1
|
Qin L, Li Y, Zeng R, He Y, Chen X, Xiao L, Zhou H. A novel anti-CD47 antibody with therapeutic potential for NK/T-cell lymphoma. Hum Vaccin Immunother 2024; 20:2408088. [PMID: 39348228 PMCID: PMC11445887 DOI: 10.1080/21645515.2024.2408088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
NK/T-cell lymphoma (NKTCL) is a rare type of non-Hodgkin lymphoma (NHL). Although L-asparaginase-based chemotherapy has significantly improved survival in early-stage patients, the prognosis is poor in advanced and relapsed or refractory patients. CD47 is a promising target for cancer immunotherapy. However, the expression of CD47 in NKTCL and the antitumor effect and mechanism of the anti-CD47 monoclonal antibody (mAb) AK117 in NKTCL remain unclear. Firstly, the expression level of CD47 protein in NKTCL cells was detected by immunoblot and flow cytometry. Secondly, in order to validate the role of CD47 downregulation in the proliferation, apoptosis, and cell cycle of NKTCL cells, we used shRNA transfection to knock down CD47 expression. We determined the effect of knocking down CD47 and the novel anti-CD47 antibody AK117 on the phagocytosis of NKYS and YTS cells by M2 macrophages in vitro. Finally, we assessed the ability of AK117 to inhibit tumor growth in an NKTCL xenograft model in which YTS cells were engrafted in SCID mice. The results showed that CD47 is relatively highly expressed in NKTCL cells. CD47 knockdown in NKTCL promoted phagocytosis by M2 macrophages in an in vitro coculture assay. The study also demonstrated that anti-CD47 mAb AK117 promoted phagocytosis of NKTCL cells by M2 macrophages. In addition, in vivo experiments showed that the anti-CD47 mAb AK117 significantly inhibited the growth of subcutaneous xenograft tumors in SCID mice compared to the control antibody IgG. Our results indicate that targeting CD47 monoclonal antibodies is a potential therapeutic strategy for NKTCL.
Collapse
Affiliation(s)
- Liping Qin
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Department of Gastroenterology, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yajun Li
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Ruolan Zeng
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yizi He
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xiaoyan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Upadhyay R, Dhakal A, Wheeler C, Hoyd R, Jagjit Singh M, Karivedu V, Bhateja P, Bonomi M, Valentin S, Gamez ME, Konieczkowski DJ, Baliga S, Grecula JC, Blakaj DM, Gogineni E, Mitchell DL, Denko NC, Spakowicz D, Jhawar SR. Comparative analysis of the tumor microbiome, molecular profiles, and immune cell abundances by HPV status in mucosal head and neck cancers and their impact on survival. Cancer Biol Ther 2024; 25:2350249. [PMID: 38722731 PMCID: PMC11086009 DOI: 10.1080/15384047.2024.2350249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) comprises a diverse group of tumors with variable treatment response and prognosis. The tumor microenvironment (TME), which includes microbiome and immune cells, can impact outcomes. Here, we sought to relate the presence of specific microbes, gene expression, and tumor immune infiltration using tumor transcriptomics from The Cancer Genome Atlas (TCGA) and associate these with overall survival (OS). RNA sequencing (RNAseq) from HNSCC tumors in TCGA was processed through the exogenous sequences in tumors and immune cells (exotic) pipeline to identify and quantify low-abundance microbes. The detection of the Papillomaviridae family of viruses assessed HPV status. All statistical analyses were performed using R. A total of 499 RNAseq samples from TCGA were analyzed. HPV was detected in 111 samples (22%), most commonly Alphapapillomavirus 9 (90.1%). The presence of Alphapapillomavirus 9 was associated with improved OS [HR = 0.60 (95%CI: 0.40-0.89, p = .01)]. Among other microbes, Yersinia pseudotuberculosis was associated with the worst survival (HR = 3.88; p = .008), while Pseudomonas viridiflava had the best survival (HR = 0.05; p = .036). Microbial species found more abundant in HPV- tumors included several gram-negative anaerobes. HPV- tumors had a significantly higher abundance of M0 (p < .001) and M2 macrophages (p = .035), while HPV+ tumors had more T regulatory cells (p < .001) and CD8+ T-cells (p < .001). We identified microbes in HNSCC tumor samples significantly associated with survival. A greater abundance of certain anaerobic microbes was seen in HPV tumors and pro-tumorigenic macrophages. These findings suggest that TME can be used to predict patient outcomes and may help identify mechanisms of resistance to systemic therapies.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Aastha Dhakal
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline Wheeler
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rebecca Hoyd
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Malvenderjit Jagjit Singh
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vidhya Karivedu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Priyanka Bhateja
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Marcelo Bonomi
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sasha Valentin
- Department of Dentistry, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - David J. Konieczkowski
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sujith Baliga
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - John C. Grecula
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Darrion L. Mitchell
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C. Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Columbus, OH, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
3
|
Yang X, Li J, Xu C, Zhang G, Che X, Yang J. Potential mechanisms of rheumatoid arthritis therapy: Focus on macrophage polarization. Int Immunopharmacol 2024; 142:113058. [PMID: 39236455 DOI: 10.1016/j.intimp.2024.113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengchao Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinzhen Che
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Sun Z, Zhang F, Gao Z, Wu J, Bi Q, Zheng X, Zhang J, Cao P, Wang W. Liraglutide alleviates ferroptosis in renal ischemia reperfusion injury via inhibiting macrophage extracellular trap formation. Int Immunopharmacol 2024; 142:113258. [PMID: 39340991 DOI: 10.1016/j.intimp.2024.113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND AND PURPOSE Renal transplantation and other conditions with transiently reduced blood flow is major cause of renal ischemia/reperfusion injury (RIRI), a therapeutic challenge clinically. This study investigated the role of liraglutide in ferroptosis-associated RIRI via macrophage extracellular traps (METs). METHODS Animal model with RIRI was established in C57BL/6J mice. A total of 72 C57BL/6J mice were used with 8 mice per group. Primary tubular epithelium was co-culture with RAW264.7 under hypoxia/reoxygenation (H/R) condition to mimic in vitro. Liraglutide was administrated into mice and cells. Extracellular DNA, neutrophil elastase and myeloperoxidase in serum and supernatant of cell medium were collected for measuring METs. F4/80 and citH3 were labeled to show METs. RESULTS Liraglutide relieved RIRI and ferroptosis in vivo, and inhibited renal I/R-induced METs both in vivo and in vitro. F4/80 and citrullinated histone H3 (citH3) were highly co-localized after RIRI. Liraglutide attenuated the co-localization of citH3 and F4/80. Expressions of M2 markers were enhanced whereas these of M1 markers suppressed during liraglutide treatment in RIRI. Phosphorylation of signal transducer and activator of transcription (STAT)1, 3 and 6 were increased in RIRI mice and H/R-induced RAW264.7. However, liraglutide decreased phosphorylation of STAT1 and increased phosphorylation of STAT3 and STAT6. STAT3/6 inhibition reversed liraglutide-inhibited M1 polarization, extracellular traps and ferroptosis. CONCLUSION Liraglutide inhibited ferroptosis-induced renal dysfunction since it skewed macrophage polarization into M2 phenotype that interfered the formation of extracellular traps based on STAT3/6 pathway during RIRI. Liraglutide was proposed to be used for RIRI clinical treatment.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Feilong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Zihao Gao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Peng Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
5
|
Mahmoudi M, Taghavi-Farahabadi M, Hashemi SM, Mousavizadeh K, Rezaei N, Mojtabavi N. Reprogramming tumor-associated macrophages using exosomes from M1 macrophages. Biochem Biophys Res Commun 2024; 733:150697. [PMID: 39288697 DOI: 10.1016/j.bbrc.2024.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Macrophages, abundant in tumors, are classified as M1 or M2 types with M2 dominating the tumor microenvironment. Shifting macrophages from M2 to M1 using exosomes is a promising intervention. The properties of exosomes depend on their source cells. M1-exosomes are expected to polarize macrophages towards M1 phenotype. We compared M1-exosomes and M0-exosomes' effects on M2 macrophage polarization. The RAW264.7 cells were cultured and one group of them was exposed to LPS. The serum-free medium was collected and exosomes were extracted. Exosomes were analyzed by scanning and transmission electron microscopy, dynamic light scattering and Western blot. Subsequently, M1 or M0 exosomes were applied to M2 macrophages induced by IL4. The macrophages polarization, including M1 and M2 genes and surface markers expression, cytokines secretion, and phagocytosis ability were evaluated. It was demonstrated that M1-exosomes induced macrophage polarization toward the M1 phenotype, characterized by an upregulation of M1-specific markers and a downregulation of M2 markers. Furthermore, the secretion of TNF-α was increased, while the secretion of IL-10 was decreased. The phagocytosis ability of M1-exosome-treated macrophages was also augmented. This research suggested that M1-exosomes might be promising candidates for modulating immune response in situations marked by an overabundance of M2 polarization, like in cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran.
