1
|
|
Sousa VFO, Santos AS, Sales WS, Silva AJ, Gomes FAL, Dias TJ, Gonçalves-neto AC, Faraz A, Santos JPO, Santos GL, Cruz JMFL, Silva LDR, Araújo JRES. Exogenous application of salicylic acid induces salinity tolerance in eggplant seedlings. BRAZ J BIOL 2024;84:e257739. [DOI: 10.1590/1519-6984.257739] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/21/2022] Open
Abstract
Abstract Under salt stress conditions, plant growth is reduced due to osmotic, nutritional and oxidative imbalance. However, salicylic acid acts in the mitigation of this abiotic stress by promoting an increase in growth, photosynthesis, nitrogen metabolism, synthesis of osmoregulators and antioxidant enzymes. In this context, the objective was to evaluate the effect of salicylic acid doses on the growth and physiological changes of eggplant seedlings under salt stress. The experiment was conducted in a greenhouse, where the treatments were distributed in randomized blocks using a central composite matrix Box with five levels of electrical conductivity of irrigation water (CEw) (0.50; 1.08; 2.50; 3.92 and 4.50 dS m-1), associated with five doses of salicylic acid (SA) (0.00; 0.22; 0.75; 1.28 and 1.50 mM), with four repetitions and each plot composed of three plants. At 40 days after sowing, plant height, stem diameter, number of leaves, leaf area, electrolyte leakage, relative water content, and total dry mass were determined. ECw and SA application influenced the growth and physiological changes of eggplant seedlings. Increasing the ECw reduced growth in the absence of SA. Membrane damage with the use of SA remained stable up to 3.9 dS m-1 of ECw. The relative water content independent of the CEw increased with 1.0 mM of SA. The use of SA at the concentration of 1.0 mM mitigated the deleterious effect of salinity on seedling growth up to 2.50 dS m-1 of ECw.
Collapse
|
2
|
|
Silva KJ, Santos CV, Menezes CB, de Sousa SM. Sorghum hybrids grown in hydroponics contrast for phosphorus use efficiency. BRAZ J BIOL 2024;84:e253083. [DOI: 10.1590/1519-6984.253083] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract Phosphorus (P) use efficiency is crucial for sorghum production. P acquisition efficiency is the most important component of P use efficiency. The early-stage evaluation of plant development is a useful tool for identifying P-efficient genotypes. This study aimed to identify sorghum hybrids that are efficient in P use efficiency and assess the genetic diversity among hybrids based on traits related to P acquisition efficiency. Thus, 38 sorghum hybrids and two inbred lines (checks) were evaluated under low and high P in a paper pouch system with nutrient solution. Biomass and root traits related to P efficiency were measured. There was no interaction between genotypes and P levels concerning all evaluated traits. The biomass and root traits, except root diameter, presented smaller means under low P than high P. Efficient and inefficient hybrids under each P level were identified. The genetic diversity assessment grouped these genotypes in different clusters. The hybrids AG1090, MSK326, AG1060, 1G100, AS 4639, DKB 540, and DKB 590 were superior under low-P and high-P. Hybrids SC121, 1236020 e 1167017 presented the lowest means than all other hybrids, under both conditions. The evaluated hybrids showed phenotypic diversity for traits related to P acquisition, such as root length and root surface area, which can be useful for establishing selection strategies for sorghum breeding programs and increasing P use efficiency.
Collapse
|
3
|
|
Liu X, Yu F. New insights into the functions and regulations of MAP215/MOR1 and katanin, two conserved microtubule-associated proteins in Arabidopsis. Plant Signal Behav 2023;18:2171360. [PMID: 36720201 DOI: 10.1080/15592324.2023.2171360] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/02/2023] Open
Abstract
Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.
