1
|
Peng W, He CX, Li RL, Qian D, Wang LY, Chen WW, Zhang Q, Wu CJ. Zanthoxylum bungeanum amides ameliorates nonalcoholic fatty liver via regulating gut microbiota and activating AMPK/Nrf2 signaling. J Ethnopharmacol 2024; 318:116848. [PMID: 37423515 DOI: 10.1016/j.jep.2023.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim. (Rutaceae) is a known herbal medicine with various bioactivities, including anti-obesity, lipid-lowering, learning & memory improving and anti-diabetes, and amides in Z. bungeanum (AZB) are considered as the major active agents for its bioactivities. AIM OF THE STUDY This research was carried out to uncover the anti-NAFL effect of AZB and its corresponding molecular mechanisms. METHODS The central composite design-response surface methodology (CCD-RSM) was utilized to optimize the AZB extraction process, and the anti-NAFL effect of AZB was investigated on high fat diet (HFD) fed mice (HFD mice). The levels of ROS in liver tissues were determined using laser confocal microscopy with DCFH-DA probe staining, and anti-enzymes (such as HO-1, SOD, CAT & GSH-PX) and MDA in liver tissues were measured using commercial detecting kits. GC-MS was used to determine the short-chain fatty acids (SCFAs) contents in feces and blood of mice. 16S high-throughput sequencing, western blotting (WB) assay and immunofluorescence (IF) were used to explore the intestinal flora changes in mice and the potential mechanisms of AZB for treatment of NAFL. RESULTS Our results showed AZB reduced body weight, alleviated liver pathological changes, reduced fat accumulation, and improved oxidative stress in HFD mice. In addition, we also found AZB improved OGTT and ITT, reduced TG, TC, LDL-C, whereas increased HDL-C in HFD mice. AZB increased total number of the species and interspecies kinship of gut microbiota and reduced the richness and diversity of gut microbiota in HFD mice. Moreover, AZB decreased the ratio of Firmicutes/Bacteroidota, whereas increased the abundance of Allobaculum, Bacteroides and Dubosiella in feces of HFD-fed mice. Furthermore, AZB increased the production of SCFAs, and up-regulated the phosphorylation of AMPK and increased the nuclear transcription of Nrf2 in liver of HFD mice. CONCLUSION Collectively, our results suggested AZB can improve NAFL, which could reduce body weight, reverse liver lesions and fat accumulation, improve oxidative stress in liver tissues of HFD mice. Furthermore, the mechanisms are related to increase of the abundance of high-producing bacteria for SCFAs (e.g. Allobaculum, Bacteroides and Dubosiella) to activate AMPK/Nrf2 signaling.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wen-Wen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chun-Jie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Heredia A, Andrés A. Volatile profile of quinoa and lentil flour under fungal fermentation and drying. Food Chem 2024; 430:137082. [PMID: 37549623 DOI: 10.1016/j.foodchem.2023.137082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Solid-state fermentation reportedly improves the nutritional and sensory properties of legumes and pseudocereals. This study examined changes in the volatile profile using HS-SPME-GC-MS of two varieties of lentil and quinoa flour fermented with Pleurotus ostreatus and dried using hot-air drying and lyophilisation. Fermentation significantly increased the volatile profile. Pardina lentil flour showed a 570% increase in its volatile profile, and 10 compounds were created. In white quinoa, the total area rose from 96 to 4500, and 30 compounds were created. Compounds such as 1-octen-3-ol, benzaldehyde, 3-octanone and hexanal were generated during fermentation, providing a sweet, grassy, cocoa flavour. Hot-air drying led to decrease of over 40% in total peak area. Dried fermented flour retained higher levels of compounds that provide a sweet, cocoa aroma. Air-drying temperature had no significant influence on the volatile profile. This a allows the inclusion of these flours in a wide variety of food products.
