were abnormally decreased in patients with MDD. Furthermore, these CFH abnormalities were correlated with clinical symptoms. In addition, the abnormal CFH pattern in MDD patients was spatially correlated with the distribution pattern of 5-HT1AR. LIMITATIONS drug effect; the cross-sectional research design precludes causal inferences; the neurotransmitter atlases selected were constructed from healthy individuals rather than MDD patients. CONCLUSION These findings characterized the abnormal inter-hemispheric cooperation in MDD using a novel method and the underlying neurotransmitter mechanism, which promotes our understanding of the pathophysiology of depression.
Collapse
Affiliation(s)
- Hai Cao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongqing Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqing Wei
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yuqian Zhan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Xiaoqing Yao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ting Zhang
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinian Yang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
6
|
Sun Y, Cai H, Yang D, Yu N, Sun L, Xu J, Yuan H, Yang R, Song L, Liu H, Ma C, Liu Z. β-arrestin2 is indispensable for the antidepressant effects of fluoxetine via inhibiting astrocytic pyroptosis in chronic mild stress mouse model for depression. Eur J Pharmacol 2024; 976:176693. [PMID: 38834095 DOI: 10.1016/j.ejphar.2024.176693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
β-arrestin2 is a versatile protein for signaling transduction in brain physiology and pathology. Herein, we investigated the involvement of β-arrestin2 in pharmacological effects of fluoxetine for depression. A chronic mild stress (CMS) model was established using wild-type (WT) and β-arrestin2-/- mice. Behavioral results demonstrated that CMS mice showed increased immobility time in the tail suspension test and forced swimming test, elevated concentrations of pro-inflammatory factors in peripheral blood, increased expression of pyroptosis-related proteins, and increased co-labeling of glial fibrillary acidic protein and Caspase1 p10 in the hippocampus compared to the CON group. Treatment with fluoxetine (FLX) ameliorated these conditions. However, compared with the β-arrestin2-/- CMS group, these results of the β-arrestin2-/- CMS + FLX group showed no significant changes. These results suggested that the above effects of FLX could be eliminated by knocking out β-arrestin2. Mass spectrometry implying that FLX promoted the binding of β-arrestin2 to the NLRP2 inflammasome of depressed mice. Subsequently, the results of the cellular experiments suggested that the 5HT2B receptor antagonist may attenuate L-kynurenine + ATP-induced cell pyroptosis by attenuating NLRP2 binding to β-arrestin2. We further found that the lack of β-arrestin2 eliminated the anti-pyroptosis effect of fluoxetine. In conclusion, β-arrestin2 is an essential protein for fluoxetine to alleviate pyroptosis in the hippocampal astrocytes of CMS mice. Mechanistically, we found that the 5-HT2BR-β-arrestin2-NLRP2 axis is vital for maintaining the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Yiming Sun
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hui Cai
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Daofeng Yang
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Nengyi Yu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lejie Sun
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Jingxuan Xu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Hongwei Yuan
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Rong Yang
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Lele Song
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China
| | - Chengyao Ma
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Zhe Liu
- The First Affiliated Hospital of Bengbu Medical University, Changhuai Road, Bengbu, 233000, Anhui, China; School of Pharmacy, Bengbu Medical University, Donghhai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
7
|
Depoortère RY, McCreary AC, Vidal B, Varney MA, Zimmer L, Newman-Tancredi A. Pharmacodynamic, pharmacokinetic and rat brain receptor occupancy profile of NLX-112, a highly selective 5-HT 1A receptor biased agonist. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03323-0. [PMID: 39096379 DOI: 10.1007/s00210-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
NLX-112 (i.e., F13640, befiradol) exhibits nanomolar affinity, exceptional selectivity and full agonist efficacy at serotonin 5-HT1A receptors. NLX-112 shows efficacy in rat, marmoset and macaque models of L-DOPA induced dyskinesia (LID) in Parkinson's disease and has shown clinical efficacy in a Phase 2a proof-of-concept study for this indication. Here we investigated, in rats, its pharmacodynamic, pharmacokinetic (PK) and brain 5-HT1A receptor occupancy profiles, and its PK properties in the absence and presence of L-DOPA. Total and free NLX-112 exposure in plasma, CSF and striatal ECF was dose-proportional over the range tested (0.04, 0.16 and 0.63 mg/kg i.p.). NLX-112 exposure increased rapidly (Tmax 0.25-0.5h) and exhibited approximately threefold longer half-life in brain than in plasma (1.1 and 3.6h, respectively). At a pharmacologically relevant dose of 0.16 mg/kg i.p., previously shown to elicit anti-LID activity in parkinsonian rats, brain concentration of NLX-112 was 51-63 ng/g from 0.15 to 1h. In microPET imaging experiments, NLX-112 showed dose-dependent reduction of 18F-F13640 (i.e., 18F-NLX-112) brain 5-HT1A receptor labeling in cingulate cortex and striatum, regions associated with motor control and mood, with almost complete inhibition of labeling at the dose of 0.63 mg/kg i.p.. Co-administration of L-DOPA (6 mg/kg s.c., a dose used to elicit LID in parkinsonian rats) together with NLX-112 (0.16 mg/kg i.p.) did not modify PK parameters in rat plasma and brain of either NLX-112 or L-DOPA. Here, we demonstrate that NLX-112's profile is compatible with 'druggable' parameters for CNS indications, and the results provide measures of brain concentrations and 5-HT1A receptor binding parameters relevant to the anti-dyskinetic activity of the compound.
