1
|
Utugi S, Chida R, Yamaguchi S, Sashide Y, Takeda M. Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons. Cells 2025; 14:52. [PMID: 39791753 PMCID: PMC11720243 DOI: 10.3390/cells14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli. Following the administration of EGCG, the mean firing rate of TG neurons to both non-noxious and noxious mechanical stimuli significantly decreased in a dose-dependent manner (1-10 mM), and both the non-noxious and nociceptive mechanical stimuli experienced the maximum suppression of discharge frequency within 5 min. These inhibitory effects lasted for approximately 20 min. These findings suggest that the local injection of EGCG into the peripheral receptive field suppresses the responsiveness of nociceptive primary sensory neurons in the TG, almost equal to that of the local anesthetic, 1% lidocaine. As a result, the local application of EGCG as a local anesthetic could alleviate nociceptive trigeminal pain that does not result in side effects, thereby playing a significant role in pain management.
Collapse
Affiliation(s)
| | | | | | | | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (S.U.); (R.C.); (S.Y.); (Y.S.)
| |
Collapse
|
2
|
Rahimi S, Shirin F, Moassesfar M, Zafari H, Bahmaie N, Baghebani K, Bidmeshki Y, Sajjadi Manesh SM, Rasoulzadeh Darabad K, Bahmaie M, Nouri E, Kilic A, Ansarin M, Özışık P, Simsek E, Ozensoy Guler O. Role of Hypoxia Induced by Medicinal Plants; A Revolutionary Era of Cellular and Molecular Herbal Medicine in Neuroblastoma Treatment. FRONT BIOSCI-LANDMRK 2024; 29:422. [PMID: 39735975 DOI: 10.31083/j.fbl2912422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 12/31/2024]
Abstract
As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL. Regardingly, taking molecular and cellular immunopathophysiology involved in the hypoxic microenvironment of NBL into account, it can practically be a contributing approach in the development of "molecular medicine" for treatment of NBL. Interestingly, pivotal roles of "herbal medicine" in the hypoxic microenvironment of NBL have been extensively interrogated for treating a NBL, functionally being served as an anti-cancer agent via inducing a wide range of molecular and cellular signaling, like apoptosis, cell cycle arrest, and inhibiting angiogenesis. Hence, in this review study, the authors aim to summarize the anti-tumor effects of some medicinal plants and their phytoconstituents through molecular immunopathophysiological mechanisms involved in the hypoxic microenvironment of NBL. In addition, they try to open promising windows to immune gene-based therapies for NBL "precision medicine" through clinical advantages of herbal and molecular medicine. An interdisciplinary collaboration among translation and molecular medicine specialists, immunobiologists, herbal medicine specialists, and pediatric neuro-oncologists is highly recommended.
Collapse
Affiliation(s)
- Samin Rahimi
- Department of Genetics, Faculty of Natural Sciences, Tabriz University, 5166616471 Tabriz, Iran
| | - Fatemeh Shirin
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Mahdi Moassesfar
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, 1651153311 Tehran, Iran
| | - Hossein Zafari
- Department of Chemical Engineering, Faculty of Chemical Engineering, Shahreza Branch, Islamic Azad University, 8648146411 Shahreza, Iran
| | - Nazila Bahmaie
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Kimia Baghebani
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
- Now with Department of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 54896 Jeonbuk, Republic of Korea
| | - Yasna Bidmeshki
- Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, 6718997551 Kermanshah, Iran
| | - Seyede Masoumeh Sajjadi Manesh
- Department of Biomedical Engineering, College of Basic Sciences, Qom Branch, Islamic Azad University, 3716146611 Qom, Iran
| | | | - Massoud Bahmaie
- Department of Herbal Medicine, University of Poona, 411007 Poona, India
| | - Elham Nouri
- Clinical Diagnosis Laboratory, Shahid Beheshti University-affiliated Hospital, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
- Department of Medical Laboratory Science, Faculty of Paramedicine, Zanjan University of Medical Sciences (ZUMS), 4513956111 Zanjan, Iran
| | - Ahmet Kilic
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Melika Ansarin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), 1449614535 Tehran, Iran
| | - Pınar Özışık
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ender Simsek
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| | - Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University (AYBU), 06800 Ankara, Turkey
| |
Collapse
|
3
|
Xiang H, Liu M, Zhou C, Huang Y, Zhang Y, He P, Ye Z, Yang S, Zhang Y, Gan X, Qin X. Tea Consumption, Milk or Sweeteners Addition, Genetic Variation in Caffeine Metabolism, and Incident Venous Thromboembolism. Thromb Haemost 2024; 124:1143-1151. [PMID: 38729191 DOI: 10.1055/s-0044-1786819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The association between tea consumption and venous thromboembolism (VTE) remains unknown. We aimed to evaluate the association between tea consumption with different additives (milk and/or sweeteners) and incident VTE, and the modifying effects of genetic variation in caffeine metabolism on the association. METHODS A total of 190,189 participants with complete dietary information and free of VTE at baseline in the UK Biobank were included. The primary outcome was incident VTE, including incident deep vein thrombosis and pulmonary embolism. RESULTS During a median follow-up of 12.1 years, 4,485 (2.4%) participants developed incident VTE. Compared with non-tea drinkers, tea drinkers who added neither milk nor sweeteners (hazard ratio [HR]: 0.85; 95% confidence interval [95% CI]: 0.76-0.94), only milk (HR: 0.86; 95% CI: 0.80-0.93), and both milk and sweeteners to their tea (HR: 0.90; 95% CI: 0.81-0.99) had a lower risk of VTE, while those who added only sweeteners to their tea did not (HR: 0.94; 95% CI: 0.75-1.17). Moreover, there was an L-shaped relationship between tea consumption and incident VTE among tea drinkers who added neither milk nor sweeteners, only milk, and both milk and sweeteners to their tea, respectively. However, a nonsignificant association was found among tea drinkers who added only sweeteners to their tea. Genetic variation in caffeine metabolism did not significantly modify the association (p-interaction = 0.659). CONCLUSION Drinking unsweetened tea, with or without added milk, was associated with a lower risk of VTE. However, there was no significant association between drinking tea with sweeteners and incident VTE.
Collapse
Affiliation(s)
- Hao Xiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| |
Collapse
|
4
|
Che S, Qin B, Wu K, Zhu M, Hu H, Peng C, Wang Z, Yin Y, Xia Y, Wu M. EGCG drives gut microbial remodeling-induced epithelial GPR43 activation to lessen Th1 polarization in colitis. Redox Biol 2024; 75:103291. [PMID: 39116526 PMCID: PMC11363845 DOI: 10.1016/j.redox.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Modulation of immune microenvironment is critical for inflammatory bowel disease (IBD) intervention. Epigallocatechin gallate (EGCG), as a natural low toxicity product, has shown promise in treating IBD. However, whether and how EGCG regulates the intestinal microenvironment is not fully understood. Here we report that EGCG lessens colitis by orchestrating Th1 polarization and self-amplification in a novel manner that required multilevel-regulated intestinal microecosystem. Mechanistically, EGCG activates GPR43 on IEC to inhibit Th1 polarization dependently of short chain fatty acid (SCFA)-producing gut microbiota. Inhibition of GPR43 activity weakens the protective effects of EGCG on colitis development. Moreover, we confirm that fecal SCFAs and/or intestinal GPR43 are limited in patients with colitis and are correlated with Th1 cell number. Taken together, our study reveals an intestinal microenvironment-dependent immunoregulatory effects of EGCG in treating IBD and provides insight into mechanisms of EGCG-based novel immunotherapeutic strategies for IBD.
