1
|
Islam R, Deb A, Ghosh AJ, Dutta D, Ray A, Dutta A, Ghosh S, Sarkar S, Bahadur M, Kumar A, Saha T. Toxicological profiling of methanolic seed extract of Abutilon indicum (L.) Sweet: in-vitro and in-vivo analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118655. [PMID: 39097211 DOI: 10.1016/j.jep.2024.118655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abutilon indicum, a shrub of the Malvaceae family, is found abundantly in tropical countries like India. A. indicum is widely used for its high medicinal properties. Traditionally, A. indicum seed powder is consumed to treat piles, constipation, chronic cystitis, gonorrhea, gleet, and pregnancy-related problems. Despite having numerous medicinal properties and widespread traditional use of A. indicum seeds, scientific validation, and toxicity studies have yet to be documented. AIMS OF THE STUDY The primary objective of this study is to conduct a comprehensive study on phytochemical profiling, in-vitro cytotoxicity, mutagenicity, and in-vivo acute and sub-acute toxicity, and genotoxicity on animal models of methanolic extract of A. indicum seed (MAS). MATERIALS AND METHODS The qualitative analysis of MAS was explored through FTIR and HR LC-MS. For in-vitro cytotoxicity, the HEK-293 cell line was used, and the TA100 (Staphylococcus typhimurium) bacterial strain was used for the Ames mutagenicity test. A single oral dose of 250, 500, 1000, or 2000 mg/kg body weight of MAS was given to each male and female rat for acute toxicity study and observed for 14 days for any toxicity signs. In the sub-acute toxicity study, 250, 500, or 1000 mg/kg body weight of MAS was administered orally to each rat for 28 days. The experimental animals were weighed weekly, and general behavior was monitored regularly. After 28 days of the experiment, the rats were sacrificed, and different serum biochemical, hematological, and histological analyses were performed. The blood samples of different doses of MAS were used for genotoxicity study through comet assay. RESULTS FTIR analysis found different functional groups, which indicated the presence of phenolics, flavonoids, and alkaloids. HR LC-MS analysis depicts several components with different biological functions. The cell cytotoxicity and Ames mutagenicity results showed minimal toxicity and mutagenicity up to a certain dose. The acute toxicity study conducted in Wistar albino rats demonstrated zero mortality among the animals, and the LD50 value for seed extract was determined to be 2000 mg/kg body weight. Sub-acute toxicity assessments indicated that the administration of seed extract resulted in no adverse effects at dosages of 250 and 500 mg/kg body weight. However, at higher doses, specifically 1000 mg/kg body weight, the liver of the experimental rats exhibited some toxic effects. In the genotoxicity study, minimal DNA damage was found in 250 and 500 mg/kg doses, respectively, but slightly greater DNA damage was found in 1000 mg/kg doses in both male and female rats. CONCLUSIONS The consumption of A. indicum seed powder is deemed safe; however, doses exceeding 500 mg/kg body weight may raise concerns regarding use. These findings pave the path for the creation of innovative medicines with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Rejuan Islam
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Arijit Deb
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Amlan Jyoti Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Debojit Dutta
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Arpita Ray
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory, Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Supriyo Ghosh
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Sagar Sarkar
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India; Department of Zoology, Siliguri College, Darjeeling, West Bengal, 734001, India
| | - Min Bahadur
- Genetics and Moleular Biology Labratoty, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory, Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Tilak Saha
- Immunology and Microbiology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
2
|
Basson C, Serem JC, Bipath P, Hlophe YN. In vitro effects of l-kynurenine and quinolinic acid on adhesion, migration and apoptosis in B16 F10 melanoma cells. Biochem Biophys Res Commun 2024; 736:150851. [PMID: 39454303 DOI: 10.1016/j.bbrc.2024.150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The inhibition of melanoma adhesion through adhesion molecules, such as integrins and E-cadherin, may represent a promising strategy for managing melanoma metastasis. Compounds, namely l-kynurenine (L-kyn) and quinolinic acid (Quin), previously displayed anti-cancer effects at half-maximal inhibitory concentration (IC50) against B16 F10 melanoma cells in vitro. However, the role of these compounds in B16 F10 melanoma cell adhesion, migration and apoptosis remain unknown. METHODS Post-exposure to the compounds, flow cytometry was used to analyse the expression of very late antigen-5 (VLA-5), E-cadherin and cleaved caspase-3 in B16 F10 melanoma and RAW 264.7 murine macrophage cells. An adhesion assay was used to quantify the adhesion of both cell lines to vitronectin. A scratch migration assay was used to measure the possible inhibition of cell migration in B16 F10 cells in response to L-kyn and Quin. RESULTS In both B16 F10 and RAW 264.7 cells, neither L-kyn nor Quin induced significant effects on VLA-5 expression or cell adhesion to vitronectin. In B16 F10 cells, both L-kyn and Quin elevated E-cadherin expression and displayed a trend of suppressed migration. However, only L-kyn elevated E-cadherin in RAW 264.7 cells. L-kyn induced apoptosis by elevating cleaved caspase-3 expression in both cell lines. CONCLUSION L-kyn and Quin demonstrated promising antimetastatic effects in their ability to elevate E-cadherin expression and induce apoptosis in B16 F10 melanoma cells. However, these effects did not occur in response to vitronectin or VLA-5 integrin alterations. Furthermore, it cannot be excluded that L-kyn also induced apoptosis in RAW 264.7 cells. As such, these effects should be confirmed in additional control cell lines and substantiated with in vivo models.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Cucick ACC, Obermaier L, Galvão Frota E, Suzuki JY, Nascimento KR, Fabi JP, Rychlik M, Franco BDGDM, Saad SMI. Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption. Int J Food Microbiol 2024; 425:110895. [PMID: 39222566 DOI: 10.1016/j.ijfoodmicro.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 μg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.
Collapse
Affiliation(s)
- Ana Clara Candelaria Cucick
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lisa Obermaier
- Chair of Analytical Chemistry, Technical University of Munich (TUM), Munich, Bavaria, Germany
| | - Elionio Galvão Frota
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil
| | - Juliana Yumi Suzuki
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Karen Rebouças Nascimento
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - João Paulo Fabi
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Michael Rychlik
- Chair of Analytical Chemistry, Technical University of Munich (TUM), Munich, Bavaria, Germany
| | - Bernadette Dora Gombossy de Melo Franco
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Susana Marta Isay Saad
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Alotaibi B, A El-Masry T, Elekhnawy E, Mokhtar FA, El-Seadawy HM, A Negm W. Studying the effects of secondary metabolites isolated from Cycas thouarsii R.Br. leaves on MDA-MB-231 breast cancer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:103-113. [PMID: 38279824 DOI: 10.1080/21691401.2024.2306529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
The various therapeutic drugs that are currently utilized for the management of cancer, especially breast cancer, are greatly challenged by the augmented resistance that is either acquired or de novo by the cancer cells owing to the long treatment periods. So, this study aimed at elucidating the possible anticancer potential of four compounds 7, 4', 7'', 4'''-tetra-O-methyl amentoflavone, hesperidin, ferulic acid, and chlorogenic acid that are isolated from Cycas thouarsii leaves n-butanol fraction for the first time. The MTT assay evaluated the cytotoxic action of four isolated compounds against MDA-MB-231 breast cancer cells and oral epithelial cells. Interestingly, ferulic acid revealed the lowest IC50 of 12.52 µg/mL against MDA-MB-231 cells and a high IC50 of 80.2 µg/mL against oral epithelial cells. Also, using an inverted microscope, the influence of ferulic acid was studied on the MDA-MB-231, which revealed the appearance of apoptosis characteristics like shrinkage of the cells and blebbing of the cell membrane. In addition, the flow cytometric analysis showed that the MDA-MB-231 cells stained with Annexin V/PI had a rise in the count of the cells in the early and late apoptosis stages. Moreover, gel electrophoresis detected DNA fragmentation in the ferulic acid-treated cells. Finally, the effect of the compound was tested at the molecular level by qRT-PCR. An upregulation of the pro-apoptotic genes (BAX and P53) and a downregulation of the anti-apoptotic gene (BCL-2) were observed. Consequently, our study demonstrated that these isolated compounds, especially ferulic acid, may be vital anticancer agents, particularly for breast cancer, through its induction of apoptosis through the P53-dependent pathway.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Tanta University, Tanta, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, El Saleheya El Gadida University, Sharkia, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Vieytes MR, Botana LM. In vitro assessment of emerging mycotoxins co-occurring in cheese: a potential health hazard. Arch Toxicol 2024; 98:4173-4186. [PMID: 39322822 DOI: 10.1007/s00204-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Some Penicillium strains used in cheese ripening produce emerging mycotoxins, notably roquefortine C (ROQC) and cyclopiazonic acid (CPA), as well as enniatins (ENNs) and beauvericin (BEA). Co-occurrence of these mycotoxins in natural samples has been reported worldwide, however, most studies focus on the toxicity of a single mycotoxin. In the present study, the effects of ROQC and CPA alone and in combination with BEA and ENNs A, A1, B, and B1 were analysed in human neuroblastoma cells. ROQC and CPA reduced cell viability, with IC50 values of 49.5 and 7.3 µM, respectively, and induced caspase-8-mediated apoptosis. When ROQC and CPA were binary combined with ENNs, an enhancement of their individual effects was observed. Furthermore, a clear synergism was produced when ROQC and CPA were mixed with the four ENNs. An additive effect was also described for the combination of CPA + ENNs (A, A1, B, B1) + BEA. Finally, the effects of commercial cheese extracts containing the mentioned mycotoxins were evaluated, finding a strong reduction in cell viability. These results suggest that the co-occurrence of emerging mycotoxins in natural matrices could pose a potential health risk.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
6
|
Jongwachirachai P, Ruankham W, Apiraksattayakul S, Intharakham S, Prachayasittikul V, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis. Neurochem Res 2024; 49:3308-3325. [PMID: 39298035 PMCID: PMC11502562 DOI: 10.1007/s11064-024-04239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Coriander (Coriandrum sativum L.), a culinary plant in the Apiaceae family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress via protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.
Collapse
Affiliation(s)
- Papitcha Jongwachirachai
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Saruta Intharakham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Wilasinee Suwanjang
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Ortiz N, Díaz C. Preclinical evaluation of fenretinide against primary and metastatic intestinal type‑gastric cancer. Oncol Lett 2024; 28:561. [PMID: 39372665 PMCID: PMC11450695 DOI: 10.3892/ol.2024.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years there has been a decline in the incidence of gastric cancer, however the high mortality rate has remained constant. The present study evaluated the potential effects of the retinoid fenretinide on the viability and migration of two cell lines, AGS and NCI-N87, that represented primary and metastatic intestinal gastric cancer subtypes, respectively. It was determined that a similar2 dose of fenretinide reduced the viability of both the primary and metastatic cell lines. In addition, it was demonstrated that combined treatment with fenretinide and cisplatin may affect the viability of both primary and metastatic gastric cancer cells. Furthermore, a wound healing assay demonstrated an inhibitory effect for fenretinide on cell migration. As part of the characterization of the mechanism of action, the effect of fenretinide on reactive oxygen species production and lipid droplet content was evaluated, with the latter as an indirect means of assessing autophagy. These results support the hypothesis of combining using fenretinide with conventional therapies to improve survival rates in advanced or metastatic gastric cancer.