Collapse
|
4
|
|
Li Y, Chen X, Sonne C, Lam SS, Yang Y, Ma NL, Peng W. Reduction and control of air pollution: based on plant-microbe interactions. ENV POLLUT BIOAVAIL 2023;35. [DOI: 10.1080/26395940.2023.2173657] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/19/2023]
|
5
|
|
Zhang N, Zhan Y, Ding K, Wang L, Qi P, Ding W, Xu M, Ni J. Overexpression of the Ginkgo biloba dihydroflavonol 4-reductase gene GbDFR6 results in the self-incompatibility-like phenotypes in transgenic tobacco. Plant Signal Behav 2023;18:2163339. [PMID: 36630727 DOI: 10.1080/15592324.2022.2163339] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/13/2023] Open
Abstract
Although flavonoids play multiple roles in plant growth and development, the involvement in plant self-incompatibility (SI) have not been reported. In this research, the fertility of transgenic tobacco plants overexpressing the Ginkgo biloba dihydroflavonol 4-reductase gene, GbDFR6, were investigated. To explore the possible physiological defects leading to the failure of embryo development in transgenic tobacco plants, functions of pistils and pollen grains were examined. Transgenic pistils pollinated with pollen grains from another tobacco plants (either transgenic or wild-type), developed full of well-developed seeds. In contrast, in self-pollinated transgenic tobacco plants, pollen-tube growth was arrested in the upper part of the style, and small abnormal seeds developed without fertilization. Although the mechanism remains unclear, our research may provide a valuable method to create SI tobacco plants for breeding.
Collapse
|
6
|
|
Chen K, Ou W, Yu C, Zhu A, Luan M, Chen J, Gao G, Wang X, Chen P. Genome-Wide Association Study Discovered Favorable Single Nucleotide Poly Morphisms and Candidate Genes Associated with Ramie (Boehmeria Nivea L.) Colloidal Matters. J NAT FIBERS 2023;20. [DOI: 10.1080/15440478.2022.2154301] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/24/2022]
|
7
|
|
Demeke B, Dejene T, Abebe D. Genetic variability, heritability, and genetic advance of morphological, yield related and quality traits in upland rice (Oryza Sativa L.) genotypes at pawe, northwestern Ethiopia. Cogent Food & Agriculture 2023;9. [DOI: 10.1080/23311932.2022.2157099] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/23/2022] Open
|
8
|
|
Salazar-mendoza P, Bento JMS, Silva DB, Pascholati SF, Han P, Rodriguez-saona C. Bottom-up effects of fertilization and jasmonate-induced resistance independently affect the interactions between tomato plants and an insect herbivore. J PLANT INTERACT 2023;18. [DOI: 10.1080/17429145.2022.2154864] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/30/2022] Open
|
9
|
|
Kocaman A. Combined interactions of amino acids and organic acids in heavy metal binding in plants. Plant Signal Behav 2023;18:2064072. [PMID: 35491815 DOI: 10.1080/15592324.2022.2064072] [Cited by in Crossref: 4] [Cited by in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 10/18/2022] Open
Abstract
This research focused on the different approaches to the transport and internal chelation of metals with amino acids and organic acids in plants. Therefore, in the first phase, the plants studied were identified the characteristics of the bioaccumulation factors. Steria pumila, Echium angustifolium, Typha angustifolia, Sisymbrium austriacum were identified as hyperaccumulators (Cd, Ni), accumulators (Pb, Sn, and Se), excluders (Cr, Hg). On the other hand, the Sisymbrium austriacum only showed the characteristic of the accumulator for Cr. In the second phase, the combined effects of amino acids and organic acids on the chelation of heavy metals in plants were tested by a multi-linear regression model. Related to our hypothesis, Amino acids; Gly and Leu (Cd), Trp and Ile (Pb), Asp, Ser, and Leu (Cr), Ser (Hg), Trp and Glu (Ni), Asp, Thr, and Gly (Sn), Asn and Leu (Se), Organic acids; Malonic and Malic acid (Cd), Malonic acid (Pb), Oxalic and Malic acid (Cr), Oxalic, Succinic, Citric and Butyric acid (Hg), Malonic and Malic acid (Ni), Malonic, Maleic, and Malic acid (Sn), Malonic and Citric acid (Se) were concluded that had combined effect for heavy metal's phytochelation ability into plants.