Collapse
Affiliation(s)
- Janaina Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. Environ Sci Ecotechnol 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
4
|
Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJ, Gul SS, Sha A, Chapple IL. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol 2023; 15:2197779. [PMID: 37025387 PMCID: PMC10071981 DOI: 10.1080/20002297.2023.2197779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The primary etiological agent for the initiation and progression of periodontal disease is the dental plaque biofilm which is an organized aggregation of microorganisms residing within a complex intercellular matrix. The non-specific plaque hypothesis was the first attempt to explain the role of the dental biofilm in the pathogenesis of periodontal diseases. However, the introduction of sophisticated diagnostic and laboratory assays has led to the realisation that the development of periodontitis requires more than a mere increase in the biomass of dental plaque. Indeed, multispecies biofilms exhibit complex interactions between the bacteria and the host. In addition, not all resident microorganisms within the biofilm are pathogenic, since beneficial bacteria exist that serve to maintain a symbiotic relationship between the plaque microbiome and the host’s immune-inflammatory response, preventing the emergence of pathogenic microorganisms and the development of dysbiosis. This review aims to highlight the development and structure of the dental plaque biofilm and to explore current literature on the transition from a healthy (symbiotic) to a diseased (dysbiotic) biofilm in periodontitis and the associated immune-inflammatory responses that drive periodontal tissue destruction and form mechanistic pathways that impact other systemic non-communicable diseases.
Collapse
Affiliation(s)
- Ali A. Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- CONTACT Ali A. Abdulkareem College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Firas B. Al-Taweel
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ali J.B. Al-Sharqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Sarhang S. Gul
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Aram Sha
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Iain L.C. Chapple
- Periodontal Research Group, Institute of Clinical Sciences, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Liu Q, Liu Z, Huang B, Teng Y, Li M, Peng S, Guo H, Wang M, Liang J, Zhang Y. Global trends in poliomyelitis research over the past 20 years: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2173905. [PMID: 36803526 PMCID: PMC10038019 DOI: 10.1080/21645515.2023.2173905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Poliomyelitis is an acute infectious disease caused by poliovirus. This bibliometric analysis aims to examine the status of poliomyelitis research in the past 20 years. Information regarding polio research was obtained from the Web of Science Core Collection database. CiteSpace, VOSviewer, and Excel were used to perform visual and bibliometric analysis with respect to countries/regions, institutions, authors, journals and keywords. A total of 5,335 publications on poliomyelitis were published from 2002 to 2021. The USA was the county with the majority of publications. Additionally, the most productive institution was the Centers for Disease Control and Prevention. Sutter, RW produced the most papers and had the most co-citations. Vaccine was the journal with the most polio-related publications and citations. The most common keywords were mainly about polio immunology research ("polio," "immunization," "children," "eradication" and "vaccine"). Our study is helpful for identifying research hotspots and providing direction for future research on poliomyelitis.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Biling Huang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Teng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingliu Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuqin Peng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Kim WJ, Kim W, Kim Y, Cheong H, Kim SJ. Coordinated recruitment of conserved defense-signaling pathways in PVY O-Infected Nicotiana benthamiana. Plant Signal Behav 2023; 18:2252972. [PMID: 37655790 PMCID: PMC10478736 DOI: 10.1080/15592324.2023.2252972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Potato virus Y (PVY) is an aphid-transmitted potyvirus that affects economically important solanaceous species. In this study, the phenomena and mechanisms following infection with PVY were investigated in tobacco (Nicotiana benthamiana). In tobacco plants, infection with a mild strain of PVY (PVYO) induced stunted growth in the first two leaves at the shoot apex starting 7 days post-infection (dpi), and mosaic symptoms began to appear on newly developing young leaves at 14 dpi. Using enzyme-linked immunosorbent assay and ultrastructure analysis, we confirmed that viral particles accumulated only in the upper developing leaves of infected plants. We analyzed reactive oxygen species (ROS) generation in leaves from the bottom to the top of the plants to investigate whether delayed symptom development in leaves was associated with a defense response to the virus. In addition, the ultrastructural analysis confirmed the increase of ATG4 and ATG8, which are autophagy markers by endoplasmic reticulum (ER) stress, and the expression of genes involved in viral RNA suppression. Overall, our results suggested that viral RNA silencing and induced autophagy may play a role in the inhibition of viral symptom development in host plants in response to PVYO infection.