| | - Nazanin Mojtabavi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yang B, Wang X, Wei X, Ma J. Development of a novel HER2-CAR monocyte cell therapy with controllable proliferation and enhanced anti-tumor efficacy. Chin Med J (Engl) 2024; 137:2590-2602. [PMID: 38243698 DOI: 10.1097/cm9.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND One of the significant challenges for cell therapies, such as chimeric antigen receptor (CAR)-T cell therapy, is the poor infiltration of immune cells into tumor tissues. CAR-monocytes/macrophages (CAR-M) are promising therapies because of their enrichment in the tumor microenvironment. Thus, we constructed a novel CAR-M to facilitate the infiltration of T cells and other immune cells. METHODS The suicide gene inducible caspase-9 ( iCasp9 ) and anti-erb-b2 receptor tyrosine kinase 2 (HER2) CAR elements were transfected into THP1 (an immortalized human monocyte cell line) by lentivirus. The suicide efficiency and specific anti-tumor efficacy were assessed using flow cytometry, inCucyte, and tumor-bearing BALB/c-nude mouse models. The activation of related signaling pathways in CAR-THP1 activation was explored by transcriptome sequencing. Finally, the synergistic therapeutic efficacy of CAR-THP1 combined with RAK cell treatment was demonstrated in tumor-bearing NOD.CB17-Prkdc scid Il2rg tm1 /Bcgen mouse models. RESULTS We developed a novel CAR-THP1, which incorporated iCasp9, CD3ζ, and CD147 intracellular segments, based on the first-generation HER2-CAR backbone. By constructing and comparing a series of CARs with different permutations, CAR-CD3ζ-CD147-iCasp9-THP1 was selected as the optimal combination. CAR-CD3ζ-CD147-iCasp9-THP1 initiated suicide quickly and efficiently under the control of iCasp9 gene, which enabled us to achieve controlled proliferation of CAR-THP1. CAR-THP1 also exhibited robust specific anti-tumor efficacy independently of T cells in vitro and in vivo . Through transcriptional sequencing, we found that CAR-THP1 tended to differentiate into the M1 phenotype and bridged innate and adaptive immunity. A combination of CAR-THP1 and Retronectin actived killer cells (RAKs) showed better therapeutic efficiency, as the metalloproteinases (MMPs) secreted by CAR-THP1 facilitated the degradation of the dense tumor matrix. This further assisted intratumoral infiltration of T cells and augmented the anti-tumor immune response. CONCLUSION CAR-THP1 might be effective against HER2-positive tumor cells and has great potential for combination therapy with other immune cells.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Monocytes/metabolism
- Cell Proliferation
- Mice, Inbred BALB C
- Cell Line, Tumor
- Cell- and Tissue-Based Therapy/methods
- Mice, Nude
- Immunotherapy, Adoptive/methods
- Mice, Inbred NOD
- Female
- Mice, SCID
- Caspase 9/metabolism
- Caspase 9/genetics
Collapse
Affiliation(s)
- Bing Yang
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxue Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing 100038, China
| | - Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Zhang X, Guo L, Tian W, Yang Y, Yin Y, Qiu Y, Wang W, Li Y, Zhang G, Zhao X, Wang G, Lin Z, Yang M, Zhao W, Lu D. CD36+ Proinflammatory Macrophages Interact with ZCCHC12+ Tumor Cells in Papillary Thyroid Cancer Promoting Tumor Progression and Recurrence. Cancer Immunol Res 2024; 12:1621-1639. [PMID: 39178310 DOI: 10.1158/2326-6066.cir-23-1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/28/2024] [Accepted: 08/21/2024] [Indexed: 08/25/2024]
Abstract
Local recurrence and distal metastasis negatively impact the survival and quality of life in patients with papillary thyroid cancer (PTC). Therefore, identifying potential biomarkers and therapeutic targets for PTC is clinically crucial. In this study, we performed a multiomics analysis that identified a subset of CD36+ proinflammatory macrophages within the tumor microenvironment of PTC. The recruitment of CD36+ macrophages to premalignant regions strongly correlated with unfavorable outcomes in PTC, and the presence of tumor-infiltrating CD36+ macrophages was determined to be a risk factor for recurrence. The CD36+ macrophages exhibited interactions with metabolically active ZCCHC12+ tumor cells. By secreting SPP1, the CD36+ macrophages activated the PI3K-AKT signaling pathway, thereby promoting proliferation of the cancer cells. Dysregulation of iodine metabolism was closely related to the acquisition of the pro-inflammatory phenotype in macrophages. Iodine supplementation inhibited the activation of proinflammatory signaling and impeded the development of CD36+ macrophages by enhancing DUSP2 expression. Overall, our findings shed light on the intricate cross-talk between CD36+ macrophages and ZCCHC12+ tumor cells, providing valuable insights for the treatment and prognosis of PTC.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Limei Guo
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Wenyu Tian
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Ying Yang
- Department of Blood Transfusion, Peking University People's Hospital, Beijing, P.R. China
| | - Yue Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Yaruo Qiu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Weixuan Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Yang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| | - Meng Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Wei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
8
|
Wang Y, Wang Q, Tao S, Li H, Zhang X, Xia Y, Wang Y, Yang C, Sui C. Identification of SPP1 + macrophages in promoting cancer stemness via vitronectin and CCL15 signals crosstalk in liver cancer. Cancer Lett 2024; 604:217199. [PMID: 39216547 DOI: 10.1016/j.canlet.2024.217199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Macrophages play a multifaceted role in cancer biology, with both pro-tumorigenic and anti-tumorigenic functions. Understanding the mechanisms underlying macrophage involvement in cancer progression is essential for the development of therapeutic strategies. Our study analyzed single-cell RNA sequencing data from 12 patients with liver cancer and identified a subpopulation of macrophages characterized by elevated expression of SPP1, which correlates with poor prognosis in liver cancer patients. These SPP1+ macrophages induce upregulation of tumor stemness through a vitronectin (VTN)-dependent paracrine mechanism. Mechanistically, VTN derived from SPP1+ macrophages promote integrin αvβ5/adenosine 5'-monophosphate-activated protein kinase (AMPK)/Yes-associated protein 1 (YAP1)/SYR-box transcription factor 4 (SOX4) signaling, mediating liver tumor stemness and progression. Conversely, CCL15 produced by liver cancer cells drives polarization of M0 macrophages toward an SPP1+ macrophage phenotype, establishing a positive feedback loop of macrophage-tumor stemness. Furthermore, the presence of SPP1+ macrophages confers chemoresistance in liver cancer, and inhibition of the macrophage-tumor feedback loop through targeting integrin αvβ5/YAP1 signaling sensitizes liver cancer cells to chemotherapy. Our study highlights the crucial role of SPP1+ macrophages in liver cancer progression, providing novel insights for clinical liver cancer therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Qing Wang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Shuangfen Tao
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Haoyu Li
- Department of Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, PR China.
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yong Xia
- Department of Hepatic Surgery IV, The Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China; Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, 200438, PR China.
| | - Yue Wang
- Department of Stem Cell and Regeneration Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, 200433, PR China; Department of Histology and Embryology, Basic Medicine Collage, Naval Medical University, Shanghai, 200433, PR China; Shanghai Key Laboratory of Cell Engineering, Shanghai, 200062, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, PR China.
| | - Cheng Yang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Shanghai GoBroad Cancer Hospital, China Pharmaceutical University, Shanghai, 200131, PR China.
