1
|
|
Ali A. Abdulkareem, Firas B. Al-Taweel, Ali J.B. Al-Sharqi, Sarhang S. Gul, Aram Sha, Iain L.C. Chapple. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol; 15:2197779. [PMID: 37025387 DOI: 10.1080/20002297.2023.2197779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The primary etiological agent for the initiation and progression of periodontal disease is the dental plaque biofilm which is an organized aggregation of microorganisms residing within a complex intercellular matrix. The non-specific plaque hypothesis was the first attempt to explain the role of the dental biofilm in the pathogenesis of periodontal diseases. However, the introduction of sophisticated diagnostic and laboratory assays has led to the realisation that the development of periodontitis requires more than a mere increase in the biomass of dental plaque. Indeed, multispecies biofilms exhibit complex interactions between the bacteria and the host. In addition, not all resident microorganisms within the biofilm are pathogenic, since beneficial bacteria exist that serve to maintain a symbiotic relationship between the plaque microbiome and the host’s immune-inflammatory response, preventing the emergence of pathogenic microorganisms and the development of dysbiosis. This review aims to highlight the development and structure of the dental plaque biofilm and to explore current literature on the transition from a healthy (symbiotic) to a diseased (dysbiotic) biofilm in periodontitis and the associated immune-inflammatory responses that drive periodontal tissue destruction and form mechanistic pathways that impact other systemic non-communicable diseases.
Collapse
Affiliation(s)
- Ali A. Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- CONTACT Ali A. Abdulkareem College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Firas B. Al-Taweel
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ali J.B. Al-Sharqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Sarhang S. Gul
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Aram Sha
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Iain L.C. Chapple
- Periodontal Research Group, Institute of Clinical Sciences, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
|
Liu Q, Liu Z, Huang B, Teng Y, Li M, Peng S, Guo H, Wang M, Liang J, Zhang Y. Global trends in poliomyelitis research over the past 20 years: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2173905. [PMID: 36803526 DOI: 10.1080/21645515.2023.2173905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Poliomyelitis is an acute infectious disease caused by poliovirus. This bibliometric analysis aims to examine the status of poliomyelitis research in the past 20 years. Information regarding polio research was obtained from the Web of Science Core Collection database. CiteSpace, VOSviewer, and Excel were used to perform visual and bibliometric analysis with respect to countries/regions, institutions, authors, journals and keywords. A total of 5,335 publications on poliomyelitis were published from 2002 to 2021. The USA was the county with the majority of publications. Additionally, the most productive institution was the Centers for Disease Control and Prevention. Sutter, RW produced the most papers and had the most co-citations. Vaccine was the journal with the most polio-related publications and citations. The most common keywords were mainly about polio immunology research ("polio," "immunization," "children," "eradication" and "vaccine"). Our study is helpful for identifying research hotspots and providing direction for future research on poliomyelitis.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Biling Huang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Teng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingliu Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuqin Peng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
|
Zhang ML, Zhou KM, Wang XW. Identification and characterization of a Reeler domain containing protein in Procambarus clarkii provides new insights into antibacterial immunity in crustacean. Fish Shellfish Immunol Rep 2023; 4:100094. [PMID: 37131543 DOI: 10.1016/j.fsirep.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Crayfish, as an invertebrate, relies only on the innate immune system to resist external pathogens. In this study, a molecule containing a single Reeler domain was identified from red swamp crayfish Procambarus clarkii (named as PcReeler). Tissue distribution analysis showed that PcReeler was highly expressed in gills and its expression was induced by bacterial stimulation. Inhibiting the expression of PcReeler by RNA interference led to a significant increase in the bacterial abundance in the gills of crayfish, and a significant increase in the crayfish mortality. Silencing of PcReeler influenced the stability of the microbiota in the gills revealed by 16S rDNA high-throughput sequencing. Recombinant PcReeler showed the ability to bind microbial polysaccharide and bacteria and to inhibit the formation of bacterial biofilms. These results provided direct evidence for the involvement of PcReeler in the antibacterial immune mechanism of P. clarkii.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Kai-Min Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Corresponding author at: School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
|