Collapse
Affiliation(s)
- Won-Jin Kim
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Woong Kim
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Youngsoon Kim
- Plant Cell Research Institute of BIO-FD&C, Co., Ltd., Incheon, Republic of Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Seok-Jun Kim
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Rawson KB, Neuberger T, Smith TB, Bell IJ, Looper RE, Sebahar PR, Haussener TJ, Kanna Reddy HR, Isaacson BM, Shero J, Pasquina PF, Williams DL. Ex vivo comparison of V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™ loaded with a first-in-class bis-dialkylnorspermidine-terphenyl antibiofilm agent. Biofilm 2023; 6:100142. [PMID: 37484784 PMCID: PMC10359492 DOI: 10.1016/j.bioflm.2023.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Implementation of negative pressure wound therapy (NPWT) as a standard of care has proven efficacious in reducing both the healing time and likelihood of nosocomial infection among pressure ulcers and traumatic, combat-related injuries. However, current formulations may not target or dramatically reduce bacterial biofilm burden following therapy. The purpose of this study was to determine the antibiofilm efficacy of an open-cell polyurethane (PU) foam (V.A.C.® Granufoam™) loaded with a first-in-class compound (CZ-01179) as the active release agent integrated via lyophilized hydrogel scaffolding. An ex vivo porcine excision wound model was designed to perform antibiofilm efficacy testing in the presence of NPWT. PU foam samples loaded with a 10.0% w/w formulation of CZ-01179 and 0.5% hyaluronic acid were prepared and tested against current standards of care: V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™. We observed statistically significant reduction of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii biofilms with the CZ-01179 antibiofilm foam in comparison to current standard of care foams. These findings motivate further development of an antibiofilm PU foam loaded with CZ-01179.
Collapse
Affiliation(s)
- Kaden B. Rawson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Travis Neuberger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Tyler B. Smith
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Isaac J. Bell
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Paul R. Sebahar
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Travis J. Haussener
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | | | - Brad M. Isaacson
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - John Shero
- Extremity Trauma and Amputation Center of Excellence, Joint Base San Antonio Fort Sam Houston, San Antonio, TX, USA
| | - Paul F. Pasquina
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Dustin L. Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. J Ethnopharmacol 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
10
|
Muñoz-Cázares N, Peña-González MC, Castillo-Juárez I, Díaz-Núñez JL, Peña-Rodríguez LM. Exploring the anti-virulence potential of plants used in traditional Mayan medicine to treat bacterial infections. J Ethnopharmacol 2023; 317:116783. [PMID: 37321428 DOI: 10.1016/j.jep.2023.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the antimicrobial activity of a number of plants used in traditional Mayan medicine against infectious diseases has been documented, their potential to inhibit quorum sensing (QS) as means of discovering novel anti-virulence agents remains unexplored. AIM OF THE STUDY To evaluate the anti-virulence potential of plants used in traditional Mayan medicine by determining their inhibition of QS- regulated virulence factors in Pseudomonas aeruginosa. METHODS A group of plants used in traditional Mayan medicine against infectious diseases was selected, and their methanolic extracts were evaluated at 10 mg/mL for their antibacterial and anti-virulence activity using the reference strain P. aeruginosa PA14WT. The broth microdilution method was used to determine antibacterial activity (MIC), while anti-virulence activity was evaluated by measuring the anti-biofilm effect and the inhibition of pyocyanin and protease activities. The most bioactive extract was fractionated using a liquid-liquid partition procedure and the semipurified fractions were evaluated at 5 mg/mL for antibacterial and anti-virulence activity. RESULTS Seventeen Mayan medicinal plants traditionally used to treat infection-associated diseases were selected. None of the extracts exhibited antibacterial activity, whereas anti-virulence activity was detected in extracts of Bonellia flammea, Bursera simaruba, Capraria biflora, Ceiba aesculifolia, Cissampelos pareira and Colubrina yucatanensis. The most active extracts (74% and 69% inhibition) against biofilm formation were from C. aesculifolia (bark) and C. yucatanensis (root), respectively. Alternatively, the extracts of B. flammea (root), B. simaruba (bark), C. pareira (root), and C. biflora (root), reduced pyocyanin and protease production (50-84% and 30-58%, respectively). Fractionation of the bioactive root extract of C. yucatanensis allowed the identification of two semipurified fractions with anti-virulence activity. CONCLUSIONS The anti-virulence activity detected in the crude extracts of B. flammea, B. simaruba, C. biflora, C. aesculifolia, C. pareira, and C. yucatanensis, confirms the efficacy and traditional use of these medicinal plants against infectious diseases. The activity of the extract and semipurified fractions of C. yucatanensis indicates the presence of hydrophilic metabolites capable of interfering with QS in P. aeruginosa. This study represents the first report of Mayan medicinal plants with anti-QS properties and suggests they represent an important source of novel anti-virulence agents.