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, PR China.
| |
Collapse
|
9
|
Fernando V, Zheng X, Sharma V, Sweef O, Choi ES, Furuta S. Reprogramming of breast tumor-associated macrophages with modulation of arginine metabolism. Life Sci Alliance 2024; 7:e202302339. [PMID: 39191486 PMCID: PMC11350068 DOI: 10.26508/lsa.202302339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor-associated macrophages (TAMs). Although TAMs consist of the immune-stimulatory M1 type and immune-suppressive M2 type, the M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1- versus M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2-TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- versus M2-TAMs is attributed to different availability of BH4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH4 precursor, elevates the expression of M1-TAM markers within HER2+ tumors. Here, we show that SEP restores BH4 levels in M2-like macrophages, which then redirects arginine metabolism to NO synthesis and converts M2 type to M1 type. The reprogrammed macrophages exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in the metabolic shift of the HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
Collapse
Affiliation(s)
- Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Aurora, CO, USA
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
10
|
Peng D, Wang Y, Yao Y, Yang Z, Wu S, Zeng K, Hu X, Zhao Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol Cell Biochem 2024; 479:2895-2906. [PMID: 38217838 DOI: 10.1007/s11010-023-04904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Duo Peng
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Wang
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Zisha Yang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Wu
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Kaijing Zeng
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
11
|
Parekh NM, Desai RS, Bansal SP, Shirsat PM, Prasad PS. The role of M1 (CD11c) and M2 (CD163) interplay in the pathogenesis of oral submucous fibrosis and its malignant transformation: An immunohistochemical analysis. Cytokine 2024; 183:156742. [PMID: 39217916 DOI: 10.1016/j.cyto.2024.156742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The M1/M2 macrophage framework is crucial in organ fibrosis and its progression to malignancy. This study investigated the possible role of M1/M2 macrophage interplay in the pathogenesis of oral submucous fibrosis (OSF) and its malignant transformation by analysing immunohistochemical expression of CD11c (M1) and CD163 (M2) markers. METHODS Immunohistochemistry was performed using primary antibodies against CD11c and CD163 on ten formalin-fixed paraffin-embedded tissue blocks for each group: (i) Stage 1 OSF, (ii) Stage 2 OSF, (iii) Stage 3 OSF, (iv) Stage 4 OSF, (v) well-differentiated squamous cell carcinoma (WDSCC) with OSF, and (vi) WDSCC without OSF. Ten cases of healthy buccal mucosa (NOM) served as controls. RESULTS Epithelial quick scores of M1 (CD11c) in NOM, Stages 1-4 OSF, and WDSCC with and without OSF were 0, 1.8, 2.9, 0.4, 0, 0, and 0, while connective tissue scores were 0, 3.2, 4.3, 2.7, 0.5, 1.2, and 2.4, respectively. Epithelial scores for M2 (CD163) were 0, 0.8, 0.8, 2.1, 0.6, 0.8, and 0.2, and connective tissue scores were 0, 1.8, 2.6, 3.9, 2.2, 5, and 4.4, respectively. Stages 3 and 4 OSF, WDSCC with and without OSF exhibited higher M2/M1 ratios compared to NOM and Stages 1-2 OSF. CONCLUSION The interaction between M1 (CD11c) and M2 (CD163) macrophages, leading to M2 polarisation, plays a crucial role in the pathogenesis of OSF and its potential malignant transformation.
Collapse
Affiliation(s)
- Nishreen M Parekh
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Rajiv S Desai
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India.
| | - Shivani P Bansal
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pankaj M Shirsat
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pooja S Prasad
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| |
Collapse
|
12
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
13
|
Jiang S, Zhu L, Xu Y, Liu Z, Cai J, Zhu T, Fan Q, Zhao Z. Subcutaneously transplanted xenogeneic protein recruits treg cells and M2 macrophages to induce browning of inguinal white adipose tissue. Endocrine 2024; 86:631-643. [PMID: 38900356 DOI: 10.1007/s12020-024-03932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To study whether subcutaneously embedding xenogeneic protein threads or synthetic polymer absorbable threads can improve obesity phenotypes and metabolic conditions, and to further explore its underlying mechanism. METHODS Thirty-six 8-week-old ob/ob mice were randomly allocated to three groups, respectively, receiving catgut embedding, PGA thread embedding or sham treatment bilaterally to the groin. Individual parameters including weight, food intake, and core temperature are recorded and metabolism assessment, energy expenditure analysis, and PET/CT scanning are also performed at fixed timepoints. After surgical incision, the inguinal white adipose tissue was histologically examined and its expression profile was tested and compared among groups 4 weeks and 12 weeks after operation. RESULTS Catgut embedding reduced weight gain and improved metabolic status in ob/ob mice. Browning of bilateral inguinal WAT (white adipose tissue) was induced after catgut embedding, with massive infiltration of Treg cells and M2 macrophages in the tissue slices of fat pads. IL-10 and TGF-β released by Treg cells targeted macrophages and the induced M2 macrophages increased the expression of thermogenic and anti-inflammatory genes in fat. The secretion of catecholamines by polarized M2 macrophages led to the activation of β3-AR-related pathways in adipocytes and the browning of adipose tissue. CONCLUSIONS Abdominal subcutaneous catgut embedding has the potential to combat obesity through the induction of WAT browning mediated by infiltrated Treg cells and macrophages.
Collapse
Affiliation(s)
- Shenglu Jiang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Taizhou Enze Hospital, Taizhou, China
| | - Yukun Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zhao Liu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jialin Cai
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tao Zhu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
14
|
Choi JY, Seok HJ, Lee DH, Kwon J, Shin US, Shin I, Bae IH. miR-1226-5p is involved in radioresistance of colorectal cancer by activating M2 macrophages through suppressing IRF1. J Transl Med 2024; 22:980. [PMID: 39472937 PMCID: PMC11523791 DOI: 10.1186/s12967-024-05797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Although the representative treatment for colorectal cancer (CRC) is radiotherapy, cancer cells survive due to inherent radioresistance or resistance acquired after radiation treatment, accelerating tumor malignancy and causing local recurrence and metastasis. However, the detailed mechanisms of malignancy induced after radiotherapy are not well understood. To develop more effective and improved radiotherapy and diagnostic methods, it is necessary to clearly identify the mechanisms of radioresistance and discover related biomarkers. METHODS To analyze the expression pattern of miRNAs in radioresistant CRC, sequence analysis was performed in radioresistant HCT116 cells using Gene Expression Omnibus, and then miR-1226-5p, which had the highest expression in resistant cells compared to parental cells, was selected. To confirm the effect of miR-1226-5 on tumorigenicity, Western blot, qRT-PCR, transwell migration, and invasion assays were performed to confirm the expression of EMT factors, cell mobility and invasiveness. Additionally, the tumorigenic ability of miR-1226-5p was confirmed in organoids derived from colorectal cancer patients. In CRC cells, IRF1, a target gene of miR-1226-5p, and circSLC43A1, which acts as a sponge for miR-1226-5p, were discovered and the mechanism was analyzed by confirming the tumorigenic phenotype. To analyze the effect of tumor-derived miR-1226-5p on macrophages, the expression of M2 marker in co-cultured cells and CRC patient tissues were confirmed by qRT-PCR and immunohistochemical (IHC) staining analyses. RESULTS This study found that overexpressed miR-1226-5p in radioresistant CRC dramatically promoted epithelial-mesenchymal transition (EMT), migration, invasion, and tumor growth by suppressing the expression of its target gene, IRF1. Additionally, we discovered circSLC43A1, a factor that acts as a sponge for miR-1226-5p and suppresses its expression, and verified that EMT, migration, invasion, and tumor growth are suppressed by circSLC43A1 in radioresistant CRC cells. Resistant CRC cells-derived miR-1226-5p was transferred to macrophages and contributed to tumorigenicity by inducing M2 polarization and secretion of TGF-β. CONCLUSIONS This study showed that the circSLC43A1/miR-1226-5p/IRF1 axis is involved in radioresistance and cancer aggressiveness in CRC. It was suggested that the discovered signaling factors could be used as potential biomarkers for diagnosis and treatment of radioresistant CRC.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Junhye Kwon
- Medical Sciences Substantiation Center, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ui Sup Shin
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
15
|
Xiong B, Li C, Hong G, Li J, Luo Q, Gong J, Lai X. HMGB1/TREM1 crosstalk between heat-injured hepatocytes and macrophages promotes HCC progression after RFA. J Cancer Res Clin Oncol 2024; 150:480. [PMID: 39465435 PMCID: PMC11513699 DOI: 10.1007/s00432-024-05996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE Tumor recurrence after radiofrequency ablation (RFA) affects the survival rate of patients and limits its clinical application. Tumor recurrence around the ablation area may be related to the thermal injury of hepatocytes (HCs) around the tumor, but the specific mechanism is still unclear. METHODS A liver cancer thermal injury mouse model was established via RFA in the C57BL/6 mice. Primary HCs and Kupffer cells (KCs) were isolated and cultured to assess their sensitivity to thermal injury via the MTT assay. Flow cytometry was used to assess macrophage polarization. Furthermore, Western blotting and co-immunoprecipitation (co-IP) were utilized to evaluate the protein expression of intracellular signaling pathway. Finally, Transwell and wound healing assays was conducted to evaluate the invasion potential of liver cancer cells. RESULTS Our findings revealed that RFA-induced liver thermal injury promoted the upregulation and secretion of HMGB1 in HCs. HMGB1 had a protective effect on HCs thermal injury, potentially mediated through autophagy regulation. Heat-injured HCs release HMGB1, which activates the TREM1/JAK2/STAT3 signaling pathway in KCs, thus fostering an immunosuppressive tumor microenvironment (TME). Moreover, HMGB1 secretion by heat-injured HCs exacerbates the migration and invasion of HCC cells by influencing macrophage polarization. CONCLUSION RFA-induced thermal injury triggers HMGB1 release from HCs, driving macrophage M2 polarization and increasing the invasion ability of liver cancer cells. These findings reveal a potential therapeutic target for combating liver cancer recurrence following thermal ablation.
