1
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
3
|
Rais A, Sharma S, Mishra P, Khan LA, Prasad T. Biocompatible carbon quantum dots as versatile imaging nanotrackers of fungal pathogen - Candida albicans. Nanomedicine (Lond) 2024; 19:671-688. [PMID: 38426561 DOI: 10.2217/nnm-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: The development of carbon quantum dots (C-QDs) as nanotrackers to understand drug-pathogen interactions, virulence and multidrug resistance. Methods: Microwave synthesis of C-QDs was performed using citric acid and polyethylene glycol. Further, in vitro toxicity was evaluated and imaging applications were demonstrated in Candida albicans isolates. Results: Well-dispersed, ultra small C-QDs exhibited no cyto/microbial/reactive oxygen species-mediated toxicity and internalized effectively in Candida yeast and hyphal cells. C-QDs were employed for confocal imaging of drug-sensitive and -resistant cells, and a study of the yeast-to-hyphal transition using atomic force microscopy in Candida was conducted for the first time. Conclusion: These biocompatible C-QDs have promising potential as next-generation nanotrackers for in vitro and in vivo targeted cellular and live imaging, after functionalization with biomolecules and drugs.
Collapse
Affiliation(s)
- Anam Rais
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shubham Sharma
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tulika Prasad
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
4
|
Xie C, Wang B, Qi X, Bao L, Zhai J, Xu X, Zhang C, Yu H. Investigation of Anticancer Therapy Using pH-Sensitive Carbon Dots-Functionalized Doxorubicin in Cubosomes. ACS APPLIED BIO MATERIALS 2024; 7:1958-1967. [PMID: 38363649 DOI: 10.1021/acsabm.3c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Cancer remains a highly lethal disease due to its elusive early detection, rapid spread, and significant side effects. Nanomedicine has emerged as a promising platform for drug delivery, diagnosis, and treatment monitoring. In particular, carbon dots (CDs), a type of fluorescent nanomaterial, offer excellent fluorescence properties and the ability to carry multiple drugs simultaneously through covalent bonding. In this work, CDs with carbonyl groups on the surface were prepared by aldol condensation and reacted with amine groups in the structure of doxorubicin (DOX) through Schiff base reaction to generate pH-responsive CDs-DOX. On the other hand, cubosomes with three-dimensional lattice structures formed by lipid bilayers have advantageous capabilities of encapsulating various hydrophilic, amphiphilic, and hydrophobic substances. The pH-responsive CDs-DOX are subsequently loaded into cubosomes to form an anticancer therapeutic nanosystem, CDs-DOX@cubosome. Leveraging the unique properties of CDs-DOX and cubosomes, our CDs-DOX@cubosome can enter tumor tissue through the enhanced permeation and retention effect first and conduct membrane fusion with tumor cells to intracellularly release CDs-DOX. Then, the imine bond in CDs-DOX breaks under acidic conditions within human cancer cell lines (HeLa and HepG-2 cells), releasing DOX and achieving enhanced treatment of tumors. Additionally, fluorescent CDs can synchronously achieve real-time in situ diagnosis of tumor tissue. We demonstrate that our CDs-DOX@cubosome works as an excellent drug delivery system with therapeutic efficiency enhancement to the tumor and reduced side effects.
Collapse
Affiliation(s)
- Caiyang Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
- Zhengzhou University of Industrial Technology, Zhengzhou 451100, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinyu Qi
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xu Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunli Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Montazersaheb S, Farahzadi R, Fathi E, Alizadeh M, Abdolalizadeh Amir S, Khodaei Ardakan A, Jafari S. Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways. Heliyon 2024; 10:e26959. [PMID: 38455550 PMCID: PMC10918200 DOI: 10.1016/j.heliyon.2024.e26959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Background The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Shahabaddin Abdolalizadeh Amir
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Farzam OR, Mehran N, Bilan F, Aghajani E, Dabbaghipour R, Shahgoli GA, Baradaran B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023; 9:e21334. [PMID: 37920521 PMCID: PMC10618772 DOI: 10.1016/j.heliyon.2023.e21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with a high mortality rate worldwide. While surgery, chemotherapy, and radiotherapy have shown some effectiveness in improving survival rates, they come with drawbacks such as side effects and harm to healthy tissues. The theranostic approach, which integrates the processes of cancer diagnosis and treatment, can minimize biological side effects. Photothermal therapy (PTT) is an emerging treatment method that usages light-sensitive agents to generate heat at the tumor site and induce thermal erosion. The development of nanotechnology for CRC treatment using imaging-guided PTT has garnered significant. Nanoparticles with suitable physical and chemical properties can enhance the efficiency of cancer diagnosis and PTT. This approach enables the monitoring of cancer treatment progress and safeguards healthy tissues. In this article, we concisely introduce the application of metal nanoparticles, polymeric nanoparticles, and carbon nanoparticles in imaging-guided PTT of colorectal cancer.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Mehran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghajani
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
8
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Gerbolés AG, Galetti M, Rossi S, lo Muzio FP, Pinelli S, Delmonte N, Caffarra Malvezzi C, Macaluso C, Miragoli M, Foresti R. Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. Int J Mol Sci 2023; 24:6595. [PMID: 37047568 PMCID: PMC10095512 DOI: 10.3390/ijms24076595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.