Collapse
Affiliation(s)
- Siyan Che
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Beibei Qin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kunfu Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - Han Hu
- Institute of Apicultural Research/State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Can Peng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University; Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| | - Yulong Yin
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Miaomiao Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
5
|
Yang H, Cao J, Li JM, Li C, Zhou WW, Luo JW. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Mol Divers 2024; 28:2603-2616. [PMID: 37486473 DOI: 10.1007/s11030-023-10700-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary hypertension, a common complication of chronic obstructive pulmonary disease, is a major global health concern. Green tea is a popular beverage that is consumed all over the world. Green tea's active ingredients are epicatechin derivatives, also known as "polyphenols," which have anti-carcinogenic, anti-inflammatory, and antioxidant properties. This study aimed to explore the possible mechanism of green tea polyphenols in the treatment of pulmonary hypertension using network pharmacology, molecular docking, and experimental verification. A total of 316 potential green tea polyphenols-related targets were obtained from the PharmMapper, SwissTargetPrediction, and TargetNet databases. A total of 410 pulmonary hypertension-related targets were predicted by the CTD, DisGeNET, pharmkb, and GeneCards databases. Green tea polyphenols-related targets were hit by the 49 targets associated with pulmonary hypertension. AKT1 and HIF1-α were identified through the FDA drugs-target network and PPI network combined with GO functional annotation and KEGG pathway enrichment. Molecular docking results showed that green tea polyphenols had strong binding abilities to AKT1 and HIF1-α. In vitro experiments showed that green tea polyphenols inhibited the proliferation and migration of hypoxia stimulated pulmonary artery smooth muscle cells by decreasing AKT1 phosphorylation and downregulating HIF1α expression. Collectively, green tea polyphenols are promising phytochemicals against pulmonary hypertension.
Collapse
Affiliation(s)
- Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jun Cao
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jian-Min Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Cheng Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Wen-Wu Zhou
- Department of Cardiovascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, Hunan, China.
| |
Collapse
|
6
|
Bunjaku J, Lama A, Pesanayi T, Shatri J, Chamberlin M, Hoxha I. Lung Cancer and Lifestyle Factors: Umbrella Review. Hematol Oncol Clin North Am 2024; 38:171-184. [PMID: 37369612 DOI: 10.1016/j.hoc.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This review explores the effect of common everyday factors, such as alcohol, tea and coffee consumption, on the risk for lung cancer. We performed an umbrella review of current systematic reviews. The risk for lung cancer was increased with alcohol or coffee intake and decreased with tea intake. While evidence for alcohol is of low quality, the effect of coffee may be confounded by the smoking effect. The protective effect of tea intake is present, but the evidence is also of low quality.
Collapse
Affiliation(s)
- Jeta Bunjaku
- Evidence Synthesis Group, Ali Vitia Street PN, 10000 Prishtina, Kosovo
| | - Arber Lama
- Evidence Synthesis Group, Ali Vitia Street PN, 10000 Prishtina, Kosovo
| | - Tawanda Pesanayi
- Evidence Synthesis Group, Ali Vitia Street PN, 10000 Prishtina, Kosovo
| | - Jeton Shatri
- Clinic of Radiology, University Clinical Center of Kosovo, 10000 Prishtina, Kosovo; Department of Anatomy, University of Prishtina, 10000 Prishtina, Kosovo
| | - Mary Chamberlin
- Dartmouth Cancer Center at Dartmouth-Hitchcock Medical Center Lebanon, NH 03756, USA
| | - Ilir Hoxha
- Evidence Synthesis Group, Ali Vitia Street PN, 10000 Prishtina, Kosovo; The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon NH 03766, USA.
| |
Collapse
|
7
|
Viglianisi G, Santonocito S, Lupi SM, Amato M, Spagnuolo G, Pesce P, Isola G. Impact of local drug delivery and natural agents as new target strategies against periodontitis: new challenges for personalized therapeutic approach. Ther Adv Chronic Dis 2023; 14:20406223231191043. [PMID: 37720593 PMCID: PMC10501082 DOI: 10.1177/20406223231191043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023] Open
Abstract
Periodontitis is a persistent inflammation of the soft tissue around the teeth that affects 60% of the population in the globe. The self-maintenance of the inflammatory process can cause periodontal damage from the alveolar bone resorption to tooth loss in order to contrast the effects of periodontitis, the main therapy used is scaling and root planing (SRP). At the same time, studying the physiopathology of periodontitis has shown the possibility of using a local drug delivery system as an adjunctive therapy. Using local drug delivery devices in conjunction with SRP therapy for periodontitis is a potential tool since it increases drug efficacy and minimizes negative effects by managing drug release. This review emphasized how the use of local drug delivery agents and natural agents could be promising adjuvants for the treatment of periodontitis patients affected or not by cardiovascular disease, diabetes, and other system problems. Moreover, the review evidences the current issues and new ideas that can inspire potential later study for both basic research and clinical practice for a tailored approach.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
8
|
Uchino M, Sashide Y, Takeda M. Suppression of the Excitability of Rat Nociceptive Secondary Sensory Neurons following Local Administration of the Phytochemical, (-)-Epigallocatechin-3-gallate. Brain Res 2023:148426. [PMID: 37257804 DOI: 10.1016/j.brainres.2023.148426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The phytochemical, polyphenolic compound, (-)-epigallocatechin-3-gallate (EGCG), is the main catechin found in green tea. Although a modulatory effect of EGCG on voltage-gated sodium and potassium channels has been reported in excitable tissues, the in vivo effect of EGCG on the excitability of nociceptive sensory neurons remains to be determined. Our aim was to investigate whether local administration of EGCG to rats attenuates the excitability of nociceptive spinal trigeminal nucleus caudalis (SpVc) neurons in response to mechanical stimulation in vivo. Extracellular single unit recordings were made from SpVc neurons in response to orofacial mechanical stimulation of anesthetized rats. The mean firing frequency of SpVc wide-dynamic range neurons following both non-noxious and noxious mechanical stimuli was significantly inhibited by EGCG in a dose-dependent and reversible manner. The mean magnitude of inhibition by EGCG on SpVc neuronal discharge frequency was similar to that of the local anesthetic, 1% lidocaine. Local injection of half-dose of lidocaine replaced the half-dose of EGCG. These results suggest that local injection of EGCG suppresses the excitability of nociceptive SpVc neurons, possibly via the inhibition of voltage-gated sodium channels and opening of voltage-gated potassium channels in the trigeminal ganglion. Therefore, administration of EGCG as a local anesthetic may provide relief from trigeminal nociceptive pain without side effects.