Collapse
Affiliation(s)
- Bin Xiong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongging, China
| | - Chunming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Guoqing Hong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Junke Li
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Qing Luo
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Jianping Gong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xing Lai
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China.
- Chongqing Hospital of Traditional Chinese Medicine, Chongging, China.
| |
Collapse
|
16
|
Wang S, Gao S, Lin S, Fang X, Zhang H, Qiu M, Zheng K, Ji Y, Xiao B, Zhang X. Integrated analysis of bulk and single-cell RNA sequencing reveals the impact of nicotinamide and tryptophan metabolism on glioma prognosis and immunotherapy sensitivity. BMC Neurol 2024; 24:419. [PMID: 39468708 PMCID: PMC11514892 DOI: 10.1186/s12883-024-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Nicotinamide and tryptophan metabolism play important roles in regulating tumor synthesis metabolism and signal transduction functions. However, their comprehensive impact on the prognosis and the tumor immune microenvironment of glioma is still unclear. The purpose of this study was to investigate the association of nicotinamide and tryptophan metabolism with prognosis and immune status of gliomas and to develop relevant models for predicting prognosis and sensitivity to immunotherapy in gliomas. METHODS Bulk and single-cell transcriptome data from TCGA, CGGA and GSE159416 were obtained for this study. Gliomas were classified based on nicotinamide and tryptophan metabolism, and PPI network associated with differentially expressed genes was established. The core genes were identified and the risk model was established by machine learning techniques, including univariate Cox regression and LASSO regression. Then the risk model was validated with data from the CGGA. Finally, the effects of genes in the risk model on the biological behavior of gliomas were verified by in vitro experiments. RESULTS The high nicotinamide and tryptophan metabolism is associated with poor prognosis and high levels of immune cell infiltration in glioma. Seven of the core genes related to nicotinamide and tryptophan metabolism were used to construct a risk model, and the model has good predictive ability for prognosis, immune microenvironment, and response to immune checkpoint therapy of glioma. We also confirmed that high expression of TGFBI can lead to an increased level of migration, invasion, and EMT of glioma cells, and the aforementioned effect of TGFBI can be reduced by FAK inhibitor PF-573,228. CONCLUSIONS Our study evaluated the effects of nicotinamide and tryptophan metabolism on the prognosis and tumor immune microenvironment of glioma, which can help predict the prognosis and sensitivity to immunotherapy of glioma.
Collapse
Affiliation(s)
- Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shen Gao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shaochong Lin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Fang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haopeng Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Man Qiu
- Department of Neurosurgery, Xinyang Central Hospital, Xinyang, 464000, China
| | - Kai Zheng
- Department of Neurosurgery, Xianyang First People's Hospital, Xianyang, 712000, China
| | - Yupeng Ji
- Department of Cardiovascular Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Baijun Xiao
- Department of Neurosurgery, Pingshan People's Hospital, Shenzhen, 518118, China
| | - Xiangtong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
17
|
Wang X, Yang J, Yang W, Sheng H, Jia B, Cheng P, Xu S, Hong X, Jiang C, Yang Y, Wu Z, Wang J. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m 6A modification and diverse cell death mechanisms. J Adv Res 2024:S2090-1232(24)00481-8. [PMID: 39490612 DOI: 10.1016/j.jare.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The protein p53, encoded by the most frequently mutated gene TP53 in human cancers, has diverse functions in tumor suppression. As a best known transcription factor, p53 can regulate various fundamental cellular responses, ranging from the cell-cycle arrest, DNA repair, senescence to the programmed cell death (PCD), which includes autophagy, apoptosis, ferroptosis, cuproptosis, pyroptosis and disulfidoptosis. Accumulating evidence has indicated that the tumor microenvironment (TME), N6-methyladenosine (m6A) modification and diverse PCD are important for the progression, proliferation and metastases of cancers. AIM OF REVIEW This paper aims to systematically and comprehensively summarize the multiple roles of p53 in the development of cancers from the regulation of TME, m6A Modification and diverse PCD. KEY SCIENTIFIC CONCEPTS OF REVIEW TME, a crucial local homeostasis environment, influences every step of tumorigenesis and metastasis. m6A, the most prevalent and abundant endogenous modification in eukaryotic RNAs, plays an essential role in various biological processes, containing the progression of cancers. Additionally, PCD is an evolutionarily conserved mechanism of cell suicide and a common process in living organisms. Some forms of PCD contribute to the occurrence and development of cancer. However, the complex roles of p53 within the TME, m6A modification and diverse PCD mechanisms are still not completely understood. Presently, the function roles of p53 including the wild-type and mutant p53 in different context are summarized. Additionally, the interaction between the cancer immunity, cancer cell death and RNA m6A methylation and the p53 regulation during the development and progress of cancers were discussed. Moreover, the key molecular mechanisms by which p53 participates in the regulation of TME, m6A and diverse PCD are also explored. All the findings will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyang Sheng
- Global Biometrics and Data Sciences, Bristol Myers Squibb, New York City, USA
| | - Buyun Jia
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Cheng
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shanshan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinhui Hong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Ziyin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
18
|
Seo J, Ha G, Lee G, Nasiri R, Lee J. Modeling tumor-immune interactions using hybrid spheroids and microfluidic platforms for studying tumor-associated macrophage polarization in melanoma. Acta Biomater 2024:S1742-7061(24)00629-9. [PMID: 39461691 DOI: 10.1016/j.actbio.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tumor-associated macrophages (TAMs), as key components of tumor microenvironment (TME), exhibit phenotypic plasticity in response to environmental cues, causing polarization into either pro-inflammatory M1 phenotypes or immunosuppressive M2 phenotypes. Although TAM has been widely studied for its crucial involvement in the initiation, progression, metastasis, and immune regulation of cancer cells, there have been limited attempts to understand how the metastatic potentials of cancer cells influence TAM polarization within TME. Here, we developed a miniaturized TME model using a 3D hybrid system composed of murine melanoma cells and macrophages, aiming to investigate interactions between cancer cells exhibiting various metastatic potentials and macrophages within TME. The increase in spheroid size within this model was associated with a reduction in cancer cell viability. Examining macrophage surface marker expression and cytokine secretion indicated the development of diverse TMEs influenced by both spheroid size and the metastatic potential of cancer cells. Furthermore, a high-throughput microfluidic platform equipped with trapping systems and hybrid spheroids was employed to simulate the tumor-immune system of complex TMEs and for comparative analysis with traditional 3D culture models. This study provides insight into TAM polarization in melanoma with different heterogeneities by modeling cancer-immune systems, which can be potentially employed for immune-oncology research, drug screening, and personalized therapy. STATEMENT OF SIGNIFICANCE: This study presents the development of a 3D hybrid spheroid system designed to model tumor-immune interactions, providing a detailed analysis of how melanoma cell metastatic potential influences tumor-associated macrophage (TAM) polarization. By utilizing a microfluidic platform, we are able to replicate and investigate the complex tumor-immune system of the tumor microenvironments (TMEs) under continuous flow conditions. Our model holds significant potential for high-throughput drug screening and personalized medicine applications, offering a versatile tool for advancing cancer research and treatment strategies.
Collapse
Affiliation(s)
- Junki Seo
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Giheon Ha
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Geonho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Rohollah Nasiri
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States
| | - Junmin Lee
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
19
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
20
|
Wang X, Guo J, Dai Q. Mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis: role and therapeutic directions. Front Cell Dev Biol 2024; 12:1492821. [PMID: 39483335 PMCID: PMC11524835 DOI: 10.3389/fcell.2024.1492821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease with clinical symptoms of vascular damage, immune disorders, and fibrosis, presenting significant treatment challenges and limited therapeutic options. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been demonstrated in numerous studies as more effective than MSCs in treating autoimmune diseases. Recent studies demonstrate that MSC-EVs can significantly ameliorate the symptoms of SSc and mitigate pathological changes such as vascular injury, immune dysregulation, and fibrosis. These findings underscore the promising therapeutic potential of MSC-EVs in the treatment of SSc. MSC-EVs promote angiogenesis, modulate immune dysfunction, and combat fibrosis. This article summarizes the therapeutic applications and possible mechanisms of MSC-EVs for SSc, thereby offering a novel therapeutic direction for the treatment of SSc.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiaying Guo
- Department of Geriatric Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangfu Dai
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
21
|
Khamaru S, Mukherjee T, Tung KS, Kumar PS, Bandyopadhyay S, Mahish C, Chattopadhyay S, Chattopadhyay S. Chikungunya virus infection inhibits B16 melanoma-induced immunosuppression of T cells and macrophages mediated by interleukin 10. Microb Pathog 2024; 197:107022. [PMID: 39419458 DOI: 10.1016/j.micpath.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Immunosuppression in cancer poses challenges for immunotherapy and highlights the vulnerability of immunocompromised patients to viral infections. This study explored how Chikungunya virus (CHIKV) infection potentially inhibits B16-F10 melanoma-induced immunosuppressive effects on T cells and RAW 264.7 macrophages. We found high expression of CHIKV entry genes in melanoma and other cancers, with B16-F10 cells demonstrating greater susceptibility to CHIKV infection than non-tumorigenic cells. Interestingly, the CHIKV-infected B16-F10 cell culture supernatant (B16-F10-CS) reversed the immunosuppressive effects of uninfected B16-F10-CS on T cells. This reversal was characterised by decreased STAT3 activation and increased MAPK activation in T cells, an effect amplified by interleukin 10 (IL-10) receptor blockade. In RAW 264.7 cells, B16-F10-CS enhanced CHIKV infectivity without triggering activation. However, blocking the IL-10 receptor (IL-10R) in RAW 264.7 reduced CHIKV infection. CHIKV infection and IL-10R blockade synergistically inhibited B16-F10-CS-mediated polarisation of RAW 264.7 cells towards immunosuppressive macrophage. Our findings suggest that CHIKV modulates cancer-induced immunosuppression through IL-10-dependent pathways, providing new insights into viral-cancer interactions. This research may contribute to developing novel antiviral immunotherapies and virotherapies beneficial for cancer patients and immunocompromised individuals.