Collapse
Affiliation(s)
| | - Andrew C McCreary
- Brains On-Line, Groningen, Netherlands
- GW Pharmaceuticals, Cambridge, UK
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, CERMEP-Imaging Platform, Bron, France
| | - Mark A Varney
- Neurolixis SAS, 2 Rue Georges Charpak, 81100, Castres, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, CERMEP-Imaging Platform, Bron, France
- Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
8
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
9
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Borroto-Escuela DO, Gonzalez-Cristo E, Ochoa-Torres V, Serra-Rojas EM, Ambrogini P, Arroyo-García LE, Fuxe K. Understanding electrical and chemical transmission in the brain. Front Cell Neurosci 2024; 18:1398862. [PMID: 38988663 PMCID: PMC11233782 DOI: 10.3389/fncel.2024.1398862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The histochemical Falck-Hillarp method for the localization of dopamine (DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of rodents was introduced in the 1960s. It supported the existence of chemical neurotransmission in the CNS. The monoamine neurons in the lower brain stem formed monosynaptic ascending systems to the telencephalon and diencephalon and monoamine descending systems to the entire spinal cord. The monoamines were early on suggested to operate via synaptic chemical transmission in the CNS. This chemical transmission reduced the impact of electrical transmission. In 1969 and the 1970s indications were obtained that important modes of chemical monoamine communication in the CNS also took place through the extra-synaptic fluid, the extracellular fluid, and long-distance communication in the cerebrospinal fluid involving diffusion and flow of transmitters like DA, NA and serotonin. In 1986, this type of transmission was named volume transmission (VT) by Agnati and Fuxe and their colleagues, also characterized by transmitter varicosity and receptor mismatches. The short and long-distance VT pathways were characterized by volume fraction, tortuosity and clearance. Electrical transmission also exists in the mammalian CNS, but chemical transmission is in dominance. One electrical mode is represented by electrical synapses formed by gap junctions which represent low resistant passages between nerve cells. It allows for a more rapid passage of action potentials between nerve cells compared to chemical transmission. The second mode is based on the ability of synaptic currents to generate electrical fields to modulate chemical transmission. One aim is to understand how chemical transmission can be integrated with electrical transmission and how putative (aquaporin water channel, dopamine D2R and adenosine A2AR) complexes in astrocytes can significancy participate in the clearance of waste products from the glymphatic system. VT may also help accomplish the operation of the acupuncture meridians essential for Chinese medicine in view of the indicated existence of extracellular VT pathways.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Emmanuell Gonzalez-Cristo
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Verty Ochoa-Torres
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Faculty of Engineering and Biotechnology, University OTR and the Regional Cooperative for Comprehensive Medical Assistance (CRAMI), Montevideo, Uruguay
| | - Emilio M. Serra-Rojas
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Cardiology Service, Lozano Blesa University Clinical Hospital, Zaragoza, Spain
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, Urbino, Italy
| | - Luis E. Arroyo-García
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Rojas-Osornio SA, Crespo-Ramírez M, Paredes-Cervantes V, Mata-Marín A, Martínez-Lara R, Pérez de la Mora M, Tesoro-Cruz E. Oral Administration of Efavirenz Dysregulates the Tph2 Gene in Brain Serotonergic Areas and Alters Weight and Mood in Mice. Pharmaceuticals (Basel) 2024; 17:801. [PMID: 38931468 PMCID: PMC11206422 DOI: 10.3390/ph17060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Most HIV-antiretroviral drugs have adverse effects. Efavirenz (EFV) is an example of a drug with neuropsychiatric effects, such as anxiety, depression, and suicidal thoughts, in people living with HIV (PLWH). The mechanisms by which EFV causes neuropsychiatric alterations in PLWH are complex, multifactorial, and not fully understood, although several studies in animals have reported changes in brain energy metabolism, alterations in monoamine turnover, GABA, and glutamate levels, and changes in 5-HT receptors. In this report, we studied the effects of EFV on the serotonergic system in healthy mice, specifically, whether EFV results in alterations in the levels of the tryptophan hydroxylase 2 (Tph2) gene in the brain. EFV (10 mg/kg) and distilled water (1.5 µL/kg) (control group) were orally administered to the mice for 36 days. At the end of the treatment, Tph2 expression levels in mouse brains were measured, and mood was evaluated by three trials: the forced swim test, elevated plus maze, and open field test. Our results revealed dysregulation of Tph2 expression in the brainstem, amygdala, and hypothalamus in the EFV group, and 5-HT levels increased in the amygdala in the EFV group. In the behavioral tests, mice given EFV exhibited a passive avoidance response in the forced swim test and anxiety-like behavior in the elevated plus maze, and they lost weight. Herein, for the first time, we showed that EFV triggered dysregulation of the Tph2 gene in the three serotonergic areas studied; and 5-HT levels increased in the amygdala using the ELISA method. However, further studies will be necessary to clarify the increase of 5-HT in the amygdala as well as understand the paradoxical decrease in body weight with the simultaneous increase in food consumption. It will also be necessary to measure 5-HT by other techniques different from ELISA, such as HPLC.
Collapse
Affiliation(s)
| | - Minerva Crespo-Ramírez
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vladimir Paredes-Cervantes
- Laboratorio Central, Hospital de Especialidades “Dr. Antonio Fraga Mouret” Centro Médico Nacional “La Raza” Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Antonio Mata-Marín
- Departamento de Infectología, Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Ricardo Martínez-Lara
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Miguel Pérez de la Mora
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| |
Collapse
|
12
|
Yuan W, Ma Y, Zhang H. Development of heterocyclic-based frameworks as potential scaffold of 5-HT1A receptor agonist and future perspectives: A review. Medicine (Baltimore) 2024; 103:e38496. [PMID: 38875413 PMCID: PMC11175882 DOI: 10.1097/md.0000000000038496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
As a subtype of the 5-hydroxytryptamine (5-HT) receptor, 5-HT1A receptors are involved in the pathological process of psychiatric disorders and is an important target for antidepressants. The research groups focus on these area have tried to design novel compounds to alleviate depression by targeting 5-HT1A receptor. The heterocyclic structures is an important scaffold to enhance the antidepressant activity of ligands, including piperazine, piperidine, benzothiazole, and pyrrolidone. The current review highlights the function and significance of nitrogen-based heterocyclics 5-HT1AR represented by piperazine, piperidine, benzothiazole, and pyrrolidone in the development of antidepressant.
Collapse
Affiliation(s)
- Weihua Yuan
- School of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Ma
- Gumei Community Health Service Centre, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Zhang
- School of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
13
|
Potter K, Gayle EJ, Deb S. Effect of gut microbiome on serotonin metabolism: a personalized treatment approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2589-2602. [PMID: 37922012 DOI: 10.1007/s00210-023-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
Several factors including diet, exercise, and medications influence the makeup of the resilient but adaptable gut microbiome. Bacteria in the gut have a significant role in the homeostasis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine, involved in mood and behavior. The goal of the current work is to review the effect of the gut microbiome on serotonin metabolism, and how it can potentially contribute to the development of a personalized treatment approach for depression and anxiety. Bacterial strains provide innovative therapeutic targets that can be used for disorders, such as depression, that involve dysregulation of serotonin. Advances in bacterial genomic sequencing have increased the accessibility and affordability of microbiome testing, which unlocks a new targeted pathway to modulate serotonin metabolism by targeting the gut-brain axis. Microbiome testing can facilitate the recommendation of strain-specific probiotic supplements based on patient-specific microbial profiles. Several studies have shown that supplementation with probiotics containing specific species of bacteria, such as Bifidobacterium and Lactobacillus, can improve symptoms of depression. Further research is needed to improve the process and interpretation of microbiome testing and how to successfully incorporate testing results into guiding clinical decision-making. This targeted approach centered around the gut-brain axis can provide a novel way to personalize therapy for mental health disorders.
