1
|
Literáková P, Zavřel T, Búzová D, Kaštánek P, Červený J. Marine microalgae Schizochytrium demonstrates strong production of essential fatty acids in various cultivation conditions, advancing dietary self-sufficiency. Front Nutr 2024; 11:1290701. [PMID: 38854161 PMCID: PMC11157098 DOI: 10.3389/fnut.2024.1290701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Polyunsaturated fatty acids (PUFAs) are essential nutrients that humans obtain from their diet, primarily through fish oil consumption. However, fish oil production is no longer sustainable. An alternative approach is to produce PUFAs through marine microalgae. Despite the potential of algae strains to accumulate high concentrations of PUFAs, including essential fatty acids (EFAs), many aspects of PUFA production by microalgae remain unexplored and their current production outputs are frequently suboptimal. Methods In this study, we optimized biomass and selected ω-3 PUFAs production in two strains of algae, Schizochytrium marinum AN-4 and Schizochytrium limacinum CO3H. We examined a broad range of cultivation conditions, including pH, temperature, stirring intensity, nutrient concentrations, and their combinations. Results We found that both strains grew well at low pH levels (4.5), which could reduce bacterial contamination and facilitate the use of industrial waste products as substrate supplements. Intensive stirring was necessary for rapid biomass accumulation but caused cell disruption during lipid accumulation. Docosahexaenoic acid (DHA) yield was independent of cultivation temperature within a range of 28-34°C. We also achieved high cell densities (up to 9 g/L) and stable DHA production (average around 0.1 g/L/d) under diverse conditions and nutrient concentrations, with minimal nutrients required for stable production including standard sea salt, glucose or glycerol, and yeast extract. Discussion Our findings demonstrate the potential of Schizochytrium strains to boost industrial-scale PUFA production and make it more economically viable. Additionally, these results may pave the way for smaller-scale production of essential fatty acids in a domestic setting. The development of a new minimal culturing medium with reduced ionic strength and antibacterial pH could further enhance the feasibility of this approach.
Collapse
Affiliation(s)
- Petra Literáková
- Department of Adaptive Biotechnologies, Global Change Research Institute, The Czech Academy of Sciences, Brno, Czechia
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, The Czech Academy of Sciences, Brno, Czechia
| | - Diana Búzová
- Department of Adaptive Biotechnologies, Global Change Research Institute, The Czech Academy of Sciences, Brno, Czechia
| | | | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, The Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
2
|
Brozić D, Starčević K, Vranić M, Bošnjak K, Maurić Maljković M, Mašek T. Effect of Dietary Eicosapentaenoic and Docosahexaenoic Fatty Acid Supplementation during the Last Month of Gestation on Fatty Acid Metabolism and Oxidative Status in Charolais Cows and Calves. Animals (Basel) 2024; 14:1273. [PMID: 38731277 PMCID: PMC11083410 DOI: 10.3390/ani14091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acids (FAs) are of utmost importance in the peripartal period for the development of the central nervous and immune systems of the newborn. The transport of polyunsaturated fatty acids (PUFAs) through the placenta is considered to be minimal in ruminants. Nevertheless, the cow's FAs are the main source of FAs for the calf during gestation. This research aimed to investigate the influence of low-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation during late gestation on the FA metabolism of cows and their calves. A total of 20 Charolais cows during the last month of their gestation were included in the feeding trial and were divided into a control group (CON) and an experimental group (EPA + DHA). The latter received a supplement in the amount of 100 g/day (9.1 and 7.8 g/cow/day of EPA and DHA, respectively). Supplementation of low-dose EPA and DHA alters colostrum and milk fatty acid composition through the elevation of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) without affecting milk fat and protein concentrations and oxidative status. Plasma composition in cows was significantly altered, while the same effect was not detected in calf plasma. No significant change in mRNA expression was detected for the genes fatty acid synthase (FASN) and acetyl-CoA carboxylase alpha (ACACA).
Collapse
Affiliation(s)
- Diana Brozić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marina Vranić
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Krešimir Bošnjak
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Lei L, Lai S, Liu W, Li Y, Zhang H, Tang Y. Chlorella pyrenoidosa mitigated the negative effect of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii on Daphnia magna as a dietary supplement. Front Microbiol 2023; 14:1292277. [PMID: 38033554 PMCID: PMC10687560 DOI: 10.3389/fmicb.2023.1292277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Feeding effects are crucial for evaluating the capacity of zooplankton to regulate phytoplankton populations within freshwater ecosystems. To examine the impact of the bloom-forming cyanobacteria Raphidiopsis raciborskii, which occurs in tropical and subtropical freshwaters, on the growth of zooplankton Daphnia in relation to toxins, filament length and fatty acid content, we fed D. magna with R. raciborskii only (cylindrospermopsin (CYN)-producing and non-CYN-producing, as the negative controls), Chlorella pyrenoidosa only (as the positive control) and a mixed diet containing R. raciborskii (CYN-producing and non-CYN-producing) and C. pyrenoidosa. Consequently, our findings revealed that the toxic effect of CYN-producing R. raciborskii strains on Daphnia was mitigated by the coexistence of C. pyrenoidosa containing stearidonic acid (SDA, C18:4 ω3) in mixed diets. This was evident in the elevated survival rate compared that from diets containing only R. raciborskii and a significantly higher reproduction and population intrinsic increase rate compared to diets consisting of only R. raciborskii or C. pyrenoidos. Additionally, a strong positive correlation was observed between arachidonic acid (ARA, 20:4ω6) and the population intrinsic increase rate of Daphnia; notably, R. raciborskii strains were found to be rich in the ω6 polyunsaturated fatty acid ARA. These outcomes reinforce the crucial role of polyunsaturated fatty acids in predicting the population increase of crustacean zooplankton, which has long been neglected. Furthermore, our results underscore the potential effectiveness of zooplankton, particularly in temperate lakes, in controlling CYN-producing R. raciborskii populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Yali Tang
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
5
|
Wizenberg SB, Newburn LR, Richardson RT, Pepinelli M, Conflitti IM, Moubony M, Borges D, Guarna MM, Guzman‐Novoa E, Foster LJ, Zayed A. Environmental metagenetics unveil novel plant-pollinator interactions. Ecol Evol 2023; 13:e10645. [PMID: 37941738 PMCID: PMC10630067 DOI: 10.1002/ece3.10645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Honey bees are efficient pollinators of flowering plants, aiding in the plant reproductive cycle and acting as vehicles for evolutionary processes. Their role as agents of selection and drivers of gene flow is instrumental to the structure of plant populations, but historically, our understanding of their influence has been limited to predominantly insect-dispersed flowering species. Recent metagenetic work has provided evidence that honey bees also forage on pollen from anemophilous species, suggesting that their role as vectors for transmission of plant genetic material is not confined to groups designated as entomophilous, and leading us to ask: could honey bees act as dispersal agents for non-flowering plant taxa? Using an extensive pollen metabarcoding dataset from Canada, we discovered that honey bees may serve as dispersal agents for an array of sporophytes (Anchistea, Claytosmunda, Dryopteris, Osmunda, Osmundastrum, Equisetum) and bryophytes (Funaria, Orthotrichum, Sphagnum, Ulota). Our findings also suggest that honey bees may occasionally act as vectors for the dispersal of aquatic phototrophs, specifically Coccomyxa and Protosiphon, species of green algae. Our work has shed light on the broad resource-access patterns that guide plant-pollinator interactions and suggests that bees could act as vectors of gene flow, and potentially even agents of selection, across Plantae.