Collapse
Affiliation(s)
- Somlata Khamaru
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Institute of Life Sciences, Bhubaneswar, India
| | - Kshyama Subhadarsini Tung
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - P Sanjai Kumar
- Institute of Life Sciences, Bhubaneswar, India; Division of Neonatology and Newborn Nursery, University of Wisconsin, Madison, USA
| | - Saumya Bandyopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Johns Hopkins University School of Medicine, Department of Biological Chemistry, 725 North Wolfe Street, Baltimore, Maryland, USA
| | - Chandan Mahish
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | | | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| |
Collapse
|
22
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
23
|
Xiao SM, Xu R, Yang YX, Zhao R, Xie Y, Lei XD, Wu XT. Gastrointestinal stromal tumors regulate macrophage M2 polarization through the MIF/CXCR4 axis to immune escape. Front Immunol 2024; 15:1431535. [PMID: 39464891 PMCID: PMC11502962 DOI: 10.3389/fimmu.2024.1431535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The infiltration of immune cells and their roles of the infiltrating-immune cells in gastrointestinal stromal tumor (GIST) is still unclear. We aimed to discover the infiltration cell types and the relationship between the infiltrating-immune cells and the progression of GIST. Experimental design Single-cell RNA sequencing were performed to discover types of the infiltrating-immune cells and to analyze CellChat between cells. Immunohistochemistry of 80 GIST samples were used to clarify the relation between macrophages and recurrence risk. In vitro, flow cytometry and Real-time PCR were performed to uncover a potential mechanism of tumor cell regulation of macrophages. Results Tumor cells, macrophages, and T-cells were the predominant cell types. The MIF/CXCR4 axis was the most common ligand-receptor interaction between macrophages and tumor cells. As the risk increased, expression levels of CD68, CD206, MIF, and CXCR4 gradually increased. In vitro, we found that GIST882 was able to secrete MIF and GIST882 cell supernatant upregulated M2 polarization. Real-time PCR showed that expression levels of IL-10 mRNA and Arginase-1 mRNA were also the highest in the GIST882 cell supernatant group. Conclusions These findings identify that macrophages are the most abundant infiltrating cells in GIST. The MIF/CXCR4 axis is the most common ligand-receptor interaction between macrophages and tumor cells. GIST cells can regulate macrophage M2 polarization through the MIF/CXCR4 axis.
Collapse
Affiliation(s)
- Shuo-meng Xiao
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Rui Xu
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying-xin Yang
- Department of Oncology, The First People’s Hospital of Dali, Dali City, Yunnan, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xie
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xu-dan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiao-ting Wu
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Manoharan V, Adegbayi OO, Maynard JP. P2 purinergic receptor expression and function in tumor-related immune cells. Purinergic Signal 2024:10.1007/s11302-024-10054-7. [PMID: 39387963 DOI: 10.1007/s11302-024-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
P2 purinergic receptor expression is dysregulated in multiple cancer subtypes and is associated with worse outcomes. Studies identify roles for P2 purinergic receptors in tumor cells that drive disease aggressiveness. There is also sufficient evidence that P2 purinergic receptor expression within the tumor microenvironment (TME) is critical for disease initiation and progression. Immune cells constitute a significant component of the TME and display both tumorigenic and anti-tumorigenic potential. Studies pre-dating the investigation of P2 purinergic receptors in cancer identify P2 receptor expression on multiple immune cells including macrophages, neutrophils, T-cells, and dendritic cells; all of which are implicated in tumor initiation, tumor promotion, or response to treatment. Herein, we discuss P2 purinergic receptor expression and function in tumor-related immune cells. We provide a rationale for further investigations of P2 purinergic receptors within the TME to better define the mechanistic pathways of inflammation-mediate tumorigenesis and explore P2 purinergic receptors as potential targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vahinipriya Manoharan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwafemi O Adegbayi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Takagi K, Sukhbaatar A, Inaba Y, Mori S, Kodama T. A combination of lymphatic drug delivery of anti-CTLA-4 antibody and local radiotherapy for solid-tumor treatment. Cancer Sci 2024. [PMID: 39380185 DOI: 10.1111/cas.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The combination of radiotherapy and immunotherapy is a promising approach that has been shown in clinical trials to improve significantly survival and response rates compared with monotherapy against solid tumor. Since anti-CTLA-4 antibodies block immunosuppressive signals mainly in the lymph nodes (LNs), efficient drug delivery to the lymphatic system is desirable. However, the immune checkpoint inhibitors, especially anti-CTLA-4 are currently administered intravenously (i.v.), resulting in limited efficacy in controlling solid tumor and inhibiting metastases, and the method of administration has not been optimized. Here, we show that a combination of local radiotherapy and administration of anti-CTLA-4 antibodies using a lymphatic drug delivery system (LDDS) suppresses solid tumor and metastases. We compared the efficacy of LDDS-based immunotherapy or radioimmunotherapy with i.v. administration in a solid-tumor model created by subcutaneous inoculation into LN-swollen mice with osteosarcoma cells. Tumor-bearing mice were divided into various groups (no treatment, immunotherapy [i.v. or LDDS], radiotherapy, and radioimmunotherapy [i.v. or LDDS]) and were observed for 28 days. Immunotherapy was administered with a cumulative dose of 10 mg/kg of anti-CTLA-4 monoclonal antibody, and radiotherapy was administered with a cumulative 8 Gy of fractionated X-ray irradiation. For immunotherapy alone, LDDS provided slight tumor growth inhibition but did not inhibit distant metastasis. For radioimmunotherapy, however, tumor growth was delayed and distant metastasis was suppressed compared with radiotherapy alone. In particular, the LDDS group achieved a high tumor-suppressive effect with T cell-mediated immune activity, indicating the efficacy of LDDS in radioimmunotherapy.
Collapse
Affiliation(s)
- Koki Takagi
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yohei Inaba
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Zhou B, Qin Q, Fang Y, Liu X, Zhang M, Wang S, Zhong L, Guo R. Exosomes from human bone marrow MSCs alleviate PD-1/PD-L1 inhibitor-induced myocardial injury in melanoma mice by regulating macrophage polarization and pyroptosis. Life Sci 2024; 358:123108. [PMID: 39374773 DOI: 10.1016/j.lfs.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Myocarditis, which can be triggered by immune checkpoint inhibitor (ICI) treatment, represents a critical and severe adverse effect observed in cancer therapy. Thus, elucidating the underlying mechanism and developing effective strategies to mitigate its harmful impact is of utmost importance. The objective of this study is to investigate the potential role and regulatory mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBMSC-Exos) in providing protection against myocardial injury induced by ICIs. We observed that the administration of programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitor BMS-1 in tumor-bearing mice led to evident cardiac dysfunction and myocardial injury, which were closely associated with M1 macrophage polarization and cardiac pyroptosis. Remarkably, these adverse effects were significantly alleviated through tail-vein injection of hBMSC-Exos. Moreover, either BMS-1 or hBMSC-Exos alone demonstrated the ability to reduce tumor size, while the combination of hBMSC-Exos with BMS-1 treatment not only effectively improved the probability of tumor inhibition but also alleviated cardiac anomalies induced by BMS-1.