Maybin JA, Thompson TP, Flynn PB, Skvortsov T, Hickok NJ, Freeman TA, Gilmore BF. Cold atmospheric pressure plasma-antibiotic synergy in Pseudomonas aeruginosa biofilms is mediated via oxidative stress response. Biofilm 2023; 5:100122. [PMID: 37214348 DOI: 10.1016/j.bioflm.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Cold atmospheric-pressure plasma (CAP) has emerged as a potential alternative or adjuvant to conventional antibiotics for the treatment of bacterial infections, including those caused by antibiotic-resistant pathogens. The potential of sub-lethal CAP exposures to synergise conventional antimicrobials for the eradication of Pseudomonas aeruginosa biofilms is investigated in this study. The efficacy of antimicrobials following or in the absence of sub-lethal CAP pre-treatment in P. aeruginosa biofilms was assessed. CAP pre-treatment resulted in an increase in both planktonic and biofilm antimicrobial sensitivity for all three strains tested (PAO1, PA14, and PA10548), with both minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) of individual antimicrobials, being significantly reduced following CAP pre-treatment of the biofilm (512-fold reduction with ciprofloxacin/gentamicin; and a 256-fold reduction with tobramycin). At all concentrations of antimicrobial used, the combination of sub-lethal CAP exposure and antimicrobials was effective at increasing time-to-peak metabolism, as measured by isothermal microcalorimetry, again indicating enhanced susceptibility. CAP is known to damage bacterial cell membranes and DNA by causing oxidative stress through the in situ generation of reactive oxygen and nitrogen species (RONS). While the exact mechanism is not clear, oxidative stress on outer membrane proteins is thought to damage/perturb cell membranes, confirmed by ATP and LDH leakage, allowing antimicrobials to penetrate the bacterial cell more effectively, thus increasing bacterial susceptibility. Transcriptomic analysis, reveals that cold-plasma mediated oxidative stress caused upregulation of P. aeruginosa superoxide dismutase, cbb3 oxidases, catalases, and peroxidases, and upregulation in denitrification genes, suggesting that P. aeruginosa uses these enzymes to degrade RONS and mitigate the effects of cold plasma mediated oxidative stress. CAP treatment also led to an increased production of the signalling molecule ppGpp in P. aeruginosa, indicative of a stringent response being established. Although we did not directly measure persister cell formation, this stringent response may potentially be associated with the formation of persister cells in biofilm cultures. The production of ppGpp and polyphosphate may be associated with protein synthesis inhibition and increase efflux pump activity, factors which can result in antimicrobial tolerance. The transcriptomic analysis also showed that by 6 h post-treatment, there was downregulation in ribosome modulation factor, which is involved in the formation of persister cells, suggesting that the cells had begun to resuscitate/recover. In addition, CAP treatment at 4 h post-exposure caused downregulation of the virulence factors pyoverdine and pyocyanin; by 6 h post-exposure, virulence factor production was increasing. Transcriptomic analysis provides valuable insights into the mechanisms by which P. aeruginosa biofilms exhibits enhanced susceptibility to antimicrobials. Overall, these findings suggest, for the first time, that short CAP sub-lethal pre-treatment can be an effective strategy for enhancing the susceptibility of P. aeruginosa biofilms to antimicrobials and provides important mechanistic insights into cold plasma-antimicrobial synergy. Transcriptomic analysis of the response to, and recovery from, sub-lethal cold plasma exposures in P. aeruginosa biofilms improves our current understanding of cold plasma biofilm interactions.
Collapse
Affiliation(s)
- Jordanne-Amee Maybin
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Padrig B. Flynn
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
7
|
|
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
8
|
|
Quan L, Sun X, Xu L, Chen RA, Liu DX. Coronavirus RNA-dependent RNA polymerase interacts with the p50 regulatory subunit of host DNA polymerase delta and plays a synergistic role with RNA helicase in the induction of DNA damage response and cell cycle arrest in the S phase. Emerg Microbes Infect 2023; 12:e2176008. [PMID: 36724449 DOI: 10.1080/22221751.2023.2176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disruption of the cell cycle is a common strategy shared by many viruses to create a conducible cellular microenvironment for their efficient replication. We have previously shown that infection of cells with gammacoronavirus infectious bronchitis virus (IBV) activated the theataxia-telangiectasia mutated (ATM) Rad3-related (ATR)/checkpoint kinase 1 (Chk1) pathway and induced cell cycle arrest in S and G2/M phases, partially through the interaction of nonstructural protein 13 (nsp13) with the p125 catalytic subunit of DNA polymerase delta (pol δ). In this study, we show, by GST pulldown, co-immunoprecipitation and immunofluorescent staining, that IBV nsp12 directly interacts with the p50 regulatory subunit of pol δ in vitro and in cells overexpressing the two proteins as well as in cells infected with a recombinant IBV harbouring an HA-tagged nsp12. Furthermore, nsp12 from severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 was also able to interact with p50. These interactions play a synergistic role with nsp13 in the induction of S phase arrest. The fact that subunits of an essential cellular DNA replication machinery physically associate with two core replication enzymes from three different coronaviruses highlights the importance of these associations in coronavirus replication and virus-host interaction, and reveals the potential of targeting these subunits for antiviral intervention.