Collapse
|
10
|
|
Pečenková T, Potocký M. Small secreted proteins and exocytosis regulators: do they go along? Plant Signal Behav 2023;18:2163340. [PMID: 36774640 DOI: 10.1080/15592324.2022.2163340] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/13/2023] Open
Abstract
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
Collapse
|
11
|
|
Tao Y, Wu Q, Huang J, Fang Shen R, Zhu XF. The upstream regulation of the root cell wall when Arabidopsis thaliana in response to toxic metal ions focusing on Al. Plant Signal Behav 2023;18:2178085. [PMID: 36780917 DOI: 10.1080/15592324.2023.2178085] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/15/2023] Open
Abstract
In acid soil, aluminum (Al) toxicity is one of the main factors limiting agricultural output. As is known to all, the cell wall is the first line of defense against metals that serves as a significant target of Al toxicity and also is crucial for Al detoxification. However, nothing is known about how this process is transcriptionally regulated. Here, we describe recent findings to understand the role of two kinds of transcription factors in regulating the cell wall composition and modification in response to Al stress in Arabidopsis thaliana. ANAC017 encodes a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor, loss function of ANAC017 enhanced Al tolerance with the decreased Al content and xyloglucan content in the cell wall. Next, we characterized one xyloglucan endotransglucosylase/hydrolase (XTH), XTH31, which is previously reported to participate in Al stress, acted downstream of ANAC017 to regulate Al tolerance in Arabidopsis. In addition, we also identified MYB103, an R2R3-type transcription factor. MYB103 disruption caused Al sensitivity, and myb103 mutants' xyloglucan had a high O-acetylation level. Additionally, it was discovered that TRICHOME BIREFRINGENCE-LIKE27 (TBL27), which is in charge of xyloglucan's O-acetylation, functions downstream of MYB103 through the direct binding of the MYB103 to the promoter of the TBL27 to influence Arabidopsis's sensitivity to Al. In summary, our research showed that two distinct molecular modules modulate Arabidopsis cell wall composition and modification to positively influence Al resistance.
Collapse
|
12
|
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. Plant Signal Behav 2023;18:2164670. [PMID: 36645916 DOI: 10.1080/15592324.2022.2164670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/18/2023] Open
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
|
13
|
|
Osinde C, Sakamoto W, Kajiya-kanegae H, Sobhy IS, Tugume AK, Nsubuga AM, Galis I. Identification of quantitative trait loci associated with sorghum susceptibility to Asian stem borer damage. J PLANT INTERACT 2023;18. [DOI: 10.1080/17429145.2022.2153182] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/31/2022] Open
|
14
|
|
Wang JY, Braguy J, Al-Babili S. Does zaxinone counteract strigolactones in shaping rice architecture? Plant Signal Behav 2023;18:2184127. [PMID: 36855265 DOI: 10.1080/15592324.2023.2184127] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/02/2023] Open
Abstract
The cleavage of plant carotenoids leads to apocarotenoids, a group of metabolites including precursors of the hormones strigolactones (SLs) and abscisic acid, regulatory and signaling molecules. Zaxinone is a recently discovered apocarotenoid growth regulator that improves growth and suppress SL biosynthesis in rice (Oryza sativa). To test if zaxinone also counteracts the growth regulatory effects of SLs in rice, we co-supplied zaxinone and the synthetic SL analog rac-GR24 to the rice SL-deficient DWARF17 (d17) mutant. Results showed that co-application of GR24 and zaxinone still rescued d17 phenotype, indicating that zaxinone and GR24 act independently in regulating root and shoot growth and development in rice.
Collapse
|
15
|
|
Read SK, Semião AJ, Graham MC, Ross M. Live algal sorbents for the removal of potentially toxic elements: a review. Applied Phycology 2023;4:15-33. [DOI: 10.1080/26388081.2022.2158132] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023] Open
|
16
|
|
Keita S, Zuharah WF. Potential toxicity of cashew nut shell liquid (CNSL) on adult Bactrocera dorsalis (Hendel) (Tephritidae). J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2189887] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023] Open
|
17
|
|
Meng X, Yin Z, Yang G, Wei S, Guo Y, Zhang W, Wang Q. Genome-wide identification and expression analysis of the CHYR gene family in Phaseolus vulgaris under abiotic stress at the seeding stage. J PLANT INTERACT 2023;18. [DOI: 10.1080/17429145.2023.2182922] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/27/2023] Open
|
18
|
|
Gandhi A, Tseng YH, Oelmüller R. The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and trans-Golgi trafficking in Arabidopsis thaliana. Plant Signal Behav 2023;18:2184352. [PMID: 36913771 DOI: 10.1080/15592324.2023.2184352] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023] Open
Abstract
We have recently demonstrated that the cellulose breakdown product cellotriose is a damage-associated molecular pattern (DAMP) which induces responses related to the integrity of the cell wall. Activation of downstream responses requires the Arabidopsis malectin domain-containing CELLOOLIGOMER RECEPTOR KINASE1 (CORK1)1. The cellotriose/CORK1 pathway induces immune responses, including NADPH oxidase-mediated reactive oxygen species production, mitogen-activated protein kinase 3/6 phosphorylation-dependent defense gene activation, and the biosynthesis of defense hormones. However, apoplastic accumulation of cell wall breakdown products should also activate cell wall repair mechanisms. We demonstrate that the phosphorylation pattern of numerous proteins involved in the accumulation of an active cellulose synthase complex in the plasma membrane and those for protein trafficking to and within the trans-Golgi network (TGN) are altered within minutes after cellotriose application to Arabidopsis roots. The phosphorylation pattern of enzymes involved in hemicellulose or pectin biosynthesis and the transcript levels for polysaccharide-synthesizing enzymes responded barely to cellotriose treatments. Our data show that the phosphorylation pattern of proteins involved in cellulose biosynthesis and trans-Golgi trafficking is an early target of the cellotriose/CORK1 pathway.