Collapse
Affiliation(s)
| | | | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | | | | | - Daniel Borges
- Ontario Beekeepers' AssociationTech‐Transfer Program, Orchard Park Office CentreGuelphOntarioCanada
| | - M. Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri‐Food CanadaBeaverlodgeAlbertaCanada
| | | | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology and Michael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
6
|
Rollin S, Gupta A, Franco CMM, Singh S, Puri M. Development of sustainable downstream processing for nutritional oil production. Front Bioeng Biotechnol 2023; 11:1227889. [PMID: 37885455 PMCID: PMC10598382 DOI: 10.3389/fbioe.2023.1227889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Nutritional oils (mainly omega-3 fatty acids) are receiving increased attention as critical supplementary compounds for the improvement and maintenance of human health and wellbeing. However, the predominant sources of these oils have historically shown numerous limitations relating to desirability and sustainability; hence the crucial focus is now on developing smarter, greener, and more environmentally favourable alternatives. This study was undertaken to consider and assess the numerous prevailing and emerging techniques implicated across the stages of fatty acid downstream processing. A structured and critical comparison of the major classes of disruption methodology (physical, chemical, thermal, and biological) is presented, with discussion and consideration of the viability of new extraction techniques. Owing to a greater desire for sustainable industrial practices, and a desperate need to make nutritional oils more available; great emphasis has been placed on the discovery and adoption of highly sought-after 'green' alternatives, which demonstrate improved efficiency and reduced toxicity compared to conventional practices. Based on these findings, this review also advocates new forays into application of novel nanomaterials in fatty acid separation to improve the sustainability of nutritional oil downstream processing. In summary, this review provides a detailed overview of the current and developing landscape of nutritional oil; and concludes that adoption and refinement of these sustainable alternatives could promptly allow for development of a more complete 'green' process for nutritional oil extraction; allowing us to better meet worldwide needs without costing the environment.
Collapse
Affiliation(s)
- Samuel Rollin
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Christopher M. M. Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Megawati G, Indraswari N, Johansyah AA, Kezia C, Herawati DMD, Gurnida DA, Musfiroh I. Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6734. [PMID: 37754594 PMCID: PMC10530835 DOI: 10.3390/ijerph20186734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Obesity and central obesity are associated with dire conditions, such as metabolic syndrome, in which low-grade inflammation plays a part. C-reactive protein (CRP) is an inflammatory marker found to be elevated in those conditions. Omega-3 fatty acids work against inflammation and lower CRP levels in obese individuals. This study compared high-sensitivity CRP (hs-CRP) in adult obesity and central obesity in Indonesia based on omega-3 fatty acid intake using Indonesian Family Life Survey (IFLS) 5 data. Secondary data from household questionnaires were obtained from the IFLS 5 online database. Data from 3152 subjects were used; 76.65% of the subjects were female, with a mean age of 45.27 ± 15.77 years. Subjects were classified into five modified categories of obesity and central obesity based on body mass index (BMI) and waist circumference (WC). Omega-3 fatty acid intake was categorized into "low" and "adequate" based on dietary recommendations from the Mediterranean Diet Foundation (2011). There is a significant difference in hs-CRP based on modified obesity categories (p < 0.05). There was no significant difference in hs-CRP between low and adequate omega-3 intake (p > 0.05). These data suggest that hs-CRP is related to overweight, obesity, and central obesity. Meanwhile, omega-3 fatty acids are unrelated to hs-CRP. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Ginna Megawati
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Noormarina Indraswari
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Capella Kezia
- Medical Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Dida Achmad Gurnida
- Department of Child Health, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis dan Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Giovannini M, Beken B, Buyuktiryaki B, Barni S, Liccioli G, Sarti L, Lodi L, Pontone M, Bartha I, Mori F, Sackesen C, du Toit G, Lopata AL, Muraro A. IgE-Mediated Shellfish Allergy in Children. Nutrients 2023; 15:2714. [PMID: 37375617 DOI: 10.3390/nu15122714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Burcin Beken
- Department of Pediatric Allergy & Immunology, School of Medicine, Acibadem University, 34303 Istanbul, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulia Liccioli
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- Immunology Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Matteo Pontone
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Bartha
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Cansin Sackesen
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE5 9NU, UK
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Mother and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
9
|
Maurício T, Couto D, Lopes D, Conde T, Pais R, Batista J, Melo T, Pinho M, Moreira ASP, Trovão M, Barros A, Cardoso H, Silva J, Domingues P, Domingues MR. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023; 12:foods12081625. [PMID: 37107420 PMCID: PMC10137388 DOI: 10.3390/foods12081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6 PUFAs. C-Hetero and C-Honey showed a higher content of triacylglycerols. All extracts showed antioxidant and anti-inflammatory activity, highlighting C-Auto with greater potential. Overall, the four strains of C. vulgaris can be selectively chosen as a source of added-value lipids to be used as ingredients in food and nutraceutical applications for different market needs and nutritional requirements.