Collapse
Affiliation(s)
- Mizuho Uchino
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
9
|
Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Bungau SG, Brisc C. Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics. Molecules 2023; 28:molecules28062811. [PMID: 36985782 PMCID: PMC10057127 DOI: 10.3390/molecules28062811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The liver is a vital organ that plays a crucial role in the physiological operation of the human body. The liver controls the body's detoxification processes as well as the storage and breakdown of red blood cells, plasma protein and hormone production, and red blood cell destruction; therefore, it is vulnerable to their harmful effects, making it more prone to illness. The most frequent complications of chronic liver conditions include cirrhosis, fatty liver, liver fibrosis, hepatitis, and illnesses brought on by alcohol and drugs. Hepatic fibrosis involves the activation of hepatic stellate cells to cause persistent liver damage through the accumulation of cytosolic matrix proteins. The purpose of this review is to educate a concise discussion of the epidemiology of chronic liver disease, the pathogenesis and pathophysiology of liver fibrosis, the symptoms of liver fibrosis progression and regression, the clinical evaluation of liver fibrosis and the research into nanotechnology-based synthetic and herbal treatments for the liver fibrosis is summarized in this article. The herbal remedies summarized in this review article include epigallocathechin-3-gallate, silymarin, oxymatrine, curcumin, tetrandrine, glycyrrhetinic acid, salvianolic acid, plumbagin, Scutellaria baicalnsis Georgi, astragalosides, hawthorn extract, and andrographolides.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Saurabh Shukla
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
10
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
11
|
Chen Y, Shen J, Wu Y, Ni M, Deng Y, Sun X, Wang X, Zhang T, Pan F, Tang Z. Tea consumption and risk of lower respiratory tract infections: a two-sample mendelian randomization study. Eur J Nutr 2023; 62:385-393. [PMID: 36042048 PMCID: PMC9427168 DOI: 10.1007/s00394-022-02994-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Observational studies have reported the association between tea consumption and the risk of lower respiratory tract infections (LRTIs). However, a consensus has yet to be reached, and whether the observed association is driven by confounding factors or reverse causality remains unclear. METHOD A two-sample Mendelian randomization (MR) analysis was conducted to determine whether genetically predicted tea intake is causally associated with the risk of common LRTI subtypes. Genome-wide association study (GWAS) from UK Biobank was used to identify single-nucleotide polymorphisms (SNPs) associated with an extra cup of tea intake each day. The summary statistics for acute bronchitis, acute bronchiolitis, bronchiectasis, pneumonia, and influenza and pneumonia were derived from the FinnGen project. RESULTS We found that genetically predicted an extra daily cup of tea intake was causally associated with the decreased risk of bronchiectasis [odds ratio (OR) = 0.61, 95% confidence interval (CI) = 0.47-0.78, P < 0.001], pneumonia (OR = 0.90, 95% CI = 0.85-0.96, P = 0.002), influenza and pneumonia (OR = 0.91, 95% CI = 0.85-0.97, P = 0.002), but not with acute bronchitis (OR = 0.91, 95% CI = 0.82-1.01, P = 0.067) and acute bronchiolitis (OR = 0.79, 95% CI = 0.60-1.05, P = 0.100). Sensitivity analyses showed that no heterogeneity and pleiotropy could bias the results. CONCLUSIONS Our findings provided new evidence that genetically predicted an extra daily cup of tea intake may causally associated with a decreased risk of bronchiectasis, pneumonia, and influenza and pneumonia.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Zhiru Tang
- School of Health Service and Management, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Associations of green tea, coffee, and soft drink consumption with longitudinal changes in leukocyte telomere length. Sci Rep 2023; 13:492. [PMID: 36627320 PMCID: PMC9832020 DOI: 10.1038/s41598-022-26186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Whether beverage consumption is associated with longitudinal observation of telomere length remains unclear. We evaluated the association of green tea, coffee, and soft drink consumption with 6-year changes in leukocyte telomere length (LTL). The study included 1952 participants who provided whole blood samples for LTL assays during the baseline (year 2011-2012) and follow-up (year 2017-2018) periods and reported baseline information on consumption of green tea, coffee, and soft drinks. Robust regression analysis was used to analyze the association adjusted for potential confounding variables. In the results, an inverse association between green tea consumption and LTL changes from baseline, which indicate telomere shortening, was found; regression coefficient [95% confidence interval] was - 0.097 [- 0.164, - 0.029] for participants who daily consumed at least 1 cup of green tea compared with non-consumers (p value = 0.006). This association was stronger among women (versus men) and younger participants aged 50-64 years (versus older). However, a positive association between soft drink consumption and LTL shortening was observed among women (p value < 0.05). Coffee consumption was not associated with LTL changes. These findings suggested that green tea consumption may be protective against telomere shortening reflecting biological aging whereas coffee and soft drink consumption may not.
Collapse
|
13
|
Ge J, Song T, Li M, Chen W, Li J, Gong S, Zhao Y, Ma L, Yu H, Li X, Fu K. The medicinal value of tea drinking in the management of COVID-19. Heliyon 2023; 9:e12968. [PMID: 36647394 PMCID: PMC9833859 DOI: 10.1016/j.heliyon.2023.e12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is presently the largest international public health event, individuals infected by the virus not only have symptoms such as fever, dry cough, and lung infection at the time of onset, but also possibly have sequelae in the cardiovascular system, respiratory system, nervous system, mental health and other aspects. However, numerous studies have depicted that the active ingredients in tea show good antiviral effects and can treat various diseases by regulating multiple pathways, and the therapeutic effects are associated with the categories of chemical components in tea. In this review, the differences in the content of key active ingredients in different types of tea are summarized. In addition, we also highlighted their effects on COVID-19 and connected sequelae, further demonstrating the possibility of developing a formulation for the prevention and treatment of COVID-19 and its sequelae through tea extracts. We have a tendency to suggest forestalling and treating COVID-19 and its sequelae through scientific tea drinking.