Collapse
Affiliation(s)
- Kristal Potter
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Subrata Deb
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
14
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
15
|
Gao Y, Nie K, Wang H, Dong H, Tang Y. Research progress on antidepressant effects and mechanisms of berberine. Front Pharmacol 2024; 15:1331440. [PMID: 38318145 PMCID: PMC10839030 DOI: 10.3389/fphar.2024.1331440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Depression, a global health problem with growing prevalence, brings serious impacts on the daily life of patients. However, the antidepressants currently used in clinical are not perfectly effective, which greatly reduces the compliance of patients. Berberine is a natural quaternary alkaloid which has been shown to have a variety of pharmacological effects, such as hypoglycemic, lipid-regulation, anti-cancer, antibacterial, anti-oxidation, anti-inflammatory, and antidepressant. This review summarizes the evidence of pharmacological applications of berberine in treating depression and elucidates the mechanisms of berberine regulating neurotransmitter levels, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal axis dysfunction, anti-oxidative stress, and suppressing inflammatory status in order to provide a reference for further research and clinical application of berberine.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Wang YN, Shi MM, Zhang JM. Value of Chuanjin Qinggan decoction in improving the depressive state of patients with herpes zoster combined with depression. World J Psychiatry 2023; 13:1037-1045. [PMID: 38186733 PMCID: PMC10768491 DOI: 10.5498/wjp.v13.i12.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Western medicine is beneficial for the recovery of neurological function in patients with depression, but some patients experience side effects such as headaches, dizziness, nausea, gastrointestinal symptoms, insomnia, and cardiac dysfunction. In recent years, integrative medicine has achieved positive results in the treatment of various diseases. AIM To study Chuanjin Qinggan decoction combined with selective serotonin reuptake inhibitors (SSRIs) in patients with herpes zoster complicated by depression. METHODS Patients with herpes zoster complicated by depression who were treated at the Yantai Hospital of Traditional Chinese Medicine from January 2021 to December 2022 were retrospectively selected as research participants. Among them, 43 patients with herpes zoster complicated by depression who received SSRI treatment between January and December 2021 were assigned to the Western medicine group, while those who received combined treatment of traditional Chinese and Western medicine between January and December 2022 were assigned to the combined group. Both groups were treated for eight weeks. The degree of pain, effect of herpes zoster treatment, degree of improvement in depressive symptoms, serum neurotransmitter levels, sleep quality, and occurrence of adverse reactions were compared between the two groups. RESULTS We found that after eight weeks of drug treatment, the two treatment schemes achieved differing efficacy. In further comparison, we found that, compared with patients treated with SSRIs alone, patients treated with Chuanjin Qinggan decoction combined with SSRIs showed more significant improvement in depression and a greater increase in dopamine and 5-hydroxytryptamine levels after treatment (P < 0.05). Patients treated with Chuanjin Qinggan decoction combined with SSRIs also experienced lower pain, better treatment efficacy for herpes zoster, better sleep quality, and a lower incidence of adverse reactions compared to those treated with SSRIs alone (P < 0.05). All minor adverse reactions occurring during treatment were resolved after symptomatic treatment. CONCLUSION The treatment scheme of Chuanjin Qinggan decoction combined with SSRIs can improve the psychological state of patients with herpes zoster complicated by depression and alleviate adverse reactions.
Collapse
Affiliation(s)
- Yi-Nan Wang
- Department of Dermatology, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, Shandong Province, China
| | - Meng-Meng Shi
- Department of Geriatrics, Yantai Traditional Chinese Medicine Hospital, Yantai 264000, Shandong Province, China
| | - Jin-Ming Zhang
- Department of Geriatrics, Yantai Traditional Chinese Medicine Hospital, Yantai 264000, Shandong Province, China
| |
Collapse
|
17
|
Chruścicka-Smaga B, Machaczka A, Szewczyk B, Pilc A. Interaction of hallucinogenic rapid-acting antidepressants with mGlu2/3 receptor ligands as a window for more effective therapies. Pharmacol Rep 2023; 75:1341-1349. [PMID: 37932583 PMCID: PMC10660980 DOI: 10.1007/s43440-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.
Collapse
Affiliation(s)
- Barbara Chruścicka-Smaga
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
18
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
20
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
21
|
Alruwaili NS, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Ragab AE, Alenazi AA, Alexiou A, Papadakis M, Batiha GES. Antidepressants and type 2 diabetes: highways to knowns and unknowns. Diabetol Metab Syndr 2023; 15:179. [PMID: 37653558 PMCID: PMC10470155 DOI: 10.1186/s13098-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease caused by the development of insulin resistance (IR), relative insulin deficiency, and hyperglycemia. Hyperglycemia-induced neurochemical dysregulation activates the progression of depression in T2D patients. Therefore, management of depression by antidepressant agents improves glucose homeostasis and insulin sensitivity. However, prolong use of antidepressant drugs may increase the risk for the development of T2D. However, there is strong controversy concerning the use of antidepressant drugs in T2D. Therefore, this review try to elucidate the potential effects of antidepressant drugs in T2D regarding their detrimental and beneficial effects.