Collapse
Affiliation(s)
- Tatiana Maurício
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Romão B, Botelho RBA, Torres ML, Maynard DDC, de Holanda MEM, Borges VRP, Raposo A, Zandonadi RP. Nutritional Profile of Commercialized Plant-Based Meat: An Integrative Review with a Systematic Approach. Foods 2023; 12:448. [PMID: 36765980 PMCID: PMC9914738 DOI: 10.3390/foods12030448] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Given the high cost of production of animal-based meats and the increase in the number of adepts of meatless diets, the need for plant-based meat substitutes is growing. In this prosperously growing market, there is a lack of knowledge about the nutritional value of these meat substitutes and their ingredients. This study aims to review the nutritional composition and ingredients of meat substitutes commercialized worldwide. An integrative review was performed with a systematic literature search in PubMed, EMBASE, Scopus, Science Direct, Web of Science, and 11 studies were selected to compose the sample of this review. Data on meat substitutes' nutritional composition and ingredients from different categories were collected and analyzed. The results showed that meat substitutes commonly present lower energy values and higher amounts of carbohydrates and dietary fiber. Protein values varied according to the meat substitute category, with some showing a higher concentration than others, more specifically in substitutes for bovine meat. Higher values were found in the Pieces category and lower in Seafood substitutes. Unlike animal meat, vegan meat has a proportion of carbohydrates higher than protein in most samples, except for chicken substitutes. Meat substitutes presented similar total and saturated fat content compared to their animal-based counterparts. Higher amounts of fat were found in the "Various" category and lower in "Pieces". Ingredients such as soy, pea, and wheat were the primary protein sources in meat substitutes, and vegetable oils were their primary fat source. Methylcellulose, various gums, and flavorings were the most used food additives. In general, meat substitutes presented high concentrations of sodium, possibly collaborating with an excessive sodium intake, highlighting the need for developing sodium-reduced or sodium-free alternatives. Most of the included samples did not describe the concentration of iron, zinc, and vitamin B12. Further studies are needed to develop meat substitutes with better nutritional composition, fulfilling the need for equivalent substitutes for animal-based meat.
Collapse
Affiliation(s)
- Bernardo Romão
- Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil
| | | | - Maria Luiza Torres
- Faculty of Health Sciences, University Center of Brasilia (CEUB), Brasília 70790-075, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | | |
Collapse
|
11
|
Singh M, Mollier RT, Patton RN, Pongener N, Bordoloi LJ, Kumar R, Katiyar R, Khan MH, Rajkhowa D, Mishra VK. Linseed oil in boar's diet improved in vivo fertility and antioxidant status. Reprod Domest Anim 2023; 58:27-38. [PMID: 36069223 DOI: 10.1111/rda.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
The reactive oxygen species (ROS) which are produced during storage of boar semen are causing oxidative stress and leads to poor fertility. Also, tropical and sub-tropical weather condition adversely impacts the physicomorphological quality and fertility of boar sperm. The aim of this study was to examine the effects of feeding linseed oil to boar on its seminal attributes, sperm kinetics, biomarkers of antioxidant, fatty acid profile of seminal plasma (SP) and sperm and in vivo fertility. Six Hampshire crossbreed boars were fed with 90 ml linseed oil (LIN) whereas six Hampshire crossbreed boars were fed 90 ml canola oil (CON) for 16 weeks. Sperm quality was evaluated (60 ejaculates for each group; a total of 120 ejaculates) for motility, livability, abnormal morphology, acrosomal membrane integrity, hypo-osmotic swelling test (HOST) and sperm kinetic parameters by computer assisted semen analysis (CASA) at 0 h and at 72 h of storage at 17°C. Biomarkers of antioxidant (glutathione peroxidase; GPx, catalase; CAT, total antioxidant capacity; TAC) and malondialdehyde (MDA) were measured in SP and serum. Gas chromatography-mass spectrometry (GC-MS) was used for the estimation of fatty acid composition of SP and sperm. Boars fed with linseed oil had higher semen volume (p < .01) and more total sperm numbers (p < .01). Feeding linseed oil to boar enhanced seminal attributes (p < .05) at 0 h as well as at 72 h of storage. Linseed oil feeding (p < .01) improved biomarkers of antioxidants and significantly (p < .01) lowered the lipid peroxidation in serum and SP. Linseed oil feeding (p < .05) increased the proportion of alpha linolenic (ALA), arachidonic and docosahexaenoic (DHA) fatty acids in SP. The ratio of n-6 to n-3 fatty acids in sperm increased significantly (p < .01) in treatment group. Farrowing rate was significantly (p < .05) higher in treatment group. In conclusion, feeding linseed oil to boar improved the in vivo fertility, enhanced antioxidant capacity and increased the DHA content of SP and sperm.
Collapse
Affiliation(s)
- Mahak Singh
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | | | - Renphamo Nzanthung Patton
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | - Nungshitula Pongener
- Animal Reproduction Laboratory, ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | | | - Rakesh Kumar
- Division of Animal Health and Fisheries Science, ICAR Research Complex for NEH Region, Umiam, Meghala, India
| | - Rahul Katiyar
- Division of Animal Health and Fisheries Science, ICAR Research Complex for NEH Region, Umiam, Meghala, India
| | - Meraj Haider Khan
- ICAR - National Research Centre on Mithun, Medziphema, Nagaland, India
| | - Dipjayoti Rajkhowa
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India
| | | |
Collapse
|
12
|
Xiao X, Li W, Jin M, Zhang L, Qin L, Geng W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105805. [PMID: 36375224 DOI: 10.1016/j.marenvres.2022.105805] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae, the primary producers in water ecosystems, are the main food of fish and shrimp. Microalgae have a great capacity to absorb heavy metals, and low concentrations of heavy metals can promote the growth of them. But high concentrations have a strong influence on the physiological and biochemical processes in algae, such as growth, photosynthesis, cell ultrastructure, protein content and fatty acid composition. Heavy metals may also induce the formation of reactive oxygen species (ROS), which causes the oxidation damage of protein, lipid and thiol peptides, and activates the antioxidant system. Heavy metals can be removed or converted into another state by biosorption of cell surface, accumulation in cells, combining with antioxidant enzymes and so on. This review summarized the responses of microalgae to heavy metals and comprehensively described the removal and tolerance mechanisms by extracellular adsorption and intracellular accumulation, which are helpful to treat pollution and improve the culture of microalgae.