Collapse
Affiliation(s)
- Natalia Ortiz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| | - Cecilia Díaz
- Department of Biochemistry, School of Medicine, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
- Institute Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Pedro de Montes de Oca, San José 11501-2060, Costa Rica
| |
Collapse
|
8
|
Janssens LK, Stove CP. The 'ABC' of split-nanoluciferase HIF heterodimerization bioassays: Applications, Benefits & Considerations. Biochem Pharmacol 2024; 229:116478. [PMID: 39128589 DOI: 10.1016/j.bcp.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hypoxia-inducible factors (HIF) are interesting targets for multiple therapeutic indications. While HIF activation is desired for the treatment of anemia-related and ischemic diseases, HIF inhibition is of tremendous interest to anti-cancer drug development. Different signaling events within the HIF pathway are being targeted by drug discovery programs, with a special interest in HIF-selective (possibly also HIF1/2 isoform-selective) compounds. In this study, we applied recently developed cell-based split-nanoluciferase HIF heterodimerization assays to study the effects of compounds, targeting HIF activity by various mechanisms of action. This study shows that the application of similar or diverse assay protocols allows to detect various influences on HIF heterodimerization as a key signaling event in the oxygen sensing pathway: increased HIF heterodimerization (roxadustat, MG-132), decreased HIF heterodimerization (PX-478, ibuprofen) and direct (HIF isoform-selective) heterodimerization inhibiting effects (PT-2385). Changes in treatment time and in the assay protocol allowed to assess direct and indirect effects on HIFα-HIFβ heterodimerization. In addition to the evaluation of applications of these new bioassays regarding pharmacological characterizations, benefits and considerations are discussed related to the use of cellular, luminescent-based bioassays. Briefly, benefits include the bidirectional nature of the biological readout, the upstream mechanism of detection, the differentiation between HIF1 and HIF2 effects and the simulation of various conditions. Specific and general considerations include cell-based, technical and disease/drug-related aspects (e.g., non-specific effects, color interference). In summary, the versatility of these bioassays offers benefits in widespread applications regarding drug discovery and pharmacological characterization of various therapeutics, applying either the same or optimized experimental protocols.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Setyawati DR, Azzahra K, Mardliyati E, Tarwadi, Maharani BY, Nurmeilis. Box-Behnken design assisted approach in optimizing lipid composition for cationic liposome formulation as gene carrier. Biochim Biophys Acta Gen Subj 2024; 1868:130705. [PMID: 39178921 DOI: 10.1016/j.bbagen.2024.130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Cationic liposomes represent a promising non-viral carrier platform for gene delivery. The successful intracellular delivery of genes to the target cell is highly influenced by lipid compositions in the liposomal formulation. In the present study, a Box-Behnken design was applied to investigate the optimal lipid composition for the liposome-based transfection agent. METHODS The concentrations of DOTAP, DSPE-PEG, and cholesterol were set as independent factors. A total of 15 lipid compositions were generated and tested for specific responses, including particle size, encapsulation efficiency, cell viability, and cell transfection. The data were then analyzed to predict the optimal composition using response surface methodology (RSM). RESULTS The results for particle size, encapsulation efficiency, cell viability and fluorescence intensity ranged from 158.7 to 2064 nm, 48.19-95.72%, 81.50-122.67%, and 0.0-9.08, respectively. Compositions of liposome-based transfection agent without DOTAP, those without cholesterol, and those containing DSPE-PEG2000 with a molar ratio equal to or greater than that of cholesterol tended to exhibit low encapsulation efficiency. The ability of the liposome to complex DNA, as determined through electrophoresis gel retardation assay, showed that the composition without DOTAP produced DNA bands, indicating that the prepared liposomes had a less ability to complex DNA. The cytotoxicity test results indicated that all lipid compositions were considered non-toxic, as they exhibited >80% cell viability. The cell transfection assay demonstrated that the lipid composition containing a combination of DOTAP and cholesterol was able to transfect DNA into cells. According to response analysis, RSM predicted that the optimal lipid composition consisted of 2.75 μmol DOTAP and 0.91 μmol cholesterol, with a desirability value of 0.85. CONCLUSIONS Although the equation model is still acceptable for predicting the optimal lipid composition, further study is needed to obtain a model with higher desirability, such as by using more lipid compositions, increased replications, and different variable responses.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Khairunnisa Azzahra
- Department of Pharmacy, Faculty of Health and Sciences, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia; Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Bismi Yasinta Maharani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Nurmeilis
- Department of Pharmacy, Faculty of Health and Sciences, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia
| |
Collapse
|
10
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
11
|
Al-Hasabe ASH, Abdull Razis AFB, Baharum NAB, Yu CY, Mat Isa N. Production and characterization of bacterial cellulose synthesized by Enterobacter chuandaensis strain AEC using Phoenix dactylifera and Musa acuminata. Arch Microbiol 2024; 206:447. [PMID: 39470811 DOI: 10.1007/s00203-024-04182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Bacterial cellulose (BC) is a biopolymer synthesized extracellularly by certain bacteria through the polymerization of glucose monomers. This study aimed to produce BC using Enterobacter chuandaensis with fruit extracts from Phoenix dactylifera (D) and Musa acuminata (M) as carbon sources. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) showed characteristic cellulose vibrations, while X-ray diffraction (XRD) identified distinct peaks at 15.34°, 19.98°, 22.58°, and 34.6°, confirming the cellulose structure. Whole-genome sequencing of E. chuandaensis identified key genes involved in BC production. The BC produced then exhibited a molecular weight of 1,857,804 g/mol, with yields of 2.8 g/L and 2.5 g/L for treatments D and M, respectively. The crystallinity index of the purified BC was 74.1, and 13C NMR analysis confirmed the dominant cellulose Iα crystalline form. The BC showed high biocompatibility in cytotoxicity assays, with cell viability between 92% and 100%, indicating its potential for use in biomedical applications. This investigation represents the first report of BC production by E. chuandaensis, which promises a new avenue for sustainable and efficient BC synthesis using fruit extracts as carbon sources.
Collapse
Affiliation(s)
- Ashraf Sami Hassan Al-Hasabe
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad Faizal Bin Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nadiya Akmal Binti Baharum
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
12
|
Mousa WK, Shaikh AY, Ghemrawi R, Aldulaimi M, Al Ali A, Sammani N, Khair M, Helal MI, Al-Marzooq F, Oueis E. Human microbiome derived synthetic antimicrobial peptides with activity against Gram-negative, Gram-positive, and antibiotic resistant bacteria. RSC Med Chem 2024:d4md00383g. [PMID: 39479472 PMCID: PMC11520653 DOI: 10.1039/d4md00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The prevalence of antibacterial resistance has become one of the major health threats of modern times, requiring the development of novel antibacterials. Antimicrobial peptides are a promising source of antibiotic candidates, mostly requiring further optimization to enhance druggability. In this study, a series of new antimicrobial peptides derived from lactomodulin, a human microbiome natural peptide, was designed, synthesized, and biologically evaluated. Within the most active region of the parent peptide, linear peptide LM6 with the sequence LSKISGGIGPLVIPV-NH2 and its cyclic derivatives LM13a and LM13b showed strong antibacterial activity against Gram-positive bacteria, including resistant strains, and Gram-negative bacteria. The peptides were found to have a rapid onset of bactericidal activity and transmission electron microscopy clearly shows the disintegration of the cell membrane, suggesting a membrane-targeting mode of action.
Collapse
Affiliation(s)
- Walaa K Mousa
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
- College of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ashif Y Shaikh
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Mohammed Aldulaimi
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Nour Sammani
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi PO BOX 127788 United Arab Emirates
| | - Mohamed I Helal
- Electron Microscopy Core Labs, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University P.O. Box 15551 Al Ain United Arab Emirates
| | - Emilia Oueis
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
13
|
Kim D, Shin Y, Baek YW, Kang H, Lim J, Bae ON. The effect of biocide chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture on C2C12 muscle cell damage attributed to mitochondrial reactive oxygen species overproduction and autophagy activation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-15. [PMID: 39446036 DOI: 10.1080/15287394.2024.2420083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT) is a biocide widely used as a preservative in various commercial products. This biocide has also been used as an active ingredient in humidifier disinfectants in South Korea, resulting in serious health effects among users. Recent evidence suggests that the underlying mechanism of CMIT/MIT-initiated toxicity might be associated with defects in mitochondrial functions. The aim of this study was to utilize the C2C12 skeletal muscle model to investigate the effects of CMIT/MIT on mitochondrial function and relevant molecular pathways associated with skeletal muscle dysfunction. Data demonstrated that exposure to CMIT/MIT during myogenic differentiation induced significant mitochondrial excess production of reactive oxygen species (ROS) and a decrease in intracellular ATP levels. Notably, CMIT/MIT significantly inhibited mitochondrial oxidative phosphorylation (Oxphos) and reduced mitochondrial mass at a lower concentration than the biocide amount, which diminished the viability of myotubes. CMIT/MIT induced activation of autophagy flux and decreased protein expression levels of myosin heavy chain (MHC). Taken together, CMIT/MIT exposure produced damage in C2C12 myotubes by impairing mitochondrial bioenergetics and activating autophagy. Our findings contribute to an increased understanding of the underlying mechanisms associated with CMIT/MIT-induced adverse skeletal muscle health effects.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - HanGoo Kang
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| |
Collapse
|
14
|
Al-Hasabe ASH, Abdull Razis AFB, Baharum NAB, Yu CY, Mat Isa NB. Production and analysis of synthesized bacterial cellulose by Enterococcus faecalis strain AEF using Phoenix dactylifera and Musa acuminata fruit extracts. World J Microbiol Biotechnol 2024; 40:362. [PMID: 39446188 DOI: 10.1007/s11274-024-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Bacterial cellulose (BC) is a highly versatile biopolymer renowned for its exceptional mechanical strength, water retention, and biocompatibility. These properties make it a valuable material for various industrial and biomedical applications. In this study, Enterococcus faecalis synthesized extracellular BC, utilizing Phoenix dactylifera and Musa acuminata fruit extracts as sustainable carbon sources. LC-MS analysis identified glucose as the primary carbohydrate in these extracts, providing a suitable substrate for BC production. Scanning Electron Microscopy (SEM) revealed a network of BC nanofibers on Congo red agar plates. ATR-FTIR spectroscopy confirmed the presence of characteristic cellulose functional groups, further supporting BC synthesis. X-ray diffraction (XRD) analysis indicated a high crystallinity index of 71%, consistent with the cellulose I structure, as evidenced by peaks at 16.22°, 21.46°, 22.52°, and 34.70°. Whole-genome sequencing of E. faecalis identified vital genes involved in BC biosynthesis, including bcsA, bcsB, diguanylate cyclase (DGC), and 6-phosphofructokinase (pfkA). Antibiotic susceptibility tests revealed resistance to cefotaxime, ceftazidime, and ceftriaxone, while susceptibility to imipenem was observed. Quantitative assessment demonstrated that higher concentrations of fruit extracts (5.0-20 mg/mL) significantly enhanced BC production. Cytotoxicity testing via the MTT assay confirmed excellent biocompatibility with NIH/3T3 fibroblast cells, showing high cell viability (97-105%). Unlike commonly studied Gram-negative bacteria like Acetobacter xylinum for BC production, this research focuses on Gram-positive Enterococcus faecalis and utilizes Phoenix dactylifera and Musa acuminata fruit extracts as carbon sources. This approach offers a sustainable and promising avenue for BC production.