Collapse
Affiliation(s)
- Nahi Sabih Alruwaili
- Eradah Complex of Mental Health -Northern Border Region, Ministry of Health, Al Bahah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
22
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Skubisz K, Dąbkowski K, Samborowska E, Starzyńska T, Deskur A, Ambrozkiewicz F, Karczmarski J, Radkiewicz M, Kusnierz K, Kos-Kudła B, Sulikowski T, Cybula P, Paziewska A. Serum Metabolite Biomarkers for Pancreatic Tumors: Neuroendocrine and Pancreatic Ductal Adenocarcinomas-A Preliminary Study. Cancers (Basel) 2023; 15:3242. [PMID: 37370852 DOI: 10.3390/cancers15123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
Collapse
Affiliation(s)
- Karolina Skubisz
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Pediatric Hospital of Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Kusnierz
- The Department of Gastrointestinal Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| |
Collapse
|
24
|
Gouveia FV, Diwan M, Martinez RCR, Giacobbe P, Lipsman N, Hamani C. Reduction of aggressive behaviour following hypothalamic deep brain stimulation: Involvement of 5-HT 1A and testosterone. Neurobiol Dis 2023:106179. [PMID: 37276987 DOI: 10.1016/j.nbd.2023.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS Male mice were housed with females for two weeks. These resident animals tend to become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive days prior to daily encounters with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 days. RESULTS DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | - Mustansir Diwan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Haynes RL, Trachtenberg F, Darnall R, Haas EA, Goldstein RD, Mena OJ, Krous HF, Kinney HC. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits. J Neuropathol Exp Neurol 2023; 82:467-482. [PMID: 37226597 PMCID: PMC10209647 DOI: 10.1093/jnen/nlad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality in the United States, is typically associated with a sleep period. Previously, we showed evidence of serotonergic abnormalities in the medulla (e.g. altered serotonin (5-HT)1A receptor binding), in SIDS cases. In rodents, 5-HT2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. Nonetheless, the role of 5-HT2A/C receptors in the pathophysiology of SIDS is unclear. We hypothesize that in SIDS, 5-HT2A/C receptor binding is altered in medullary nuclei that are key for arousal and autoresuscitation. Here, we report altered 5-HT2A/C binding in several key medullary nuclei in SIDS cases (n = 58) compared to controls (n = 12). In some nuclei the reduced 5-HT2A/C and 5-HT1A binding overlapped, suggesting abnormal 5-HT receptor interactions. The data presented here (Part 1) suggest that a subset of SIDS is due in part to abnormal 5-HT2A/C and 5-HT1A signaling across multiple medullary nuclei vital for arousal and autoresuscitation. In Part II to follow, we highlight 8 medullary subnetworks with altered 5-HT receptor binding in SIDS. We propose the existence of an integrative brainstem network that fails to facilitate arousal and/or autoresuscitation in SIDS cases.
Collapse
Affiliation(s)
- Robin L Haynes
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Ryan Darnall
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children’s Hospital, San Diego, California, USA
| | - Richard D Goldstein
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - Henry F Krous
- University of California, San Diego, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C Kinney
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Wu X, Tu M, Chen N, Yang J, Jin J, Qu S, Xiong S, Cao Z, Xu M, Pei S, Hu H, Ge Y, Fang J, Shao X. The efficacy and cerebral mechanism of intradermal acupuncture for major depressive disorder: a study protocol for a randomized controlled trial. Front Psychiatry 2023; 14:1181947. [PMID: 37255689 PMCID: PMC10226652 DOI: 10.3389/fpsyt.2023.1181947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background Major depressive disorder (MDD) has emerged as the fifth leading cause of years lived with disability, with a high prevalent, affecting nearly 4% of the global population. While available evidence suggests that intradermal acupuncture may enhance the effectiveness of antidepressants, whether its efficacy is a specific therapeutic effect or a placebo effect has not been reported. Moreover, the cerebral mechanism of intradermal acupuncture as a superficial acupuncture (usually subcutaneous needling to a depth of 1-2 mm) for MDD remains unclear. Methods A total of 120 participants with MDD will be enrolled and randomized to the waiting list group, sham intradermal acupuncture group and active intradermal acupuncture group. All 3 groups will receive a 6-week intervention and a 4-week follow-up. The primary outcome will be measured by the Hamilton Depression Rating Scale-17 and the secondary outcome measures will be the Self-Rating depression scale and Pittsburgh sleep quality index. Assessments will be conducted at baseline, 3 weeks, 6 weeks, and during the follow-up period. In addition, 20 eligible participants in each group will be randomly selected to undergo head magnetic resonance imaging before and after the intervention to explore the effects of intradermal acupuncture on brain activity in MDD patients. Discussion If the intradermal acupuncture is beneficial, it is promising to be included in the routine treatment of MDD. Clinical Trial Registration Clinicaltrials.gov, NCT05720637.
Collapse
Affiliation(s)
- Xiaoting Wu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingqi Tu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Nisang Chen
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyan Jin
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siying Qu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sangsang Xiong
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijian Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuangyi Pei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hantong Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinyan Ge
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Lin J, Liu W, Guan J, Cui J, Shi R, Wang L, Chen D, Liu Y. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci 2023; 15:1124112. [PMID: 37228487 PMCID: PMC10203201 DOI: 10.3389/fnsyn.2023.1124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023] Open
Abstract
Psychiatric disorders are among the leading causes of global health burden, with depression and anxiety being the most disabling subtypes. The two common disorders, depression and anxiety, usually coexist and are pathologically polygenic with complicated etiologies. Current drug-based therapies include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and 5-hydroxytryptamine partial agonists. However, these modalities share common limitations, such as slow onset and low efficacy, which is why potential mechanistic insights for new drug targets are needed. In this review, we summarize recent advances in brain localization, pathology, and therapeutic mechanisms of the serotonergic system in depression and anxiety.
Collapse
Affiliation(s)
- Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Wenxin Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Jing Guan
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
- Department of Pediatrics, Yingkou Economic and Technological Development Zone Central Hospital, Yingkou, China
| | - Jianing Cui
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Ruolin Shi
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Lu Wang
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
29
|
Hao S, Shi W, Liu W, Chen QY, Zhuo M. Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. Front Synaptic Neurosci 2023; 15:1122381. [PMID: 37143481 PMCID: PMC10151796 DOI: 10.3389/fnsyn.2023.1122381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.