Collapse
|
19
|
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM Crops Food 2023;14:1-20. [PMID: 36606637 DOI: 10.1080/21645698.2022.2146952] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/07/2023] Open
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
|
20
|
|
Nazari F, Hajiboland R, Poschenrieder C, Kahneh E, Salehi-lisar S, Moradi A. Aluminum accumulation and tolerance in four Amaranthus species. ACTA BOT CROAT 2023;82. [DOI: 10.37427/botcro-2023-006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
About one-third of the earth’s land area consists of acidic soils. The rhizotoxic Al3+ is one of the primary constraints associated with low soil pH. Various Amaranthus species are important components of the weed flora in tea plantations on acid soils in north Iran. In this study, four Amaranthus species (A. blitoides, A. retroflexus, A. cruentus, and A. tricolor) were grown under hydroponic conditions with total Al concentrations of 0, 20, 50, 200, and 400 µM corresponding to free Al3+ activity of 0, 3.75, 11.97, 60.34, and 125 µM, respectively. Low Al concentrations (20, 50, or 200 µM) stimulated plant growth, A. tricolor demonstrated the highest improvement in shoot growth (93%), whereas A. retroflexus exhibited the greatest improvement in root biomass (367%), total root length (173%), and aproot length (32%). Although the response of shoot biomass to 400 µM Al varied among species, all species were able to accumulate Al in the leaves above the critical level considered for Al hyperaccumulation (1 mg g–1 DW). Our findings revealed Al accumulation in Amaranthus species for the first time at the genus and family levels, suggesting that these species are suitable for the restoration and revegetation of acid-eroded soils.
Collapse
|
21
|
|
Wang W, Pu Y, Wen H, Lu D, Yan M, Liu M, Wu M, Bai H, Shen L, Wu C. Transcriptome and weighted gene co-expression network analysis of jujube (Ziziphus jujuba Mill.) fruit reveal putative genes involved in proanthocyanin biosynthesis and regulation. FOOD SCI HUM WELL 2023;12:1557-1570. [DOI: 10.1016/j.fshw.2023.02.003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023] Open
|
22
|
|
Aylward J, Roets F, Dreyer LL, Wingfield MJ. Unseen fungal biodiversity and complex inter-organismal interactions in Protea flower heads. FUNGAL BIOL REV 2023;45:100317. [DOI: 10.1016/j.fbr.2023.100317] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
23
|
|
Zheng X, Zhang X, Zhao J, Oyom W, Long H, Yang R, Pu L, Bi Y, Prusky D. Meyerozyma guilliermondii promoted the deposition of GSH type lignin by activating the biosynthesis and polymerization of monolignols at the wounds of potato tubers. Food Chem 2023;416:135688. [PMID: 36905709 DOI: 10.1016/j.foodchem.2023.135688] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/19/2023]
Abstract
Lignin is a crucial component in the wound tissue of tubers. The biocontrol yeast Meyerozyma guilliermondii increased the activities of phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coenzyme coenzyme A ligase, and cinnamyl alcohol dehydrogenase, and elevated the levels of coniferyl, sinapyl, and p-coumaryl alcohol. The yeast also enhanced the activities of peroxidase and laccase, as well as the content of hydrogen peroxide. The lignin promoted by the yeast was identified as guaiacyl-syringyl-p-hydroxyphenyl type using Fourier transform infrared spectroscopy and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance. Furthermore, a larger signal area for G2, G5, G'6, S2, 6, and S'2, 6 units was observed in the treated tubers, and the G'2 and G6 units were only detected in the treated tuber. Taken together, M. guilliermondii could promote deposition of guaiacyl-syringyl-p-hydroxyphenyl type lignin by activating the biosynthesis and polymerization of monolignols at the wounds of potato tubers.