Collapse
Affiliation(s)
- Jiaming Ge
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Tianbao Song
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Mengyuan Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Weisan Chen
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Jiarong Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Sihan Gong
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Ying Zhao
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Lin Ma
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Hongjian Yu
- Wuxi Century Bioengineering Co., Ltd., Wuxi 214000, China
| | - Xiankuan Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300120, Tianjin, China
| |
Collapse
|
14
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
15
|
The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil. Antioxidants (Basel) 2022; 11:antiox11091844. [PMID: 36139917 PMCID: PMC9495874 DOI: 10.3390/antiox11091844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effect of the catechins profile on the antioxidant activity of green tea extracts (GTEs) by comparing the antioxidant activity of an EGC-rich GTE (GTE1, catechin content: 58% EGC, 30.1% EGCG, 7.9% EC, and 3.9% ECG) and an EGCG-rich GTE (GTE2, catechin content: 60.6% EGCG, 17.7% EGC, 11.8% ECG, and 9.8% EC) in a DHA-rich oil. The effects of the individual catechins (EGC, EC, EGCG, and ECG) and reconstituted catechins mixtures (CatMix), prepared to contain the same amount of major catechins as in the GTEs, were also measured. All treatments (GTE1, CatMix1, GTE2, CatMix2, EGC250, EC250, EGCG250, and ECG250), each containing epistructured catechins at a concentration of 250 ppm, as well as the control (oil with no added antioxidant), were stored at 30 °C for 21 days with sampling intervals of 7 days. The antioxidant activity was assessed by measuring the peroxide value (PV) and p-anisidine value (p-AV) of oils. Changes in fatty acid content and catechins content were also monitored. Both GTEs enhanced the oxidative stability of the DHA-rich oil, but GTE1 demonstrated a stronger antioxidant activity than GTE2. No significant difference was observed between the PV of treatments with GTE1 and CatMix1 during storage, whereas the PV of oil with GTE2 was significantly higher than that with CatMix2 after 21 days. Among the individual catechins, EGC was the strongest antioxidant. Overall, the antioxidant activities of the extracts and catechins were observed in the decreasing order GTE1 ≈ EGC250 ≈ CatMix1 > GTE2 > EGCG250 ≈ CatMix2 > ECG250 > EC250. A significant change in fatty acid content was observed for the control and EC250 samples, and the catechins were most stable in GTE1-supplemented oil. Our results indicate that the EGC-rich GTE is a more potent antioxidant in DHA-rich oil than the EGCG-rich GTE.
Collapse
|
16
|
Sun J, Dong S, Li J, Zhao H. A comprehensive review on the effects of green tea and its components on the immune function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Inoue-Choi M, Ramirez Y, Cornelis MC, Berrington de González A, Freedman ND, Loftfield E. Tea Consumption and All-Cause and Cause-Specific Mortality in the UK Biobank : A Prospective Cohort Study. Ann Intern Med 2022; 175:1201-1211. [PMID: 36037472 PMCID: PMC10623338 DOI: 10.7326/m22-0041] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tea is frequently consumed worldwide, but the association of tea drinking with mortality risk remains inconclusive in populations where black tea is the main type consumed. OBJECTIVE To evaluate the associations of tea consumption with all-cause and cause-specific mortality and potential effect modification by genetic variation in caffeine metabolism. DESIGN Prospective cohort study. SETTING The UK Biobank. PARTICIPANTS 498 043 men and women aged 40 to 69 years who completed the baseline touchscreen questionnaire from 2006 to 2010. MEASUREMENTS Self-reported tea intake and mortality from all causes and leading causes of death, including cancer, all cardiovascular disease (CVD), ischemic heart disease, stroke, and respiratory disease. RESULTS During a median follow-up of 11.2 years, higher tea intake was modestly associated with lower all-cause mortality risk among those who drank 2 or more cups per day. Relative to no tea drinking, the hazard ratios (95% CIs) for participants drinking 1 or fewer, 2 to 3, 4 to 5, 6 to 7, 8 to 9, and 10 or more cups per day were 0.95 (95% CI, 0.91 to 1.00), 0.87 (CI, 0.84 to 0.91), 0.88 (CI, 0.84 to 0.91), 0.88 (CI, 0.84 to 0.92), 0.91 (CI, 0.86 to 0.97), and 0.89 (CI, 0.84 to 0.95), respectively. Inverse associations were seen for mortality from all CVD, ischemic heart disease, and stroke. Findings were similar regardless of whether participants also drank coffee or not or of genetic score for caffeine metabolism. LIMITATION Potentially important aspects of tea intake (for example, portion size and tea strength) were not assessed. CONCLUSION Higher tea intake was associated with lower mortality risk among those drinking 2 or more cups per day, regardless of genetic variation in caffeine metabolism. These findings suggest that tea, even at higher levels of intake, can be part of a healthy diet. PRIMARY FUNDING SOURCE National Cancer Institute Intramural Research Program.
Collapse
Affiliation(s)
- Maki Inoue-Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (M.I.C., Y.R., A.B.G., N.D.F., E.L.)
| | - Yesenia Ramirez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (M.I.C., Y.R., A.B.G., N.D.F., E.L.)
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (M.C.C.)
| | - Amy Berrington de González
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (M.I.C., Y.R., A.B.G., N.D.F., E.L.)
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (M.I.C., Y.R., A.B.G., N.D.F., E.L.)
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (M.I.C., Y.R., A.B.G., N.D.F., E.L.)
| |
Collapse
|
18
|
Zhou M, Abid M, Cao S, Zhu S. Progress of Research into Novel Drugs and Potential Drug Targets against Porcine Pseudorabies Virus. Viruses 2022; 14:v14081753. [PMID: 36016377 PMCID: PMC9416328 DOI: 10.3390/v14081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR), infecting most mammals and some birds. It has been prevalent around the world and caused huge economic losses to the swine industry since its discovery. At present, the prevention of PRV is mainly through vaccination; there are few specific antivirals against PRV, but it is possible to treat PRV infection effectively with drugs. In recent years, some drugs have been reported to treat PR; however, the variety of anti-pseudorabies drugs is limited, and the underlying mechanism of the antiviral effect of some drugs is unclear. Therefore, it is necessary to explore new drug targets for PRV and develop economic and efficient drug resources for prevention and control of PRV. This review will focus on the research progress in drugs and drug targets against PRV in recent years, and discuss the future research prospects of anti-PRV drugs.
Collapse
Affiliation(s)
- Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road Pirbright, Woking, Surrey GU24 0NF, UK
| | - Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| |
Collapse
|
19
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
20
|
Fibropreventive and Antifibrotic Effects of Uncaria gambir on Rats with Pulmonary Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6721958. [PMID: 35795272 PMCID: PMC9251096 DOI: 10.1155/2022/6721958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Pulmonary fibrosis causes scar tissue formation that disrupts the functioning of the lungs. Uncaria gambir (Hunter) Roxb (hereafter gambir)—a plant native to West Sumatra in Indonesia—contains flavonoid (+)-catechin, which has strong antioxidant activity and can be used to combat pulmonary fibrosis. This random in vivo experimental study analyzed the antifibrotic effect of gambir on the lungs of rats with bleomycin-induced fibrosis. The subjects were 10 groups of 10-week-old male rats weighing around 200–250 g. All groups were terminated at the end of the seventh week or on day 50. The lungs were cleaned, and tissues were taken to analyze inflammatory cell counts and TGF-β1 levels using bronchoalveolar lavage (BAL) with ELISA; type I collagen and tissue inhibitor of metalloproteinase 1 (TIMP-1) levels using immunohistochemistry (IHC); and activation of NF-κB using ELISA and Western blot assays. The most severe histopathological characteristic based on the modified Ashcroft score was in the bleomycin group (BG), whereas the mildest was in the 262 mg/kg of the bodyweight antifibrotic gambir-dosed group (AF G262). The results showed a significant difference in the BAL inflammatory cell count (p=0.017; p < 0.05). AF G262 differed most from the other antifibrotic groups in terms of the number of inflammatory cells (0.63), TGF-β1 levels (3.80), and NF-κB levels (0.48), followed by the 131 mg/kg of the bodyweight antifibrotic gambir-dosed group (AF G131), which also differed most from other antifibrotic groups in terms of NF-κB (0.48), TIMP-1 (11.74), and collagen I (14.50) levels. Western blot analysis showed that the fibropreventive and antifibrotic groups had a specific band size of p65, whereas no specific band binding existed in the control group. This study concluded that the administration of AF G262 could improve fibrosis by lysing the extracellular matrix (ECM) in rat lungs.