Collapse
Affiliation(s)
- Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Wenfang Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Meng Jin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Liguo Qin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Weiwei Geng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
13
|
Ferreira I, Rauter AP, Bandarra NM. Marine Sources of DHA-Rich Phospholipids with Anti-Alzheimer Effect. Mar Drugs 2022; 20:662. [PMID: 36354985 PMCID: PMC9695993 DOI: 10.3390/md20110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive disease, which affects millions of people around the world. Despite the many efforts over the years to find efficient therapeutics, there is no cure yet. Nonetheless, many compounds have been proven to decrease Alzheimer's symptoms. After a short overview of the hypotheses considered in AD drug development and the drugs approved for AD treatment, which lead to symptom release, we focus on the valorization of natural marine sources that decrease AD symptoms, particularly on docosahexaenoic acid (DHA), an important component in membrane phospholipids and the most abundant n-3 polyunsaturated fatty acids (PUFA) found in gray matter of the brain and in retina and on the DHA-containing phospholipids (DHA-PLs) present in marine sources, namely fish, krill, mollusks and in fisheries and aquaculture by-products. DHA-PLs' bioactivities are presented, namely their properties in anti-neurodegeneration, neuroinflammation, as anticancer agents, as well as their benefits to obesity and visual problems. Fisheries and aquaculture by-products are also highlighted as they have a high content of DHA and DHA-rich phospholipids, can be extracted by green methodologies and should be considered in a circular economy for a healthy sustainable future.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| |
Collapse
|
14
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
15
|
Isolation of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid - EPA and docosahexaenoic acid - DHA) from diatom biomass using different extraction methods. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Inal A, Yenipazar H, Şahin-Yeşilçubuk N. Preparation and characterization of nanoemulsions of curcumin and echium oil. Heliyon 2022; 8:e08974. [PMID: 35243093 PMCID: PMC8861391 DOI: 10.1016/j.heliyon.2022.e08974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
The search for the plant origin bioactive compounds is increasing over animal origin compounds. Echium oil (EO) contains high amounts of plant based omega-3 fatty acids. Moreover, curcumin addition may increase the release of these omega-3 fatty acids during digestion. The study's objective is to determine the bioaccessibility of curcumin in simulated intestinal digestion conditions and the release behavior of fatty acids of echium oil from nanoemulsions. We prepared curcumin and EO nanoemulsions with a microfluidizer using two different concentrations of surfactant, Tween 80 (5% and 10%). Emulsion stability tests, antioxidant analysis, in vitro oil release and fatty acid composition assays were conducted. Results showed that curcumin-containing nanoemulsions provide higher radical scavenging activity than the EO nanoemulsions. In addition, in vitro bioaccessibility of curcumin after in vitro simulated intestinal digestion was calculated as 35.5%. Gas chromatography results of the digested nanoemulsions revealed that curcumin addition decreases oleic acid release while increasing stearidonic acid (SDA) release. Curcumin addition increased antioxidant activities of EO nanoemulsions. Curcumin incorporated nanoemulsions had significantly higher SDA content after in vitro digestion. In nanoemulsion form, in vitro curcumin bioaccessibility was 35.5%.
Collapse
|
17
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
19
|
Life cycle assessment of industrial production of microalgal oil from heterotrophic fermentation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Jamshidi-Naeini Y, Moyo G, Napier C, Oldewage-Theron W. Food and beverages undermining elderly health: three food-based dietary guidelines to avoid or delay chronic diseases of lifestyle among the elderly in South Africa. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2021. [DOI: 10.1080/16070658.2021.1947039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Gugulethu Moyo
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Carin Napier
- Department of Food & Nutrition Consumer Sciences, Durban University of Technology, Durban, South Africa
- Centre for Longitudinal Research, The University of Auckland, Auckland, New Zealand
| | - Wilna Oldewage-Theron
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Sustainable Food Systems and Development, Free State University, Bloemfontein, South Africa
| |
Collapse
|
21
|
Messina M, Shearer G, Petersen K. Soybean oil lowers circulating cholesterol levels and coronary heart disease risk, and has no effect on markers of inflammation and oxidation. Nutrition 2021; 89:111343. [PMID: 34171740 DOI: 10.1016/j.nut.2021.111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
To reduce risk of coronary heart disease, replacement of saturated fats (SFAs) with polyunsaturated fats (PUFA) is recommended. Strong and concordant evidence supports this recommendation, but controversy remains. Some observational studies have reported no association between SFAs and coronary heart disease, likely because of failure to account for the macronutrient replacing SFAs, which determines the direction and strength of the observed associations. Controversy also persists about whether ω-6 (nω-6) PUFA or a high dietary ratio of nω-6 to ω-3 (nω-3) fatty acids leads to proinflammatory and pro-oxidative states. These issues are relevant to soybean oil, which is the leading edible oil consumed globally and in the United States. Soybean oil accounts for over 40% of the US intake of both essential fatty acids. We reviewed clinical and epidemiologic literature to determine the effects of soybean oil on cholesterol levels, inflammation, and oxidation. Clinical evidence indicates that soybean oil does not affect inflammatory biomarkers, nor does it increase oxidative stress. On the other hand, it has been demonstrated that when dietary SFAs are replaced with soybean oil, blood cholesterol levels are lowered. Regarding the nω-6:nω-3 dietary ratio, health agencies have consistently rejected the importance of this ratio, instead emphasizing the importance of consuming sufficient amounts of each type of fat. Thus, several lines of evidence indicate that soybean oil can positively contribute to overall health and reduction of risk of coronary heart disease.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusetts, USA.