Collapse
Affiliation(s)
- Bingqian Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Qin Qin
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Fang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
27
|
Lee SH, Kim KH, Lee SM, Park SJ, Lee S, Cha RH, Lee JW, Kim DK, Kim YS, Ye SK, Yang SH. STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation. Cell Commun Signal 2024; 22:476. [PMID: 39367511 PMCID: PMC11453053 DOI: 10.1186/s12964-024-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear. METHODS Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model. RESULTS In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice. CONCLUSIONS STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Min Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Joon Park
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Division of Nephrology, Kangwon National University Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hee Yang
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Li L, Wang X, Jiang M, Li L, Wang D, Li Y. Advancements in a novel model of autophagy and immune network regulation in radioresistance of cancer stem cells. Biomed Pharmacother 2024; 179:117420. [PMID: 39255736 DOI: 10.1016/j.biopha.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Radiotherapy, a precise modality for treating malignant tumors, has undergone rapid advancements in primary and clinical research. The mechanisms underlying tumor radioresistance have become significant research. With the introduction and in-depth study of cancer stem cells (CSCs) theory, CSCs have been identified as the primary factor contributing to the development of tumor radioresistance. The "stemness" of CSCs is a biological characteristic of a small subset of cells within tumor tissues, characterized by self-renewal solid ability. This characteristic leads to resistance to radiotherapy, chemotherapy, and targeted therapies, driving tumor recurrence and metastasis. Another study revealed that cellular autophagy plays a pivotal role in maintaining the "stemness" of CSCs. Autophagy is a cellular mechanism that degrades proteins and organelles to generate nutrients and energy in response to stress. This process maintains cellular homeostasis and contributes to CSCs radioresistance. Furthermore, ionizing radiation (IR) facilitates epithelial-to-mesenchymal transition (EMT), vascular regeneration, and other tumor processes by influencing the infiltration of M2-type tumor-associated macrophages (TAMs). IR promotes the activation of the classical immunosuppressive "switch," PD-1/PD-L1, which diminishes T-cell secretion, leading to immune evasion and promoting radioresistance. Interestingly, recent studies have found that the immune pathway PD-1/PD-L1 is closely related to cellular autophagy. However, the interrelationships between immunity, autophagy, and radioresistance of CSCs and the regulatory mechanisms involved remain unclear. Consequently, this paper reviews recent research to summarize these potential connections, aiming to establish a theoretical foundation for future studies and propose a new model for the network regulation of immunity, autophagy, and radioresistance of tumor cells.
Collapse
Affiliation(s)
- Leyao Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Mei Jiang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yajun Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
29
|
Shi Z, Zhou M, Zhai J, Sun J, Wang X. Novel therapeutic strategies and drugs for idiopathic pulmonary fibrosis. Arch Pharm (Weinheim) 2024; 357:e2400192. [PMID: 38961537 DOI: 10.1002/ardp.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-β/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.
Collapse
Affiliation(s)
- Zezhou Shi
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| |
Collapse
|
30
|
Ruze R, Chen Y, Song J, Xu R, Yin X, Xu Q, Wang C, Zhao Y. Enhanced cytokine signaling and ferroptosis defense interplay initiates obesity-associated pancreatic ductal adenocarcinoma. Cancer Lett 2024; 601:217162. [PMID: 39127339 DOI: 10.1016/j.canlet.2024.217162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity is a significant risk factor for various cancers, including pancreatic cancer (PC), but the underlying mechanisms are still unclear. In our study, pancreatic ductal epithelial cells were cultured using serum from human subjects with diverse metabolic statuses, revealing that serum from patients with obesity alters inflammatory cytokine signaling and ferroptosis, where a mutual enhancement between interleukin 34 (IL-34) expression and ferroptosis defense was observed in these cells. Notably, oncogenic KRASG12D amplified their interaction and this leads to the initiation of pancreatic ductal adenocarcinoma (PDAC) in diet-induced obese mice via macrophage-mediated immunosuppression. Single-cell RNA sequencing (scRNA-seq) of human samples showed that cytokine signaling, ferroptosis defense, and immunosuppression are correlated with the patients' body mass index (BMI) during PDAC progression. Our findings provide a mechanistic link between obesity, inflammation, ferroptosis defense, and pancreatic cancer, suggesting novel therapeutic targets for the prevention and treatment of obesity-associated PDAC.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| | - Chengcheng Wang
- General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China; Medical Research Center, PUMCH, CAMS&PUMC, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100730, China; General Surgery Laboratory, Key Laboratory of Research in Pancreatic Tumor, CAMS, Beijing, 100023, China; National Science and Technology Key Infrastructure on Translational Medicine in PUMCH, Beijing, 100023, China; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, CAMS&PUMC, Beijing, 100023, China.
| |
Collapse
|
31
|
Gu R, Chen Z, Dong M, Li Z, Wang M, Liu H, Shen X, Huang Y, Feng J, Mei K. Unraveling the immunogenic cell death pathways in gastric adenocarcinoma: A multi-omics study. ENVIRONMENTAL TOXICOLOGY 2024; 39:4712-4728. [PMID: 38717048 DOI: 10.1002/tox.24338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 10/24/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignant tumor of the gastrointestinal (GI) system. However, the lack of reliable biomarkers has made its diagnosis, prognosis, and treatment challenging. Immunogenic cell death (ICD) is a type of programmed cell death that is strongly related to the immune system. However, its function in GC requires further investigation. METHOD We used multi-omics and multi-angle approaches to comprehensively explore the prognostic features of ICD in patients with stomach adenocarcinoma (STAD). At the single-cell level, we screened genes associated with ICD at the transcriptome level, selected prognostic genes related to ICD using weighted gene co-expression network analysis (WGCNA) and machine learning, and constructed a prognostic model. In addition, we constructed nomograms that incorporated pertinent clinical features and provided effective tools for prognostic prediction in clinical settings. We also investigated the sensitivity of the risk subgroups to both immunotherapy and drugs. Finally, in addition to quantitative real-time polymerase chain reaction, immunofluorescence was used to validate the expression of ICD-linked genes. RESULTS Based on single-cell and transcriptome WGCNA analyses, we identified 34 ICD-related genes, of which 11 were related to prognosis. We established a prognostic model using the least absolute shrinkage and selection operator (LASSO) algorithm and identified dissimilarities in overall survival (OS) and progression-free survival (PFS) in risk subgroups. The nomograms associated with the ICD-related signature (ICDRS) demonstrated a good predictive value for clinical applications. Moreover, we detected changes in the tumor microenvironment (TME), including biological functions, mutation landscapes, and immune cell infiltration, between the high- and low-risk groups. CONCLUSION We constructed an ICD-related prognostic model that incorporated features related to cell death. This model can serve as a useful tool for predicting the prognosis of GC, targeted prevention, and personalized medicine.
Collapse
Affiliation(s)
- Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zilu Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyue Dong
- Rehabilitation department, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Liu
- Out-patient department, Eastern Theater General Hospital, Nanjing, China
| | - Xinyu Shen
- Out-patient department, Eastern Theater General Hospital, Nanjing, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Feng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kun Mei
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
32
|
Liu Y, Dong M, Jia Y, Yang D, Hui Y, Yang X. SPI1-mediated transcriptional activation of CEP55 promotes the malignant growth of triple-negative breast cancer and M2 macrophage polarization. Pathol Res Pract 2024; 262:155544. [PMID: 39197215 DOI: 10.1016/j.prp.2024.155544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of three receptors commonly targeted in breast cancer treatment. In this study, the research focused on investigating the role of centrosomal protein 55 (CEP55) in TNBC progression and its interaction with the transcription factor Spi-1 proto-oncogene (SPI1). METHODS Various techniques including qRT-PCR, western blotting, and immunohistochemistry assays were utilized to examine gene expression patterns. Functional assays such as wound-healing assay, transwell invasion assay, 5-Ethynyl-2'-deoxyuridine assay, and metabolic assays were conducted to assess the impact of CEP55 on the behaviors of TNBC cells. CD163-positive macrophages were quantified by flow cytometry. The chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to assess the association of SPI1 with CEP55. A xenograft mouse model experiment was used to analyze the impact of SPI1 on tumor development in vivo. RESULTS CEP55 and SPI1 expression levels were significantly upregulated in TNBC tissues and cells. The depletion of CEP55 led to decreased TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization, indicating its crucial role in promoting TNBC progression. Moreover, SPI1 transcriptionally activated CEP55 in TNBC cells, and its overexpression was associated with accelerated tumor growth in vivo. Further, CEP55 overexpression relieved SPI1 silencing-induced inhibitory effects on TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. CONCLUSION SPI1-mediated transcriptional activation of CEP55 plays a key role in enhancing TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. These insights provide valuable information for potential targeted therapies to combat TNBC progression by modulating the SPI1-CEP55 axis.
Collapse
Affiliation(s)
- Yuanwei Liu
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Ming Dong
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yong Jia
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Dezhen Yang
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yang Hui
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman., Malaysia
| | - Xiaodong Yang
- Department of Surgical Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
33
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
34
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
35
|
Li X, Li Y, Tuerxun H, Zhao Y, Liu X, Zhao Y. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration. Biomed Pharmacother 2024; 179:117298. [PMID: 39151313 DOI: 10.1016/j.biopha.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.