Collapse
|
21
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
22
|
Comparative study on the weight loss and lipid metabolism by tea polyphenols in diet induced obese C57BL/6J pseudo germ free and conventionalized mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Xu L, Yang CS, Liu Y, Zhang X. Effective Regulation of Gut Microbiota With Probiotics and Prebiotics May Prevent or Alleviate COVID-19 Through the Gut-Lung Axis. Front Pharmacol 2022; 13:895193. [PMID: 35548347 PMCID: PMC9081431 DOI: 10.3389/fphar.2022.895193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can disrupt the gut microbiota balance, and patients usually have intestinal disorders. The intestine is the largest immune organ of the human body, and gut microbes can affect the immune function of the lungs through the gut-lung axis. Many lines of evidence support the role of beneficial bacteria in enhancing human immunity, preventing pathogen colonization, and thereby reducing the incidence and severity of infection. In this article, we review the possible approach of modulating microbiota to help prevent and treat respiratory tract infections, including COVID-19, and discuss the possibility of using probiotics and prebiotics for this purpose. We also discuss the mechanism by which intestinal micro-flora regulate immunity and the effects of probiotics on the intestinal micro-ecological balance. Based on this understanding, we propose the use of probiotics and prebiotics to modulate gut microbiota for the prevention or alleviation of COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| |
Collapse
|
24
|
Xu L, Ho CT, Liu Y, Wu Z, Zhang X. Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Front Nutr 2022; 9:899842. [PMID: 35495940 PMCID: PMC9046984 DOI: 10.3389/fnut.2022.899842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Chi-Tang Ho
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang
| |
Collapse
|
25
|
Gupta M, Mishra V, Gulati M, Kapoor B, Kaur A, Gupta R, Tambuwala MM. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology 2022; 30:397-434. [PMID: 35212849 PMCID: PMC8948151 DOI: 10.1007/s10787-022-00931-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. Several conventional treatments for UC such as corticosteroids, immunosuppressive agents, tumor necrosis factor antagonist, integrin blockers, and interleukin antagonist, and salicylates are available but are associated with the various limitations and side-effects. None of the above treatments helps to achieve the ultimate goal of the therapy, i.e., maintenance of remission in the long-term. Natural remedies for the treatment of UC show comparatively less side effects as compared to conventional approaches, and affordable. The current review presents details on the role of herbal drugs in the treatment and cure of UC. Google, PubMed, Web of Science, and Scopus portals have been searched for potentially relevant literature to get the latest developments and updated information related to use of natural drugs in the treatment of UC. Natural products have been used over centuries to treat UC. Some of the essential herbal constituents exhibiting antiulcerogenic activity include gymnemic acid (Gymnema sylvestre), shagoal (Zingiber officinale), catechin (Camellia sinensis), curcumin (Curcuma longa), arctigenin (Arctium lappa), and boswellic acid (Boswellia serrata). Although many plant-derived products have been recommended for UC, further research to understand the exact molecular mechanism is still warranted to establish their usefulness clinically.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Amrinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
26
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. A Natural Plant Source-Tea Polyphenols, a Potential Drug for Improving Immunity and Combating Virus. Nutrients 2022; 14:nu14030550. [PMID: 35276917 PMCID: PMC8839699 DOI: 10.3390/nu14030550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is still in a global epidemic, which has profoundly affected people’s lives. Tea polyphenols (TP) has been reported to enhance the immunity of the body to COVID-19 and other viral infectious diseases. The inhibitory effect of TP on COVID-19 may be achieved through a series of mechanisms, including the inhibition of multiple viral targets, the blocking of cellular receptors, and the activation of transcription factors. Emerging evidence shows gastrointestinal tract is closely related to respiratory tract, therefore, the relationship between the state of the gut–lung axis microflora and immune homeostasis of the host needs further research. This article summarized that TP can improve the disorder of flora, reduce the occurrence of cytokine storm, improve immunity, and prevent COVID-19 infection. TP may be regarded as a potential and valuable source for the design of new antiviral drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Lu Cheng
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
- Correspondence: (P.Z.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
- Correspondence: (P.Z.); (X.Z.)
| |
Collapse
|
27
|
Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 12:794997. [PMID: 35126133 PMCID: PMC8815729 DOI: 10.3389/fphar.2021.794997] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by an abnormal reepithelialisation, an excessive tissue remodelling and a progressive fibrosis within the alveolar wall that are not due to infection or cancer. Oxidative stress has been proposed as a key molecular process in pulmonary fibrosis development and different components of the redox system are altered in the cellular actors participating in lung fibrosis. To this respect, several activators of the antioxidant machinery and inhibitors of the oxidant species and pathways have been assayed in preclinical in vitro and in vivo models and in different clinical trials. This review discusses the role of oxidative stress in the development and progression of IPF and its underlying mechanisms as well as the evidence of oxidative stress in human IPF. Finally, we analyze the mechanism of action, the efficacy and the current status of different drugs developed to inhibit the oxidative stress as anti-fibrotic therapy in IPF.
Collapse
Affiliation(s)
- Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- *Correspondence: Cristina Estornut, ; Javier Milara,
| | - María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
28
|
The Effects of Nutraceuticals and Bioactive Natural Compounds on Chronic Periodontitis: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:59-80. [PMID: 34981471 DOI: 10.1007/978-3-030-73234-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paper aims to review the current clinical evidence of various herbal agents as an adjunct treatment in the management of chronic periodontitis patients. Gingivitis and periodontitis are two common infectious inflammatory diseases of the supporting tissues of the teeth and have a multifactorial etiology. An important concern about chronic periodontitis is its association with certain systemic disease. New treatment strategies for controlling the adverse effects of chronic periodontitis have been extensively assessed and practiced in sub-clinical and clinical studies. It has been shown that the phytochemical agents have various therapeutic properties such as anti-inflammatory and antibacterial effects which can be beneficial for the treatment of periodontitis. The findings of this review support the adjunctive use of herbal agents in the management of chronic periodontitis. Heterogeneity and limited data may reduce the impact of these conclusions. Future long-term randomized controlled trials evaluating the clinical efficacy of adjunctive herbal therapy to scaling and root planing are needed.