| | - Gregory Shearer
- Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
22
|
Long-term dietary supplementation with plant-derived omega-3 fatty acid improves outcome in experimental ischemic stroke. Atherosclerosis 2021; 325:89-98. [PMID: 33915355 DOI: 10.1016/j.atherosclerosis.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Early revascularization -the gold standard therapy for ischemic stroke- is often withheld in the elderly population due to high risk of complications. Thus, safe and effective preventive and therapeutic options are needed. The plant-derived omega-3-fatty-acid alpha-linolenic-acid (ALA) has emerged as a novel cardiovascular-protective agent. As of yet, little is known about its potential therapeutic effects on stroke. We hereby aimed to investigate the impact of a clinically relevant long-term dietary intervention with ALA on stroke outcome. METHODS Six month-old C57BL/6 wildtype males were either fed an ALA-rich (high ALA) or a control diet (low ALA) for 12 months. At 18 months, brain ischemia/reperfusion was induced by transient middle cerebral artery occlusion (tMCAO). Stroke size and neurological function were assessed. Functional blood-brain-barrier-(BBB) permeability and protein expression were assessed by immunohistochemistry. Baseline inflammatory markers were measured at 18 months. RESULTS High ALA-fed animals displayed decreased circulating TNF-α levels and Neutrophil-to-Lymphocyte Ratios at 18 months. Stroke size and neurological dysfunction were significantly reduced in high ALA-fed animals. Coherently to the reduced stroke size, functional BBB integrity and occludin endothelial expression were maintained by high ALA supplementation. Additionally, ALA reduced endothelial activation and thus recruitment and activation of macrophages and resident microglia. Finally, high ALA diet reduced the expression of BBB-degrading and neurotoxic MMP-3 and MMP-9. CONCLUSIONS We demonstrate the beneficial effects of a clinically relevant and feasible dietary intervention with a safe and readily available compound in the setting of stroke. The protective effects observed with ALA supplementation may relate to blunting of inflammation and might pave the way for novel stroke treatments.
Collapse
|
23
|
Ren X, Vilhjálmsdóttir BL, Rohde JF, Walker KC, Runstedt SE, Lauritzen L, Heitmann BL, Specht IO. Systematic Literature Review and Meta-Analysis of the Relationship Between Polyunsaturated and Trans Fatty Acids During Pregnancy and Offspring Weight Development. Front Nutr 2021; 8:625596. [PMID: 33842522 PMCID: PMC8027310 DOI: 10.3389/fnut.2021.625596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and trans fatty acids (TFAs) may have an impact on offspring weight development. We conducted a systematic review and meta-analysis according to PRISMA guidelines to evaluate whether levels of these fatty acids during pregnancy influenced offspring weight development. Randomized controlled trials (RCTs) with DHA and/or EPA supplementation or cohort studies, which examined levels of DHA, EPA, or TFAs in maternal or neonatal blood samples and recorded offspring weight, were included. Overall, 27 RCTs and 14 observational studies were identified. The results showed that DHA and/or EPA supplementation doses >650 mg/day resulted in slightly higher birth weight (MD 87.5 g, 95% CI 52.3-122.6, n = 3,831) and combined BMI and BMI z score at 5-10 years (SMD 0.11, 95% CI 0.04-0.18, n = 3,220). These results were rated as moderate quality. Results from the observational studies were generally inconsistent. High TFA levels during pregnancy seemed to be associated with lower birth weight. Finally, this review and meta-analysis supports a relationship between high maternal or neonatal DHA and/or EPA levels and higher offspring birth weight and weight in childhood. More high-quality long-term studies are still needed.
Collapse
Affiliation(s)
- Xuan Ren
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitta Lind Vilhjálmsdóttir
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jeanett Friis Rohde
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen Christina Walker
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Suzanne Elizabeth Runstedt
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Paediatric and International Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Sydney Medical School, The Boden Institute of Obesity, Nutrition, Exercise, and Eating Disorders, Sydney University, Sydney, NSW, Australia
- Section for General Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ina Olmer Specht
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Sinetova MA, Sidorov RA, Starikov AY, Voronkov AS, Medvedeva AS, Krivova ZV, Pakholkova MS, Bachin DV, Bedbenov VS, Gabrielyan DA, Zayadan BK, Bolatkhan K, Los DA. Assessment of the Biotechnological Potential of Cyanobacterial and Microalgal Strains from IPPAS Culture Collection. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820070030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Potential Anti-Aging Substances Derived from Seaweeds. Mar Drugs 2020; 18:md18110564. [PMID: 33218066 PMCID: PMC7698806 DOI: 10.3390/md18110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.
Collapse
|
26
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
27
|
A Mixture of Algae and Extra Virgin Olive Oils Attenuates the Cardiometabolic Alterations Associated with Aging in Male Wistar Rats. Antioxidants (Basel) 2020; 9:antiox9060483. [PMID: 32503213 PMCID: PMC7346162 DOI: 10.3390/antiox9060483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly. In addition, EVOO constitutes an interesting ingredient to stabilize ω-3 PUFA and decrease their oxidation process due to its high content in antioxidant compounds. ω-3 PUFA are commonly obtained from fish. However, more ecological and sustainable sources, such as algae oil (AO) can also be used. In this study, we aimed to study the possible beneficial effect of an oil mixture composed by EVOO (75%) and AO (25%) rich in ω-3 PUFA (35% docosahexaenoic acid (DHA) and 20% eicosapentaenoic acid (EPA)) on the cardiometabolic alterations associated with aging. For this purpose; young (three months old) and old (24 months old) male Wistar rats were treated with vehicle or with the oil mixture (2.5 mL/kg) for 21 days. Treatment with the oil mixture prevented the aging-induced increase in the serum levels of saturated fatty acids (SFA) and the aging-induced decrease in the serum concentrations of mono-unsaturated fatty acids (MUFA). Old treated rats showed increased serum concentrations of EPA and DHA and decreased HOMA-IR index and circulating levels of total cholesterol, insulin and IL-6. Treatment with the oil mixture increased the mRNA levels of antioxidant and insulin sensitivity-related enzymes, as well as reduced the gene expression of pro-inflammatory markers in the liver and in cardiac and aortic tissues. In addition, the treatment also prevented the aging-induced endothelial dysfunction and vascular insulin resistance through activation of the PI3K/Akt pathway. Moreover, aortic rings from old rats treated with the oil mixture showed a decreased response to the vasoconstrictor AngII. In conclusion, treatment with a mixture of EVOO and AO improves the lipid profile, insulin sensitivity and vascular function in aged rats and decreases aging-induced inflammation and oxidative stress in the liver, and in the cardiovascular system. Thus, it could be an interesting strategy to deal with cardiometabolic alterations associated with aging.