Collapse
Affiliation(s)
- Ashraf Sami Hassan Al-Hasabe
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad Faizal Bin Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nadiya Akmal Binti Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nurulfiza Binti Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
15
|
Loncarevic I, Mutlu S, Dzepic M, Keshavan S, Petri-Fink A, Blank F, Rothen-Rutishauser B. Current Challenges to Align Inflammatory Key Events in Animals and Lung Cell Models In Vitro. Chem Res Toxicol 2024; 37:1601-1611. [PMID: 39115970 PMCID: PMC11497357 DOI: 10.1021/acs.chemrestox.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
With numerous novel and innovative in vitro models emerging every year to reduce or replace animal testing, there is an urgent need to align the design, harmonization, and validation of such systems using in vitro-in vivo extrapolation (IVIVE) approaches. In particular, in inhalation toxicology, there is a lack of predictive and prevalidated in vitro lung models that can be considered a valid alternative for animal testing. The predictive power of such models can be enhanced by applying the Adverse Outcome Pathways (AOP) framework, which casually links key events (KE) relevant to IVIVE. However, one of the difficulties identified is that the endpoint analysis and readouts of specific assays in in vitro and animal models for specific toxicants are currently not harmonized, making the alignment challenging. We summarize the current state of the art in endpoint analysis in the two systems, focusing on inflammatory-induced effects and providing guidance for future research directions to improve the alignment.
Collapse
Affiliation(s)
- Isidora Loncarevic
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Seyran Mutlu
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | - Martina Dzepic
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | - Sandeep Keshavan
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry
Department, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Fabian Blank
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | | |
Collapse
|
16
|
Stoffels CBA, Cambier S, Subirana MA, Schaumlöffel D, Gomez G, Pittois D, Guignard C, Schwamborn JC, Wirtz T, Gutleb AC, Mercier-Bonin M, Audinot JN. When subcellular chemical imaging enlightens our understanding on intestinal absorption, intracellular fate and toxicity of PFOA in vitro. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136205. [PMID: 39454333 DOI: 10.1016/j.jhazmat.2024.136205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that accumulates in the human body, leading to major health issues. Upon oral uptake, the gastrointestinal tract is the first biological barrier against PFOA. However, the localization of PFOA and its impact on the intestinal wall are largely unknown. Here we achieve a breakthrough in the knowledge of intestinal absorption, intracellular fate and toxicity of PFOA using in vitro assays combined with novel analytical imaging techniques. For the first time, we localized PFOA in the cytosol of Caco-2 cells after acute exposure using high spatial resolution mass spectrometry imaging, and we estimated the PFOA cytosolic concentration. Knowing that PFOA enters and accumulates in the intestinal cells, we also performed common toxicity assays assessing cell metabolic activity, membrane integrity, oxidative stress response, and cell respiration. This study integrating powerful analytical techniques with widely used toxicology assays provides insightful information to better understand potential negative impacts of PFOA and opens new opportunities in toxicology and life science in general.
Collapse
Affiliation(s)
- Charlotte B A Stoffels
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Maria A Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254 Pau, France
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254 Pau, France
| | - Gemma Gomez
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Denis Pittois
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Cédric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tom Wirtz
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
17
|
Bautista-Martinez D, Scougall-Vilchis RJ, Contreras-Bulnes R, Garcia-Contreras R. Assessment of cytotoxicity, odontoblast-like differentiation, shear bond strength, and microhardness of four orthodontic adhesive composites. J Oral Sci 2024; 66:220-225. [PMID: 39168603 DOI: 10.2334/josnusd.24-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE To determine and compare the cytotoxicity, odontoblast-like differentiation, shear bond strength (SBS) and Vickers microhardness of four commercial light-cured orthodontic adhesives. METHODS The orthodontic resins selected were Transbond XT - GI, Transbond Plus Color Change - GII (both from 3M Unitek), Enlight - GIII and Blugloo - GIV (both from Ormco). Samples were prepared, and leached monomers were obtained. Cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and deposited calcium was analyzed using Alizarin red staining (ARS). SBS and the adhesive remnant index (ARI) were determined using 120 human premolars. The Vickers microhardness test was performed on the resin discs. RESULTS All adhesives showed moderate to severe cytotoxicity (21-37%) and promoted similar formation of calcium deposits. A SBS of 6-8 MPa was achieved only by Blugloo (7.1 ± 2.4 MPa), and Enlight showed the lowest Vickers hardness score (40 ± 2.5 HV). Transbond Plus Color Change (score 0 = 42.9%) and Blugloo (score 0 = 46.4%) showed better ARI scores than Transbond XT (score 0 = 7.1%) and Enlight (score 0 = 3.6%). CONCLUSION On the basis of the properties evaluated, Blugloo seems to be the best option.
Collapse
Affiliation(s)
- David Bautista-Martinez
- Department of Orthodontics, Dental and Advanced Studies Research Center, School of Dentistry, Autonomous University State of Mexico
| | - Rogelio J Scougall-Vilchis
- Department of Orthodontics, Dental and Advanced Studies Research Center, School of Dentistry, Autonomous University State of Mexico
| | - Rosalía Contreras-Bulnes
- Department of Pediatric Dentistry, Dental and Advanced Studies Research Center, School of Dentistry, Autonomous University State of Mexico
| | - Rene Garcia-Contreras
- Laboratory of Interdisciplinary Research, Area of Nanostructures and Biomaterials, National School of Higher Studies Unit Leon, National Autonomous University of Mexico
| |
Collapse
|
18
|
Sanchez-Guzman X, Alvarez-Domínguez L, Ramírez-Torres MF, Montes-Alvarado JB, Garcia-Ibañez P, Moreno DA, Domínguez F, Maycotte P. Cruciferous Plant Extracts, Their Isothyocianate or Indol Derivatives, and Their Effect on Cellular Viability of Breast Cancer Cell Lines. J Med Food 2024. [PMID: 39382485 DOI: 10.1089/jmf.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Brassicaceaes are rich in glucosinolates (GSL), whose derivatives, the isothyocianates sulforaphane (SFN), iberine (IB), or indole derivatives as indole-3-carbinol (I3C), have anticancer activities. We evaluated the effects of a broccoli sprout (Brassica oleracea var italica) and red cabbage (B. oleracea L. var capitata f. rubra) extracts and their GSL derivatives on breast cancer cells. Broccoli sprout aqueous extract (BSE) and red cabbage aqueous (RCA) or ethanolic (RCE) extracts were high in SFN, IB, and/or I3C. BSE and RCA decreased proliferation at doses of 2.5-5 mg/mL but induced proliferation at lower doses. RCE decreased proliferation starting at 10 µg/mL with selectivity toward cancer cells. SFN, IB, or I3C alone or in combination did not decrease proliferation similarly, suggesting synergistic effects with other phytochemicals in the extract. RCE showed selectivity toward breast cancer cells, but the effect of the individual metabolites or their combination did not reduce proliferation to the same extent. It will be important to determine the combination responsible for this effect to characterize their use for breast cancer treatment.
Collapse
Affiliation(s)
- Xochiquetzal Sanchez-Guzman
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, OOAD, Puebla, Mexico
- Universidad Politécnica Metropolitana de Puebla, Puebla, Mexico
| | - Lilian Alvarez-Domínguez
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, OOAD, Puebla, Mexico
- Facultad de Biología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Fernanda Ramírez-Torres
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, OOAD, Puebla, Mexico
- Universidad Politécnica de Puebla, Puebla, Mexico
| | | | | | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), CEBAS, CSIC, Murcia, Spain
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, OOAD, Puebla, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, OOAD, Puebla, Mexico
| |
Collapse
|
19
|
Zakaria ZZ, Suleiman M, Benslimane FM, Al-Badr M, Sivaraman S, Korashy HM, Ahmad F, Uddin S, Mraiche F, Yalcin HC. Imatinib‑ and ponatinib‑mediated cardiotoxicity in zebrafish embryos and H9c2 cardiomyoblasts. Mol Med Rep 2024; 30:187. [PMID: 39219269 PMCID: PMC11350628 DOI: 10.3892/mmr.2024.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dose‑dependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dose‑dependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcription‑quantitative PCR (RT‑qPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dose‑dependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dose‑dependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dose‑dependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKI‑induced cardiotoxicities.
Collapse
Affiliation(s)
- Zain Z. Zakaria
- Vice President of Health and Medical Sciences Office, QU Health, Qatar University, Doha 2713, Qatar
| | - Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Mashael Al-Badr
- Department of Biology, College of Art and Science, Qatar University, Doha 2713, Qatar
- National Reference Laboratory, Ministry of Public Health, Doha 7744, Qatar
| | - Siveen Sivaraman
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
20
|
Robertson AG, Hall AJ, Marfavi A, Rendina LM. Superior Tumor Cell Uptake by Mono- and Tri-Nuclear Rhodamine-Gadolinium(III) Agents. Chemistry 2024; 30:e202402244. [PMID: 39048509 DOI: 10.1002/chem.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
The synthesis and characterization of a novel trinuclear rhodamine-Gd(III) complex, along with two analogous mononuclear rhodamine-Gd(III) complexes, are reported. All complexes displayed good selectivity in a human glioma cell line (T98G) when compared to a glial cell line (SVG p12), with low cytotoxicities. Superior tumor cell uptake for these Gd(III) complexes was observed at lower incubation concentrations compared to previously-reported delocalized lipophilic cations such as a rhodamine-lanthanoid(III) probe and Gd(III)-arylphosphonium complexes, with ca. 150 % and 250 % increases in Gd uptake, respectively.
Collapse
Affiliation(s)
- Amy G Robertson
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hall
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anita Marfavi
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, Sydney, NSW 2006, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
AL-Haj WA, Nsairat H, El-Tanani M. Pimozide-loaded nanostructured lipid carriers: Repurposing strategy against lung cancer. Sci Prog 2024; 107:368504241296304. [PMID: 39497512 PMCID: PMC11536680 DOI: 10.1177/00368504241296304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
OBJECTIVE This study aimed to repurpose pimozide (PMZ) by incorporating it into nanostructured lipid carriers (NLC) using a modified melting emulsion ultrasonication method. METHODS We employed stearic and oleic acids in a 1:1 ratio as lipids, with Tween 80 and PEG 4000 as surfactants. The formulation was analyzed for particle size, zeta potential, and encapsulation efficiency. Transmission electron microscopy (TEM) was used to confirm the spherical shape of the particles. The release profile of PMZ-NLC was evaluated under different pH conditions, and anticancer activity was tested on A549 cell lines. RESULTS The PMZ-NLC exhibited an average particle size of 136 ± 2.9 nm, a zeta potential of -25.1 ± 0.9 mV, and an encapsulation efficiency of 86% ± 11. TEM confirmed the spherical shape of the NLCs. PMZ release from PMZ-NLC was pH-sensitive, enhancing tumor targeting. IC50 values were 16.5 μM for free PMZ and 12.9 μM for PMZ-NLC after 72 h. DISCUSSION PMZ-NLC demonstrated improved anticancer activity compared to free PMZ, suggesting that encapsulation enhances the drug's effectiveness. The pH-sensitive release profile supports its potential for targeted therapy in lung cancer. CONCLUSIONS PMZ-NLC showed potential as a safe and effective strategy for lung cancer treatment. Further investigation is warranted to evaluate its in vivo efficacy, long-term safety, and clinical application.