Collapse
|
29
|
Sasagawa K, Domon H, Sakagami R, Hirayama S, Maekawa T, Isono T, Hiyoshi T, Tamura H, Takizawa F, Fukushima Y, Tabeta K, Terao Y. Matcha Green Tea Exhibits Bactericidal Activity against Streptococcus pneumoniae and Inhibits Functional Pneumolysin. Antibiotics (Basel) 2021; 10:antibiotics10121550. [PMID: 34943762 PMCID: PMC8698834 DOI: 10.3390/antibiotics10121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is a causative pathogen of several human infectious diseases including community-acquired pneumonia. Pneumolysin (PLY), a pore-forming toxin, plays an important role in the pathogenesis of pneumococcal pneumonia. In recent years, the use of traditional natural substances for prevention has drawn attention because of the increasing antibacterial drug resistance of S. pneumoniae. According to some studies, green tea exhibits antibacterial and antitoxin activities. The polyphenols, namely the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) are largely responsible for these activities. Although matcha green tea provides more polyphenols than green tea infusions, its relationship with pneumococcal pneumonia remains unclear. In this study, we found that treatment with 20 mg/mL matcha supernatant exhibited significant antibacterial activity against S. pneumoniae regardless of antimicrobial resistance. In addition, the matcha supernatant suppressed PLY-mediated hemolysis and cytolysis by inhibiting PLY oligomerization. Moreover, the matcha supernatant and catechins inhibited PLY-mediated neutrophil death and the release of neutrophil elastase. These findings suggest that matcha green tea reduces the virulence of S. pneumoniae in vitro and may be a promising agent for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Rina Sakagami
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yoichi Fukushima
- Nestlé Japan Ltd., Wellness Communications, Tokyo 140-0002, Japan;
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan; (K.S.); (H.D.); (R.S.); (S.H.); (T.M.); (T.I.); (T.H.); (H.T.); (F.T.)
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-2838
| |
Collapse
|
30
|
Ayyadurai VAS, Deonikar P. Bioactive compounds in green tea may improve transplant tolerance: A computational systems biology analysis. Clin Nutr ESPEN 2021; 46:439-452. [PMID: 34857232 DOI: 10.1016/j.clnesp.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/21/2021] [Accepted: 09/15/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Green tea (Camellia sinensis) has bioactive compounds that have been shown to possess nutritive effects on various biomolecular processes such as immunomodulation. This research explores the immunomodulatory effects of green tea in reducing transplant rejection. METHOD The study employs computational systems biology: 1) to identify biomolecular mechanisms of immunomodulation in transplant rejection; 2) to identify the bioactive compounds of green tea and their specific effects on mechanisms of immunomodulation in transplant rejection; and, 3) to predict the quantitative effects of those bioactive compounds on immunomodulation in transplant rejection. RESULTS Three bioactive compounds of green tea - epicatechin (EC), gallic acid (GA), and epigallocatechin gallate (EGCG), were identified for their potential effects on immunomodulation of transplant rejection. Of the three, EGCG was the only one determined to enhance anti-inflammatory activity by: 1) upregulating synthesis of HO-1 that is known to promote Treg and Th2 phenotypes associated with enabling transplant tolerance; and, 2) downregulating pro-inflammatory cytokines IL-2, IL-17, IFN-γ, TNF-α, NO, IL-6, and IL-1β that are known to promote Th1 and Th17 phenotypes associated with transplant rejection. CONCLUSIONS To the best of our knowledge, this study provides the first molecular mechanistic understanding the clinical nutritive value of green tea, specifically the bioactive compound EGCG, in enabling transplant tolerance.
Collapse
Affiliation(s)
- V A Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, 02138, USA.
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, 02138, USA
| |
Collapse
|
31
|
The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Dudala SS, Venkateswarulu TC, Kancharla SC, Kodali VP, Babu DJ. A review on importance of bioactive compounds of medicinal plants in treating idiopathic pulmonary fibrosis (special emphasis on isoquinoline alkaloids). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown cause which disrupts the normal lung architecture and functions by deregulating immune responses and ultimately leads to the death of the individual. A number of factors can lead to its development and currently there is no cure for this disease.
Main text
There are synthetic drugs available to relieve the symptoms and decelerate its development by targeting pathways involved in the development of IPF, but there had also been various side effects detected by their usage. It is known since decades that medicinal plants and their compounds have been used all over the world in natural medicines to cure various diseases. This review article is focused on the effects of various natural bioactive compounds of 26 plant extracts that show prophylactic and therapeutic properties against the disease and so can be used in treating IPF replacing synthetic drugs and reducing the side effects.
Short conclusion
This review includes different mechanisms that cause pulmonary fibrosis along with compounds that can induce fibrosis, drugs used for the treatment of pulmonary fibrosis, diagnosis, the biochemical tests used for the experimental study to determine the pathogenesis of disease with a special note on Isoquinoline alkaloids and their role in reducing various factors leading to IPF thus providing promising therapeutic approach.
Collapse
|
33
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
34
|
Khan MI, Khan MZ, Shin JH, Shin TS, Lee YB, Kim MY, Kim JD. Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2521273. [PMID: 34812408 PMCID: PMC8605410 DOI: 10.1155/2021/2521273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1) in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or preventing obesity and inflammation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Muhammad Zubair Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Tia Sun Shin
- Department of Food Science and Nutrition, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju (61186), Republic of Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| | - Young Bok Lee
- Department of Refrigeration Engineering, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam (59626), Republic of Korea
| | - Min Yung Kim
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
- Department of Refrigeration Engineering, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam (59626), Republic of Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam, (59626), Republic of Korea
| |
Collapse
|
35
|
Haydar MS, Das D, Ghosh S, Mandal P. Implementation of mature tea leaves extract in bioinspired synthesis of iron oxide nanoparticles: preparation, process optimization, characterization, and assessment of therapeutic potential. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01872-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Zhao B. The pros and cons of drinking tea. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tea is the most frequently consumed beverage worldwide besides water. Generally, there are five most popular types of tea: green, white, black, Pu’er, and oolong. Tea possesses significant antioxidant, anti-inflammatory, antimicrobial, anticarcinogenic, antihypertensive, neuroprotective, and cholesterol-lowering properties. Several research investigations, epidemiological studies, and meta-analyses suggest that tea and its bioactive polyphenolic constituents have numerous beneficial effects on health, including the prevention of many diseases, such as cancer, diabetes, arthritis, cardiovascular disease, stroke, and obesity. Recently, there are many reports about the resistance of tea to COVID-19 virus on the Internet, which has attracted a lot of attention to tea drinking and the discussion about the pros and cons of tea drinking. Based on our research results and relevant reports form literatures, this review is intended to highlight the beneficial effects and possible side-effects associated with tea consumption, answer 10 questions and point out a few matters for attention.