Collapse
Affiliation(s)
- Shun Hao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi-Yu Chen
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Min Zhuo
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Ambrogini P, Lattanzi D, Pagliarini M, Di Palma M, Sartini S, Cuppini R, Fuxe K, Borroto-Escuela DO. 5HT1AR-FGFR1 Heteroreceptor Complexes Differently Modulate GIRK Currents in the Dorsal Hippocampus and the Dorsal Raphe Serotonin Nucleus of Control Rats and of a Genetic Rat Model of Depression. Int J Mol Sci 2023; 24:ijms24087467. [PMID: 37108630 PMCID: PMC10144171 DOI: 10.3390/ijms24087467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The midbrain raphe serotonin (5HT) neurons provide the main ascending serotonergic projection to the forebrain, including hippocampus, which has a role in the pathophysiology of depressive disorder. Serotonin 5HT1A receptor (R) activation at the soma-dendritic level of serotonergic raphe neurons and glutamatergic hippocampal pyramidal neurons leads to a decrease in neuronal firing by activation of G protein-coupled inwardly-rectifying potassium (GIRK) channels. In this raphe-hippocampal serotonin neuron system, the existence of 5HT1AR-FGFR1 heteroreceptor complexes has been proven, but the functional receptor-receptor interactions in the heterocomplexes have only been investigated in CA1 pyramidal neurons of control Sprague Dawley (SD) rats. In the current study, considering the impact of the receptor interplay in developing new antidepressant drugs, the effects of 5HT1AR-FGFR1 complex activation were investigated in hippocampal pyramidal neurons and in midbrain dorsal raphe serotonergic neurons of SD rats and of a genetic rat model of depression (the Flinders Sensitive Line (FSL) rats of SD origin) using an electrophysiological approach. The results showed that in the raphe-hippocampal 5HT system of SD rats, 5HT1AR-FGFR1 heteroreceptor activation by specific agonists reduced the ability of the 5HT1AR protomer to open the GIRK channels through the allosteric inhibitory interplay produced by the activation of the FGFR1 protomer, leading to increased neuronal firing. On the contrary, in FSL rats, FGFR1 agonist-induced inhibitory allosteric action at the 5HT1AR protomer was not able to induce this effect on GIRK channels, except in CA2 neurons where we demonstrated that the functional receptor-receptor interaction is needed for producing the effect on GIRK. In keeping with this evidence, hippocampal plasticity, evaluated as long-term potentiation induction ability in the CA1 field, was impaired by 5HT1AR activation both in SD and in FSL rats, which did not develop after combined 5HT1AR-FGFR1 heterocomplex activation in SD rats. It is therefore proposed that in the genetic FSL model of depression, there is a significant reduction in the allosteric inhibition exerted by the FGFR1 protomer on the 5HT1A protomer-mediated opening of the GIRK channels in the 5HT1AR-FGFR1 heterocomplex located in the raphe-hippocampal serotonin system. This may result in an enhanced inhibition of the dorsal raphe 5HT nerve cell and glutamatergic hippocampal CA1 pyramidal nerve cell firing, which we propose may have a role in depression.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Michael Di Palma
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, Università Politecnica delle Marche, I-60121 Ancona, Italy
| | - Stefano Sartini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, I-61029 Urbino, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dasiel Oscar Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, 29017 Malaga, Spain
| |
Collapse
|
31
|
Rech TDST, Ribeiro EH, Castro ET, Alves AG, Strelow DN, Neto JSS, Braga AL, Brüning CA, Bortolatto CF. Antidepressant Potential of a Functionalized 3-Selanyl Benzo[ b]Furan Compound in Mice: Focus on the Serotonergic System. ACS Chem Neurosci 2023; 14:1181-1192. [PMID: 36853167 DOI: 10.1021/acschemneuro.2c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The present study investigated the antidepressant-like potential of a functionalized 3-selanyl benzo[b]furan (SeBZF) in male Swiss mice. To evaluate possible antidepressant-like actions, the compounds SeBZF1-5 (50 mg/kg, intragastric, i.g., route) were acutely screened in the tail suspension tests (TSTs). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) was then selected. Dose-response and time-response curves revealed that SeBFZ3 exerts antidepressant-like effects in the TST (5-50 mg/kg) and forced swimming test (FST; 50 mg/kg). Additional tests demonstrated that pretreatment with receptor antagonists WAY100635 (5-HT1A; 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/C; 1 mg/kg, intraperitoneal, i.p.), or ondansetron (5-HT3; 1 mg/kg, i.p.) blocked the SeBZF3 antidepressant-like effects (50 mg/kg) in the TST. In addition, the coadministration of subeffective doses of SeBZF3 (1 mg/kg, i.g.) and fluoxetine (a selective serotonin reuptake inhibitor; 5 mg/kg, i.p.) produced synergistic action. A high dose of SeBZF3 (300 mg/kg) did not produce oral acute toxicity. The present results provide evidence for the antidepressant-like action of SeBZF3 and its relative safety, as well as predict the possible interactions with the serotonergic system, aiding in the development of novel options to alleviate psychiatric disabilities.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Estela Hartwig Ribeiro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - José Sebastião Santos Neto
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Antonio Luiz Braga
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
da Rocha MJ, Pires CS, Presa MH, Besckow EM, Nunes GD, Gomes CS, Penteado F, Lenardão EJ, Bortolatto CF, Brüning CA. Involvement of the serotonergic system in the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine in mice. Psychopharmacology (Berl) 2023; 240:373-389. [PMID: 36645465 DOI: 10.1007/s00213-023-06313-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Depression is a mental disorder that affects approximately 280 million people worldwide. In the search for new treatments for mood disorders, compounds containing selenium and indolizine derivatives show promising results. OBJECTIVES AND METHODS To evaluate the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) (0.5-50 mg/kg, intragastric-i.g.) on the tail suspension test (TST) and the forced swim test (FST) in adult male Swiss mice and to elucidate the role of the serotonergic system in this effect through pharmacological and in silico approaches, as well to evaluate acute oral toxicity at a high dose (300 mg/kg). RESULTS MeSeI administered 30 min before the FST and the TST reduced immobility time at doses from 1 mg/kg and at 50 mg/kg and increased the latency time for the first episode of immobility, demonstrating an antidepressant-like effect. In the open field test (OFT), MeSeI did not change the locomotor activity. The antidepressant-like effect of MeSeI (50 mg/kg, i.g.) was prevented by the pre-treatment with p-chlorophenylalanine (p-CPA), a selective tryptophan hydroxylase inhibitor (100 mg/kg, intraperitoneally-i.p. for 4 days), with ketanserin, a 5-HT2A/2C receptor antagonist (1 mg/kg, i.p.), and with GR113808, a 5-HT4 receptor antagonist (0.1 mg/kg, i.p.), but not with WAY100635, a selective 5-HT1A receptor antagonist (0.1 mg/kg, subcutaneous-s.c.) and ondansetron, a 5-HT3 receptor antagonist (1 mg/kg, i.p.). MeSeI showed a binding affinity with 5-HT2A, 5 -HT2C, and 5-HT4 receptors by molecular docking. MeSeI (300 mg/kg, i.g.) demonstrated low potential to cause acute toxicity in adult female Swiss mice. CONCLUSION In summary, MeSeI exhibits an antidepressant-like effect mediated by the serotonergic system and could be considered for the development of new treatment strategies for depression.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Caroline Signorini Gomes