Collapse
Affiliation(s)
- Wafa’ A. AL-Haj
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
22
|
Tuncay Tanriverdi S, Gokce EH, Sušanj I, Simić L, Vukelić K, Knežević Z, Ilhan P, Sendemir A, Ozer O. Comprehensive evaluation of xylometazoline hydrochloride formulations: Ex-vivo and in-vitro studies. Eur J Pharm Biopharm 2024; 203:114466. [PMID: 39173937 DOI: 10.1016/j.ejpb.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/21/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Xylometazoline is a well-established nasal decongestant that has been used alone and in combination with dexpanthenol as an over the counter (OTC) medicine. Considering the possibility of further improvement of xylometazoline nasal formulations, hyaluronic acid (HA) was evaluated as an additional ingredient. The aim of this study was to investigate the permeation, mucosal retention, and mucoadhesion properties of a new xylometazoline-HA [Xylo-HA] formulation ex vivo and to explore the potential benefits of incorporating HA in the formulation in vitro. Sheep nasal mucosa was used in the ex vivo study, where Xylo-HA was compared with xylometazoline alone [Xylo-Mono], and in combination with dexpanthenol [Xylo-Dex] to understand the impact of formulation changes. The permeation of xylometazoline was generally low (Xylo-Mono 11.14 ± 4.75 %, Xylo-HA 14.57 ± 5.72 % and Xylo-Dex 11.00 ± 3.05 % of the applied dose). The steady state fluxes of xylometazoline were determined as 12.64 ± 3.52 μg/cm2h, 14.94 ± 3.38 μg/cm2h and 12.19 ± 2.05 μg/cm2h for Xylo-Mono, Xylo-HA and Xylo-Dex, respectively. No significant differences were observed between the formulations in the permeation nor mucosal retention studies (p > 0.05 for all), while Xylo-HA exhibited superior mucoadhesive proprieties (p < 0.05 for all). The effects on wound healing and barrier integrity of the three xylometazoline formulations were tested in vitro on HaCaT cells. To better elucidate the role of HA, an additional HA formulation without xylometazoline was prepared (HA-Mono). A scratch test was performed to evaluate wound healing, revealing that the test formulations did not achieve complete wound closure within 72 h and demonstrated a similar effect at the end of the testing period. To assess the effect on barrier integrity, cells were treated for 5 days with daily measurements of transepithelial electrical resistance (TEER). At the end of the experiment, Xylo-Dex showed a moderate 14 % increase in TEER, while Xylo-Mono did not significantly affect this parameter. TEER rose by 951 % in the Xylo-HA, and by 10497 % in the HA group, suggesting that incorporating HA led to enhanced barrier function. Further clinical studies are recommended to better understand the clinical implications and efficacy of the Xylo-HA formulation, with particular focus on the role of HA.
Collapse
Affiliation(s)
- Sakine Tuncay Tanriverdi
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, 35100 Izmir, Turkiye.
| | - Evren Homan Gokce
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, 35100 Izmir, Turkiye.
| | - Ivan Sušanj
- Jadran Galenski Laboratorij, Svilno 20, Rijeka, Croatia.
| | - Laura Simić
- Jadran Galenski Laboratorij, Svilno 20, Rijeka, Croatia.
| | - Karina Vukelić
- Jadran Galenski Laboratorij, Svilno 20, Rijeka, Croatia.
| | | | - Pelin Ilhan
- Faculty of Engineering, Department of Bioengineering, Ege University, Bornova, 35100 Izmir, Turkiye.
| | - Aylin Sendemir
- Faculty of Engineering, Department of Bioengineering, Ege University, Bornova, 35100 Izmir, Turkiye.
| | - Ozgen Ozer
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, 35100 Izmir, Turkiye.
| |
Collapse
|
23
|
Abdel-Nasser M, Abdel-Maksoud G, Eid AM, Abdel-Rahman MA, Hassan SED, Abdel-Nasser A, Fouda A. Evaluating the efficacy of probiotic bacterial strain Lactobacillus plantarum for inhibition of fungal strains associated with historical manuscript deterioration: An experimental study. Fungal Biol 2024; 128:1992-2006. [PMID: 39174235 DOI: 10.1016/j.funbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 μg mL-1, respectively. It was suggested that 100 μg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.
Collapse
Affiliation(s)
- Mahmoud Abdel-Nasser
- Department of Manuscripts Conservation, Al-Azhar Al-Sharif Library, Cairo, 11511, Egypt
| | - Gomaa Abdel-Maksoud
- Organic Materials Conservation Department, Faculty of Archaeology, Cairo University, 12613, Giza, Egypt.
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, 12622, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt; School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| |
Collapse
|
24
|
Lindelauf KHK, Baragona M, Lemainque T, Maessen RTH, Ritter A. Electrochemotherapy and Calcium Electroporation on Hepatocellular Carcinoma Cells: An In-Vitro Investigation. Cardiovasc Intervent Radiol 2024; 47:1384-1391. [PMID: 39227427 PMCID: PMC11486824 DOI: 10.1007/s00270-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Electrochemotherapy, clinically established for treating (sub)cutaneous tumors, has been standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy (ESOPE). Due to common side effects of chemotherapeutic drugs, recent advances focus on non-cytotoxic agents, like calcium, to induce cell death (calcium electroporation). Therefore, this study aims to determine the efficacy of electrochemotherapy with bleomycin or cisplatin, or calcium electroporation on human hepatocellular carcinoma cells (HepG2) in vitro using the ESOPE protocol. METHODS HepG2 cell viability was measured with a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after electrochemotherapy with the chemotherapeutic drugs bleomycin or cisplatin (0-20 µM), or after calcium electroporation (0-20 mM), to determine its efficacy on HepG2 cells in vitro using the ESOPE protocol (8 rectangular pulses, 1000 V/cm, 100 µs) compared to non-electroporated drug treatment. RESULTS Cell viability was significantly lower in electroporated samples, compared to their non-electroporated controls (27-75% difference). Electrochemotherapy with bleomycin and calcium electroporation, reached (almost) complete cell death (- 1 ± 3% and 2.5 ± 2%), in the lowest concentration of 2.5 µM and 2.5 mM, respectively. Electrochemotherapy with 2.5 µM cisplatin, significantly decreased cell viability to only 68% (± 7%). CONCLUSION Electrochemotherapy with bleomycin or cisplatin, or calcium electroporation were more effective in reducing the HepG2 cell viability in vitro using the ESOPE protocol compared to the non-electroporated drug treatments alone. When comparing electrochemotherapy, HepG2 cells are more sensitive to bleomycin than cisplatin, in similar concentrations. Calcium electroporation has the same effectiveness as electrochemotherapy with bleomycin, but calcium potentially has a better safety profile and several treatment advantages.
Collapse
Affiliation(s)
- K H K Lindelauf
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.
- Philips Research, Eindhoven, The Netherlands.
| | - M Baragona
- Philips Research, Eindhoven, The Netherlands
| | - T Lemainque
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - A Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
25
|
Yong HW, Ojagh SMA, Théberge-Julien G, Castellanos LSR, Tebbji F, van de Ven TGM, Sellam A, Rhéaume É, Tardif JC, Kakkar A. Soft nanoparticles as antimicrobial agents and carriers of microbiocides for enhanced inhibition activity. J Mater Chem B 2024; 12:9296-9311. [PMID: 39158840 DOI: 10.1039/d4tb01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Antibiotic resistance continues to pose significant health challenges. Considering severe limitations in the discovery and supply of new antibiotics, there is an unmet need to design alternative and more effective strategies for addressing this global issue. Use of polymeric nanoparticles with cationic shell surfaces offers a highly promising approach to coupling their inherent bactericidal action with sustained delivery of small lipophilic microbicides. We have utilized this platform for assembling multi-tasking soft core-shell nanoparticles from star polymers with the desired asymmetric arm composition. These stable nanoparticles with low critical micelle concentration imparted intrinsic antimicrobial potency due to high positive charge density in the corona, as well as the loading of active biocidal agents (such as curcumin and terbinafine) for potential dual and coadjuvant inhibition. This strategic combination allows for both immediate (direct contact) and extended (drug delivery) antibacterial activities for better therapeutic efficacy. Micellar nanoparticles with and without therapeutic cargo were highly efficient against both Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), representative Gram-negative and Gram-positive bacteria, respectively. Interestingly, we observed bacteria- and concentration-dependent effects, in which higher concentrations of charged nanoparticles were more effective against E. coli, whereas B. subtilis was inhibited only at lower concentrations. This work highlights a valuable platform to achieve combination therapy through nanoparticles with charged coronas and delivery of potent therapeutics to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Seyed Mohammad Amin Ojagh
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Gabriel Théberge-Julien
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
| | | | - Faiza Tebbji
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Adnane Sellam
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Éric Rhéaume
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Claude Tardif
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
26
|
Suriyaprom S, Ngamsaard P, Intachaisri V, Cheepchirasuk N, Panya A, Kaewkod T, Tragoolpua Y. Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:2622. [PMID: 39339598 PMCID: PMC11435011 DOI: 10.3390/plants13182622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Medicinal plants have traditionally been used to treat various human diseases worldwide. In this study, we evaluated the leaf extracts of plants from the Acanthaceae family, specifically Clinacanthus nutans (Burm.f.) Lindau, Thunbergia laurifolia Lindl., and Acanthus ebracteatus Vahl., for their compounds and antioxidant activity. The ethanolic extracts of A. ebracteatus showed the highest total phenolic content at 22.55 mg GAE/g extract and the strongest antioxidant activities, with IC50 values of 0.24 mg/mL and 3.05 mg/mL, as determined by DPPH and ABTS assays. The antibacterial efficacy of these extracts was also tested against Streptococcus pyogenes, Streptococcus mutans, Staphylococcus aureus, and Klebsiella pneumoniae. The diameters of the inhibition zones ranged from 14.7 to 17.3 mm using the agar well diffusion method, with MIC and MBC values ranging from 7.81 to 250 mg/mL. Anti-biofilm formation, antibacterial adhesion, and antibacterial invasion assays further demonstrated that these medicinal plant extracts can inhibit bacterial biofilm formation and prevent the adhesion and invasion of oral pathogenic bacteria on the human tongue squamous cell carcinoma-derived cell line (HSC-4 cells). The ethanolic extracts of C. nutans and A. ebracteatus were able to inhibit the gtfD and gbp genes, which facilitate biofilm formation and bacterial adherence to surfaces. These findings provide new insights into the antibacterial and antioxidant properties of plant extracts from the Acanthaceae family. These activities could enhance the clinical and pharmaceutical applications of plant extracts as an alternative therapy for bacterial infections and a dietary supplement.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornpimon Ngamsaard
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitsanat Cheepchirasuk
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
27
|
Zhang W, Miller CA, Wilson MJ. Assessment of the In Vitro Phosphatidylinositol Glycan Class A (PIG-A) Gene Mutation Assay Using Human TK6 and Mouse Hepa1c1c7 Cell Lines. J Xenobiot 2024; 14:1293-1311. [PMID: 39311152 PMCID: PMC11417843 DOI: 10.3390/jox14030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Gene mutations linked to diseases like cancer may be caused by exposure to environmental chemicals. The X-linked phosphatidylinositol glycan class A (PIG-A) gene, required for glycosylphosphatidylinositol (GPI) anchor biosynthesis, is a key target locus for in vitro genetic toxicity assays. Various organisms and cell lines may respond differently to genotoxic agents. Here, we compared the mutagenic potential of directly genotoxic ethyl methane sulfonate (EMS) to metabolically activated pro-mutagenic polycyclic aromatic hydrocarbons (PAHs). The two classes of mutagens were compared in an in vitro PIG-A gene mutation test using the metabolically active murine hepatoma Hepa1c1c7 cell line and the human TK6 cell line, which has limited metabolic capability. Determination of cell viability is required for quantifying mutagenicity. Two common cell viability tests, the MTT assay and propidium iodide (PI) staining measured by flow cytometry, were evaluated. The MTT assay overestimated cell viability in adherent cells at high benzo[a]pyrene (B[a]P) exposure concentrations, so PI-based cytotoxicity was used in calculations. The spontaneous mutation rates for TK6 and Hepa1c1c7 cells were 1.87 and 1.57 per million cells per cell cycle, respectively. TK6 cells exposed to 600 µM and 800 µM EMS showed significantly higher mutation frequencies (36 and 47 per million cells per cell cycle, respectively). Exposure to the pro-mutagen benzo[a]pyrene (B[a]P, 10 µM) did not increase mutation frequency in TK6 cells. In Hepa1c1c7 cells, mutation frequencies varied across exposure groups (50, 50, 29, and 81 per million cells per cell cycle when exposed to 10 µM B[a]P, 5-methylcholanthrene (5-MC), chrysene, or 16,000 µM EMS, respectively). We demonstrate that the choice of cytotoxicity assay and cell line can determine the outcome of the Pig-A mutagenesis assay when assessing a specific mutagen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Charles A. Miller
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
| | - Mark J. Wilson
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (C.A.M.); (M.J.W.)