Collapse
Affiliation(s)
- Li Quan
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinxin Sun
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China, Ding Xiang Liu
| |
Collapse
|
9
|
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
|
Li X, Li L, Zhang H, Chi X, Jiang Y, Ni T. Discovery of novel thiosemicarbazone derivatives with potent and selective anti-Candida glabrata activity. J Enzyme Inhib Med Chem 2023; 38:2202362. [PMID: 37080774 DOI: 10.1080/14756366.2023.2202362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
A series of 21 novel compounds containing a thiosemicarbazone moiety were designed and synthesised based on hit compound 1 from our in-house compound library screening. Most compounds showed potent antifungal activity in vitro against seven common pathogenic fungi. Notably, all compounds showed high potency against Candida glabrata 537 (MIC = ≤0.0156-2 µg/mL). Of note, compounds 5j and 5r displayed excellent antifungal activity against Candida krusei 4946 and Candida auris 922. Additionally, compounds 5j and 5r also showed high potency against 15 C. glabrata isolates with MIC values ranging from 0.0625 µg/mL to 4 µg/mL, with compound 5r being slightly superior to 5j. Moreover, compound 5r has certain effect against biofilm formation of C. glabrata. Furthermore, compound 5r has minimal cytotoxicity against HUVECs with an IC50 value of 15.89 µg/mL and no haemolysis at 64 µg/mL. Taken together, these results suggest that promising lead compound 5r deserves further investigation.
Collapse
Affiliation(s)
- Xianru Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haonan Zhang
- Department of General Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Xiaochen Chi
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
12
|
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia,CONTACT Stephen J Rogerson
| |
Collapse
|
13
|
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
14
|
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
|
15
|
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
16
|
|
Embacher J, Zeilinger S, Kirchmair M, Rodriguez-r LM, Neuhauser S. Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. FUNGAL BIOL REV 2023; 45:100305. [DOI: 10.1016/j.fbr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
|
Aylward J, Roets F, Dreyer LL, Wingfield MJ. Unseen fungal biodiversity and complex inter-organismal interactions in Protea flower heads. FUNGAL BIOL REV 2023; 45:100317. [DOI: 10.1016/j.fbr.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
|
Ma X, Zheng Z, Wang Q, Zuo J, Ju J, Zheng B, Lu X. The modulation effect of lotus (Nelumbo nucifera Gaertn.) seeds oligosaccharides with different structures on intestinal flora and action mode of growth effects on Bifidobacterium in vivo and in vitro. Food Chem 2023; 419:136057. [PMID: 37011571 DOI: 10.1016/j.foodchem.2023.136057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Natural lotus seed oligosaccharides monomers (LOSs: LOS3-1, LOS3-2, and LOS4) were prepared by preparative chromatography and were hydroxyl-labeled with fluorescein isothiocyanate (FITC). The prebiotic properties of LOSs by the gut microbiota of male Balb/C mice in vivo and in vitro were studied. In vivo experiment results showed that LOS4 could significantly increase the average daily food consumption, weight, liver index and the abundance of Bacteroides and Bifidobacterium for mice (p < 0.05). In addition, LOS4 also had significant proliferation effect on Bifidobacterium adolescentis and longum in vitro (p < 0.05). Laser confocal microscopy observation showed interaction site between LOS4-FITC and Bifidobacterium adolescentis was located outside and inside of cell, which was completed within 1 h. The relationship between structures of LOSs and prebiotics of intestinal flora (especially Bifidobacterium), and expanded the knowledge on the effects of carbohydrate polymerization degree (DP) and glycosidic bond connection with fermentation selectivity of bacteria was studied.