Collapse
Affiliation(s)
- Baolu Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Academia Sinica, Beijing 100101, P. R. China
| |
Collapse
|
37
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
38
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
39
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu Z, Xiao M, Du Z, Li M, Guo H, Yao M, Wan X, Xie Z. Dietary supplementation of Huangshan Maofeng green tea preventing hypertension of older C57BL/6 mice induced by desoxycorticosterone acetate and salt. J Nutr Biochem 2021; 88:108530. [PMID: 33080347 DOI: 10.1016/j.jnutbio.2020.108530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 01/12/2023]
Abstract
Senile hypertension affects the life quality of aged population. Dietary intervention plays a pivotal role in the prevention of hypertension. There are few reports concerning the effects and mechanisms of green tea supplementation preventing age related hypertension. The current study investigated the effect and mechanism of dietary supplement of Huangshan Maofeng green tea (HSMF) on prevention of hypertension induced by deoxycorticosterone acetate (DOCA) and salt in old C57BL/6 mice. Our results showed that HSMF dose-dependently prevented the increase of systolic blood pressure and diastolic blood pressure induced by DOCA plus salt (DS) at 51-week-old mice. And HSMF significantly reduced the agonists' stimulated contraction of mesenteric arteries isolated from the old mice. The expression of vasoconstrictor genes and inflammatory cytokines in aorta were suppressed observably by HSMF supplementation compared with DS group. The protein expression of PKCα in the aorta was dose-dependently decreased by HSMF compared to DS group. The phosphorylation level of MYPT1, CPI-17and MLC20 was also restrained by HSMF in the aorta. Furthermore, HSMF protected kidney by maintaining integrity of glomeruli and tubules and remarkably decreased the NGAL level in plasma. HSMF also suppressed the kidney inflammation by decreasing inflammatory cytokines expression and the macrophage infiltration. Our results proved that dietary supplement of HSMF remarkably improved the vascular functions and protected kidney injury, and thus prevented hypertension induced by DS in older C57BL/6 mice. Our data indicated that the dietary supplement of HSMF may potentially be used as a food additive for preventing hypertension for aged people.
Collapse
Affiliation(s)
- Zenghui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; Anhui Academy of Medical Science, Hefei, China
| | - Mengchao Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Mengwan Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Hefei, China
| | - Min Yao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
41
|
Huan C, Xu W, Guo T, Pan H, Zou H, Jiang L, Li C, Gao S. (-)-Epigallocatechin-3-Gallate Inhibits the Life Cycle of Pseudorabies Virus In Vitro and Protects Mice Against Fatal Infection. Front Cell Infect Microbiol 2021; 10:616895. [PMID: 33520741 PMCID: PMC7841300 DOI: 10.3389/fcimb.2020.616895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
A newly emerged pseudorabies virus (PRV) variant with enhanced pathogenicity has been identified in many PRV-vaccinated swine in China since 2011. The PRV variant has caused great economic cost to the swine industry, and measures for the effective prevention and treatment of this PRV variant are still lacking. (–)-Epigallocatechin-3-gallate (EGCG) exhibits antiviral activity against diverse viruses and thus in this study, we investigated the anti-PRV activity of EGCG in vitro and in vivo. EGCG significantly inhibited infectivity of PRV Ra and PRV XJ5 strains in PK15 B6 cells and Vero cells. The anti-PRV activity of EGCG was dose-dependent, and 50 μM EGCG could completely block viral infection at different multiplicities of infection. We next revealed that EGCG blocked PRV adsorption and entry to PK15 B6 cells in a dose-dependent manner, but inhibition of PRV entry by EGCG was not as efficient as its inhibition of PRV adsorption. PRV replication was suppressed in PK15 B6 cells treated with EGCG post-infection. However, EGCG did not affect PRV assembly and could promote PRV release. Furthermore, 40 mg/kg EGCG provided 100% protection in BALB/c mice challenged with PRV XJ5, when EGCG was administrated both pre- and post-challenge. These results revealed that EGCG exhibits antiviral activity against PRV mainly by inhibiting virus adsorption, entry and replication in vitro. Meanwhile, EGCG increased the survival of mice challenged with PRV. Therefore, EGCG might be a potential antiviral agent against PRV infection.
Collapse
Affiliation(s)
- Changchao Huan
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Weiyin Xu
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Hengyue Zou
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Luyao Jiang
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Song Gao
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021; 269:120645. [PMID: 33453633 DOI: 10.1016/j.biomaterials.2020.120645] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
In cancer, angiogenesis is a critical phenomenon of nascent blood vessel development to facilitate the oxygen and nutrient supply prerequisite for tumor progression. Therefore, targeting tumors at the angiogenesis step may be significant to prevent their advanced progression and metastasis. Although angiogenesis inhibitors can limit the further growth of tumors, complete eradication of tumors may not be possible by monotherapy alone. Therefore, a therapeutic regimen targeting both tumor growth and its vasculature is essential. Because reactive oxygen species (ROS) are fundamental to both angiogenesis and tumor growth, the use of antioxidants may be an effective dual approach to inhibit tumors. We previously confirmed that our original antioxidant nitroxide radical-containing nanoparticles (RNPs) such as pH-sensitive RNPN, and pH-insensitive RNPO, effectively attenuates the tumorigenic and metastasis potentials of triple-negative breast cancer. In this study, we further investigated the efficacy of RNPs to limit the tumor progression by inhibiting the ROS-regulated cancer angiogenesis in a triple-negative breast cancer model. Here, we confirmed that RNPs significantly inhibited in vitro angiogenesis, attributed to the downregulation of the ROS-regulated angiogenesis inducer, vascular endothelial growth factor (VEGF) in the breast cancer cell line (MDA-MB231) and human umbilical vein endothelial cells (HUVEC), which was consistent with decreased cellular ROS. TEMPOL, a low-molecular-weight (LMW) control antioxidant, exhibited anti-angiogenic effects accompanied by cytotoxicity to the endothelial cells. In an in vivo xenograft model for breast cancer, RNPs exerted significant anti-tumor effect due to the decreased expression of tumor VEGF, which prevented accumulation of the endothelial cells. It should be noted that such efficacy of RNPs was obtained with negligible off-target effects. On the other hand, TEMPOL, because of its size, exerted anti-angiogenesis effect accompanied with injuries to the kidneys, which corroborated with previous reports. Our findings imply that RNPs are more potential antioxidants than their LMW counterparts, such as TEMPOL, for the management of breast cancers.