Collapse
Affiliation(s)
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority-INAIL, 00078 Rome, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Delmonte
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | | | - Claudio Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital, IRCCS, 20089 Milan, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43124 Parma, Italy
| |
Collapse
|
10
|
Francisco P, Neves Amaral M, Neves A, Ferreira-Gonçalves T, Viana AS, Catarino J, Faísca P, Simões S, Perdigão J, Charmier AJ, Gaspar MM, Reis CP. Pluronic ® F127 Hydrogel Containing Silver Nanoparticles in Skin Burn Regeneration: An Experimental Approach from Fundamental to Translational Research. Gels 2023; 9:200. [PMID: 36975649 PMCID: PMC10048756 DOI: 10.3390/gels9030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Presently, skin burns are considered one of the main public health problems and lack therapeutic options. In recent years, silver nanoparticles (AgNPs) have been widely studied, playing an increasingly important role in wound healing due to their antibacterial activity. This work is focused on the production and characterization of AgNPs loaded in a Pluronic® F127 hydrogel, as well as assessing its antimicrobial and wound-healing potential. Pluronic® F127 has been extensively explored for therapeutic applications mainly due to its appealing properties. The developed AgNPs had an average size of 48.04 ± 14.87 nm (when prepared by method C) and a negative surface charge. Macroscopically, the AgNPs solution presented a translucent yellow coloration with a characteristic absorption peak at 407 nm. Microscopically, the AgNPs presented a multiform morphology with small sizes (~50 nm). Skin permeation studies revealed that no AgNPs permeated the skin after 24 h. AgNPs further demonstrated antimicrobial activity against different bacterial species predominant in burns. A chemical burn model was developed to perform preliminary in vivo assays and the results showed that the performance of the developed AgNPs loaded in hydrogel, with smaller silver dose, was comparable with a commercial silver cream using higher doses. In conclusion, hydrogel-loaded AgNPs is potentially an important resource in the treatment of skin burns due to their proven efficacy by topical administration.
Collapse
Affiliation(s)
- Pedro Francisco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mariana Neves Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Afonso Neves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana S. Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusoófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusoófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Adília J. Charmier
- DREAMS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - M. Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
11
|
Yesilot S, Bayram D, Özgöçmen M, Toğay VA. Apoptotic effects of Phlomis armeniaca mediated biosynthesized silver nanoparticles in monolayer (2D) and spheroid (3D) cultures of human breast cancer cell lines. 3 Biotech 2023; 13:4. [PMID: 36514484 PMCID: PMC9741690 DOI: 10.1007/s13205-022-03417-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of current research was to assess the apoptotic effects of biofabrication silver nanoparticles (AgNPs) mediated by the aqueous extract of Phlomis armeniaca on human breast cancer cells (MCF-7 and MDA-MB-231) in monolayer (2D) and spheroid (3D) cultures. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometer (the peaks of resonances at 432 nm), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). 1-20 µM/mL AgNPs were applied to MCF-7 and MDA-MB-231 cell lines to determine IC50 values at 24, 48 and 72nd h and were found to be 10 µM/mL for both cell lines. Immunohistochemical staining results of BrdU, TUNEL, caspase-3 and Endo G in both 2D and 3D cultures and gene expression levels of caspases (caspase-3, -8 and -9) and Endo G were evaluated. Moreover, the total oxidant/antioxidant status (TOS-TAS) due to AgNPs application in both cell culture mediums was evaluated. AgNPs treatment results in both cell lines in both 2D and 3D cultures showed a significant decrease in the BrdU labeling index, while large amounts of cells were labelled with TUNEL and Endo G. In 2D culture, Endo G expression increased in MCF-7 cells at 48 and 72nd hours, while it increased significantly in MDA-MB-231 cells at all hours. OSI results show that ROS production is increased in cell medium treated with AgNPs. In conclusion, AgNPs mediated by Phlomis armeniaca, synthesized by a green method, successfully induced damage to mitochondria, resulting in cell cycle arrest and consequent cell proliferation blockade and death in both MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sukriye Yesilot
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Dilek Bayram
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Meltem Özgöçmen
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Vehbi Atahan Toğay
- Department of Medical Biology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Mutukwa D, Taziwa RT, Khotseng L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244469. [PMID: 36558321 PMCID: PMC9785588 DOI: 10.3390/nano12244469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/31/2023]
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts has been receiving tremendous attention as an alternative to conventional physical and chemical methods. The Lamiaceae plant family is one of the largest herbal families in the world and is famous for its aromatic and polyphenolic biomolecules that can be utilised as reducing and stabilising agents during the synthesis of ZnO NPs. This review will go over the synthesis and how synthesis parameters affect the Lamiaceae-derived ZnO NPs. The Lamiaceae-mediated ZnO NPs have been utilised in a variety of applications, including photocatalysis, antimicrobial, anticancer, antioxidant, solar cells, and so on. Owing to their optical properties, ZnO NPs have emerged as potential catalysts for the photodegradation of organic dyes from wastewater. Furthermore, the low toxicity, biocompatibility, and antibacterial activity of ZnO against various bacteria have led to the application of ZnO NPs as antibacterial agents. Thus, this review will focus on the application of Lamiaceae-mediated ZnO NPs for the photodegradation of organic dyes and antibacterial applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond T. Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
13
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
14
|
Solomon LA, Witten J, Kodali G, Moser CC, Dutton PL. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies. J Phys Chem B 2022; 126:8177-8187. [PMID: 36219580 PMCID: PMC9589594 DOI: 10.1021/acs.jpcb.2c05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.
Collapse
Affiliation(s)
- Lee A. Solomon
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia22030, United States,
| | - Joshua Witten
- Department
of Biology, George Mason University, Fairfax, Virginia22030, United States
| | - Goutham Kodali
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Christopher C. Moser
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - P. Leslie Dutton
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
15
|
Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anjana Baby
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India– 560029
| | - Vidya Raman
- Department of Chemistry T. M. Jacob Memorial Government College, Manimalakkunu Koothattukulam Kerala India 686662
| | | |
Collapse
|
16
|
Sampath G, Chen YY, Rameshkumar N, Krishnan M, Nagarajan K, Shyu DJH. Biologically Synthesized Silver Nanoparticles and Their Diverse Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3126. [PMID: 36144915 PMCID: PMC9500900 DOI: 10.3390/nano12183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.