Collapse
|
19
|
|
Zhang S, Wang F, Wang Y, Chen X, Xu P, Miao H. Shifts of soil archaeal nitrification and methanogenesis with elevation in water level fluctuation zone of the three Gorges Reservoir, China. J Environ Manage 2023; 339:117871. [PMID: 37030237 DOI: 10.1016/j.jenvman.2023.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The water level fluctuation zone is a unique ecological zone exposed to long-term drying and flooding and plays a critical role in the transport and transformation of carbon and nitrogen materials in reservoir-river systems. Archaea are a vital component of soil ecosystems in the water level fluctuation zones, however, the distribution and function of archaeal communities in responde to long-term wet and dry alternations are still unclear. The community structure of archaea in the drawdown areas at various elevations of the Three Gorges Reservoir was investigated by selecting surface soils (0-5 cm) of different inundation durations at three sites from upstream to downstream according to the flooding pattern. The results revealed that prolonged flooding and drying increased the community diversity of soil archaea, with ammonia-oxidizing archaea being the dominant species in non-flooded regions, while methanogenic archaea were abundant in soils that had been flooded for an extended period of time. Long-term alternation of wetting and drying increases methanogenesis but decreases nitrification. It was determined that soil pH, NO3--N, TOC and TN are significant environmental factors affecting the composition of soil archaeal communities (P = 0.02). Long-term flooding and drying changed the community composition of soil archaea by altering environmental factors, which in turn influenced nitrification and methanogenesis in soils at different elevations. These findings contribute to our understanding of soil carbon and nitrogen transport transformation processes in the water level fluctuation zone as well as the effects of long-term wet and dry alternation on soil carbon and nitrogen cycles. The results of this study can provide a basis for ecological management, environmental management, and long-term operation of reservoirs in water level fluctuation zones.
Collapse
Affiliation(s)
- Shengman Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Peifan Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Haocheng Miao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
|
Cattò C, Mu A, Moreau JW, Wang N, Cappitelli F, Strugnell R. Biofilm colonization of stone materials from an Australian outdoor sculpture: Importance of geometry and exposure. J Environ Manage 2023; 339:117948. [PMID: 37080094 DOI: 10.1016/j.jenvman.2023.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andre Mu
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom; School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Nancy Wang
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Richard Strugnell
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
|
Guillén S, Nadal L, Halaihel N, Mañas P, Cebrián G. Genotypic and phenotypic characterization of a Salmonella Typhimurium strain resistant to pulsed electric fields. Food Microbiol 2023; 113:104285. [PMID: 37098417 DOI: 10.1016/j.fm.2023.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Pulsed Electric Fields (PEF) technology is regarded as one of the most interesting alternatives to current food preservation methods, due to its capability to inactivate vegetative microorganisms while leaving the product's organoleptic and nutritional properties mostly unchanged. However, many aspects regarding the mechanisms of bacterial inactivation by PEF are still not fully understood. The aim of this study was to obtain further insight into the mechanisms responsible for the increased resistance to PEF of a Salmonella Typhimurium SL1344 variant (SL1344-RS, Sagarzazu et al., 2013), and to quantify the impact that the acquisition of PEF resistance has on other aspects of S. enterica physiology, such as growth fitness, biofilm formation ability, virulence and antibiotic resistance. WGS, RNAseq and qRT-PCR assays indicated that the increased PEF resistance of the SL1344-RS variant is due to a higher RpoS activity caused by a mutation in the hnr gene. This increased RpoS activity also results in higher resistance to multiple stresses (acidic, osmotic, oxidative, ethanol and UV-C, but not to heat and HHP), decreased growth rate in M9-Gluconate (but not in TSB-YE or LB-DPY), increased ability to adhere to Caco-2 cells (but no significant change in invasiveness) and enhanced antibiotic resistance (to six out of eight agents). This study significantly contributes to the understanding of the mechanisms of the development of stress resistance in Salmonellae and underscores the crucial role played by RpoS in this process. Further studies are needed to determine whether this PEF-resistant variant would represent a higher, equal or lower associated hazard than the parental strain.