Collapse
Affiliation(s)
- Naybi Muñoz-Cázares
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Maria Claudia Peña-González
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Jose Luis Díaz-Núñez
- Catedrático COMECYT-Colegio de Postgraduados, Campus Montecillo, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
11
|
Liu X, He C, Li Q, Li Z, Liu L, Chen S, Hou P. HClO imaging in vivo and drug-damaged liver tissues by a large Stokes shift fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123081. [PMID: 37392533 DOI: 10.1016/j.saa.2023.123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Drug-induced liver injury (DILI), as a classic acute inflammation, has attracted widespread concern due to its unpredictability and severity. Among the various reactive oxygen species, HClO has been used as a marker for the detection of DILI process. Thus, we designed and synthesized a "turn-on" fluorescent probe FBC-DS by modifying 3'-formyl-4'-hydroxy-[1,1'-biphenyl]-4-carbonitrile (FBC-OH) with N, N-dimethylthiocarbamate group for sensitively sensing HClO. Probe FBC-DS showed a low detection limit (65 nM), fast response time (30 s), an enormous Stokes shift (183 nm) and 85-fold fluorescence enhancement at 508 nm in the detection of HClO. Probe FBC-DS could monitor exogenous and endogenous HClO in living HeLa cells, HepG2 cells and zebrafish. In addition, probe FBC-DS has been successfully utilized in biological vectors for imaging acetaminophen (APAP)-induced endogenous HClO. Moreover, DILI caused by APAP is evaluated by probe FBC-DS through imaging over-expression of endogenous HClO in the mice liver injury models. All in all, we have every reason to believe that probe FBC-DS can be a potential tool to study the complex biological relationship between HClO and drug-induced liver injury.
Collapse
Affiliation(s)
- Xiangbao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Chuan He
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Qi Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Likun Liu
- Research Institute of Medicine & Pharmacy Qiqihar Medical University, Qiqihar 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China.