Collapse
Affiliation(s)
- Gattu Sampath
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
| | | | | | - Kayalvizhi Nagarajan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
17
|
Díez-Pascual AM. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int J Mol Sci 2022; 23:10288. [PMID: 36142201 PMCID: PMC9499310 DOI: 10.3390/ijms231810288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Polymethyl methacrylate (PMMA), a well-known polymer of the methacrylate family, is extensively used in biomedicine, particularly in odontological applications including artificial teeth, dentures and denture bases, obturators, provisional or permanent crowns, and so forth. The exceptional PMMA properties, including aesthetics, inexpensiveness, simple manipulation, low density, and adjustable mechanical properties, make it a perfect candidate in the field of dentistry. However, it presents some deficiencies, including weakness regarding hydrolytic degradation, poor fracture toughness, and a lack of antibacterial activity. To further enhance its properties and solve these drawbacks, different approaches can be performed, including the incorporation of nanofillers. In this regard, different types of metallic nanoparticles, metal oxide nanofillers, and carbon-based nanomaterials have been recently integrated into PMMA matrices with the aim to reduce water absorption and improve their performance, namely their thermal and flexural properties. In this review, recent studies regarding the development of PMMA-based nanocomposites for odontology applications are summarized and future perspectives are highlighted.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
18
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
20
|
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. NANOMATERIALS 2022; 12:nano12111829. [PMID: 35683685 PMCID: PMC9181850 DOI: 10.3390/nano12111829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Collapse
|
21
|
Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022; 41:4219-4252. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria (blue-green algae) are Gram-negative photosynthetic eubacteria that are found everywhere. This largest group of photosynthetic prokaryotes is rich in structurally novel and biologically active compounds; several of which have been utilized as prospective drugs against cancer and other ailments, as well. Consequently, the integument of nanoparticles-synthetic approaches in cyanobacterial extracts should increase pharmacological activity. Moreover, silver nanoparticles (AgNPs) are small materials with diameters below 100 nm that are classified into different classes based on their forms, sizes, and characteristics. Indeed, the biosynthesized AgNPs are generated with a variety of organisms, algae, plants, bacteria, and a few others, for the medicinal purposes, as the bioactive compounds of curio and some proteins from cyanobacteria have the potentiality in the treatment of a wide range of infectious diseases. The critical focus of this review is on the antimicrobial, antioxidant, and anticancer properties of cyanobacteria. This would be useful in the pharmaceutical industries in the future drug development cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Mohd Faheem M, Bhagat M, Sharma P, Anand R. Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant). Int J Pharm 2022; 619:121710. [PMID: 35367334 DOI: 10.1016/j.ijpharm.2022.121710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
The biological synthesis of nanoparticles is a growing research trend because it has numerous pharmaceutical and biomedical applications. The present study describes the preparation, characterization and anti-cancer evaluation of silver nanoparticles synthesized using an aqueous extract of Bergenia ligulata whole plant as a reducing agent. The physiochemical properties of the Bergenia ligulata silver nanoparticles (BgAgNPs) were measured by ultraviolet-visible spectrophotometry, Fourier transform infrared spectrophotmetry (FTIR), X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM) analysis for identifying functional groups, crystallinity, structural and morphological features, respectively. Further, BgAgNps, along with the Bergenia ligulata aqueous extract (BgAE), were investigated for their effects on cell proliferation and apoptosis through MTT, colony-forming assay, wound-healing assay and flow cytometry-based approaches. The cytotoxic effects were more pronounced in cells treated with BgAgNps in comparison to BgAE. These effects were evidenced by the decreasing cell viability, migration capacity and loss of characteristic morphological features. In addition, BgAgNps unveiled significant induction of apoptosis in human breast cancer (MCF-7) cells, possibly through oxidative stress-mediated reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential (MMP). Moreover, molecular mechanism-based studies revealed that BgAgNps robustly augmented p53 levels and pro-apoptotic downstream targets of p53 like Bax and cleaved caspase 3 in MCF-7 cells. Of note, BgAgNps had little or no cytotoxic effect on p53-deficient cancer cells (Mda-mb-231 and SW-620). These findings confirm that the BgAgNPs exhibited superior anti-cancer potential and could be exploited as a promising, cost-effective, and environmentally benign strategy in treating this disease in the future.
Collapse
Affiliation(s)
- Mir Mohd Faheem
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India.
| | - Pooja Sharma
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| | - Rythem Anand
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| |
Collapse
|
23
|
Sousa A, Bradshaw TD, Ribeiro D, Fernandes E, Freitas M. Pro-inflammatory effects of silver nanoparticles in the intestine. Arch Toxicol 2022; 96:1551-1571. [PMID: 35296919 DOI: 10.1007/s00204-022-03270-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
24
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
25
|
Subramaniam S, Kumarasamy S, Narayanan M, Ranganathan M, Rathinavel T, Chinnathambi A, Alahmadi TA, Karuppusamy I, Pugazhendhi A, Whangchai K. Spectral and structure characterization of Ferula assafoetida fabricated silver nanoparticles and evaluation of its cytotoxic, and photocatalytic competence. ENVIRONMENTAL RESEARCH 2022; 204:111987. [PMID: 34474035 DOI: 10.1016/j.envres.2021.111987] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
This study aims to develop an eco-friendly method for rapidly synthesizing silver nanoparticles (AgNPs) using Asafoetida ethanol extracts and to validate AgNPs synthesis using UV-vis spectroscopy (absorption spectrum), FTIR (functional groups), XRD (crystallinity), FE-SEM (size of the particles) and SEM-EDAX (Purity). Furthermore, to evaluate the anti-proliferative effect of Ag NPs against grown cultured L6 cell lines, studies have shown that AgNPs biosynthesis inhibits cancer cell growth compared to control cell lines. UV-vis absorption verified the existence of Ag NPs, and the spectrum was observed at 480 nm. Functional groups are present in the synthesized Ag NPs were shifted on 528.48 cm-1 confirmed using an FT-IR spectrum. Consequently, anti-cancer efficacy observed the IC50 value of As Ag NPs against L6 cells was 1.0 μg/mL for 48 h. Finally, using a halogen lamp, studies explored the photocatalytic degradation of AgNPs against the methylene blue radioactive dye and achieved a 96 percent degradation rate in 90 min. Asafoetida mediated silver nanoparticles show grater photodegradation for methylene blue dye, which is present in textile industries, when exposed to solar light, and it has a wide range of potential applications in wastewater treatment. As a whole, biosynthesized silver nanoparticles showed excellent cytotoxic, antioxidant, and photocatalytic dye degradation effects.