Collapse
Affiliation(s)
- S Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - L Nadal
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - N Halaihel
- Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain
| | - P Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - G Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
22
|
|
Chang X, He Y, Song L, Ding J, Ren S, Lv M, Chen L. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum. J Hazard Mater 2023; 454:131528. [PMID: 37121041 DOI: 10.1016/j.jhazmat.2023.131528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The widespread occurrence of methylparaben (MPB) has aroused great concern due to its weak estrogenic endocrine-disrupting property and potential toxic effects. However, the degradation potential and pathway of MPB by microalgae have rarely been reported. Here, microalgae Chlorella vulgaris and Phaeodactylum tricornutum were used to investigate their responses, degradation potential and mechanisms towards MPB. MPB showed low-dose stimulation (by 86.02 ± 0.07% at 1 mg/L) and high-dose inhibition (by 60.17 ± 0.05% at 80 mg/L) towards the growth of C. vulgaris, while showed inhibition for P. tricornutum (by 6.99 ± 0.05%-20.14 ± 0.19%). The degradation efficiencies and rates of MPB were higher in C. vulgaris (100%, 1.66 ± 0.54-5.60 ± 0.86 day-1) than in P. tricornutum (4.3-34.2%, 0.04 ± 0.01-0.08 ± 0.00 day-1), which could be explained by the significantly higher extracellular enzyme activity and more fluctuation of the protein ratio for C. vulgaris, indicating a higher ability of C. vulgaris to adapt to pollutant stress. Biodegradation was the main removal mechanism of MPB for both the two microalgae. Furthermore, two different degradation pathways of MPB by the two microalgae were proposed. MPB could be mineralized and completely detoxified by C. vulgaris. Overall, this study provides novel insights into MPB degradation by microalgae and strategies for simultaneous biodegradation and detoxification of MPB in the environment.
Collapse
Affiliation(s)
- Xianbo Chang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuanyuan He
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| |
Collapse
|
23
|
|
Sun X, Kong T, Huang D, Chen Z, Kolton M, Yang J, Huang Y, Cao Y, Gao P, Yang N, Li B, Liu H, Sun W. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. J Hazard Mater 2023; 454:131458. [PMID: 37099912 DOI: 10.1016/j.jhazmat.2023.131458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Pteris vittata is an arsenic(As)-hyperaccumulator that may be employed in phytoremediation of As-contaminated soils. P. vittata-associated microbiome are adapted to elevated As and may be important for host survival under stresses. Although P. vittata root endophytes could be critical for As biotransformation in planta, their compositions and metabolisms remain elusive. The current study aims to characterize the root endophytic community composition and As-metabolizing potentials in P. vittata. High As(III) oxidase gene abundances and rapid As(III) oxidation activity indicated that As(III) oxidation was the dominant microbial As-biotransformation processes compared to As reduction and methylization in P. vittata roots. Members of Rhizobiales were the core microbiome and the dominant As(III) oxidizers in P. vittata roots. Acquasition of As-metabolising genes, including both As(III) oxidase and As(V) detoxification reductase genes, through horizontal gene transfer was identified in a Saccharimonadaceae genomic assembly, which was another abundant population residing in P. vittata roots. Acquisition of these genes might improve the fitness of Saccharimonadaceae population to elevated As concentrations in P. vittata. Diverse plant growth promoting traits were encoded by the core root microbiome populations Rhizobiales. We propose that microbial As(III) oxidation and plant growth promotion are critical traits for P. vittata survival in hostile As-contaiminated sites.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
24
|
|
Barili S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters. Environ Res 2023; 229:115891. [PMID: 37059323 DOI: 10.1016/j.envres.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.
Collapse
Affiliation(s)
- Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Alessandro Bernetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy.
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| |
Collapse
|
25
|
|
Huang S, Guo T, Feng Z, Li B, Cai Y, Ouyang D, Gustave W, Ying C, Zhang H. Polyethylene and polyvinyl chloride microplastics promote soil nitrification and alter the composition of key nitrogen functional bacterial groups. J Hazard Mater 2023; 453:131391. [PMID: 37043864 DOI: 10.1016/j.jhazmat.2023.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) contamination in soils seriously threatens agroecosystems globally. However, very few studies have been done on the effects of MPs on the soil nitrogen cycle and related functional microorganisms. To assess MP's impact on the soil nitrogen cycle and related functional bacteria, we carried out a one-month soil incubation experiment using typical acidic soil. The soil was amended with alfalfa meal and was spiked with 1% and 5% (mass percentage) of low-density polyethylene (LDPE) and polyvinyl chloride (PVC) MPs. Our results showed that both LDPE and PVC addition significantly increased soil nitrification rate and nitrate reductase activity, which could further promote soil denitrification. The relative abundance of diazotrophs, ammonium oxidizing, and denitrifying bacterial groups were significantly altered with MPs addition. Moreover, the MPs treatments greatly enhanced denitrifying bacteria richness. Redundancy analysis showed that nitrate reductase activity was the most significant factor affecting the soil functional bacterial community. Correlation analysis shows that Nitrosospira genus might be for the improvement of soil nitrification rate. Our results implied that MPs exposure could significantly affect the soil nitrogen cycling in farmland ecosystems by influencing essential nitrogen functional microorganisms and related enzymatic activities.