Collapse
|
43
|
Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol 2020; 11:590716. [PMID: 33193427 PMCID: PMC7655931 DOI: 10.3389/fimmu.2020.590716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Innate immunity impairment led to disruption in cascade of signaling pathways upregulating pro-inflammatory cytokines, diminish interferons, depleted natural killer cells and activate reactive oxygen species production. These conditions severely affected body's ability to fight against infectious diseases and also plays a pivotal role in disease progression. Here, in emphasis is on nutritional immunity for regulating effective innate immune response for combating against infectious diseases like novel coronavirus disease (COVID 19). Drawing from discoveries on in-vitro experiments, animal models and human trials, tea polyphenols, micronutrients, and vitamins has the potential to modulate and enhance innate immune response. This article provides a comprehensive review on tea (Camellia sinensis L) infusion (a hot water extract of dried processed tea leaves prepared from young shoots of tea plant) as an innate immunity modulator. Tea infusion is rich in polyphenols; epigallocatechin gallate (EGCG) and theaflavin (TF), major green and black tea polyphenols, respectively. Studies showed their immunomodulatory competence. Tea infusions are also rich in alkaloids; caffeine and its intermediates, theophylline and theobromine, which have anti-inflammatory properties. Tea plant being an acidophilic perennial crop can accumulate different micronutrients, viz., copper (Cu), iron (Fe), manganese (Mn), selenium (Se), and zinc (Zn) from growing medium, i.e., from soil, which led to their considerable presence in tea infusion. Micronutrients are integral part of innate immune response. Overall, this review presents tea infusion as an important source of nutritional immunity which can enhance innate immune response in order to mitigate the unprecedented COVID-19 pandemic.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Department of Biotechnology, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Anoop Kumar Barooah
- Directorate, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| |
Collapse
|
44
|
Choi C, Song HD, Son Y, Cho YK, Ahn SY, Jung YS, Yoon YC, Kwon SW, Lee YH. Epigallocatechin-3-Gallate Reduces Visceral Adiposity Partly through the Regulation of Beclin1-Dependent Autophagy in White Adipose Tissues. Nutrients 2020; 12:nu12103072. [PMID: 33050029 PMCID: PMC7600517 DOI: 10.3390/nu12103072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a primary bioactive phytochemical in green tea. Its therapeutic potential in metabolic diseases has been reported; however, the molecular mechanisms of the anti-obesity effect of EGCG have not been fully elucidated. In this study, we examined the effects of EGCG on lipid metabolism and autophagy in adipose tissue. After 8 weeks of high-fat diet feeding, mice were treated with EGCG (20 mg/kg/day) for 2 weeks to test in vivo anti-obesity effects of EGCG. EGCG treatment improved glucose tolerance and caused body weight loss. Interestingly, reduced adipose tissue mass was more prominent in visceral compared to subcutaneous white adipose tissue. Mechanistically, EGCG treatment increased autophagic flux in white adipose tissue through the AMP-activated protein kinase-mediated signaling pathway. Adipocyte-specific knockout of Beclin1 mitigated the effects of EGCG on visceral adipose tissue mass and glucose tolerance, indicating that the anti-obesity effect of EGCG requires Beclin1-dependent autophagy. Collectively, our data demonstrated that EGCG has anti-obesity effects through the upregulation of Beclin1-dependent autophagy and lipid catabolism in white adipose tissue (WAT).
Collapse
Affiliation(s)
- Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Hyun-Doo Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Sang-Yeop Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Young Cheol Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.C.); (H.-D.S.); (Y.S.); (Y.K.C.); (S.-Y.A.); (Y.C.Y.); (S.W.K.)
- Correspondence: ; Tel.: +82-2-880-2139; Fax: 82-2-872-1795
| |
Collapse
|
45
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
46
|
Abe SK, Inoue M. Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence. Eur J Clin Nutr 2020; 75:865-876. [PMID: 32820240 DOI: 10.1038/s41430-020-00710-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Green tea is commonly consumed in China, Japan, and Korea and certain parts of North Africa and is gaining popularity in other parts of the world. The aim of this review was to objectively evaluate the existing evidence related to green tea consumption and various health outcomes, especially cancer, cardiovascular disease and diabetes. This review captured evidence from meta-analyses as well as expert reports and recent individual studies. For certain individual cancer sites: endometrial, lung, oral and ovarian cancer, and non-Hodgkins lymphoma the majority of meta-analyses observed an inverse association with green tea. Mixed findings were observed for breast, esophageal, gastric, liver and a mostly null association for colorectal, pancreatic, and prostate cancer. No studies reported adverse effects from green tea related to cancer although consuming hot tea has been found to possibly increase the risk of esophageal cancer and concerns of hepatotoxity were raised as a result of high doses of green tea. The literature overall supports an inverse association between green tea and cardiovascular disease-related health outcomes. The evidence for diabetes-related health outcomes is less convincing, while the included meta-analyses generally suggested an inverse association between green tea and BMI-related and blood pressure outcomes. Fewer studies investigated the association between green tea and other health outcomes such as cognitive outcomes, dental health, injuries and respiratory disease. This review concludes that green tea consumption overall may be considered beneficial for human health.
Collapse
Affiliation(s)
- Sarah Krull Abe
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Manami Inoue
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
47
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
48
|
Hamza RZ, Al-Salmi FA, Laban H, El-Shenawy NS. Ameliorative Role of Green Tea and Zinc Oxide Nanoparticles Complex Against Monosodium Glutamate-Induced Testicular Toxicity in Male Rats. Curr Pharm Biotechnol 2020; 21:488-501. [PMID: 31793422 DOI: 10.2174/1389201020666191203095036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was designed to estimate the long-term effects of zinc oxide nanoparticles/green tea (ZnONPs/GTE) complex against monosodium glutamate (MSG). The antioxidant/oxidative status, testosterone levels, DNA damage, and histopathological changes of testis were evaluated. METHODS The rats were divided into eight groups that were treated as follows: saline, the lower dosage of MSG (6.0 mg/kg), the higher dosage of MSG (17.5 mg/Kg), GTE, ZnONPs, ZnONPs/GTE and the last two groups were treated with the lower dosage of MSG or the higher dosage of MSG with ZnONPs/GTE complex. The data showed minimal toxicity in testicular tissue after the administration of ZnONPs. RESULTS The MSG treatment in the adult male rats reduced testosterone levels and disrupted testicular histology, which revealed dose-dependence of MSG. Also, ZnONPs induced testicular dysfunction through the interference of antioxidant/oxidant balance and suppression of testosterone levels as well as induction of cellular damage of testis. The combination of ZnONPs with GTE complex significantly protects against MSG or ZnONPs toxicity by decreasing the DNA damage, oxidative stress, and enhancement of antioxidant as well as histological structure of testis. CONCLUSION We could recommend using ZnONPs/GTE complex to reduce the toxicity of ZnONPs and MSG on the testis at the cellular and oxidative stress levels.
Collapse
Affiliation(s)
- Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, 888, Saudi Arabia.,Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fawziah A Al-Salmi
- Biology Department, Faculty of Science, Taif University, Taif, 888, Saudi Arabia
| | - Hebatullah Laban
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
49
|
Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda K, Pajak B, Slonska A, Cymerys J, Celichowski G, Grobelny J, Krzyzowska M. Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing. Int J Nanomedicine 2020; 15:4969-4990. [PMID: 32764930 PMCID: PMC7369312 DOI: 10.2147/ijn.s252027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications. Methods Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications. Results Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 μM tannic acid, 200 μM resveratrol, 200 μM epicatechin gallate, 1000 μM gallic acid and 200 μM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) - like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure. Conclusion Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.
Collapse
Affiliation(s)
- Piotr Orlowski
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Zmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | - Beata Pajak
- Laboratory of Genetics and Molecular Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Anna Slonska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Malgorzata Krzyzowska
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
50
|
Niu X, Zhao H, Zhu W, Zhao Y, Cao X, Xing L. Efficacy of oral epigallocatechin-3-gallate solution administration during radiotherapy for non-small-cell lung cancer patients: A long-term observational study. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|