- Chemical Insights Research Institute of Underwriters Laboratories Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
28
|
Timimi ZA. The impact of 980nm diode laser irradiation on the proliferation of mesenchymal stem cells derived from the umbilical cord's. Tissue Cell 2024; 91:102568. [PMID: 39303440 DOI: 10.1016/j.tice.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Various cell types can have their growth accelerated by using low-intensity laser radiation. The study is intended to look at the impacts of laser radiation at low energy intensity on the ability of mesenchymal stem cells (MSCs) generated from umbilical cords to proliferate as well as survive in low-nutrient conditions. The study applied two different energy densities, 2.5 j/cm2 and 5 j/cm2, using a 980 nm diode laser radiation. This allowed for the observation of the effects of these specific elements on the behavior of the cells in a controlled environment at various concentrations of fetal bovine (7.5 %, 10 %, 12.5 %, and 15 %). The cells were grown in a medium lacking in nutrients and were enriched with varying quantities of serum from fetal bovines. The MTT test was used to evaluate the mitochondrial activity of the cell. Following 72 hours, it was shown that cells treated with 2.5 j/cm2 and 10 % fetal bovine serum had significantly higher MTT test activity than cells treated with 5 j/cm2.The results of this study show that even in the presence of dietary deficiencies, low-intensity laser radiation therapy can stimulate the growth of mesenchymal stem cells isolated from umbilical cords.
Collapse
Affiliation(s)
- Zahra Al Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq.
| |
Collapse
|
29
|
Serteyn D, Storms N, Mouithys-Mickalad A, Sandersen C, Niesten A, Duysens J, Graide H, Ceusters J, Franck T. Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia-Reoxygenation, and Myeloperoxidase. Animals (Basel) 2024; 14:2681. [PMID: 39335269 PMCID: PMC11428732 DOI: 10.3390/ani14182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Laminitis in horses is a crippling condition marked by the deterioration of the dermal-epidermal interface, leading to intense lameness and discomfort, often necessitating euthanasia. This study aimed to establish an in vitro model of laminitis using a continuous keratinocyte cell line exposed to anoxia-reoxygenation and an activated neutrophil supernatant. A significant decrease in the keratinocytes' metabolism was noted during the reoxygenation period, indicative of cellular stress. Adding muscle-derived mesenchymal stem/stromal cells during the reoxygenation demonstrated a protective effect, restoring the keratinocytes' metabolic activity. Moreover, the incubation of the keratinocytes with either an activated neutrophil supernatant or myeloperoxidase alone induced increased keratinocyte myeloperoxidase activity, which was modulated by stem cells. These findings underscore the potential of muscle-derived mesenchymal stem/stromal cells in mitigating inflammation and restoring keratinocyte metabolism, offering insights for future cell therapy research in laminitis treatment.
Collapse
Affiliation(s)
- Didier Serteyn
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Nazaré Storms
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
| | - Ange Mouithys-Mickalad
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Charlotte Sandersen
- Department of Equine Clinical Sciences, University of Liège, 4000 Liège, Belgium; (N.S.); (C.S.)
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Ariane Niesten
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Julien Duysens
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Hélène Graide
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Justine Ceusters
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| | - Thierry Franck
- Center for Oxygen Research and Development, B6, University of Liège, FARAH, Quartier Vallée 2 Avenue de Cureghem 5D, 4000 Liège, Belgium; (A.M.-M.); (A.N.); (J.D.); (H.G.); (J.C.); (T.F.)
| |
Collapse
|
30
|
Abosalha AK, Islam P, Boyajian JL, Thareja R, Schaly S, Kassab A, Makhlouf S, Alali S, Prakash S. Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic- co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer. ACS Pharmacol Transl Sci 2024; 7:2612-2620. [PMID: 39296268 PMCID: PMC11406683 DOI: 10.1021/acsptsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, acting as a significant public health problem. 5-Fluorouracil (5-FU) is a key chemotherapy for various types of cancer, due to its broad anticancer activity. However, the emergence of drug resistance is a considerable limitation in the clinical application of 5-FU. Quercetin (QC) is proposed as an adjuvant therapy to minimize drug resistance to chemotherapeutics and enhance their pharmacological efficacy. The oral delivery of 5-FU and QC is challenged by poor aqueous solubility of QC and poor cellular permeability of 5-FU. To solve this issue, novel polylactide-co-glycolide (PLGA) combinatorial nanoparticles loading 5-FU and QC were prepared to deliver them directly to the colon. These sustained-release combinatorial nanoparticles recorded a significant decrease in cancer cell proliferation, C-reactive protein (CRP) level, and Interleukin-8 (IL-8) expression by 30.08%, 40.7%, and 46.6%, respectively. The results revealed that this combination therapy may offer a new strategy for the targeted delivery of chemotherapeutics to the colon.
Collapse
Affiliation(s)
- Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jacqueline L Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephanie Makhlouf
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sarah Alali
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
31
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
32
|
Verbovaya ER, Kadnikov IA, Logvinov IO, Antipova TA, Voronin MV, Seredenin SB. In vitro modelling of Parkinson's disease using 6-OHDA is associated with increased NQO2 activity. Toxicol In Vitro 2024; 101:105940. [PMID: 39271030 DOI: 10.1016/j.tiv.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The pathogenesis of Parkinson's disease (PD) involves abnormalities in the metabolism of catecholamines. The enzyme quinone reductase 2 (NQO2) reduces quinone derivatives of catecholamines, which promotes the formation of reactive oxygen species (ROS), suggesting a role for NQO2 in the development of cellular damage typical of PD. In the present study, we investigated the relationship between 6-hydroxydophamine (6-OHDA) induced cellular damage and NQO2 activity and its levels in SH-SY5Y cell culture to establish an experimental model to evaluate the pharmacological properties of NQO2 inhibitors. Cellular damage was evaluated using the MTT and comet assays. It was shown that oxidative damage of SH-SY5Y cells upon incubation with 6-OHDA for 6, 12 and 24 h was accompanied by an increase in NQO2 activity. The increase in NQO2 protein level in SH-SY5Y cells was observed 24 h after incubation with 6-OHDA at concentrations of 50 and 100 μM. Oxidative damage of SH-SY5Y cells upon 1 h incubation with 6-OHDA is increased in the presence of the selective enzyme co-substrate 1-benzyl-1,4-dihydronicotinamide (BNAH), but is not accompanied by changes in NQO2 activity and protein levels. The data obtained demonstrate the contribution of NQO2 to the cytotoxic mechanism of 6-OHDA action.
Collapse
Affiliation(s)
- Ekaterina R Verbovaya
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia.
| | - Ilya A Kadnikov
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Ilya O Logvinov
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Tatyana A Antipova
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Mikhail V Voronin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Sergei B Seredenin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| |
Collapse
|
33
|
Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. BMC Vet Res 2024; 20:403. [PMID: 39251976 PMCID: PMC11382457 DOI: 10.1186/s12917-024-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The integration of stem cells, signaling molecules, and biomaterial scaffolds is fundamental for the successful engineering of functional bone tissue. Currently, the development of composite scaffolds has emerged as an attractive approach to meet the criteria of ideal scaffolds utilized in bone tissue engineering (BTE) for facilitating bone regeneration in bone defects. Recently, the incorporation of polycaprolactone (PCL) with hydroxyapatite (HA) has been developed as one of the suitable substitutes for BTE applications owing to their promising osteogenic properties. In this study, a three-dimensional (3D) scaffold composed of PCL integrated with HA (PCL/HA) was prepared and assessed for its ability to support osteogenesis in vitro. Furthermore, this scaffold was evaluated explicitly for its efficacy in promoting the proliferation and osteogenic differentiation of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) to fill the knowledge gap regarding the use of composite scaffolds for BTE in the veterinary orthopedics field. RESULTS Our findings indicate that the PCL/HA scaffolds substantially supported the proliferation of cBM-MSCs. Notably, the group subjected to osteogenic induction exhibited a markedly upregulated expression of the osteogenic gene osterix (OSX) compared to the control group. Additionally, the construction of 3D scaffold constructs with differentiated cells and an extracellular matrix (ECM) was successfully imaged using scanning electron microscopy. Elemental analysis using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed that these constructs possessed the mineral content of bone-like compositions, particularly the presence of calcium and phosphorus. CONCLUSIONS This research highlights the synergistic potential of PCL/HA scaffolds in concert with cBM-MSCs, presenting a multidisciplinary approach to scaffold fabrication that effectively regulates cell proliferation and osteogenic differentiation. Future in vivo studies focusing on the repair and regeneration of bone defects are warranted to further explore the regenerative capacity of these constructs, with the ultimate goal of assessing their potential in veterinary clinical applications.