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Filipe Penteado
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Eder João Lenardão
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
33
|
Lin X, Huang L, Huang H, Ke Z, Chen Y. Disturbed relationship between glucocorticoid receptor and 5-HT1AR/5-HT2AR in ADHD rats: A correlation study. Front Neurosci 2023; 16:1064369. [PMID: 36699537 PMCID: PMC9869156 DOI: 10.3389/fnins.2022.1064369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objective This work is to investigate the alterations of the central 5-hydroxytryptamine (5-HT) system in spontaneously hypertensive rats (SHR) and the correlation with the behaviors of SHR, and to explore the effects of glucocorticoid intervention on the central 5-HT system and SHR behaviors. Materials and methods Three weeks old SHR were chosen as the attention-deficit hyperactivity disorder (ADHD) model and treated with glucocorticoid receptor (GR) agonist or inhibitor, whereas Wista Kyoto rats (WKY) were chosen as the normal control group. Open-field test and Làt maze test were used to evaluate the spontaneous activities and non-selective attention. The levels of 5-HT in the extracellular fluid specimens of the prefrontal cortex of rats were analyzed by high-performance liquid chromatography. The expressions of GR, 5-HT1A receptor (5-HT1AR), and 5-HT2A receptor (5-HT2AR) in the prefrontal cortex were analyzed through immunohistochemistry. Results Our study demonstrated that the 5-HT level was lower in the prefrontal cortex of SHR compared to that of WKY. The Open-field test and Làt maze test showed that GR agonist (dexamethasone, DEX) intervention ameliorated attention deficit and hyperactive behavior, whereas GR inhibitor (RU486) aggravated the disorders. With DEX, the expression levels of 5-HT and 5-HT2AR in the prefrontal cortex of SHR were significantly higher than those in the control group, whereas the expression level of 5-HT1AR was lower. However, the expression levels of 5-HT and 5-HT2AR were significantly decreased after the intervention with RU486, while the expression level of 5-HT1AR increased. Results showed that glucocorticoid was negatively correlated with 5-HT1AR and positively correlated with 5-HT2AR. Conclusion In the prefrontal cortex of ADHD rats, the down-regulation of 5-HT and 5-HT2AR expressions and the up-regulation of 5-HT1AR, compared with WYK rats, suggested a dysfunctional central 5-HT system in ADHD rats. The GR agonist can upregulate the expression of 5-HT and 5-HT2AR and downregulate the expression of 5-HT1AR in the prefrontal cortex of SHR as well as reduce the hyperactivity and attention deficit behavior in SHR, while the opposite was true for the GR inhibitor. It is suggested that the dysfunction of the 5-HT system in ADHD rats is closely related to glucocorticoid receptor activity.
Collapse
|
34
|
Cornuti S, Chen S, Lupori L, Finamore F, Carli F, Samad M, Fenizia S, Caldarelli M, Damiani F, Raimondi F, Mazziotti R, Magnan C, Rocchiccioli S, Gastaldelli A, Baldi P, Tognini P. Brain histone beta-hydroxybutyrylation couples metabolism with gene expression. Cell Mol Life Sci 2023; 80:28. [PMID: 36607453 PMCID: PMC11072080 DOI: 10.1007/s00018-022-04673-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.
Collapse
Affiliation(s)
- Sara Cornuti
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Francesco Finamore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Caldarelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Christophe Magnan
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Paola Tognini
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
35
|
Yang Y, Huang T, Zhang H, Li X, Shi S, Tian X, Huang Z, Zhang R, Liu Z, Cheng Y. Formononetin improves cardiac function and depressive behaviours in myocardial infarction with depression by targeting GSK-3β to regulate macrophage/microglial polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154602. [PMID: 36610138 DOI: 10.1016/j.phymed.2022.154602] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is a common complication after myocardial infarction (MI) that can seriously affect the prognosis of MI. PURPOSE To investigate whether formononetin could ameliorate MI injury and depressive behaviours in a mouse model of MI with depression and elucidate its underlying molecular mechanisms. METHODS Haemodynamic measurements (systolic blood pressure (SYS), the maximum rate of rise of LV pressure (± dp/dtmax)) and behavior tests (tail suspension test, sucrose preference test, forced swimming test) were used to evaluate the effects of formononetin on male C57BL/6N mice after left anterior descending (LAD) coronary artery ligation and chronic unpredictable stress. RT-qPCR, immunohistochemistry, immunofluorescence analysis, western blotting, molecular docking technology, surface plasmon resonance and gene-directed mutagenesis were used to clarify the underlying mechanism. RESULTS Formononetin significantly suppressed the depressive behaviours and improved cardiac dysfunction in MI with depression mice model. Formononetin inhibited M1 polarization in macrophages/microglia, while promoting M2 polarization. Importantly, elevated serum IL-6 and IL-17A levels were found in patient with MI, and the patient serum induced M1 microglial polarization; however, formononetin reversed the polarization. Further mechanistic studies showed that formononetin inhibited GSK-3β activity and downstream Notch1 and C/EBPα signaling pathways. Covalent molecular docking showed that formononetin bound to Cys199 of GSK-3β and it has a high affinity for GSK-3β. When Cys199 was mutation, the inhibitory effect of formononetin on GSK-3β activity and M1 polarization in macrophages/microglia were also partly blocked. CONCLUSIONS Our results firstly uncovered that formononetin improved cardiac function and suppressed depressive behaviours in mice after MI with depression by targeting GSK-3β to regulate macrophage/microglial polarization. More importantly, IL-6 and IL-17A produced after MI may cause neuroinflammation, which might be the key factors for depression. Formononetin may be a potential drug for treating MI with depression.