Collapse
|
24
|
|
Chen Y, Xing M, Chen T, Tian S, Li B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem 2023;415:135787. [PMID: 36854245 DOI: 10.1016/j.foodchem.2023.135787] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/27/2023]
Abstract
Spoilage and mycotoxin contamination of fruits cause significant economic losses and food safety issues. Synthetic chemical fungicide treatment as primary postharvest management has attracted increasing public concern in recent years, because it may cause negative effects on the environment and human health. Numerous bioactive compounds from plants have demonstrated excellent control effects on fruit spoilage and mycotoxin contamination. Plant bioactive compounds have been considered one of the most promising alternatives, because they are generally regarded as safe and environmentally friendly. Here, we reviewed the most recent advances in plant bioactive compounds in the prevention of fungal spoilage and mycotoxin contamination in fruits. The control effects of these compounds and the mechanisms involved were summarized, and current limitations and future perspectives were discussed.
Collapse
|
25
|
|
Perera D, Devkota L, Garnier G, Panozzo J, Dhital S. Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chem 2023;415:135743. [PMID: 36863234 DOI: 10.1016/j.foodchem.2023.135743] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/25/2023]
Abstract
Future dietary protein demand will focus more on plant-based sources than animal-based products. In this scenario, legumes and pulses (lentils, beans, chickpeas, etc.) can play a crucial role as they are one of the richest sources of plant proteins with many health benefits. However, legume consumption is undermined due to the hard-to-cook (HTC) phenomenon, which refers to legumes that have high resistance to softening during cooking. This review provides mechanistic insight into the development of the HTC phenomenon in legumes with a special focus on common beans and their nutrition, health benefits, and hydration behaviour. Furthermore, detailed elucidation of HTC mechanisms, mainly pectin-cation-phytate hypothesis and compositional changes of macronutrients like starch, protein, lipids and micronutrients like minerals, phytochemicals and cell wall polysaccharides during HTC development are critically reviewed based on the current research findings. Finally, strategies to improve the hydration and cooking quality of beans are proposed, and a perspective is provided.
Collapse
|
26
|
|
Zhang Z, He H, Han T, Tian X, Pang J, Lambers H. Soil oxytetracycline alters the effects of phosphate fertilisation and Bacillus amyloliquefaciens on the bacterial community of Medicago sativa rhizosphere. APPL SOIL ECOL 2023;187:104861. [DOI: 10.1016/j.apsoil.2023.104861] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/08/2023]
|
27
|
|
Rady MM, Elrys AS, Selem E, Mohsen AAA, Arnaout SMAI, El-Sappah AH, El-Tarabily KA, Desoky EM. Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil. J Environ Sci (China) 2023;129:240-57. [PMID: 36804239 DOI: 10.1016/j.jes.2022.09.011] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/23/2022]
Abstract
Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of Spirulina platensis (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%-185%) and yield (107%-227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%-51%), and NPK (271%-366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%-94%), lead (80%-9%), and cadmium (74%-91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.
Collapse
|
28
|
|
Sun J, Zhao J, Huo J, Wang S, Xu L, Chen X, Qiu Y, Liu M. The balance between arbuscular mycorrhizal fungal diversity and plant growth benefits from optimizing nitrogen inputs in agroecosystems. APPL SOIL ECOL 2023;187:104834. [DOI: 10.1016/j.apsoil.2023.104834] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/11/2023]
|
29
|
|
Costa DA, Williams TC, do Vale LHF, Filho EX. Characterization of mannanases from Clonostachys byssicola involved in the breakdown of lignocellulosic substrates. Biocatalysis and Agricultural Biotechnology 2023;50:102680. [DOI: 10.1016/j.bcab.2023.102680] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|
30
|
|
Li J, Yang L, Mao S, Fan M, Shangguan Z. Assembly and enrichment of rhizosphere and bulk soil microbiomes in Robinia pseudoacacia plantations during long-term vegetation restoration. APPL SOIL ECOL 2023;187:104835. [DOI: 10.1016/j.apsoil.2023.104835] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/15/2023]
|
31
|
|
Li Y, Zhang X, Lin Z, Zhu Q, Li Y, Xue F, Cheng S, Feng H, Sun J, Liu F. Comparative transcriptome analysis of interspecific CSSLs reveals candidate genes and pathways involved in verticillium wilt resistance in cotton (Gossypium hirsutum L.). Ind Crops Prod 2023;197:116560. [DOI: 10.1016/j.indcrop.2023.116560] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