Collapse
Affiliation(s)
- Teeanutree Taephatthanasagon
- Graduate Program in Veterinary Bioscience, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Koranis Pathanachai
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Charoenlertkul
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adretta Soedarmanto
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nabila Syarifah Jamilah
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
34
|
Kuttiappan A, Chenchula S, Vanangamudi M, Bhatt S, Chikatipalli R, Shaila Bhanu P, Bandaru N. Hepatoprotective effect of flavonoid rich fraction of Sesbania grandiflora: Results of In vivo, in vitro, and molecular docking studies. J Ayurveda Integr Med 2024; 15:101036. [PMID: 39243548 PMCID: PMC11408849 DOI: 10.1016/j.jaim.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Phytochemicals and their derivatives are promising target drugs for various ailments and have served as therapeutic agents for several decades. Using in vivo and in vitro models and molecular docking, this study investigated the pharmacological potential of a flavonoid-rich fraction of the ethanolic extract of Sesbania grandiflora (SG). OBJECTIVES This research aimed to determine whether flavonoid-rich whole-plant extracts of SGs have any cytoprotective or in vivo hepatoprotective effects. Additionally, the study was intended to elucidate the molecular connections between the discovered flavonoid flavonols and PPARα target proteins linked to liver problems, for which an in silico molecular docking investigation was performed. MATERIALS AND METHODS To separate the flavonoid components, the entire Sesbania grandiflora plant was first extracted using ethanol as a solvent by soxhlet extraction. The resulting ethanolic extract was then fractionated. The cytoprotective and hepatoprotective properties were evaluated via in vitro and in vivo experiments. SGOT, SGPT, triglyceride, bilirubin, and total protein levels were used to evaluate hepatotoxicity in animal models. In vitro studies on Hepatocellular Carcinoma G2 (HepG2) cell lines have examined their cytotoxic effects and antioxidant activity. The most promising flavonoid-flavanol compounds were identified by conducting molecular docking studies against PPARα target protein (PDB ID: 3VI8) using MOE software. RESULTS In vivo, the serum levels of SGOT, SGPT, total triglyceride and total bilirubin were measured in experimental animals treated with the flavonoid-rich ethanolic extract of SG. Significant reductions in the levels of these hepatic injury markers were observed, indicating the hepatoprotective potential of the extract. Elevated levels of liver biomarkers in the untreated group indicated liver injury or dysfunction. The treated groups showed significant restoration of these biomarkers, suggesting the hepatoprotective potential of SG. The IC50 value for the total flavonoid content of SG was 190.28 μg/ml, indicating its safety in inhibiting HepG2 cell growth. Flavonoid treatment decreased cell viability but did not affect antioxidant parameters in hepatocytes. In addition, SG restored the damaged hepatocyte architecture. Molecular docking studies revealed the binding affinities of flavonoids for PPARα. These findings suggest that a promising lead candidate for the development of therapeutic medicines against anti-TB drug-induced hepatotoxicity has been identified. CONCLUSION Our findings demonstrate the hepatoprotective potential of the flavonoid-rich fraction of Sesbania grandiflora both in vivo and in vitro. This study provides valuable insights into its mechanism of action, highlighting its promising therapeutic application in the management of liver disorders. This study highlights the hepatoprotective and cytoprotective potential of the total flavonoid-rich fraction of SG.
Collapse
Affiliation(s)
- Anitha Kuttiappan
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, Maharashtra, India
| | - Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal 462020, Madhya Pradesh, India.
| | - Murugesan Vanangamudi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, 474005, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | | | - P Shaila Bhanu
- Sree Vidyanikethan College of Pharmacy, Sree Sainath Nagar, Tirupathi 517102, Andhra Pradesh, India
| | - Nagaraju Bandaru
- Department of Pharmacology, School of Pharmaceutical Sciences (SOPS), Sandip University, Nasik 422213, Maharashtra, India
| |
Collapse
|
35
|
Evanoff NG, Dengel DR, Stockelman KA, Fandl H, DeSouza NM, Greiner JJ, Dufresne SR, Kotlyar M, Garcia VP. Circulating extracellular microvesicles associated with electronic cigarette use increase endothelial cell inflammation and reduce nitric oxide production. Exp Physiol 2024; 109:1593-1603. [PMID: 39092897 PMCID: PMC11363099 DOI: 10.1113/ep091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The purpose of this study was to determine the effect of circulating microvesicles isolated from chronic electronic (e-)cigarette users on cultured human umbilical vein endothelial cell (HUVEC) expression of nuclear factor-κB (NF-κB), cellular cytokine release, phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production. The HUVECs were treated with microvesicles isolated via flow cytometry from nine non-tobacco users (five male and four female; 22 ± 2 years of age) and 10 e-cigarette users (six male and four female; 22 ± 2 years of age). Microvesicles from e-cigarette users induced significantly greater release of interleukin-6 (183.4 ± 23.6 vs. 150.6 ± 15.4 pg/mL; P = 0.002) and interleukin-8 (160.0 ± 31.6 vs. 129.4 ± 11.2 pg/mL; P = 0.01), in addition to expression of p-NF-κB p65 (Ser536) (18.8 ± 3.4 vs. 15.6 ± 1.5 a.u.; P = 0.02) from HUVECs compared with microvesicles from non-tobacco users. Nuclear factor-κB p65 was not significantly different between microvesicles from the non-tobacco users and from the e-cigarette users (87.6 ± 8.7 vs. 90.4 ± 24.6 a.u.; P = 0.701). Neither total eNOS (71.4 ± 21.8 vs. 80.4 ± 24.5 a.u.; P = 0.413) nor p-eNOS (Thr495) (229.2 ± 26.5 vs. 222.1 ± 22.7 a.u.; P = 0.542) was significantly different between microvesicle-treated HUVECs from non-tobacco users and e-cigarette users. However, p-eNOS (Ser1177) (28.9 ± 6.2 vs. 45.8 ± 9.0 a.u.; P < 0.001) expression was significantly lower from e-cigarette users compared with non-tobacco users. Nitric oxide production was significantly lower (8.2 ± 0.6 vs. 9.7 ± 0.9 μmol/L; P = 0.001) in HUVECs treated with microvesicles from e-cigarette users compared with microvesicles from non-tobacco users. This study demonstrated increased NF-κB activation and inflammatory cytokine production, in addition to diminished eNOS activity and NO production resulting from e-cigarette use. HIGHLIGHTS: What is the central question of this study? Circulating microvesicles contribute to cardiovascular health and disease via their effects on the vascular endothelium. The impact of electronic (e-)cigarette use on circulating microvesicle phenotype is not well understood. What is the main finding and its importance? Circulating microvesicles from e-cigarette users increase endothelial cell inflammation and impair endothelial nitric oxide production. Endothelial inflammation and diminished nitric oxide bioavailability are central factors underlying endothelial dysfunction and, in turn, cardiovascular disease risk. Deleterious changes in the functional phenotype of circulating microvesicles might contribute to the reported adverse effects of e-cigarette use on cardiovascular health.
Collapse
Affiliation(s)
- Nicholas G. Evanoff
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Pediatric Obesity MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Donald R. Dengel
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Pediatric Obesity MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Kelly A. Stockelman
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Hannah Fandl
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Noah M. DeSouza
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Jared J. Greiner
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Sheena R. Dufresne
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael Kotlyar
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Vinicius P. Garcia
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| |
Collapse
|
36
|
Vencato AA, Clerici NJ, Juchem ALM, Veras FF, Rolla HC, Brandelli A. Electrospun nanofibers incorporating lactobionic acid as novel active packaging materials: biological activities and toxicological evaluation. DISCOVER NANO 2024; 19:135. [PMID: 39215943 PMCID: PMC11365877 DOI: 10.1186/s11671-024-04084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, lactobionic acid (LBA) was incorporated into poly(vinyl alcohol) (PVA) and poly(ε-caprolactone) (PCL) by electrospinning. The antimicrobial effects of the nanofibers were tested using the agar diffusion method. Only the PVA formulations showed antimicrobial activity against Staphylococcus aureus. The PVA and PCL nanofibers containing LBA showed antioxidant activity ranging from 690.33 to 798.67 µM TEAC when tested by the ABTS method. The characterization of nanofibers was performed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and mechanical analysis. The nanofibers showed a uniform morphology and their average diameters ranged from 295.5 to 2778.2 nm. The LBA addition induced a decrease in the enthalpy of fusion (ΔHm) of PVA and PCL nanofibers, while the Young's modulus was reduced from 20 to 10 MPa in PCL and PCL-LBA nanofibers, respectively. No relevant differences were observed between the FTIR spectra of the control nanofibers and the nanofibers containing LBA. All nanofibers presented hemolysis rate below 2%, thus can be considered as non-hemolytic materials. Further toxicological assessment was performed with the selected formulation PVA10 + LBA. The evaluations by mutagenicity assay, cell survival measurement, cell viability analysis and agar diffusion cytotoxicity test indicated that there are no significant toxic effects. Electrospun nanofibers PVA-LBA and PCL-LBA were successfully produced, showing good thermal and mechanical properties and non-toxic effects. Furthermore, the nanofibers showed antimicrobial activity and antioxidant activity. The findings of this study indicate that PVA and PCL electrospun nanofibers incorporating LBA are promising for use in packaging applications.
Collapse
Affiliation(s)
- Aline Aniele Vencato
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Naiara Jacinta Clerici
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Flavio Fonseca Veras
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Adriano Brandelli
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
37
|
Reno A, Tang J, Sudbeck M, Custodio PF, Baldus B, McLaughlin E, Peng F, Xiao H. Evaluation of a Deep Learning Based Approach to Computational Label Free Cell Viability Quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610252. [PMID: 39257757 PMCID: PMC11383692 DOI: 10.1101/2024.08.29.610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
One of the most common techniques found in a cell biology or tissue engineering lab is the cytotoxicity assay. This can be performed using a variety of different dyes and stains and various protocols to result in a clear indication of dead and live cells within a culture to quantify the viability of a culture and monitor for sudden drops or increases in viability by a drug, material, viral vector, etc introduced into the culture. This assay helps cell biologists determine the health of their culture and what toxicity added substances may add to the culture and whether they are appropriate and safe to use with human cells. However, many of the dyes and stains used for this process are eventually toxic to cells, rendering the cells useless after testing and preventing real time monitoring of the same culture over a period of hours or days. Computation biology is moving cell biology towards novel and innovative techniques such as in silico labeling and dye free labeling using deep learning algorithms. In this work, we investigate whether it is feasible to train a Resnet CNN model to detect morphological changes in human cells that indicate cell death in order to classify cells as live or dead without utilizing a stain or dye. This work also aims to train one CNN model to count all cells regardless of viability status to get a total cell count, and then one CNN model that specifically identifies and counts all of the dead cells for an accurate dead and live cell total by utilizing both pieces of data to determine a general viability percentage for the culture. Additionally, this work explores the use of various image enhancements to understand if this process helps or impedes the deep learning models in their detection of total cells and dead cells.