Collapse
Affiliation(s)
- Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
36
|
Sharma A, Vikramdeo KS, Sudan SK, Anand S, Deshmukh SK, Singh AP, Singh S. Cortisol affects macrophage polarization by inducing miR-143/145 cluster to reprogram glucose metabolism and by promoting TCA cycle anaplerosis. J Biol Chem 2024; 300:107753. [PMID: 39260692 PMCID: PMC11470657 DOI: 10.1016/j.jbc.2024.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences. We found that cortisol induced the expression of miR-143/145 cluster in human monocyte (THP1 and U937)-derived macrophages but not in breast cancer cells. In silico analysis identified glucocorticoid-response element in the upstream CARMN promoter utilized by the miR-143/145 cluster. Enhanced binding of glucocorticoid-receptor (GR) upon cortisol exposure and its regulatory significance was confirmed by chromatin-immunoprecipitation and promoter-reporter assays. Further, cortisol inhibited IFNγ-induced M1 polarization and promoted M2 polarization, and these effects were suppressed by miR-143-3p and miR-145-5p inhibitors pretreatment. Cortisol-treated macrophages exhibited increased oxygen-consumption rate (OCR) to extracellular-acidification rate (ECAR) ratio, and this change was neutralized by functional inhibition of miR-143-3p and miR-145-5p. HK2 and ADPGK were confirmed as the direct targets of miR-143-3p and miR-145-5p, respectively. Interestingly, silencing of HK2 and ADPGK inhibited IFNγ-induced M1 polarization but failed to induce M2 polarization, since it suppressed both ECAR and OCR, while OCR was largely sustained in cortisol-treated M2-polarized macrophages. We found that cortisol treatment sustained OCR by enhancing fatty acid and glutamine metabolism through upregulation of CPT2 and GLS, respectively, to support M2 polarization. Thus, our findings unfold a novel mechanism of immune suppression by cortisol and open avenues for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Amod Sharma
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kunwar Somesh Vikramdeo
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sarabjeet Kour Sudan
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shashi Anand
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Pathology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Seema Singh
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| |
Collapse
|
37
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
38
|
Lin Y, Li L, Huang H, Wen X, Zhang Y, Zhang R, Huang W. Vitexin Inhibits TNBC Progression and Metastasis by Modulating Macrophage Polarization Through EGFR Signaling. J Immunother 2024; 47:303-312. [PMID: 38847148 DOI: 10.1097/cji.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 09/05/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks sensitivity to endocrine and targeted therapies, exhibiting high recurrence and poor prognosis postchemotherapy. Tumor-associated macrophages (TAMs) play a crucial role in cancer progression. Vitexin, a compound with diverse pharmacological effects including anti-cancer activity, remains unexplored in its impact on TAMs during TNBC development. This study aimed to investigate vitexin's effect on TNBC, its regulation of macrophage polarization (M1 vs. M2), and the underlying EGFR/PI3K/AKT/mTOR pathway. Our results demonstrated that vitexin suppressed the proliferation and invasion of TNBC cells (MDA-MB-231 and BT549) while inducing macrophage mediators that further inhibited cancer cell migration. Vitexin also promoted M1 polarization and suppressed M2 polarization, affecting EGFR phosphorylation and downstream signaling. In vivo, vitexin inhibited tumor growth, favoring M1 polarization and suppressing M2 polarization, with synergistic effects when combined with doxorubicin (Dox). These findings offer novel insights into vitexin's potential in TNBC treatment.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Lin Li
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Huakang Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Xiaohong Wen
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
39
|
Du X, He Y, Dong P, Yan C, Wei Y, Yao H, Sun J. A novel gene signature based on endoplasmic reticulum stress for predicting prognosis in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4574-4592. [PMID: 39430815 PMCID: PMC11483465 DOI: 10.21037/tcr-24-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common human cancers, the death cases induced by HCC are increasing these years. Endoplasmic reticulum stress (ERS) occurs when misfolded proteins cannot be disposed of properly. It is reported that ERS plays a crucial role in the pathogenesis of human malignant tumors. The aim of this study is to construct a novel gene signature based on ERS for predicting prognosis in HCC. Methods The data of HCC patients were downloaded from public databases. The Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to construct ERS-related gene signature. The cases were divided into high- and low-risk groups based on the ERS-related gene signature in The Cancer Genome Atlas (TCGA) cohort. Subsequently, the differences in messenger ribonucleic acid (mRNA) expression patterns, immune status, tumor mutation burden (TMB) and copy number variants (CNV) were investigated between high- and low-risk groups. Then, a predictive nomogram according to the ERS-related gene signature and clinicopathological variables was established. At last, we explored the biological functions of TMX1 which had the biggest coefficient and we investigated the effect of BRSK2 on apoptosis in HCC. Results In our study, a 9-gene ERS-related gene signature was constructed. The results showed that patients in the low-risk group had a better prognosis than the high-risk group patients. The results of receiver operating characteristic (ROC) curves revealed that the area under the curve (AUC) was 0.784 at 1 year, 0.780 at 2 years, 0.793 at 3 years in the training set. While in validation cohort, this index was 0.694 at 1 year, 0.622 at 2 years, 0.613 at 3 years respectively. The analysis of immune status revealed an immunosuppressive microenvironment in the high-risk group. The analysis of TMB and CNV revealed that the high-risk group patients had a higher genomic mutation frequency. In Univariate Cox regression analysis, the hazard ratio of RiskScore was 2.718 [95% confidence interval (CI): 2.173-3.399]. In Multivariate Cox regression analysis, the hazard ratio of RiskScore was 2.422 (95% CI: 1.805-3.25). Then, we established a nomogram according to the RiskScore and Eastern Cooperative Oncology Group performance status. The AUCs of the nomogram were 0.851 at 1 year, 0.860 at 2 years, and 0.866 at 3 years. At last, we found that TMX1 knockdown can inhibit the proliferation and migration of Huh7 and HepG2 cells. In addition, BRSK2 knockdown could promote the apoptosis induced by ERS. Conclusions In our study, a novel ERS-related gene signature was constructed to predict the prognosis of HCC patients. In addition, TMX1 and BRSK2 could promote the progression of HCC. This study may provide a new understanding for HCC.
Collapse
Affiliation(s)
- Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingjie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Penggang Dong
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Caigu Yan
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
41
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
42
|
An B, Shin CH, Kwon JW, Tran NL, Kim AH, Jeong H, Kim SH, Park K, Oh SJ. M1 macrophage-derived exosomal microRNA-29c-3p suppresses aggressiveness of melanoma cells via ENPP2. Cancer Cell Int 2024; 24:325. [PMID: 39342305 PMCID: PMC11438108 DOI: 10.1186/s12935-024-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
In the tumor microenvironment, macrophages play crucial roles resulting in tumor suppression and progression, depending on M1 and M2 macrophages, respectively. In particular, macrophage-derived exosomes modulate the gene expression of cancer cells by delivering miRNAs which downregulate specific genes. The communication between macrophages and cancer cells is especially important in immunogenic tumors such as melanoma, where the cancer pogression is significantly influenced by the surrounding immune cells. In this study, we identified that M1 macrophages secrete exosomal miR-29c-3p in the co-culture system with melanoma cells. Simultaneously, ENPP2, the target of miR-29c-3p, decreased in the melanoma cells which are co-cultured with M1 macrophages. Additionally, we observed that the reduction of ENPP2 alleviates melanoma cell migration and invasion, due to the changes of cholesterol metabolism and ECM remodeling. Based on these findings, we demonstrated that M1 macrophages suppress aggressiveness of melanoma cells via exosomal miR-29c-3p-mediated knock-down of ENPP2 in cancer cells.