Collapse
Affiliation(s)
- Saranyadevi Subramaniam
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Muthusamy Ranganathan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Thirumalaisamy Rathinavel
- Department of Biotechnology, Sona College of Arts and Science, Salem (Dt.), 636 005, Tamil Nadu, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Kanda Whangchai
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
26
|
Suvarli N, Frentzel M, Hubbuch J, Perner-Nochta I, Wörner M. Synthesis of Spherical Nanoparticle Hybrids via Aerosol Thiol-Ene Photopolymerization and Their Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:577. [PMID: 35159922 PMCID: PMC8838805 DOI: 10.3390/nano12030577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022]
Abstract
Hybrid nanomaterials possess the properties of both organic and inorganic components and find applications in various fields of research and technology. In this study, aerosol photopolymerization is used in combination with thiol-ene chemistry to produce silver poly(thio-ether) hybrid nanospheres. In aerosol photopolymerization, a spray solution of monomers is atomized, forming a droplet aerosol, which then polymerizes, producing spherical polymer nanoparticles. To produce silver poly(thio-ether) hybrids, silver nanoparticles were introduced to the spray solution. Diverse methods of stabilization were used to produce stable dispersions of silver nanoparticles to prevent their agglomeration before the photopolymerization process. Successfully stabilized silver nanoparticle dispersion in the spray solution subsequently formed nanocomposites with non-agglomerated silver nanoparticles inside the polymer matrix. Nanocomposite particles were analyzed via scanning and transmission electron microscopy to study the degree of agglomeration of silver nanoparticles and their location inside the polymer spheres. The nanoparticle hybrids were then introduced onto various biofunctionalization reactions. A two-step bioconjugation process was developed involving the hybrid nanoparticles: (1) conjugation of (biotin)-maleimide to thiol-groups on the polymer network of the hybrids, and (2) biotin-streptavidin binding. The biofunctionalization with gold-nanoparticle-conjugates was carried out to confirm the reactivity of -SH groups on each conjugation step. Fluorescence-labeled biomolecules were conjugated to the spherical nanoparticle hybrids (applying the two-step bioconjugation process) verified by Fluorescence Spectroscopy and Fluorescence Microscopy. The presented research offers an effective method of synthesis of smart systems that can further be used in biosensors and various other biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Wörner
- Department of Bio- and Chemical Engineering, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (N.S.); (M.F.); (J.H.); (I.P.-N.)
| |
Collapse
|
27
|
Chandrasekharan S, Chinnasamy G, Bhatnagar S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci Rep 2022; 12:156. [PMID: 34997051 PMCID: PMC8742086 DOI: 10.1038/s41598-021-04025-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Increase in bacterial resistance to commonly used antibiotics is a major public health concern generating interest in novel antibacterial treatments. Aim of this scientific endeavor was to find an alternative efficient antibacterial agent from non-conventional plant source for human health applications. We used an eco-friendly approach for phyto-fabrication of silver nanoparticles (AgNPs) by utilizing logging residue from timber trees Gmelina arborea (GA). GC-MS analysis of leaves, barks, flowers, fruits, and roots was conducted to determine the bioactive compounds. Biosynthesis, morphological and structural characterization of GA-AgNPs were undertaken by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). GA-AgNPs were evaluated for antibacterial, antibiofilm, antioxidant, wound healing properties and their toxicity studies were carried out. Results identified the presence of terpenoids, sterols, aliphatic alcohols, aldehydes, and flavonoids in leaves, making leaf extract the ideal choice for phyto-fabrication of silver nanoparticles. The synthesis of GA-AgNPs was confirmed by dark brown colored colloidal solution and spectral absorption peak at 420 nm. Spherical, uniformly dispersed, crystalline GA-AgNPs were 34-40 nm in diameter and stable in solutions at room temperature. Functional groups attributed to the presence of flavonoids, terpenoids, and phenols that acted as reducing and capping agents. Antibacterial potency was confirmed against pathogenic bacteria Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, MIC and MBC assay, biofilm inhibition assay, electron-microscopy, cell staining and colony counting techniques. The results from zone of inhibition, number of ruptured cells and dead-cell-count analysis confirmed that GA-AgNPs were more effective than GA-extract and their bacteria inhibition activity level increased further when loaded on hydrogel as GA-AgNPs-PF127, making it a novel distinguishing feature. Antioxidant activity was confirmed by the free radical scavenging assays (DPPH and ABTS). Wound healing potential was confirmed by cell scratch assay in human dermal fibroblast cell lines. Cell-proliferation study in human chang liver cell lines and optical microscopic observations confirmed non-toxicity of GA-AgNPs at low doses. Our study concluded that biosynthesized GA-AgNPs had enhanced antibacterial, antibiofilm, antioxidant, and wound healing properties.