Collapse
Affiliation(s)
- Allison Reno
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jianan Tang
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
| | - Madeline Sudbeck
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Brandi Baldus
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, USA
| | | | - Fei Peng
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, USA
| | - Hai Xiao
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
38
|
Kessel D. Trials and errors in the realm of photodynamic therapy: Viability and ROS detection. Photochem Photobiol 2024. [PMID: 39189639 DOI: 10.1111/php.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
In the realm of Photodynamic Therapy, as elsewhere, claims are sometimes made for which there is minimal evidence or proof. Some examples are indicated.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
39
|
Silva DD, Crous A, Abrahamse H. Photobiomodulation Dose-Response on Adipose-Derived Stem Cell Osteogenesis in 3D Cultures. Int J Mol Sci 2024; 25:9176. [PMID: 39273125 PMCID: PMC11395548 DOI: 10.3390/ijms25179176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis and other degenerative bone diseases pose significant challenges to global healthcare systems due to their prevalence and impact on quality of life. Current treatments often alleviate symptoms without fully restoring damaged bone tissue, highlighting the need for innovative approaches like stem cell therapy. Adipose-derived mesenchymal stem cells (ADMSCs) are particularly promising due to their accessibility, abundant supply, and strong differentiation potential. However, ADMSCs tend to favor adipogenic pathways, necessitating the use of differentiation inducers (DIs), three-dimensional (3D) hydrogel environments, and photobiomodulation (PBM) to achieve targeted osteogenic differentiation. This study investigated the combined effects of osteogenic DIs, a fast-dextran hydrogel matrix, and PBM at specific wavelengths and fluences on the proliferation and differentiation of immortalized ADMSCs into osteoblasts. Near-infrared (NIR) and green (G) light, as well as their combination, were used with fluences of 3 J/cm2, 5 J/cm2, and 7 J/cm2. The results showed statistically significant increases in alkaline phosphatase levels, a marker of osteogenic differentiation, with G light at 7 J/cm2 demonstrating the most substantial impact on ADMSC differentiation. Calcium deposits, visualized by Alizarin red S staining, appeared as early as 24 h post-treatment in PBM groups, suggesting accelerated osteogenic differentiation. ATP luminescence assays indicated increased proliferation in all experimental groups, particularly with NIR and NIR-G light at 3 J/cm2 and 5 J/cm2. MTT viability and LDH membrane permeability assays confirmed enhanced cell viability and stable cell health, respectively. In conclusion, PBM significantly influences the differentiation and proliferation of hydrogel-embedded immortalized ADMSCs into osteoblast-like cells, with G light at 7 J/cm2 being particularly effective. These findings support the combined use of 3D hydrogel matrices and PBM as a promising approach in regenerative medicine, potentially leading to innovative treatments for degenerative bone diseases.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
40
|
Machingauta A, Mukanganyama S. Antibacterial Activity and Proposed Mode of Action of Extracts from Selected Zimbabwean Medicinal Plants against Acinetobacter baumannii. Adv Pharmacol Pharm Sci 2024; 2024:8858665. [PMID: 39220823 PMCID: PMC11364482 DOI: 10.1155/2024/8858665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii was identified by the WHO as a priority pathogen in which the research and development of new antibiotics is urgently needed. Plant phytochemicals have potential as sources of new antimicrobials. The objective of the study was to determine the antibacterial activity of extracts of selected Zimbabwean medicinal plants against A. baumannii and determine their possible mode of action. Extracts were prepared from the leaves of the eight plants including the bark of Erythrina abyssinica using solvents of different polarities. Antibacterial activity was evaluated using the microbroth dilution method coupled with the in vitro iodonitrotetrazolium colorimetric assay. The effect of the extracts on membrane integrity was determined by quantifying the amount of protein and nucleic acid leaked from the cells after exposure to the extracts. The effects of the extracts on biofilms were investigated. Toxicity studies were carried out using sheep erythrocytes and murine peritoneal cells. Seven out of eight evaluated plant extracts were found to have antibacterial activity. The Combretum apiculatum acetonie (CAA) extract showed the highest inhibitory activity against A. baumannii with a minimal inhibitory concentration of 125 µg/mL. The minimum inhibitory concentration (MIC) of the CAA extract caused a protein leakage of 32 µg/mL from A. baumannii. The Combretum apiculatum acetonie (CAA), C. apiculatum methanolic (CAM), Combretum zeyheri methanolic (CZM), and Erythrina abyssinica methanolic (EAM) extracts inhibited A. baumannii biofilm formation. The EAM extract was shown to disrupt mature biofilms. The potent extracts were nontoxic to sheep erythrocytes and mouse peritoneal cells. The activities shown by the extracts indicate that the plants have potential as sources of effective antibacterial and antibiofilm formation agents against A. baumannii.
Collapse
Affiliation(s)
- Auxillia Machingauta
- Bio-Molecular Interactions Analyses GroupDepartment of Biotechnology and BiochemistryUniversity of Zimbabwe, Mt Pleasant, P.O. Box 167, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of TherapeuticsNatural Products Research UnitAfrican Institute of Biomedical Science and TechnologyWilkins Hospital, Block C, Corner J. Tongogara and R. Tangwena, Harare, Zimbabwe
| |
Collapse
|
41
|
Bayoumi HH, Ibrahim MK, Dahab MA, Khedr F, El-Adl K. Rationale, in silico docking, ADMET profile, design, synthesis and cytotoxicity evaluations of phthalazine derivatives as VEGFR-2 inhibitors and apoptosis inducers. RSC Adv 2024; 14:27110-27121. [PMID: 39193307 PMCID: PMC11348385 DOI: 10.1039/d4ra04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
New phthalazine derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors were synthesized joined to different spacers including pyrazole, α,β-unsaturated ketonic fragment, pyrimidinone and/or pyrimidinthione. A docking study was carried out to explore the suggested binding orientations of the novel derivatives inside the active site of VEGFR-2. The obtained biological data were extremely interrelated to that of the docking study. In particular, compounds 4b and 3e showed the highest activities against Michigan Cancer Foundation-7 (MCF-7) and Hepatocellular carcinoma G2 (HepG2) with half maximal inhibitory concentration (IC50) = 0.06, 0.06 μM and 0.08, 0.19 μM respectively. Our derivatives 3a-e, 4a,b and 5a,b were evaluated for their cytotoxicity against normal VERO cells. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 3.00-4.75 μM. In addition, our final derivatives 3a-e, 4a, 4b, 5a and 5b were investigated for their VEGFR-2 inhibitory activities. Derivative 4b exhibited the highest VEGFR-2 inhibitory activities at an IC50 value of 0.09 ± 0.02 μM. Derivatives 3e, 4a and 5b demonstrated good activities with IC50 values = 0.12 ± 0.02, 0.15 ± 0.03 and 0.13 ± 0.03 μM respectively. Furthermore, the activities of 4b were assessed against MCF-7 cancer cells for apoptosis induction, cell cycle distribution and growth inhibition. Compound 4b caused cell growth arrest in growth 2-mitosis (G2-M) phase; accumulation of cells at that phase became 6.92% after being 13.2 in control cells. Moreover, our derivatives 3e, 4b and 5b revealed a good in silico considered absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile in comparison to sorafenib.
Collapse
Affiliation(s)
- Hatem Hussein Bayoumi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
42
|
Ku J, Asuri P. Stem cell-based approaches for developmental neurotoxicity testing. FRONTIERS IN TOXICOLOGY 2024; 6:1402630. [PMID: 39238878 PMCID: PMC11374538 DOI: 10.3389/ftox.2024.1402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.
Collapse
Affiliation(s)
- Joy Ku
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
43
|
Araújo CBB, Alves Júnior JDO, Sato MR, Costa KMN, Lima JR, Damasceno BPGDL, de Lima Junior FJB, Andréo BGC, dos Santos VL, Oshiro-Junior JA. The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil-Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract. Pharmaceutics 2024; 16:1097. [PMID: 39204442 PMCID: PMC11359889 DOI: 10.3390/pharmaceutics16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to develop a novel ureasil-polyether transdermal hybrid matrix (U-PEO) loaded with Annona muricata concentrated extract (AMCE), which exhibits potent anti-inflammatory activity. The extract was obtained by maceration, a method that allowed for the extraction of a high concentration of flavonoids (39.27 mg/g of extract). In vivo tests demonstrated that 10 mg/kg of AMCE inhibited inflammation for 6 h. The physicochemical characterization of U-PEO with AMCE was conducted via a thermogravimetric analysis (TGA), while its surface was recorded using atomic force microscopy (AFM). The in vitro macroscopic swelling and release tests demonstrated the hydrophilic profile of the material and the percentage of AMCE released. The TGA results demonstrated that the system exhibited physical compatibility due to the thermal stability of U-PEO. Additionally, the AFM analysis revealed a rough and porous surface, with a particular emphasis on the system with AMCE. The release resulted in the liberation of 23.72% of AMCE within 24 h. Finally, the preclinical tests demonstrated that U-PEO with AMCE was also capable of effectively inhibiting inflammation for 6 h, a duration comparable to that of a commercial formulation. The results permit the advancement of the study towards the development of a transdermal system, thereby rendering its application in clinical studies feasible.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
| | - José de Oliveira Alves Júnior
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | - Mariana Rillo Sato
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
| | - Kammila Martins Nicolau Costa
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba, Campus I, Lot. Cidade Universitária, S/N, João Pessoa 58051-900, Brazil;
| | - Jéssica Roberta Lima
- Department of Pharmacy, University of Araraquara (UNIARA), Rua Carlos Gomes, 1338—Centro Araraquara, São Paulo 14801-340, Brazil; (J.R.L.); (B.G.C.A.)
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | | | - Bruna Galdorfini Chiari Andréo
- Department of Pharmacy, University of Araraquara (UNIARA), Rua Carlos Gomes, 1338—Centro Araraquara, São Paulo 14801-340, Brazil; (J.R.L.); (B.G.C.A.)
| | - Vanda Lucia dos Santos
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| |
Collapse
|
44
|
Visansirikul S, Yanaso S, Boondam Y, Prasittisa K, Prutthiwanasan B, Chongruchiroj S, Sripha K. Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection. RSC Med Chem 2024; 15:2745-2765. [PMID: 39149102 PMCID: PMC11324061 DOI: 10.1039/d4md00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ1-42. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds CE5, CA5, PE5, and PA5 showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in CE5 to amide in CA5 resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of CE5 to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported CE5's anti-Aβ aggregation efficacy. Structural variations in PE5 and PA5 had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log P values suggested potential blood-brain barrier permeation for CE5 and CA5, indicating suitability for CNS drug development. In silico ADMET and toxicological screening revealed that CE5, PA5, and PE5 have favorable safety profiles, while CA5 shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, CE5 and CA5 emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent in vivo studies.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Suthira Yanaso
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University Samut Prakan 10540 Thailand
| | - Yingrak Boondam
- Department of Physiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Mahidol University Bangkok 10400 Thailand
| | - Kanjanawadee Prasittisa
- Division of Science, Faculty of Education, Nakhon Phanom University Nakhon Phanom 48000 Thailand
| | - Brompoj Prutthiwanasan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Molecular Simulations in Drug Discovery, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
45
|
Gomez J, Coll M, Guarise C, Cifuente D, Masone D, Tello PF, Piñeyro MD, Robello C, Reta G, Sosa MÁ, Barrera P. New insights into the pro-oxidant mechanism of dehydroleucodine on Trypanosoma cruzi. Sci Rep 2024; 14:18875. [PMID: 39143185 PMCID: PMC11324952 DOI: 10.1038/s41598-024-69201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.