32
|
|
Casanova-lugo F, Lara-pérez LA, Dzib-castillo B, Caamal-maldonado JA, Ramírez-barajas PJ, Cetzal-ix WR, Estrada-medina H. Alley cropping agroforestry systems change weed community composition and reduce dominant weed species associated with corn in southern Mexico. Agric Ecosyst Environ 2023;350:108471. [DOI: 10.1016/j.agee.2023.108471] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
33
|
|
Shen L, Ding C, Zhang W, Zhang T, Li Z, Zhang J, Chu Y, Su X. The Populus koreana genome provides insights into the biosynthesis of plant aroma. Ind Crops Prod 2023;197:116453. [DOI: 10.1016/j.indcrop.2023.116453] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/14/2023]
|
34
|
|
Chen W, Gao Y, Shi G, Li J, Fan G, Yang C, Wang B, Tong F, Li Y. Enhanced degradation of fomesafen by a rhizobial strain Sinorhizobium sp. W16 in symbiotic association with soybean. APPL SOIL ECOL 2023;187:104847. [DOI: 10.1016/j.apsoil.2023.104847] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
35
|
|
Luo D, Wang T, Ye M, Zhu X, Cheng Y, Zheng Y, Xing B, Shao Q. Identification and characterization of Crocus sativus WRKY and its interacting MPK involved in crocins biosynthesis based on full-length transcriptome analysis. Ind Crops Prod 2023;197:116559. [DOI: 10.1016/j.indcrop.2023.116559] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/11/2023]
|
36
|
|
Solouki A, Zare Mehrjerdi M, Azimi R, Aliniaeifard S. Improving basil (Ocimum basilicum L.) essential oil yield following down-regulation of photosynthetic functionality by short-term application of abiotic elicitors. Biocatalysis and Agricultural Biotechnology 2023;50:102675. [DOI: 10.1016/j.bcab.2023.102675] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|
37
|
|
Liu D, Zhou W, Zhong Y, Xie X, Liu H, Huang H, Wang Q, Xiao G. Involvement of branched RG-I pectin with hemicellulose in cell-cell adhesion of tomato during fruit softening. Food Chem 2023;413:135574. [PMID: 36739644 DOI: 10.1016/j.foodchem.2023.135574] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
Cell adhesion of four cultivars of tomato fruit, "Micro Tom (MT)", "Heinz 1706 (H1706)", "Money Maker (MM)", "Ailsa Craig (AC)" were evaluated and cell walls were analyzed in order to assess the possible contribution of pectic and hemicellulosic polysaccharides to the softening and altered cell adhesion at two different stages of ripeness. Cell wall material (CWM) and solubilised fractions of green and red ripe fruit were analyzed by chemical, enzymatic techniques. In comparison with the four cultivars of tomato fruits, H1706 and MM are harder than MT and AC at both green and red ripe stage. The ripening-associated solubilisation of rhamnogalacturonan-riched pectic polysaccharides was reduced in H1706 and MM, and the content of side -chain sugars from RG-I reduced by more than 50% in MT and AC. In addition to recognized pectic modifying enzymes, RGase had a good effect on cell separation of H1706 and MM fruit at red ripe stage. The higher RG-I content and branching degree have been associated with increased cell adhesion and reduced cell wall porosity, thus maintained fruit firmness.
Collapse
|
38
|
|
Higuera-Coelho RA, Basanta MF, Rossetti L, Pérez CD, Rojas AM, Fissore EN. Antioxidant pectins from eggplant (Solanum melongena) fruit exocarp, calyx and flesh isolated through high-power ultrasound and sodium carbonate. Food Chem 2023;412:135547. [PMID: 36716626 DOI: 10.1016/j.foodchem.2023.135547] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/26/2023]
Abstract
Dried and milled eggplant fruit peel and calyces (PC) and mesocarp, placenta and core (Mes) were utilized as natural sources of valuable chemicals. Pectins were extracted with 0.1 M Na2CO3 (1 h; 23 °C). A high-power ultrasound (US) pretreatment (10 min net time; 12.76 W/cm2 power intensity) in 10:200 (g/mL) powder:water ratio led to the lowest solvent and energy consumptions after the subsequent 0.1 M Na2CO3 stirring, permitting the highest recoveries of uronic acid (UA) from PC and Mes (80.25 and 93.8 %, respectively). Homogalacturonans (>65 % w/w UA) of low degree of methylesterification, of acetylation, and 90,214-138,184 Da molecular weights with low polydispersity (≈1.32-1.40) were obtained. They included released ferulate (≈3.5 mg/100 g) esterified pectins. Antioxidants (caffeoylquinic acid, putrescine and spermidine derivatives, β-carotene, lutein) gave additional technological value to their thickening effect as pectins protected tryptophan, tyrosine, alkyl side chains and sulfhydryl of skim milk proteins from UV-C photo-oxidation.