Collapse
Affiliation(s)
- Smitha Chandrasekharan
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gandhimathi Chinnasamy
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Somika Bhatnagar
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
28
|
Gao X, Li R, Yourick JJ, Sprando RL. Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicol In Vitro 2021; 79:105274. [PMID: 34798274 DOI: 10.1016/j.tiv.2021.105274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
Silver nanoparticles (AgNPs) have been increasingly used in a variety of consumer products over the last decades. However, their potential adverse effects have not been fully understood. In a previous study, we characterized transcriptomic changes in human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) in response to AgNP exposure. Here, we report findings of a follow-up proteomic study that evaluated alternations at the protein level in the same cell after being exposed to 10 μg/ml AgNPs for 24 h. In total, 6287 proteins were identified across two groups of samples (n = 3). Among these proteins, 665 were found to be differentially regulated (fold change ≥1.25, p < 0.01) between the AgNP-treated group and the untreated control group, including 264 upregulated and 401 downregulated. Bioinformatics analysis of the proteomics data, in side-by-side comparison to the transcriptomics data, confirms and substantiates previous findings on AgNP-induced alterations in metabolism, oxidative stress, inflammation, and potential association with cancer. A mechanism of action was proposed based on these results. Collectively, the findings of the current proteomic study are consistent with those of the previous transcriptomic study and further demonstrate the usefulness of iPSC-derived HLCs as an in vitro model for liver nanotoxicology.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
29
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
30
|
Bhatia D, Mittal A, Malik DK. Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans. IET Nanobiotechnol 2021; 15:427-440. [PMID: 34694715 PMCID: PMC8675779 DOI: 10.1049/nbt2.12054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/12/2021] [Accepted: 04/11/2021] [Indexed: 11/20/2022] Open
Abstract
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.
Collapse
Affiliation(s)
- Divya Bhatia
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India
| | - Ashwani Mittal
- Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, India
| | - Deepak Kumar Malik
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
31
|
Li P, Li M, Yue D, Chen H. Solid-phase extraction methods for nucleic acid separation. A review. J Sep Sci 2021; 45:172-184. [PMID: 34453482 DOI: 10.1002/jssc.202100295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022]
Abstract
The separation and purification of biomacromolecules such as nucleic acid is a perpetual topic in separation processes and bioengineering (fine chemicals, biopharmaceutical engineering, diagnostics, and biological characterization). In principle, the solid-phase extraction for nucleic acid exhibits efficient phase separation, low pollution risk, and small sample demand, compared to the conventional liquid-phase extraction. Herein, solid-phase extraction methods are systematically reviewed to outline research progress and explore additional solid-phase sorbents and devices for novel, flexible, and high-efficiency nucleic acid separation processes. The functional materials capture nucleic acid, magnetic and magnetic-free solid-phase extraction methods, separation device design and optimization, and high-throughput automatable applications based on high-performance solid-phase extraction are summarized. Finally, the current challenges and promising topics are discussed.
Collapse
Affiliation(s)
- Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning, 116023, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Menghang Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning, 116023, P. R. China.,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, P. R. China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
32
|
Mani M, Okla MK, Selvaraj S, Ram Kumar A, Kumaresan S, Muthukumaran A, Kaviyarasu K, El-Tayeb MA, Elbadawi YB, Almaary KS, Ahmed Almunqedhi BM, Elshikh MS. A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7 cell line. ENVIRONMENTAL RESEARCH 2021; 198:111199. [PMID: 33932479 DOI: 10.1016/j.envres.2021.111199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In the present study, Allium cepa leaf extract was utilized to reduce the silver nitrate into the nanoscale range of silver ions (Ag NPs). The biosynthesized Ag NPs were extensively characterized by X-ray diffraction analysis (XRD), Dynamic light scattering analysis (DLS), UV-Visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). The antioxidant activity of synthesized Ag NPs was verified by DPPH assay. From the results obtained from XRD and DLS studies, the size of Ag NPs was determined to be around 54.3 nm. The measured zeta potential value of -19.1 mV confirms the excellent stability of biosynthesized Ag NPs. TEM analyses reveal that the biosynthesized Ag NPs have a spherical structure of 13 nm in size. The presence of various functional groups was confirmed through FTIR studies and EDAX verifies the weight percentage of silver content in biosynthesized nanoparticles to be 30.33%. In the present study, anti-cancer activity was carried out by using breast cancer cell line MCF-7. Further, silver nanoparticles exhibited antimicrobial effectiveness against gram-positive Bacillus cereus and gram-negative Escherichia coli. The MTT assay also showed better cytotoxic activity against the MCF- 7 cell line.
Collapse
Affiliation(s)
- M Mani
- Spectrophysics Research Laboratory, PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar - 604407, Tamil Nadu, India
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - S Selvaraj
- Department of Science and Humanities, St. Joseph College of Engineering, Sriperumbudur - 602117, Chennai, Tamil Nadu, India
| | - A Ram Kumar
- PG and Research Department of Biochemistry, Indo- American College, Cheyyar - 604407, Tamil Nadu, India
| | - S Kumaresan
- Spectrophysics Research Laboratory, PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar - 604407, Tamil Nadu, India
| | - Azhaguchamy Muthukumaran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yahya B Elbadawi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
33
|
Skóra B, Krajewska U, Nowak A, Dziedzic A, Barylyak A, Kus-Liśkiewicz M. Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci Rep 2021; 11:13451. [PMID: 34188097 PMCID: PMC8242066 DOI: 10.1038/s41598-021-92812-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Drug-resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of bacterial virulency in human infections is based on their adhesion ability and biofilm formation. Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular-based synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, measured by hydrodynamic light scattering (DLS). The energy dispersive X-ray spectroscopy (EDS) of NPs confirms the presence of silver and showed that sulfur-rich compounds act as a capping agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through the metabolic activity, cell viability and wound-healing assays. Last, but not least, ability to deep penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) to show its potential as the material for root-end filling.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| | - Urszula Krajewska
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland
| | - Anna Nowak
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland
| | - Andrzej Dziedzic
- College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszow, Poland
| | - Adriana Barylyak
- Laser Department Center of Imlantation and Prosthetic Dentistry "MM", Department of Therapeutical Dentistry, Lviv National Medical University Ukraine, Lviv, Poland
| | - Małgorzata Kus-Liśkiewicz
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, St. Pigonia 1, 35-310, Rzeszów, Poland.
| |
Collapse
|
34
|
Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1687. [PMID: 34199123 PMCID: PMC8306300 DOI: 10.3390/nano11071687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).