Collapse
Affiliation(s)
- Jessica Gomez
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Mauro Coll
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Carla Guarise
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego Cifuente
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ingeniería, UNCuyo, 5500, Mendoza, Argentina
| | - Paula Faral- Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Guillermo Reta
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Miguel Ángel Sosa
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina
| | - Patricia Barrera
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina.
| |
Collapse
|
46
|
Akbar W, Ehsan S, Siddique SA, Sarfraz M, Shaheen F, Shafqat A, Shahnaz, Siddique MBA, Saeed A, Al-Salahi R, El Bakri Y. Solid Phase Synthesis, DFT Calculations, Molecular Docking, and Biological Studies of Symmetrical N 2, N 4, N 6-Trisubstituted-1,3,5-triazines. ACS OMEGA 2024; 9:34428-34444. [PMID: 39157158 PMCID: PMC11325405 DOI: 10.1021/acsomega.4c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
A diversity-oriented, multicomponent convergent synthesis of symmetrical triazines through a one-pot protocol is presented in this research project. The assembly of trisubstituted triazines was initially carried out using easily available reagents through three different protocols, i.e., conventional, MW-assisted synthesis, and solid-supported MW-assisted synthesis using organic and inorganic support to carry out a comparative analysis as to which procedure best corresponds to a greener synthesis protocol. The compounds formed were characterized for structure elucidation and subjected to in vitro anticancer and antibacterial screening. Additionally, computational studies, such as DFT calculations and molecular docking analyses, were conducted.
Collapse
Affiliation(s)
- Wajiha Akbar
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Shahana Ehsan
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Sabir Ali Siddique
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Sarfraz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Baghdad-Ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Faiqa Shaheen
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ayesha Shafqat
- School
of Botany, Minhaj University, Lahore 54770, Pakistan
| | - Shahnaz
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | | | - Ayesha Saeed
- Department
of Chemistry, Lahore College for Women University, Lahore 44444, Pakistan
| | - Rashad Al-Salahi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youness El Bakri
- Department
of Theoretical and Applied Chemistry, South
Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
47
|
Vasilatis DM, Batra N, Lucchesi CA, Abria CJ, Packeiser EM, Murua Escobar H, Ghosh PM. Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines. Int J Mol Sci 2024; 25:8628. [PMID: 39201315 PMCID: PMC11354774 DOI: 10.3390/ijms25168628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics. Three AR-null canine PCa lines (1508, Leo, 1258) were transfected with canine wild-type AR and treated with dihydrotestosterone (DHT). In 1508, AR restoration decreased clonogenicity (p = 0.03), viability (p = 0.004), migration (p = 0.03), invasion (p = 0.01), and increased expression of the tumor suppressor NKX3.1, an AR transcriptional target (p = 0.001). In Leo, AR decreased clonogenicity (p = 0.04) and the expression of another AR transcriptional target FOLH1 (p < 0.001) and increased the expression of NKX3.1 (p = 0.01). In 1258, AR increased migration (p = 0.006) and invasion (p = 0.03). Epithelial-mesenchymal transition (EMT) marker (Vimentin, N-cadherin, SNAIL1) expression increased with AR restoration in Leo and 1258 but not 1508; siRNA vimentin knockdown abrogated AR-induced 1258 migration only. Overall, 1508 showed AR-mediated tumor suppression; AR affected proliferation in Leo but not migration or invasion; and EMT and AR regulated migration and invasion in 1258 but not proliferation. This study highlights the heterogeneous nature of PCa in dogs and cell line-specific effects of AR abrogation on aggressive behaviors.
Collapse
Affiliation(s)
- Demitria M. Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Neelu Batra
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Christopher A. Lucchesi
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Christine J. Abria
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
| | - Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Hugo Murua Escobar
- Department of Medicine, Medical Clinic III, Hematology Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Paramita M. Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA; (D.M.V.); (C.A.L.)
- Veterans Affairs (VA)—Northern California Healthcare System, Mather, CA 95655, USA; (N.B.); (C.J.A.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
48
|
Moalwi A, Kamat K, Muddapur UM, Aldoah B, AlWadai HH, Alamri AM, Alrashid FF, Alsareii SA, Mahnashi MH, Shaikh IA, Khan AA, More SS. Green synthesis of zinc oxide nanoparticles from Wodyetia bifurcata fruit peel extract: multifaceted potential in wound healing, antimicrobial, antioxidant, and anticancer applications. Front Pharmacol 2024; 15:1435222. [PMID: 39161893 PMCID: PMC11330823 DOI: 10.3389/fphar.2024.1435222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
This study focuses on the synthesis, characterization, and use of zinc oxide nanoparticles (ZnONPs) derived from W. bifurcata fruit peel extract. ZnONPs are frequently synthesized utilizing a green technique that is both cost-effective and ecologically friendly. ZnONPs were characterized utilizing analytical techniques. Ultra Violet visible (UV-Vis) spectra showed peaks at 364 nm, confirming the production of ZnONPs. Scanning Electron Microscope analysis indicated that the nanoparticles generated were spherical/agglomerated, with diameters ranging from 11 to 25 nm. FTIR spectroscopy was used to identify the particular functional groups responsible for the nanoparticles' reduction, stabilization, and capping. Phytochemical analysis of the extract revealed that flavonoids, saponins, steroids, triterpenoids, and resins were present. The antibacterial activity of W. bifurcata synthesised nanoparticles was evaluated against pathogenic bacteria. The ZnONPs antioxidant activity was assessed using DPPH assay. The in vitro cytotoxicity was assessed against prostate cancer PC3 cells. The wound healing potential was assessed by employing in vitro scratch assay and in vivo excision model in Wistar rats. Because of its environmentally benign production, low toxicity, and biocompatibility, ZnONPs exhibited potential antibacterial, antioxidant, anticancer, and wound healing activities, indicating that they could be used in cancer treatment and wound management. Further study is required to examine the fundamental mechanisms and evaluate the safety and effectiveness of the test sample in clinical situations.
Collapse
Affiliation(s)
- Adel Moalwi
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Keerti Kamat
- Department of Biotechnology, BVB Campus, KLE Technological University, Hubballi, Karnataka, India
| | - Uday M. Muddapur
- Department of Biotechnology, BVB Campus, KLE Technological University, Hubballi, Karnataka, India
| | - Bader Aldoah
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hajar Hassan AlWadai
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | | | | | - Saeed Ali Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
49
|
Chand U, Kushawaha PK. Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1771-1793. [PMID: 38787751 DOI: 10.1080/09205063.2024.2355744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Nanoparticles capped with natural products can be a cost-effective alternative to treat drug-resistant nosocomial infections. Therefore, silibinin-loaded chitosan-capped silver nanoparticles (S-C@AgNPs) were synthesized to evaluate their antimicrobial and anti-inflammatory potential. The S-C@AgNPs plasmon peak was found at 430 nm and had a particle size distribution of about 130 nm with an average hydrodynamic diameter of 101.37 nm. The Scanning Electron Microscopy images showed the presence of sphere-shaped homogeneous nanoparticles. The Fourier Transform Infrared Spectroscopy analysis confirmed the loading of silibinin and chitosan on the AgNPs surface. The minimum inhibitory concentration of the S-C@AgNPs was reported between 3.12 μg/ml to 12.5 μg/ml and a minimum bactericidal concentration between 6.25 μg/ml to 25 μg/ml against drug-resistant nosocomial pathogens. Moreover, concentration-dependent significant inhibition of the biofilm formation was reported against P. aeruginosa (70.21%) and K. pneumoniae (71.02%) at 30 μg/ml, and the highest destruction of preformed biofilm was observed at 100 μg/ml against P. aeruginosa (89.74%) and K. pneumoniae (77.65%) as compared to individual bacterial control. Additionally, the fluorescence live/dead assay for bacterial biofilm confirmed that 100 µg/ml effectively inhibits the biofilm formed by these pathogens. S-C@AgNPs also showed anti-inflammatory activity, which is evident by the significant decrease in the proinflammatory cytokines and chemokines level in THP1 cells treated with LPS. This study concluded that S-C@AgNPs have potent antimicrobial, antibiofilm, and anti-inflammatory properties and could be a potential option for treating drug resistant nosocomial infections.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
50
|
Tran TT, Cheow WS, Pu S, Park JW, Hadinoto K. Dry Powder Inhaler Formulation of Lactobacillus rhamnosus GG Targeting Pseudomonas aeruginosa Infection in Bronchiectasis Maintenance Therapy. Pharmaceutics 2024; 16:980. [PMID: 39204326 PMCID: PMC11357607 DOI: 10.3390/pharmaceutics16080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
The inhaled delivery of lactic acid bacteria (LAB) probiotics has been demonstrated to exert therapeutic benefits to the lungs due to LAB's immunomodulatory activities. The development of inhaled probiotics formulation, however, is in its nascent stage limited to nebulized LAB. We developed a dry powder inhaler (DPI) formulation of lactobacillus rhamnosus GG (LGG) intended for bronchiectasis maintenance therapy by spray freeze drying (SFD). The optimal DPI formulation (i.e., LGG: mannitol: lactose: leucine = 35: 45: 15: 5 wt.%) was determined based on the aerosolization efficiency (86% emitted dose and 26% respirable fraction) and LGG cell viability post-SFD (7 log CFU/mL per mg powder). The optimal DPI formulation was evaluated and compared to lyophilized naked LGG by its (1) adhesion capacity and cytotoxicity to human lung epithelium cells (i.e., A549 and 16HBE14o- cells) as well as its (2) effectiveness in inhibiting the growth and adhesion of Pseudomonas aeruginosa to lung cells. The optimal DPI of LGG exhibited similar non-cytotoxicity and adhesion capacity to lung cells to naked LGG. The DPI of LGG also inhibited the growth and adhesion of P. aeruginosa to the lung cells as effectively as the naked LGG. The present work established the feasibility of delivering the LAB probiotic by the DPI platform without adversely affecting LGG's anti-pseudomonal activities.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore, Singapore 637459, Singapore
| | - Wean Sin Cheow
- Singapore Institute of Technology, Singapore 138683, Singapore
| | - Siyu Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore, Singapore 637459, Singapore
| | - Jin-Won Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kunn Hadinoto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore, Singapore 637459, Singapore
| |
Collapse
|