Collapse
Affiliation(s)
- Shunyin Huang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Zhen Feng
- School of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baochen Li
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, New Providence, Bahamas
| | - Chengfei Ying
- School of Humanities and Law, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Haibo Zhang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
26
|
|
Zhang YX, Xiang JL, Wang JJ, Du HS, Wang TT, Huo ZY, Wang WL, Liu M, Du Y. Ultraviolet-based synergistic processes for wastewater disinfection: A review. J Hazard Mater 2023; 453:131393. [PMID: 37062094 DOI: 10.1016/j.jhazmat.2023.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for wastewater disinfection but suffers from low inactivation rates and can cause photoreactivation of microorganisms. Synergistic disinfection with UV and oxidants is promising for enhancing the inactivation performance. This review summarizes the inactivation effects on representative microorganisms by UV/hydrogen peroxide (H2O2), UV/ozone (O3), UV/persulfate (PS), UV/chlorine, and UV/chlorine dioxide (ClO2). UV synergistic processes perform better than UV or an oxidant alone. UV mainly attacks the DNA or RNA in microorganisms; the oxidants H2O2 and O3 mainly attack the cell walls, cell membranes, and other external structures; and HOCl and ClO2 enter cells and oxidize proteins and enzymes. Free radicals can have strong oxidation effects on cell walls, cell membranes, proteins, enzymes, and even DNA. At similar UV doses, the inactivation rates of Escherichia coli with UV alone, UV/H2O2, UV/O3, UV/PS (peroxydisulfate or peroxymonosulfate), and UV/chlorinated oxidant (chlorine, ClO2, and NH2Cl) range from 2.03 to 3.84 log, 2.62-4.30 log, 4.02-6.08 log, 2.93-5.07 log, and 3.78-6.55 log, respectively. The E. coli inactivation rates are in the order of UV/O3 ≈ UV/Cl2 > UV/PS > UV/H2O2. This order is closely related to the redox potentials of the oxidants and quantum yields of the radicals. UV synergistic disinfection processes inhibit photoreactivation of E. coli in the order of UV/O3 > UV/PS > UV/H2O2. The activation mechanisms and formation pathways of free radicals with different UV-based synergistic processes are presented. In addition to generating HO·, O3 can reduce the turbidity and chroma of wastewater to increase UV penetration, which improves the disinfection performance of UV/O3. This knowledge will be useful for further development of the UV-based synergistic disinfection processes.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
27
|
|
He Z, Shen J, Zhu Y, Feng J, Pan X. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. Chemosphere 2023; 329:138623. [PMID: 37030346 DOI: 10.1016/j.chemosphere.2023.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iron oxides and sulfate are usually abundant in paddy soil, but their role in reducing methane emissions is little known. In this work, paddy soil was anaerobically cultivated with ferrihydrite and sulfate for 380 days. An activity assay, inhibition experiment, and microbial analysis were conducted to evaluate the microbial activity, possible pathways, and community structure, respectively. The results showed that anaerobic oxidation of methane (AOM) was active in the paddy soil. The AOM activity was much higher with ferrihydrite than sulfate, and an extra 10% of AOM activity was stimulated when ferrihydrite and sulfate coexisted. The microbial community was highly similar to the duplicates but totally different with different electron acceptors. The microbial abundance and diversity decreased due to the oligotrophic condition, but mcrA-carrying archaea increased 2-3 times after 380 days. Both the microbial community and the inhibition experiment implied that there was an intersection between iron and sulfur cycles. A "cryptic sulfur cycle" might link the two cycles, in which sulfate was quickly regenerated by iron oxides, and it might contribute 33% of AOM in the tested paddy soil. Complex links between methane, iron, and sulfur geochemical cycles occur in paddy soil, which may be significant in reducing methane emissions from rice fields.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
28
|
|
Tornabene BJ, Smalling KL, Givens CE, Oja EB, Hossack BR. Energy-related wastewater contamination alters microbial communities of sediment, water, and amphibian skin. Sci Total Environ 2023; 880:163160. [PMID: 37003337 DOI: 10.1016/j.scitotenv.2023.163160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