Collapse
Affiliation(s)
- Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
35
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
36
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
37
|
Quan JH, Gao FF, Chu JQ, Cha GH, Yuk JM, Wu W, Lee YH. Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells. Nanomedicine (Lond) 2021; 16:1357-1375. [PMID: 34008419 DOI: 10.2217/nnm-2021-0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the anticancer mechanisms of silver nanoparticles (AgNPs) in colorectal cancer. Methods: Anticancer effects of AgNPs were determined in colorectal cancer HCT116 cells and xenograft mice using cellular and molecular methods. Results: AgNPs induced mitochondrial reactive oxygen species production, mitochondrial dysfunction and endoplasmic reticulum (ER) stress responses through NOX4 and led to HCT116 cell apoptosis. Pretreatment with DPI or 4-PBA significantly inhibited mitochondrial reactive oxygen species production, apoptosis, ER stress response, NOX4 expression and mitochondrial dysfunction in AgNP-treated HCT116 cells. AgNPs also significantly suppressed HCT116 cell-based xenograft tumor growth in nude mice by inducing apoptosis and ER stress responses. Conclusion: AgNPs exert anticancer effects against colorectal cancer via ROS- and ER stress-related mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Fei Fei Gao
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jia-Qi Chu
- Stem Cell Research & Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Guang-Ho Cha
- Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jae-Min Yuk
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Young-Ha Lee
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
38
|
Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, Kolivoška V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J Fluoresc 2021; 31:635-649. [PMID: 33609215 DOI: 10.1007/s10895-021-02699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/24/2022]
Abstract
Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches. Graphical abstract.
Collapse
Affiliation(s)
- Nandan C Pomal
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Keyur D Bhatt
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Krunal M Modi
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Ajay L Desai
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
39
|
Grasso A, Ferrante M, Arena G, Salemi R, Zuccarello P, Fiore M, Copat C. Chemical Characterization and Quantification of Silver Nanoparticles (Ag-NPs) and Dissolved Ag in Seafood by Single Particle ICP-MS: Assessment of Dietary Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084076. [PMID: 33924319 PMCID: PMC8069337 DOI: 10.3390/ijerph18084076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
This study provides a first insight on the chemical characterization and quantification of silver nanoparticles (AgNPs) and dissolved Ag in processed canned seafood products, where food-grade edible silver (E174) is not intentionally added nor is the nanoparticle contained in the food contact material. The aim was to evaluate the bioaccumulation potential of AgNPs and to contribute to the assessment of AgNPs and ionic Ag human dietary intake from processed seafood. It is known how seafood, and in particular pelagic fish, is a precious nutritional source of unsaturated fatty acids, protein, and different micronutrients. Nevertheless, it may cause possible health problems due to the intake of toxic compounds coming from environmental pollution. Among emerging contaminants, AgNPs are widely applied in several fields such as biomedicine, pharmaceutical, food industry, health care, drug-gene delivery, environmental study, water treatments, and many others, although its primary application is in accordance with its antimicrobial property. As a consequence, AgNPs are discharged into the aquatic environment, where the colloidal stability of these NPs is altered by chemical and physical environmental parameters. Its toxicity was demonstrated in in-vitro and in-vivo studies, although some findings are controversial because toxicity depends by several factors such as size, concentration, chemical composition, surface charge, Ag+ ions released, and hydrophobicity. The new emerging technique called single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied, which allows the determination of nanoparticle number-based concentration and size distribution, as well as the dissolved element. Our findings highlighted comparable mean sizes across all species analysed, although AgNPs concentrations partly follow a trophic level-dependent trend. The low mean size detected could be of human health concern, since, smaller is the diameter higher is the toxicity. Dietary intake from a meal calculated for adults and children seems to be very low. Although seafood consumption represents only a small part of the human total diet, our findings represent a first important step to understand the AgNPs dietary exposure of the human population. Further studies are needed to characterize and quantify AgNPs in a large number of food items, both processing and not, and where AgNPs are added at the industrial level. They will provide a realistic exposure assessment, useful to understand if AgNPs toxicity levels observed in literature are close to those estimable through food consumption and implement data useful for risk assessors in developing AgNPs provisional tolerable daily intake.
Collapse
Affiliation(s)
- Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (M.F.); (C.C.)
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (M.F.); (C.C.)
- Correspondence:
| | | | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 83, 95123 Catania, Italy;
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (M.F.); (C.C.)
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (M.F.); (C.C.)
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (M.F.); (C.C.)
| |
Collapse
|
40
|
Wibowo A, Tajalla GUN, Marsudi MA, Cooper G, Asri LA, Liu F, Ardy H, Bartolo PJ. Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes ( Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds. Molecules 2021; 26:molecules26072042. [PMID: 33918502 PMCID: PMC8038213 DOI: 10.3390/molecules26072042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.