Collapse
|
28
|
Orozco Colonia BS, Vinícius de Melo Pereira G, Soccol CR. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Islam A, Takeyama E, Mamun MA, Sato T, Horikawa M, Takahashi Y, Kikushima K, Setou M. Green Nut Oil or DHA Supplementation Restored Decreased Distribution Levels of DHA Containing Phosphatidylcholines in the Brain of a Mouse Model of Dementia. Metabolites 2020; 10:metabo10040153. [PMID: 32316172 PMCID: PMC7240946 DOI: 10.3390/metabo10040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia is a major public health concern nowadays. Reduced levels of brain docosahexaenoic acid (DHA) and DHA-phosphatidylcholines (DHA-PCs) in dementia patients were reported previously. Recently, we have reported that supplementation of green nut oil (GNO) or DHA improves memory function and distribution levels of brain DHA in senescence accelerated mice P8 (SAMP8). GNO is extracted from Plukenetia volubilis seeds, and SAMP8 is a well-known model mouse of dementia. In this current study, we examined the results of GNO or DHA supplementation in the distribution levels of brain DHA-PCs in same model mouse of dementia using desorption electrospray ionization (DESI) mass spectrometry imaging (MSI). We observed significantly decreased distribution of brain DHA-PCs, PC (16:0_22:6), and PC (18:0_22:6) in SAMP8 mice compared to wild type mice, and GNO or DHA treatment restored the decreased distribution levels of PC (16:0_22:6) and PC (18:0_22:6) in the brain of SAMP8 mice. These results indicate that GNO or DHA supplementation can ameliorate the decreased distribution of brain DHA-PCs in dementia, and could be potentially used for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan;
- Institute of Women’s Health Sciences, Showa Women’s University, Taishido, Setagaya-ku, Tokyo 154-8533, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (A.I.); (M.A.M.); (T.S.); (M.H.); (Y.T.); (K.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086
| |
Collapse
|
30
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
31
|
Charles CN, Swai H, Msagati T, Chacha M. Development of a Natural Product Rich in Bioavailable Omega-3 DHA from Locally Available Ingredients for Prevention of Nutrition Related Mental Illnesses. J Am Coll Nutr 2020; 39:720-732. [PMID: 32191568 DOI: 10.1080/07315724.2020.1727381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: Poor mental health remains a serious public concern worldwide. The most vulnerable individuals are children and adolescents in developing countries. Nutritional deficiency of long-chain omega-3 fatty acids, particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have long been recognized as a major contributing factor for mental health illnesses. Provision of ready-to-use natural product rich in preformed Omega-3 DHA and EPA could address this problem. However, most commonly used products are expensive and contain less or no preformed Omega-3 DHA and EPA, making them less suitable for prevention of mental illnesses in resource-poor countries. The main objective of this study was to develop a natural product rich in preformed Omega-3 DHA and EPA from locally available ingredients.Methods: Linear programing (LP) was used to formulate a natural product rich in preformed Omega-3 DHA and other essential nutrients using locally available ingredients other than fish and dairy products. Laboratory analysis was then performed to validate the nutritional value of the LP-formulation using standard analytical methods. The relative difference between the LP tool calculated values, and the laboratory-analyzed values were calculated. Sensory testing was also done to evaluate consumer acceptance of the final product.Results: Optimal formulation contained about 220 mg of preformed Omega-3 DHA + EPA, enough to meet the RDI for children aged 2-10 years. The LP analysis further showed that the cost of the developed product is USD 0.15/100 g, which is 50% lower than that of Plumpy'nut. Laboratory analysis revealed similar results as that of LP at P = 0.05.Conclusions: These findings indicate that ready-to-use natural food rich in preformed DHA and EPA can be developed from locally available ingredients.
Collapse
Affiliation(s)
- Christina N Charles
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Hulda Swai
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Titus Msagati
- College of Science, Engineering and Technology, University of South Africa (UNISA), Pretoria, South Africa
| | - Musa Chacha
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
32
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
33
|
Adamowicz K, Kucharska-Mazur J. Dietary Behaviors and Metabolic Syndrome in Schizophrenia Patients. J Clin Med 2020; 9:jcm9020537. [PMID: 32079084 PMCID: PMC7073719 DOI: 10.3390/jcm9020537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MS) is highly prevalent in schizophrenia patients, resulting from both pharmacotherapy and their lifestyle. To avoid its development, the analysis of patients' eating behaviors followed by the necessary nutritional changes should become a routine element of treatment. The aim of this study is to investigate the effect of dietary habits on the course of schizophrenia and MS, cognitive performance, symptom severity, and subjective assessment of eating behaviors in schizophrenia patients. Total of 87 participants (63.2% women) aged 19 to 67 years (M = 41.67; SD = 12.87), of whom 60 met the IDF criteria for MS, completed the PANSS, the verbal fluency test, the Stroop Color-Word Test, and the digit span task, followed by a thorough nutritional interview. There were no significant differences in the dietary behaviors between investigated schizophrenia patients with and without comorbid MS. Interestingly, their eating habits compared quite favorably to those described in the literature. No associations were found between positive eating habits and other tested variables in patients with MS. They were, however, linked to lower PANSS scores in the entire sample. In addition, positive eating habits correlated with better cognitive performance and a more adequate subjective assessment of dietary habits. It would be amiss to assume that schizophrenia patients lack the ability to control their eating behaviors. Nutrition education may foster desirable dietary changes and improve the sense of agency, thus helping to reduce symptom severity and enhancing cognitive performance in this patient population.