Collapse
Affiliation(s)
- Byoungha An
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Cheol-Hee Shin
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Won Kwon
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Na Ly Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - A Hui Kim
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hyeyeon Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
43
|
Kim JY, Kang W, Yang S, Park SH, Ha SY, Paik YH. NADPH oxidase 4 deficiency promotes hepatocellular carcinoma arising from hepatic fibrosis by inducing M2-macrophages in the tumor microenvironment. Sci Rep 2024; 14:22358. [PMID: 39333166 PMCID: PMC11437090 DOI: 10.1038/s41598-024-72721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) often arises in the cirrhotic livers, highlighting the intricate link between hepatic fibrosis and carcinogenesis. Reactive oxygen species produced by NADPH oxidase 4 (NOX4) contribute to liver injury leading to hepatic fibrosis. Paradoxically, NOX4 is known to inhibit HCC progression. This study aims to elucidate the role of NOX4 in hepatocarcinogenesis in the background of hepatic fibrosis. We established the mouse model of HCC arising from the fibrotic liver by administering diethylnitrosamine and carbon tetrachloride to wild-type (WT) or NOX4-/- mice. Hepatic fibrogenesis, tumorigenesis, and macrophage polarization were assessed by immunohistochemistry, PCR, and flow cytometry using in vivo and in vitro models. In NOX4-/- mice, hepatic fibrosis was attenuated, while the number of tumors and the proliferation of HCC cells were increased compared to WT mice. Notably, a significant increase in M2-polarized macrophages was observed in NOX4-/- mice through immunohistochemistry and PCR analysis. Subsequent experiments demonstrated that NOX4-silenced HCC cells promote macrophage polarization toward M2. In addition to attenuating hepatic fibrogenesis, NOX4 deficiency triggers macrophage polarization towards the M2 phenotype in the fibrotic liver, thereby promoting hepatocellular carcinogenesis. These findings provide novel insights into the mechanism of NOX4-mediated tumor suppression in HCC arising from fibrotic livers.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Sera Yang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Su Hyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Han Paik
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
44
|
Zhang Z, Wang C, Shi W, Wang Z, Fu W. Construction of store-operated calcium entry-related gene signature for predicting prognosis and indicates immune microenvironment infiltration in stomach adenocarcinomas. Sci Rep 2024; 14:22342. [PMID: 39333689 PMCID: PMC11436956 DOI: 10.1038/s41598-024-73324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Gastric adenocarcinoma (STAD) is the most prevalent malignancy of the human digestive system and the fourth leading cause of cancer-related death. Calcium pools, especially Ca2+ entry (SOCE) for storage operations, play a crucial role in maintaining intracellular and extracellular calcium balance, influencing cell activity, and facilitating tumor progression. Nevertheless, the prognostic and immunological value of SOCE in STAD has not been systematically studied. The objective of this study was to develop a risk model for SOCE signature and to explore its correlation with clinical characteristics, prognosis, tumor microenvironment (TME), as well as response to immunotherapy, chemotherapy, and targeted drugs. We used the TCGA, GEO (GSE84437 and GSE159929), cBioPortal and TIMER databases to acquire mRNA expression data for STAD, along with patient clinical indicators, single-cell sequencing data, genomic variation information, and correlations of immune cell infiltration. An analysis of SOCE genes based on tumor vs. normal tissue comparisons, pan-cancer dimension, single-cell sequencing, DNA mutation, and copy number variation revealed that SOCE genes significantly impact the survival of STAD patients and are differentially involved in the immune response. SOCE co-expressed genes were identified by Pearson analysis, and subsequently protein-protein interaction (PPI) and gene function enrichment analysis indicated that coexpressed genes were associated with multicellular pathways. Based on TCGA and GSE84437 datasets, a multifactor Cox proportional hazard regression analysis was conducted to identify SOCE co-expressed genes associated with overall survival in STAD patients. Several mRNA prognostic genes, including PTPRJ, GPR146, LTBP3, FBLN1, EFEMP2, ADAMTS7 and LBH, were identified, which could be used as effective prognostic predictors for STAD patients. In both training and test datasets, receiver operating characteristic (ROC) curves were utilized to evaluate and illustrate the predictive capability of this characteristic in forecasting overall survival of STAD patients. The qPCR and human protein atlas (HPA) were employed to assess mRNA expression and protein levels. Furthermore, the ESTIMATE, TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, xCell and EPIC algorithms were utilized to perform immune score and analyze immune cell infiltration. It effectively revealed the difference in prognosis and immune cell infiltration in TME between high-risk and low-risk groups based on the risk signature associated with SOCE. Notably, significant differences in tumor immune dysfunction and rejection (TIDE) scores between the two groups, suggesting that patients in the low-risk group may exhibit a more favorable response to ICIS treatment. The GDSC database and R packages for predictive analysis were utilized to analyze responses to chemotherapy and targeted drugs in high-risk and low-risk groups. In summary, the 7-gene signature associated with SOCE serves as a significant biomarker for evaluating the TME and predicting the prognosis of STAD patients. In addition, it may provide valuable insights for developing effective immunotherapy and chemotherapy regiments for patients with STAD.
Collapse
Affiliation(s)
- Zichao Zhang
- Department of General Surgery, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Chenglong Wang
- Department of Otolaryngology, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
| | - Wenzheng Shi
- Department of General Surgery, The First Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
45
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
46
|
Goswami R, Nabawy A, Jiang M, Cicek YA, Hassan MA, Nagaraj H, Zhang X, Rotello VM. All-Natural Gelatin-Based Nanoemulsion Loaded with TLR 7/8 Agonist for Efficient Modulation of Macrophage Polarization for Immunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1556. [PMID: 39404283 PMCID: PMC11477480 DOI: 10.3390/nano14191556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Macrophages are multifunctional immune cells essential for both innate and adaptive immune responses. Tumor-associated macrophages (TAMs) often adopt a tumor-promoting M2-like phenotype, aiding tumor progression and immune evasion. Reprogramming TAMs to a tumoricidal M1-like phenotype is an emerging target for cancer immunotherapy. Resiquimod, a TLR7/8 agonist, can repolarize macrophages from the M2- to M1-like phenotype but is limited by poor solubility. We developed a gelatin nanoemulsion for the loading and delivery of resiquimod, utilizing eugenol oil as the liquid phase and riboflavin-crosslinked gelatin as a scaffold. These nanoemulsions showed high stability, low toxicity, and effective macrophage repolarization, significantly enhancing pro-inflammatory markers and anticancer activity in co-culture models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA (M.J.); (Y.A.C.); (H.N.)
| |
Collapse
|
47
|
Jaiswal A, Shrivastav S, Kushwaha HR, Chaturvedi R, Singh RP. Oncogenic potential of SARS-CoV-2-targeting hallmarks of cancer pathways. Cell Commun Signal 2024; 22:447. [PMID: 39327555 PMCID: PMC11426004 DOI: 10.1186/s12964-024-01818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death. Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis. Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, potentially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activating host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and pathways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular components involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infection and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer consequences.
Collapse
Affiliation(s)
- Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanah Shrivastav
- SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
48
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
49
|
Silveira ASDA, Alves ACDA, Gimenes GM, Quessada PDS, Lobato TB, Dias BB, Pereira ACG, Iser-Bem PN, Pereira JNB, Hatanaka E, Masi LN, Pithon-Curi TC, Mattaraia VGDM, Hirabara SM, Crisma AR, Gorjão R, Curi R. Evidence for a Pro-Inflammatory State of Macrophages from Non-Obese Type-2 Diabetic Goto-Kakizaki Rats. Int J Mol Sci 2024; 25:10240. [PMID: 39408569 PMCID: PMC11477416 DOI: 10.3390/ijms251910240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Obesity causes insulin resistance (IR) through systemic low-grade inflammation and can lead to type 2 diabetes mellitus (T2DM). However, the mechanisms that cause IR and T2DM in non-obese individuals are unclear. The Goto-Kakizaki (GK) rat develops IR spontaneously and is a model of non-obese T2DM. These rats exhibit hyperglycemia beginning at weaning and exhibit lower body mass than control Wistar rats. Herein, we tested the hypothesis that macrophages of GK rats are permanently in a pro-inflammatory state, which may be associated with a systemic inflammation condition that mimics the pathogenesis of obesity-induced T2DM. Using eighteen-week-old GK and control Wistar rats, we investigated the proportions of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages isolated from the peritoneal cavity. Additionally, the production of inflammatory cytokines and reactive oxygen species (ROS) in cultured macrophages under basal and stimulated conditions was assessed. It was found that phorbol myristate acetate (PMA) stimulation increased GK rat macrophage ROS production 90-fold compared to basal levels. This response was also three times more pronounced than in control cells (36-fold). The production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), tended to be upregulated in cultured macrophages from GK rats under basal conditions. Macrophages from GK rats produced 1.6 times more granulocyte-macrophage colony-stimulating factor (GM-CSF), 1.5 times more monocyte chemoattractant protein-1 (MCP-1) and 3.3 times more TNF-α than control cells when stimulated with lipopolysaccharide (LPS) (p = 0.0033; p = 0.049; p = 0.002, respectively). Moreover, compared to control cells, GK rats had 60% more M1 (p = 0.0008) and 23% less M2 (p = 0.038) macrophages. This study is the first to report macrophage inflammatory reprogramming towards a pro-inflammatory state in GK rats.
Collapse
Affiliation(s)
- Amanda Santos de Almeida Silveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Amara Cassandra dos Anjos Alves
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Patrícia da Silva Quessada
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Beatriz Belmiro Dias
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Joice Naiara Bertaglia Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
- Butantan Institute, São Paulo 05585-000, SP, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Laureane Nunes Masi
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC 88037-000, Brazil
| | - Tânia Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | | | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Amanda Rabello Crisma
- Department of Clinical Analysis, Federal University of Paraná, Curitiba 80210-170, PR, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
- Butantan Institute, São Paulo 05585-000, SP, Brazil
| |
Collapse
|
50
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|