Collapse
Affiliation(s)
- Arie Wibowo
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| | - Gusti U. N. Tajalla
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
- Materials and Metallurgy Engineering, Institut Teknologi Kalimantan, Jl. Soekarno Hatta 15, Balikpapan 76127, Indonesia
| | - Maradhana A. Marsudi
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| | - Lia A.T.W. Asri
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Fengyuan Liu
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Husaini Ardy
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Paulo J.D.S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| |
Collapse
|
41
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 2021; 178:270-282. [PMID: 33647336 DOI: 10.1016/j.ijbiomac.2021.02.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
The transition-metal dichalcogenides (TMDCs) like MoS2 and WS2 are a new and interesting class of materials and show considerable promise for use in a wide variety of fields, including nanomedicine for cancer. The eco-friendly, biodegradability, toxicity, and antimicrobial activity remain an open issue. Herein, we focused on the current demands of two dimensional (2D) TMDCs and produced high-quality, few-layered MoS2 nanosheets. Noble metal Ag incorporated into the 2D-CS/MoS2 NC by the liquid exfoliated process. The manufactured CS/MoS2/Ag hybrid NC showed excellent antibacterial activity against two microorganisms such as Gram-positive (21, 27, and 33 mm) and Gram-negative bacteria (23, 30, and 39 mm). The CS/MoS2/Ag hybrid NC was designed to have significant antibacterial activity against E.coli bacteria than S.aureus. Furthermore, the hybrid NC has a 74.18% cell inhibition against MCF-7 cancer cells. According to the literature relevant, it is the first extensive experimental analysis on the nano-bio interaction of 2D TMDCs nanomaterials in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Selvam Samayanan
- Department of Chemical and Biochemical Engineering, Dongguk University, Jung-Gu, Pil-Dong, Seoul 100715, Republic of Korea
| | - Sarojini Jeeva Panchu
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Hendrik C Swart
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
42
|
Sangour MH, Ali IM, Atwan ZW, Al Ali AAALA. Effect of Ag nanoparticles on viability of MCF-7 and Vero cell lines and gene expression of apoptotic genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The newly emerged technology, nanotechnology, represents a promising solution for many medical and industrial problems. Random targeting, resistance, and side effects are the main disadvantages of the available cancer chemotherapy which are critical aspects needed to be managed. So the aim of the study was to suggest the nanoparticles as an alternative therapy for the available therapies through detecting the cytotoxic effect of Ag nanoparticles against cancer and normal cell lines and how they affect the apoptotic function and the genes involved.
Results
Ag NPs exhibited a killing rate of 40% in MCF-7 cells (the cancer cell model) at a concentration of 100 μg/ml with almost no effect on Vero cells (the normal cell model). Concerning the phenotypic apoptotic changes that were analyzed by Acridine orange and eosin and hematoxylin, Ag NPs caused the apoptosis and Vacuole degeneration as well as cell formation and the emergence of Necrotic cells in MCF-7 cells, whereas in the normal cell line Vero, no change appears in its phenotype.
Treating MCF-7 and Vero cells with Ag NPs upregulated the P53 and P21 gene expression in Vero cells, but their expression was downregulated in MCF-7 cells. PTEN was augmented in both MCF-7 and Vero cells compared to the control.
Conclusions
The AgNPs displayed selective effect in their cytotoxicity and both induced the apoptosis effect and might be suggested as a potential therapy since an increase in PTEN expression (up to 250-fold more compared to the control) due to the treatment with AgNPs augments the tumor suppressor effects of the PTEN.
Collapse
|
43
|
Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells. Endocr Regul 2021; 55:52-60. [PMID: 33600664 DOI: 10.2478/enr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and their isoflavones can be protectors against environmental stressors, but their ability to abate the adverse effects of nanoparticles has not been studied yet. In the present study, we examined the effect of silver (AgNPs) and titanium dioxide (titania, TiO2NPs) nanoparticles alone or in combination with plant phytoestrogens/antioxidants (resveratrol, diosgenin, and quercetin) on accumulation of nanoparticles, and progesterone release by cultured porcine ovarian granulosa cells.Methods. Porcine granulosa cells were incubated in the presence of AgNPs or TiO2NPs (0.1, 1, 10 or 100 µg/ml) alone or in combination with resveratrol, diosgenin or quercetin (10 µg/ml) for 48 h. The accumulation of tested nanoparticles by granulosa cells was assessed under light microscope. Progesterone concentration in culture media was measured by ELISA kit.Results. Cells accumulated both AgNPs and TiO2NPs in a dose-dependent manner. AgNPs, but not TiO2NPs, at highest dose (100 µg/ml) resulted in a destruction of cell monolayer. Both Ag-NPs and TiO2NPs reduced progesterone release. Resveratrol, diosgenin, and quercetin promoted accumulation of both AgNPs and TiO2NPs in ovarian cells and inhibited the progesterone output. Furthermore, resveratrol and diosgenin, but not quercetin, prevented the suppressive action of both AgNPs, and TiO2NPs on progesterone release.Conclusions. These observations (1) demonstrate accumulation of AgNPs and TiO2NPs in ovarian cells, (2) confirm the toxic impact of AgNPs, and TiO2NPs on these cells, (3) confirm the inhibitory effects of plant polyphenols/phytoestrogens on ovarian steroidogenesis, (4) show the ability of these isoflavones to increase the accumulation of AgNPs and TiO2NPs, and (5) show their ability to reduce the suppressive effect of AgNPs and TiO2NPs on ovarian progesterone release. The suppressive effect of AgNPs and TiO2NPs on ovarian functions should be taken into account by their exposition. However, these adverse effects could be mitigated by some plant isoflavones.
Collapse
|
44
|
Rajagopal G, Manivannan N, Sundararajan M, Kumar AG, Senthilkumar S, Mathivanan N, Ilango S. Biocompatibility assessment of silver chloride nanoparticles derived from Padina gymnospora and its therapeutic potential. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abd965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The objective of the present work was to improve the biological activity of Padina gymnospora. In the current study, silver chloride nanoparticles have been synthesized using the aqueous extract of Padina gymnospora and further characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, x-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy and atomic force microscope. Further, the hemolytic activity and eco-toxicity of silver chloride nanoparticles analyzed. The synthesized silver chloride nanoparticles were found to be mono-dispersed and spherical with an average size of 11.5–32.86 nm. The particles showed an anticancer effect in a dose-dependent manner against breast cancer cell line (MCF-7 cell lines) (IC50 = 31.37 μg ml−1). In addition, it showed the larvicidal activity against Aedes aegypti at a lower dose (3.92 μg ml−1) than that of the aqueous extract (13.01 μg ml−1). Nanoparticles also exhibited greater antimicrobial activity for both bacterial and fungal pathogens. The synthesized silver chloride nanoparticles showed a maximum zone of inhibition, i.e., 31 mm for Candida albicans followed and 27 mm for vancomycin resistance Enterococcus faecalis.The results suggest the possible use of synthesized silver nanoparticles with P. gymnospora as therapeutic agent for breast cancer, dengue vector control and as antimicrobial agent.