Collapse
|
34
|
Rizzo G, Laganà AS. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020; 10:biom10020219. [PMID: 32024302 PMCID: PMC7072208 DOI: 10.3390/biom10020219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids and B vitamins are linked to metabolic and degenerative disorders, such as cardiovascular disease and cognitive decline. In the last two decades, the interplay between B vitamins and omega-3 polyunsaturated fatty acids gained increasing attention. Expression control on enzymes involved in the pathway of homocysteine by polyunsaturated fatty acids has been proposed. The methylation process seems crucial for the metabolism of polyunsaturated fatty acids and their distribution within the body. This review summarizes the available data in humans about the link between homocysteine and omega-3 polyunsaturated fatty acids, with a special focus on the meta-analyses of randomized clinical trials. Even if the paucity of available information about the topic does not allow for definitive conclusions, a synergic action between polyunsaturated fatty acids and B vitamins may play a key role in regulating several metabolic pathways. This element could explain a stronger action on homocysteine levels when omega-3 polyunsaturated fatty acids and B vitamins are supplemented simultaneously. To date, a robust rationale of intervention to prevent metabolic diseases is lacking and could be beneficial for individual health and healthcare policy.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
- Correspondence: ; Tel.: +39-3208-976-687
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
35
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, Esteban Cerdán L, González Moreno PA, Navarro López E, Hita Peña E, Grima EM. Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis gaditana microalgal biomass using ethanol, hexane and acetone. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Highly stable spray dried tuna oil powders encapsulated in double shells of whey protein isolate-agar gum and gellan gum complex coacervates. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.07.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Zare T, Rupasinghe TW, Boughton BA, Roessner U. The changes in the release level of polyunsaturated fatty acids (ω-3 and ω-6) and lipids in the untreated and water-soaked chia seed. Food Res Int 2019; 126:108665. [DOI: 10.1016/j.foodres.2019.108665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/24/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022]
|
38
|
Souza CMM, de Lima DC, Bastos TS, de Oliveira SG, Beirão BCB, Félix AP. Microalgae Schizochytrium sp. as a source of docosahexaenoic acid (DHA): Effects on diet digestibility, oxidation and palatability and on immunity and inflammatory indices in dogs. Anim Sci J 2019; 90:1567-1574. [PMID: 31680401 DOI: 10.1111/asj.13294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the effects of the microalgae Schizochytrium sp., as a dietary source of docosahexaenoic acid (DHA), on diet palatability, coefficients of total tract apparent digestibility (CTTAD) of nutrients and metabolizable energy (ME), blood variables and indicators of immunity in dogs. We also evaluated oxidative stability. Two diets containing 0 and 0.4% of microalgae Schizochytrium sp. were evaluated in three experiments. On Experiment I the palatability of diets containing 0% versus 0.4% microalgae was compared. In Experiment II test diets were offered for 30 days to determine digestibility, fecal characteristics, and blood parameters. In Experiment III, the oxidative stability of diets containing microalgae versus anchovy oil was evaluated. There was a higher intake ratio of the diet containing microalgae (p < .05). The ME and CTTAD of nutrients increased (p < .05), except for ether extract after acid hydrolysis, with the inclusion of the microalgae in diet. The amount of monocytes and phagocytic granulocytes was higher (p < .05) in dogs fed 0.4% microalgae. There was greater oxidative stability for the sample containing microalgae. The addition of 0.4% microalgae presented high palatability, increased phagocytic cell numbers, and demonstrated oxidative stability superior to anchovy oil.
Collapse
Affiliation(s)
| | | | - Taís Silvino Bastos
- Department of Animal Science, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
39
|
|
40
|
Charles CN, Msagati T, Swai H, Chacha M. Microalgae: An alternative natural source of bioavailable omega-3 DHA for promotion of mental health in East Africa. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
Microwave-assisted three-liquid-phase salting-out extraction of docosahexaenoic acid (DHA)-rich oil from cultivation broths of Schizochytrium limacinium SR21. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Takeyama E, Islam A, Watanabe N, Tsubaki H, Fukushima M, Mamun MA, Sato S, Sato T, Eto F, Yao I, Ito TK, Horikawa M, Setou M. Dietary Intake of Green Nut Oil or DHA Ameliorates DHA Distribution in the Brain of a Mouse Model of Dementia Accompanied by Memory Recovery. Nutrients 2019; 11:E2371. [PMID: 31590339 PMCID: PMC6835595 DOI: 10.3390/nu11102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has significant healthbenefits. Previous studies reported decreased levels of DHA and DHA-containing phosphatidylcholines inthe brain of animals suffering from Alzheimer's disease, the most common type of dementia; furthermore,DHA supplementation has been found to improve brain DHA levels and memory efficiency in dementia. Oilextracted from the seeds of Plukenetia volubilis (green nut oil; GNO) is also expected to have DHA like effectsas it contains approximately 50% α-linolenic acid, a precursor of DHA. Despite this, changes in the spatialdistribution of DHA in the brain of animals with dementia following GNO or DHA supplementation remainunexplored. In this study, desorption electrospray ionization imaging mass spectrometry (DESI-IMS) wasapplied to observe the effects of GNO or DHA supplementation upon the distribution of DHA in the brain ofmale senescence-accelerated mouse-prone 8 (SAMP8) mice, a mouse model of dementia. DESI-IMS revealedthat brain DHA distribution increased 1.85-fold and 3.67-fold in GNO-fed and DHA-fed SAMP8 mice,respectively, compared to corn oil-fed SAMP8 mice. Memory efficiency in SAMP8 mice was also improvedby GNO or DHA supplementation. In summary, this study suggests the possibility of GNO or DHAsupplementation for the prevention of dementia.
Collapse
Affiliation(s)
- Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Nakamichi Watanabe
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Hiroe Tsubaki
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa-si, Tokyo 190-8562, Japan.
| | - Masako Fukushima
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Ikuko Yao
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Takashi K Ito
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
43
|
Oxidomics on the omega-3 volatile degradation pattern to determine differences between vegetable and marine oils. Food Res Int 2019; 122:10-15. [DOI: 10.1016/j.foodres.2019.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
|
44
|
Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Mitchell T, Clarke L, Goldberg A, Bishop KS. Pancreatic Cancer Cachexia: The Role of Nutritional Interventions. Healthcare (Basel) 2019; 7:healthcare7030089. [PMID: 31323984 PMCID: PMC6787643 DOI: 10.3390/healthcare7030089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a cancer with one of the highest mortality rates and many pancreatic cancer patients present with cachexia at diagnosis. The definition of cancer cachexia is not consistently applied in the clinic or across studies. In general, it is “defined as a multifactorial syndrome characterised by an ongoing loss of skeletal muscle mass with or without loss of fat mass that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment.” Many regard cancer cachexia as being resistant to dietary interventions. Cachexia is associated with a negative impact on survival and quality of life. In this article, we outline some of the mechanisms of pancreatic cancer cachexia and discuss nutritional interventions to support the management of pancreatic cancer cachexia. Cachexia is driven by a combination of reduced appetite leading to reduced calorie intake, increased metabolism, and systemic inflammation driven by a combination of host cytokines and tumour derived factors. The ketogenic diet showed promising results, but these are yet to be confirmed in human clinical trials over the long-term. L-carnitine supplementation showed improved quality of life and an increase in lean body mass. As a first step towards preventing and managing pancreatic cancer cachexia, nutritional support should be provided through counselling and the provision of oral nutritional supplements to prevent and minimise loss of lean body mass.