Collapse
Affiliation(s)
- Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ting Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongli Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xuping Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shuotao Shi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoyu Tian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ziwei Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
36
|
Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, Chruścicka-Smaga B, Crespo-Ramírez M, Tesoro-Cruz E, Palacios-Lagunas DA, Perez de la Mora M, Schellekens H, Fuxe K. The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: potential relevance for brain and behavior. Front Mol Neurosci 2022; 15:1055344. [PMID: 36618821 PMCID: PMC9812438 DOI: 10.3389/fnmol.2022.1055344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
In the last 10 years, it has become increasingly clear that large numbers of axon collaterals extend from the oxytocin (OXT) hypothalamic axons, especially the parvocellular components, to other brain regions. Consequently, the OXT signaling system forms, like other monoamine axons, a rich functional network across several brain regions. In this manuscript, we review the recently indicated higher order G-protein coupled heteroreceptor complexes of the oxytocin receptor (OXTR), and how these, via allosteric receptor-receptor interactions modulate the recognition, signaling, and trafficking of the participating receptor protomers and their potential impact for brain and behavior. The major focus will be on complexes of the OXTR protomer with the dopamine D2 receptor (D2R) protomer and the serotonin 2A (5-HT2AR) and 2C (5-HT2CR) receptor protomers. Specifically, the existence of D2R-OXTR heterocomplexes in the nucleus accumbens and the caudate putamen of rats has led to a postulated function for this heteromer in social behavior. Next, a physical interaction between OXTRs and the growth hormone secretagogue or ghrelin receptor (GHS-R1a) was demonstrated, which consequently was able to attenuate OXTR-mediated Gαq signaling. This highlights the potential of ghrelin-targeted therapies to modulate oxytocinergic signaling with relevance for appetite regulation, anxiety, depression, and schizophrenia. Similarly, evidence for 5-HT2AR-OXTR heteromerization in the pyramidal cell layer of CA2 and CA3 in the dorsal hippocampus and in the nucleus accumbens shell was demonstrated. This complex may offer new strategies for the treatment of both mental disease and social behavior. Finally, the 5-HT2CR-OXTR heterocomplexes were demonstrated in the CA1, CA2, and CA3 regions of the dorsal hippocampus. Future work should be done to investigate the precise functional consequence of region-specific OXTR heteromerization in the brain, as well across the periphery, and whether the integration of neuronal signals in the brain may also involve higher order OXTR-GHS-R1a heteroreceptor complexes including the dopamine (DA), noradrenaline (NA) or serotonin (5-HT) receptor protomers or other types of G-protein coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Receptomics and Brain Disorders Lab, Department of Human Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain,Department of Biomolecular Science, Section of Morphology, Physiology and Environmental Biology, University of Urbino, Urbino, Italy,*Correspondence: Dasiel O. Borroto-Escuela Harriët Schellekens
| | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College CorkCork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alexander Lopez-Salas
- Receptomics and Brain Disorders Lab, Department of Human Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | | | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | | | - Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harriët Schellekens
- APC Microbiome Ireland, University College CorkCork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,*Correspondence: Dasiel O. Borroto-Escuela Harriët Schellekens
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
38
|
Jalal K, Khan F, Nawaz S, Afroz R, Khan K, Ali SB, Hao L, Khan SA, Kazi M, Uddin R, Haleem DJ. Anxiolytic, anti-nociceptive and body weight reducing effects of L-lysine in rats: Relationship with brain serotonin an In-Vivo and In-Silico study. Biomed Pharmacother 2022; 152:113235. [PMID: 35696944 DOI: 10.1016/j.biopha.2022.113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
L-lysine (L-lys) had long been comprehended as an essential amino acid for humans. There were reports that the absence or inadequate availability of L-lys in the diet may lead to mental and physical impairments. The present study was designed to explore the effects of L-lys on body weight changes, cumulative food intake, anxiety-like behavior and pain perception in rats. 5-Hydroxytryptamine (5-HT, serotonin) metabolism, and tryptophan (Trp) levels in the midbrain (MB), hippocampus (HP), and prefrontal cortex (PFC) were also determined. Animals were treated with L-lys in doses of 0.5 g/kg and 1 g/kg for 20 days and behavioral studies were performed on day 1st and day 20th. After monitoring behaviors on day 20th, animals were killed to collect the serum and brain regions MB, HP and PFC. 5-HT metabolism and Trp levels were determined by HPLC-EC. The treatment produce no effect on food intakes but body weights were reduced. 20 days administration of L-lys produced an anxiolytic effect and increased exploratory activity on day 1st. Repeated administration of L-lys increased 5-HT levels in the PFC and HP. 5-Hydroxyindoleacetic acid (5-HIAA), the metabolite of 5-HT, decreased in the HP. Trp, the precourser of 5-HT, decreased in the PFC. Results suggested a decrease in 5-HT degredation in enhancing 5-HT levels. Results of in-silico analysis showed that lysine had a potential binding affinity for MAO (monoamine oxidase) A and B with an energy of (-4.8 kcal/mol and -5.3 kcal/mol) respectively. The molecular dynamic simulation study revealed the stability of L-lys after 10 ns for each protein. Conclusively, the present study showed that L-lys produced an anxiolytic effect and reduced body weight. These beneficial effects were associated with an increase in 5-HT levels in the PFC and HP. In-silico analysis suggested that 5-HT increase were due to the binding of L-lys with MAOs resulting in an inhibition of the degradation of monoamine.
Collapse
Affiliation(s)
- Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Faisal Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazia Nawaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rushda Afroz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Basharat Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, PR China
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, KP, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin,78712, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Darakhshan Jabeen Haleem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
39
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
40
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
41
|
Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother 2022; 150:113030. [PMID: 35486973 DOI: 10.1016/j.biopha.2022.113030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Depression is a common neuropsychiatric disorder characterized by persistent depressed mood and causes serious socioeconomic burden worldwide. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, deficiency of monoamine transmitters, neuroinflammation and abnormalities of the gut flora are strongly associated with the onset of depression. The cyclic AMP (cAMP)/protein kinase A (PKA) cascade, a major cross-species cellular signaling pathway, is supposed as important player and regulator of depression onset by controlling synaptic plasticity, cytokinesis, transcriptional regulation and HPA axis. In the central nervous system, the cAMP-PKA cascade can dynamically shape neural circuits by enhancing synaptic plasticity, and affect K+ channels by phosphorylating Kir4.1, thereby regulating neuronal excitation. The reduction of cAMP-PKA cascade affects neuronal excitation as well as synaptic plasticity, ultimately leading to pathological outcome of depression, while activation of cAMP-PKA cascade would provide a rapid antidepressant effect. In this review, we proposed to reconsider the function of cAMP-PKA cascade, especially in the rapid antidepressant effect. Local activation or indirect activation of PKA through adjusting anchor proteins would provide new idea for acute treatment of depression.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
42
|
Neis VB, Werle I, Moretti M, Rosa PB, Camargo A, de O Dalsenter Y, Platt N, Rosado AF, Engel WD, de Almeida GRL, Selhorst I, Dafre AL, Rodrigues ALS. Involvement of serotonergic neurotransmission in the antidepressant-like effect elicited by cholecalciferol in the chronic unpredictable stress model in mice. Metab Brain Dis 2022; 37:1597-1608. [PMID: 35435610 DOI: 10.1007/s11011-022-00979-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Cholecalciferol deficiency has been associated with stress-related psychiatric disorders, particularly depression. Therefore, the present study investigated the antidepressant-like effect of cholecalciferol in female mice and the possible role of the serotonergic system in this response. The ability of cholecalciferol to elicit an antidepressant-like effect and to modulate serotonin levels in the hippocampus and prefrontal cortex of mice subjected to chronic unpredictable stress (CUS) was also investigated. The administration of cholecalciferol (2.5, 7.5, and 25 µg/kg, p.o.) for 7 days, similar to fluoxetine (10 mg/kg, p.o., serotonin reuptake inhibitor), reduced the immobility time in the tail suspension test, without altering the locomotor performance in the open-field test. Moreover, the administration of p-chlorophenylalanine methyl ester (PCPA - 100 mg/kg, i.p., for 4 days, a selective inhibitor of tryptophan hydroxylase, involved in the serotonin synthesis) abolished the antidepressant-like effect of cholecalciferol and fluoxetine in the tail suspension test, demonstrating the involvement of serotonergic system. Additionally, CUS protocol (21 days) induced depressive-like behavior in the tail suspension test and decreased serotonin levels in the prefrontal cortex and hippocampus of mice. Conversely, the administration of cholecalciferol and fluoxetine in the last 7 days of CUS protocol completely abolished the stress-induced depressive-like phenotype. Cholecalciferol was also effective to abrogate CUS-induced reduction on serotonin levels in the prefrontal cortex, but not in the hippocampus. Our results indicate that cholecalciferol has an antidepressant-like effect in mice by modulating the serotonergic system and support the assumption that cholecalciferol may have beneficial effects for the management of depression.