Collapse
|
45
|
Sirotkin AV, Bauer M, Kadasi A, Makovicky P, Scsukova S. The toxic influence of silver and titanium dioxide nanoparticles on cultured ovarian granulosa cells. Reprod Biol 2020; 21:100467. [PMID: 33278680 DOI: 10.1016/j.repbio.2020.100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
The application of metal nanoparticles in modern society is growing, but there is insufficient data concerning their influence on reproductive processes and comparison of their biological activity. The present experiments aimed to compare the effects of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) on ovarian granulosa cell functions. AgNPs and TiO2NPs were added to culture of porcine granulosa cells at doses 0, 0.01, 0.1, 1 or 10 μg/mL. The mRNAs for proliferating cell nuclear antigen (PCNA), cyclin B1, bax and caspase 3 were quantified by RT-PCR; release of progesterone was analyzed by ELISA. It was shown that both AgNPs and TiO2NPs significantly reduced all the measured parameters. ED50 of the inhibitory influence of AgNPs on the main ovarian cell parameters was higher than ED50 of TiO2NPs. The ability of AgNPs and TiO2NPs to suppress ovarian granulosa cell functions should be taken into account by their application.
Collapse
Affiliation(s)
| | - Miroslav Bauer
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic; Research Institute for Animal Production in Nitra, 951 41 Lužianky, Slovak Republic
| | - Attila Kadasi
- Constantine the Philosopher University, 949 74 Nitra, Slovak Republic
| | | | - Sona Scsukova
- Biomedical Research Center, Institute of Experimental Endocrinology Slovak Academy of Sciences, 845 05 Bratislava 4, Slovak Republic
| |
Collapse
|
46
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
47
|
Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111253. [DOI: 10.1016/j.msec.2020.111253] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
|
48
|
Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. NANO-MICRO LETTERS 2020; 13:11. [PMID: 34138198 PMCID: PMC8187688 DOI: 10.1007/s40820-020-00537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 05/05/2023]
Abstract
Cancer has nowadays become one of the leading causes of death worldwide. Conventional anticancer approaches are associated with different limitations. Therefore, innovative methodologies are being investigated, and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death. The idea is to conjugate two different components, i.e., an external physical input and nanoparticles. Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest, thus also limiting the negative outcomes for the surrounding tissues. Tuning both the properties of the nanomaterial and the involved triggering stimulus, it is possible furthermore to achieve not only a therapeutic effect, but also a powerful platform for imaging at the same time, obtaining a nano-theranostic application. In the present review, we highlight the role of nanoparticles as therapeutic or theranostic tools, thus excluding the cases where a molecular drug is activated. We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles. We perform a special focus on mechanical waves responding nanoparticles, in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.
| |
Collapse
|
49
|
Synthesis of Functional Silver Nanoparticles and Microparticles with Modifiers and Evaluation of Their Antimicrobial, Anticancer, and Antioxidant Activity. J Funct Biomater 2020; 11:jfb11040076. [PMID: 33113975 PMCID: PMC7711460 DOI: 10.3390/jfb11040076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
An accumulating body of evidence reports the synthesis and biomedical applications of silver nanoparticles. However, the studies regarding the use of maleic acid and citric acid in the synthesis of nano-sized silver particles (AgNPs) and micro-sized silver particles (AgMPs) as well as their antibacterial, antifungal, and anticancer activities have not been reported. In the current study, we synthesized AgNPs and AgMPs using maleic acid and citric acid as capping agents and have characterized them by UV-Vis, energy-dispersive X-Ray spectroscopy (EDS), X-Ray diffraction (XRD), and scanning electron microscope (SEM) analysis. The capped silver particles were examined for their antimicrobial activity and cytotoxicity against bacteria, fungi, and brine shrimp. Additionally, the anticancer activity of these particles was tested against human breast and liver cancer cell lines. The free radical scavenging activity of capped silver particles was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. SEM analysis revealed a round plate-like morphology of maleic acid capped particles with an average size of 39 ± 4 nm, whereas citric acid capped particles display flower-shaped morphology with rough surfaces and an average size of 250 ± 5 nm. The uncapped AgMPs were hexagonal with 500 ± 4 nm size. EDS and XRD analysis confirmed the presence of Ag and face-centered cubic crystalline nature, respectively. Functionally, capped silver particles exhibited antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus) and Gram-negative bacteria (Salmonella setubal, Enterobacter aerogenes, and Agrobacterium tumefaciens). The bactericidal activity was more active against Gram-negative bacteria with minimum inhibitory concentration (MIC) as low as 5 ppm as compared to 25 ppm for Gram-positive. Similarly, the silver particles demonstrated antifungal activity by inhibiting the growth of five fungal strains (Mucor species, Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, and Fusarium solani) up to 50% at the concentration of 500 ppm. Additionally, these particles showed substantial toxicity against brine shrimp and also significantly inhibited the proliferation of breast cancer (MCF7) and liver cancer (HePG2) cell lines (IC50 8.9-18.56 µM). Uncapped AgMPs were less effective, inhibiting only the proliferation of MCF7 cells with IC50 46.54 µM. Besides cytotoxicity, these particles acted as potential antioxidants, showing free radical scavenging up to 74.4% in a concentration-dependent manner. Taken together, our results showed that the modifiers affect the shape and size of silver particles and may, in part, contribute to the antimicrobial and antioxidant activity of silver particles. However, the contribution of maleic acid and citric acid in enhancing the antimicrobial, anticancer, and antioxidant potential independent of silver nano and microparticles needs to be studied further. In vivo experiments may determine the therapeutic effectiveness of silver particles capped with these modifiers.
Collapse
|
50
|
Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. NANOMATERIALS 2020; 10:nano10102082. [PMID: 33096854 PMCID: PMC7589671 DOI: 10.3390/nano10102082] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/02/2023]
Abstract
An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV-vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13-40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (-19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25-100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.
Collapse
|