Collapse
Affiliation(s)
- Toni Mitchell
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lewis Clarke
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Alexandra Goldberg
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Karen S Bishop
- Department of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
46
|
Jangprai A, Boonanuntanasarn S. Ubiquitous Promoters Direct the Expression of Fatty Acid Delta-6 Desaturase from Nile Tilapia (Oreochromis niloticus) in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 2019; 28:281-292. [PMID: 31234173 DOI: 10.1159/000499568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
In general, promoters have significant influence on recombinant protein production. Herein, we compared the performance of actin (pACT), phosphoglycerate kinase (pPGK), and translational elongation factor (pTEF) promoters for driving the expression of fatty acid delta-6 (Δ6) desaturase from Nile tilapia (Oreochromis niloticus; Oni-fads2) in Saccharomyces cerevisiae. Our results showed that by applying real-time RT-PCR, the highest level of Oni-fads2 mRNA was observed in S. cerevisiae carrying the expression vector driven by pTEF promoters. Exogenous substrate C18:2n-6 was used to determine Δ6 activity by quantitatively determining the C18:3n-6 product. The results showed that highest Δ6 desaturation was observed when using pTEF as a promoter. Recombinant S. cerevisiae cells expressing Oni-fads2 driven by pTEF were tested with the substrate C18:3n-3, and Δ6 desaturation efficiently converted C18:3n-3 to C18:4n-3. Furthermore, crude extract of recombinant yeast also exhibited Δ6 activity. Thus, recombinant S. cerevisiae cells expressing Oni-fads2 driven by the pTEF promoter have potential as a yeast factory for the sustainable production of long-chain polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Araya Jangprai
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand,
| |
Collapse
|
47
|
Tinti E, Geay F, Lopes Rodrigues M, Kestemont P, Perpète EA, Michaux C. Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch ( Perca fluviatilis). 3 Biotech 2019; 9:242. [PMID: 31168435 PMCID: PMC6542919 DOI: 10.1007/s13205-019-1773-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
The European perch (Perca fluviatilis) is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis. Structural information on European perch enzyme converting PUFA into HUFA is obtained by both molecular cloning and in silico characterization of an ELOVL5-like elongase from P. fluviatilis (pfELOVL). The full-length cDNA sequence consists of a 885-base pair Open Reading Frame coding for a 294-amino acid protein. Phylogenetic analysis and sequence alignment with fish elongases predict the pfELOVL clusters within the ELOVL5 sub-group. The amino-acid sequence displays the typical ELOVL features: several transmembrane α helices (TMH), an endoplasmic reticulum (ER) retention signal, and four "conserved boxes" involved in the catalytic site. In addition, the topology analysis predicts a 7-TMH structure addressed in the ER membrane. A 3D model of the protein embedded in an ER-like membrane environment is also provided using de novo modelling and molecular dynamics. From docking studies, two putative enzyme-substrate-binding modes, including H bonds and CH-π interactions, emphasize the role of specific residues in the "conserved boxes".
Collapse
Affiliation(s)
- Emmanuel Tinti
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
| | | | - Maximilien Lopes Rodrigues
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Research Unit in Environmental and Evolutionary Biology, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
48
|
Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine 2019; 14:2809-2828. [PMID: 31114196 PMCID: PMC6488162 DOI: 10.2147/ijn.s197499] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provided.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| |
Collapse
|
49
|
Metherel AH, Irfan M, Chouinard-Watkins R, Trépanier MO, Stark KD, Bazinet RP. DHA Cycling Halves the DHA Supplementation Needed to Maintain Blood and Tissue Concentrations via Higher Synthesis from ALA in Long-Evans Rats. J Nutr 2019; 149:586-595. [PMID: 30715388 DOI: 10.1093/jn/nxy282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) recommendations are frequently stated at 500 mg/d; however, adherence to these recommendations would result in a large global commercial EPA/DHA production deficit. Previously, our laboratory demonstrated that acute DHA intake in rats can increase the capacity for synthesis-secretion of n-3 (ω-3) polyunsaturated fatty acids (PUFAs). OBJECTIVE We aimed to investigate the utility of a dietary DHA cycling strategy that employs 2 wk of repeated DHA feeding for a total of 3 cycles over 12 wk. METHODS Male Long-Evans rats were fed a 10% fat diet by weight comprised of either 1) a 2-wk, 2% α-linolenic acid (ALA, DHA-ALA group 18:3n-3) diet followed by a 2-wk, 2% DHA + 2% ALA diet over 3 consecutive 4-wk periods ("DHA cycling," DHA-ALA group); 2) a 2% DHA + 2% ALA diet (DHA group) for 12 wk; or 3) a 2% ALA-only diet (ALA group) for 12 wk. At 15 wk old, blood and tissue fatty acid concentrations and liver mRNA expression and 13C-DHA natural abundances were determined. RESULTS DHA concentrations in plasma, erythrocytes, and whole blood between the DHA-ALA group and the DHA groups were not different (P ≥ 0.05), but were 72-110% higher (P < 0.05) than in the ALA group. Similarly, DHA concentrations in liver, heart, adipose, and brain were not different (P ≥ 0.05) between the DHA-fed groups, but were at least 62%, 72%, 320%, and 68% higher (P < 0.05) than in the ALA group in liver, heart, adipose, and skeletal muscle, respectively. Compound-specific isotope analysis indicated that 310% more liver DHA in the DHA-ALA group compared with the DHA group is derived from dietary ALA, and this was accompanied by a 123% and 93% higher expression of elongation of very long-chain (Elovl)2 and Elovl5, respectively, in the DHA-ALA group compared with the ALA group. CONCLUSIONS DHA cycling requires half the dietary DHA while achieving equal blood and tissue DHA concentrations in rats. Implementation of such dietary strategies in humans could reduce the gap between global dietary n-3 PUFA recommendations and commercial production.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maha Irfan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydr Polym 2019; 208:431-440. [DOI: 10.1016/j.carbpol.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 01/01/2019] [Indexed: 12/23/2022]
|