Collapse
Affiliation(s)
- Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Isabel Werle
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Yasmim de O Dalsenter
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Nicolle Platt
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Axel F Rosado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - William D Engel
- Educational Society of Santa Catarina - Unisociesc, Jaraguá do Sul, Santa Catarina, 89251-970, Brazil
| | - Gudrian Ricardo L de Almeida
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
43
|
Pathophysiology of the Serotonin System in the Nervous System and Beyond. Int J Mol Sci 2022; 23:ijms23094712. [PMID: 35563104 PMCID: PMC9101740 DOI: 10.3390/ijms23094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin (5-HT) is an attractive neurotransmitter system, in terms of physiology, physiopathology, and medicines [...].
Collapse
|
44
|
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022; 36:681-702. [PMID: 35727534 PMCID: PMC9210800 DOI: 10.1007/s40263-022-00931-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still spreading worldwide over 2 years since its outbreak. The psychopathological implications in COVID-19 survivors such as depression, anxiety, and cognitive impairments are now recognized as primary symptoms of the "post-acute COVID-19 syndrome." Depressive psychopathology was reported in around 35% of patients at short, medium, and long-term follow-up after the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Post-COVID-19 depressive symptoms are known to increase fatigue and affect neurocognitive functioning, sleep, quality of life, and global functioning in COVID-19 survivors. The psychopathological mechanisms underlying post-COVID-19 depressive symptoms are mainly related to the inflammation triggered by the peripheral immune-inflammatory response to the viral infection and to the persistent psychological burden during and after infection. The large number of SARS-CoV-2-infected patients and the high prevalence of post-COVID-19 depressive symptoms may significantly increase the pool of people suffering from depressive disorders. Therefore, it is essential to screen, diagnose, treat, and monitor COVID-19 survivors' psychopathology to counteract the depression disease burden and related years of life lived with disability. This paper reviews the current literature in order to synthesize the available evidence regarding epidemiology, clinical features, neurobiological underpinning, and pharmacological treatment of post-COVID-19 depressive symptoms.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.15496.3f0000 0001 0439 0892PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
45
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
46
|
Overcoming Depression with 5-HT2A Receptor Ligands. Int J Mol Sci 2021; 23:ijms23010010. [PMID: 35008436 PMCID: PMC8744644 DOI: 10.3390/ijms23010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.
Collapse
|
47
|
Trueta C. An analytical method to measure the contribution of clear synaptic and dense-core peri-synaptic vesicles to neurotransmitter release from synaptic terminals with two classes of secretory vesicles. MethodsX 2021; 8:101374. [PMID: 34430270 PMCID: PMC8374493 DOI: 10.1016/j.mex.2021.101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 12/03/2022] Open
Abstract
Two types of secretory vesicles co-exist at some presynaptic terminals. Clear synaptic vesicles (CSV) release their contents at the synaptic active zone, upon single impulses, while dense-core vesicles (DCV) usually release their contents in the periphery of the terminal upon repetitive stimulation. Part of the transmitter released by DCV diffuses to produce paracrine effects, and part of it reaches the postsynaptic terminal, adding its effect to that of synaptic release. This article presents an analytical method to separate the contribution of CSV and DCV to the postsynaptic responses, based on the kinetics of postsynaptic currents (PSCs). Since stimulation with single presynaptic impulses usually triggers release only from CSV, the kinetics of the resulting PSC can be used as a template to model the postsynaptic response to release from CSV during stimulation trains, accounting for the variations in the amplitude of PSCs due to short-term synaptic plasticity. Subtraction of this model simulation to the total recorded PSC renders the response to DCV peri‑synaptic release, which has slower kinetics. The method can be further simplified by measuring only the amplitudes of the PSC peaks for synaptic release and the integral of the current for peri‑synaptic release.The postsynaptic current in response to presynaptic release from clear synaptic vesicles is modeled using the kinetics of the PSC in response to single impulses. The model synaptic response is subtracted from the total recorded PSC to obtain the response to peri‑synaptic release from dense-core vesicles.
Collapse
|
48
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:8656. [PMID: 34445362 PMCID: PMC8395429 DOI: 10.3390/ijms22168656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery that receptors from all families can establish allosteric receptor-receptor interactions and variably associate to form receptor complexes operating as integrative input units endowed with a high functional and structural plasticity has expanded our understanding of intercellular communication. Regarding the nervous system, most research in the field has focused on neuronal populations and has led to the identification of many receptor complexes representing an important mechanism to fine-tune synaptic efficiency. Receptor-receptor interactions, however, also modulate glia-neuron and glia-glia intercellular communication, with significant consequences on synaptic activity and brain network plasticity. The research on this topic is probably still at the beginning and, here, available evidence will be reviewed and discussed. It may also be of potential interest from a pharmacological standpoint, opening the possibility to explore, inter alia, glia-based neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
49
|
Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. Cells 2021; 10:cells10081902. [PMID: 34440670 PMCID: PMC8392445 DOI: 10.3390/cells10081902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.
Collapse
|
50
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|