To inform responsible energy development, it is important to understand the ecological effects of contamination events. Wastewaters, a common byproduct of oil and gas extraction, often contain high concentrations of sodium chloride (NaCl) and heavy metals (e.g., strontium and vanadium). These constituents can negatively affect aquatic organisms, but there is scarce information for how wastewaters influence potentially distinct microbiomes in wetland ecosystems. Additionally, few studies have concomitantly investigated effects of wastewaters on the habitat (water and sediment) and skin microbiomes of amphibians or relationships among these microbial communities. We sampled microbiomes of water, sediment, and skin of four larval amphibian species across a gradient of chloride contamination (0.04-17,500 mg/L Cl) in the Prairie Pothole Region of North America. We detected 3129 genetic phylotypes and 68 % of those phylotypes were shared among the three sample types. The most common shared phylotypes were Proteobacteria, Firmicutes, and Bacteroidetes. Salinity of wastewaters increased dissimilarity within all three microbial communities, but not the diversity or richness of water and skin microbial communities. Strontium was associated with lower diversity and richness of sediment microbial communities, but not those of water or amphibian skin, likely because metal deposition occurs in sediment when wetlands dry. Based on Bray Curtis distance matrices, sediment microbiomes were similar to those of water, but neither had substantial overlap with amphibian microbiomes. Species identity was the strongest predictor of amphibian microbiomes; frog microbiomes were similar but differed from that of the salamander, whose microbiome had the lowest richness and diversity. Understanding how effects of wastewaters on the dissimilarity, richness, and diversity of microbial communities also influence the ecosystem function of communities will be an important next step. However, our study provides novel insight into the characteristics of, and associations among, different wetland microbial communities and effects of wastewaters from energy production.
Collapse
Affiliation(s)
- Brian J Tornabene
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA.
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, 5840 Enterprise Drive, Lansing, MI 48911, USA
| | - Emily B Oja
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA
| | - Blake R Hossack
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA; Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
29
|
|
Nisa M, Dar RA, Fomda BA, Nazir R. Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023; 149:109710. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
|
Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. Food Science and Human Wellness 2023; 12:1359-1368. [DOI: 10.1016/j.fshw.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
|
Li A, Lu Y, Zhen D, Guo Z, Wang G, Shi K, Liao S. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. Chemosphere 2023; 329:138663. [PMID: 37044144 DOI: 10.1016/j.chemosphere.2023.138663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbes affect arsenic accumulation in the arsenic-hyperaccumulator Pteris vittata, but the associated molecular mechanism remains uncertain. Here, we investigated the effect of Enterobacter sp. E1 on arsenic accumulation by P. vittata. Strain E1 presented capacities of arsenate [As(V)] and Fe(III) reduction during cultivation. In the pot experiment with P. vittata, the biomass, arsenic content, and chlorophyll content of P. vittata significantly increased by 30.03%, 74.9%, and 112.1%, respectively. Strikingly, the water-soluble plus exchangeable arsenic (WE-As) significantly increased by 52.05%, while Fe-bound arsenic (Fe-As) decreased by 29.64% in the potted soil treated with strain E1. The possible role of activation of arsenic by strain E1 was subsequently investigated by exposing As(V)-absorbed ferrihydrite to the bacterial culture. Speciation analyses of As showed that strain E1 significantly increased soluble levels of As and Fe and that more As(V) was reduced to arsenite. Additionally, increased microbial diversity and soil enzymatic activities in soils indicated that strain E1 posed few ecological risks. These results indicate that strain E1 effectively increased As accumulation in P. vittata mainly by promoting plant growth and dissolving soil arsenic. Our findings suggest that As(V) and Fe(III)-reducer E1 could be used to enhance the phytoremediation of P. vittata in arsenic-contaminated soils.
Collapse
Affiliation(s)
- Aiting Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Da Zhen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziheng Guo
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | |
|