| |
Collapse
|
12
|
Zhang ML, Zhou KM, Wang XW. Identification and characterization of a Reeler domain containing protein in Procambarus clarkii provides new insights into antibacterial immunity in crustacean. Fish Shellfish Immunol Rep 2023; 4:100094. [PMID: 37131543 PMCID: PMC10149183 DOI: 10.1016/j.fsirep.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Crayfish, as an invertebrate, relies only on the innate immune system to resist external pathogens. In this study, a molecule containing a single Reeler domain was identified from red swamp crayfish Procambarus clarkii (named as PcReeler). Tissue distribution analysis showed that PcReeler was highly expressed in gills and its expression was induced by bacterial stimulation. Inhibiting the expression of PcReeler by RNA interference led to a significant increase in the bacterial abundance in the gills of crayfish, and a significant increase in the crayfish mortality. Silencing of PcReeler influenced the stability of the microbiota in the gills revealed by 16S rDNA high-throughput sequencing. Recombinant PcReeler showed the ability to bind microbial polysaccharide and bacteria and to inhibit the formation of bacterial biofilms. These results provided direct evidence for the involvement of PcReeler in the antibacterial immune mechanism of P. clarkii.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Kai-Min Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Corresponding author at: School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Maybin JA, Thompson TP, Flynn PB, Skvortsov T, Hickok NJ, Freeman TA, Gilmore BF. Cold atmospheric pressure plasma-antibiotic synergy in Pseudomonas aeruginosa biofilms is mediated via oxidative stress response. Biofilm 2023; 5:100122. [PMID: 37214348 PMCID: PMC10196807 DOI: 10.1016/j.bioflm.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Cold atmospheric-pressure plasma (CAP) has emerged as a potential alternative or adjuvant to conventional antibiotics for the treatment of bacterial infections, including those caused by antibiotic-resistant pathogens. The potential of sub-lethal CAP exposures to synergise conventional antimicrobials for the eradication of Pseudomonas aeruginosa biofilms is investigated in this study. The efficacy of antimicrobials following or in the absence of sub-lethal CAP pre-treatment in P. aeruginosa biofilms was assessed. CAP pre-treatment resulted in an increase in both planktonic and biofilm antimicrobial sensitivity for all three strains tested (PAO1, PA14, and PA10548), with both minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) of individual antimicrobials, being significantly reduced following CAP pre-treatment of the biofilm (512-fold reduction with ciprofloxacin/gentamicin; and a 256-fold reduction with tobramycin). At all concentrations of antimicrobial used, the combination of sub-lethal CAP exposure and antimicrobials was effective at increasing time-to-peak metabolism, as measured by isothermal microcalorimetry, again indicating enhanced susceptibility. CAP is known to damage bacterial cell membranes and DNA by causing oxidative stress through the in situ generation of reactive oxygen and nitrogen species (RONS). While the exact mechanism is not clear, oxidative stress on outer membrane proteins is thought to damage/perturb cell membranes, confirmed by ATP and LDH leakage, allowing antimicrobials to penetrate the bacterial cell more effectively, thus increasing bacterial susceptibility. Transcriptomic analysis, reveals that cold-plasma mediated oxidative stress caused upregulation of P. aeruginosa superoxide dismutase, cbb3 oxidases, catalases, and peroxidases, and upregulation in denitrification genes, suggesting that P. aeruginosa uses these enzymes to degrade RONS and mitigate the effects of cold plasma mediated oxidative stress. CAP treatment also led to an increased production of the signalling molecule ppGpp in P. aeruginosa, indicative of a stringent response being established. Although we did not directly measure persister cell formation, this stringent response may potentially be associated with the formation of persister cells in biofilm cultures. The production of ppGpp and polyphosphate may be associated with protein synthesis inhibition and increase efflux pump activity, factors which can result in antimicrobial tolerance. The transcriptomic analysis also showed that by 6 h post-treatment, there was downregulation in ribosome modulation factor, which is involved in the formation of persister cells, suggesting that the cells had begun to resuscitate/recover. In addition, CAP treatment at 4 h post-exposure caused downregulation of the virulence factors pyoverdine and pyocyanin; by 6 h post-exposure, virulence factor production was increasing. Transcriptomic analysis provides valuable insights into the mechanisms by which P. aeruginosa biofilms exhibits enhanced susceptibility to antimicrobials. Overall, these findings suggest, for the first time, that short CAP sub-lethal pre-treatment can be an effective strategy for enhancing the susceptibility of P. aeruginosa biofilms to antimicrobials and provides important mechanistic insights into cold plasma-antimicrobial synergy. Transcriptomic analysis of the response to, and recovery from, sub-lethal cold plasma exposures in P. aeruginosa biofilms improves our current understanding of cold plasma biofilm interactions.
Collapse
Affiliation(s)
- Jordanne-Amee Maybin
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Padrig B. Flynn
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Timofey Skvortsov
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
14
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 PMCID: PMC10012962 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
15
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
17
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Educatio
|
|