Collapse
|
39
|
|
Chen Y, Yang J, Meng Q, Tong H. Non-volatile metabolites profiling analysis reveals the tea flavor of "Zijuan" in different tea plantations. Food Chem 2023;412:135534. [PMID: 36732104 DOI: 10.1016/j.foodchem.2023.135534] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/22/2023]
Abstract
Characteristic metabolites including tea polyphenols, amino acids, catechins, caffeine, sugars and anthocyanins were fully analyzed by high performance liquid chromatography (HPLC), gas chromatography tandem mass spectrometry (GC-MS) and ultra-high performance liquid chromatography (UHPLC)-ESI-tandem mass spectrometry (MS/MS), and showed significant differences among Zijuan tea from different plantations in Yunnan province (YN-ZJ), Qijiang (QJ-ZJ) and Ersheng (ES-ZJ) district, China, indicating that Zijuan is significantly influenced by growth conditions. Monosaccharides were the most abundant soluble sugars in YN-ZJ and ES-ZJ, while disaccharides was abundant in QJ-ZJ. d-galactose, d-mannose, d-sorbitol, inositol, d-glucose, d-galacturonic acid and raffinose involved in galactose metabolism were significantly changed (P < 0.05). Delphinidin, cyanidin, pelargonidin and their glycoside derivatives were the major anthocyanins, and showed significant differences among Zijuan samples. Flavonoids and procyanidins abundant in Zijuan provided more substrates for anthocyanins accumulation. This study presented comprehensive chemical profiling and characterized metabolites of Zijuan in different tea plantations.
Collapse
|
40
|
|
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, Wang Y, Leng F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023;411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
|
41
|
|
Liu GS, Li HL, Peng ZZ, Liu RL, Han YC, Wang YX, Zhao XD, Fu DQ. Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023;411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
42
|
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023;411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
|
43
|
|
Yadav R, Singh G, Santal AR, Singh NP. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. J Environ Manage 2023;336:117730. [PMID: 36921476 DOI: 10.1016/j.jenvman.2023.117730] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023]
Abstract
Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.
Collapse
|
44
|
|
Jia H, Yu H, Li J, Qi J, Zhu Z, Hu C. Trade-off of abiotic stress response in floating macrophytes as affected by nanoplastic enrichment. J Hazard Mater 2023;451:131140. [PMID: 36905907 DOI: 10.1016/j.jhazmat.2023.131140] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Nanoparticles have been found in large-scale environmental media in recent years, causing toxic effects in various organisms and even humans through food chain transmission. The ecotoxicological impact of microplastics on specific organisms is currently receiving much attention. However, relatively little research to date has examined the mechanisms through which nanoplastic residue may exert an interference effect on floating macrophytes in constructed wetlands. In our study, the aquatic plant Eichhornia crassipes was subjected to 100 nm polystyrene nanoplastics at concentrations of 0.1, 1 and 10 mg L-1 after 28 days of exposure. E. crassipes can decrease the concentration of nanoplastics in water by 61.42∼90.81% through phytostabilization. The abiotic stress of nanoplastics on the phenotypic plasticity (morphological and photosynthetic properties and antioxidant systems as well as molecular metabolism) of E. crassipes was assessed. The presence of nanoplastics reduced the biomass (10.66%∼22.05%), and the functional organ (petiole) diameters of E. crassipes decreased by 7.38%. The photosynthetic efficiency was determined, showing that the photosynthetic systems of E. crassipes are very sensitive to stress by nanoplastics at a concentration of 10 mg L-1. Oxidative stress and imbalance of antioxidant systems in functional organs are associated with multiple pressure modes from nanoplastic concentrations. The catalase contents of roots increased by 151.19% in the 10 mg L-1 treatment groups compared with the control group. Moreover, 10 mg L-1 concentrations of the nanoplastic pollutant interfere with purine and lysine metabolism in the root system. The hypoxanthine content was reduced by 6.58∼8.32% under exposure to different concentrations of nanoplastics. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. Nanoplastics disturb the efficiency of water purification by floating macrophytes, which reduces the chemical oxygen demand (COD) removal efficiency (from 73% to 31.33%) due to various abiotic stresses. This study provided important information for further clarifying the impact of nanoplastics on the stress response of floating macrophytes.
Collapse
|
45
|
|
Ducasse V, Watteau F, Kowalewski I, Ravelojaona H, Capowiez Y, Peigné J. The amending potential of vermicompost, compost and digestate from urban biowaste: Evaluation using biochemical, Rock-Eval® thermal analyses and transmission electronic microscopy. Bioresource Technology Reports 2023;22:101405. [DOI: 10.1016/j.biteb.2023.101405] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|
46
|
|
Santos L, Angélica R, Paz S. Investigation of mineral commodity residues based on alkalinity, solubility and other physicochemical aspects aiming the management of amazonian acidic soils. J Environ Manage 2023;335:117558. [PMID: 36878156 DOI: 10.1016/j.jenvman.2023.117558] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/07/2023]
Abstract
The large amounts of mineral residues generated by the bauxite-alumina industries in the Amazon - with a production scale in the same order of magnitude as their source commodities - have been seen as new sources of raw materials (secondary mines) and/or an inseparable part of a sustainable production system, i.e., a source for the generation of co-products within a circular economy system. In the present study, two alkaline residues from this mining-metallurgical industry were assessed for their potential to amend productive acidic Amazonian soils, namely, (1) insoluble solid residue from the Bayer process (bauxite residue, BR) and (2) ash from energy production from coal (coal combustion residues, CCRs: fly ash, FA, and bottom ash, BA). A physicochemical investigation was performed to evaluate the possible benefits that these residues can offer to the soil‒plant system. The alkalinity of the residues was adjusted "to a value of pH 8-10" by leaching with H3PO4 using a central composite experimental design. The chemical analyses indicated high levels (total and soluble) of essential elements such as Ca and S in the CCRs. All residues showed a high cation exchange capacity (CEC). Regarding the water holding capacity (WHC), FA showed a higher value than the other residues (68.6%). After pH adjustment, available P increased significantly for all residues, and the Ca and S contents remained high for the CCRs, while in BR, there was a decrease in available Na, and aluminum (Al3+) was not available because the potential acidity (H + Al) < 0.6. Finally, complementary analyses showed that with respect to mineralogy, BR is composed mainly of iron oxyhydroxides and aluminosilicate phases, while carbonate, sulfide and silicate phases dominate the CCRs. The neutralizing character, the presence of nutrients in the CCRs and the unavailability of Al3+ in BR are positive physicochemical characteristics for the management of Amazonian acid soils; the use of this residues would add to the circular economy and sustainability of the Amazon.
Collapse
|
47
|
|
Calderón-balcázar A, Cárdenas CD, Díaz-vasco O, Fandiño E, Márquez T, Pizano C. Biomass and carbon stocks of four vegetation types in the Llanos Orientales of Colombia (Mapiripán, Meta). Trees, Forests and People 2023;12:100380. [DOI: 10.1016/j.tfp.2023.100380] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
48
|
|
Gao G, Wang M, Li D, Li N, Wang J, Niu H, Meng M, Liu Y, Zhang G, Jie D. Phytolith evidence for changes in the vegetation diversity and cover of a grassland ecosystem in Northeast China since the mid-Holocene. Catena (Amst) 2023;226:107061. [DOI: 10.1016/j.catena.2023.107061] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/14/2023]
|
49
|
|
Mazis A, Awada T, Erickson G, Wardlow B, Wienhold B, Jin V, Schmer M, Suyker A, Zhou Y, Hiller J. Synergistic use of optical and biophysical traits to assess Bromus inermis pasture performance and quality under different management strategies in Eastern Nebraska, U.S. Agric Ecosyst Environ 2023;348:108400. [DOI: 10.1016/j.agee.2023.108400] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/24/2023]
|
50
|
|
Li C, Wang K, Zou Y, Lei C, Chen Z, Zheng Y. Extracellular self-DNA induced a PTI-related local defence against Rhizopus rot in postharvest peach fruit. Postharvest Biol Technol 2023;200:112306. [DOI: 10.1016/j.postharvbio.2023.112306] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|