1
|
Lian J, Liu W, Hu Q, Zhang X. Succinylation modification: a potential therapeutic target in stroke. Neural Regen Res 2024; 19:781-787. [PMID: 37843212 PMCID: PMC10664134 DOI: 10.4103/1673-5374.382229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 10/17/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide. Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of stroke-induced brain injury. Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology. Recently, a new type of post-translational modification, known as lysine succinylation, has been recognized to play a significant role in mitochondrial energy metabolism after ischemia. However, the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood. We aimed to review the effects of succinylation on energy metabolism, reactive oxygen species generation, and neuroinflammation, as well as Sirtuin 5 mediated desuccinylation after stroke. We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke. The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases. Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes. Sirtuins, especially Sirtuin 5, are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes. Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke. Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism, and neuroprotective effects of these agents have been observed in experimental stroke studies. However, their therapeutic efficacy in stroke patients should be validated.
Collapse
Affiliation(s)
- Jie Lian
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Fakim H, Vande Velde C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2024; 156:176-189. [PMID: 37268555 DOI: 10.1016/j.semcdb.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.
Collapse
Affiliation(s)
- Hana Fakim
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada.
| |
Collapse
|
4
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
5
|
Gurrieri L, Sparla F, Zaffagnini M, Trost P. Dark complexes of the Calvin-Benson cycle in a physiological perspective. Semin Cell Dev Biol 2024; 155:48-58. [PMID: 36889996 DOI: 10.1016/j.semcdb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two enzymes of the Calvin Benson cycle that stand out for some peculiar properties they have in common: (i) they both use the products of light reactions for catalysis (NADPH for GAPDH, ATP for PRK), (ii) they are both light-regulated through thioredoxins and (iii) they are both involved in the formation of regulatory supramolecular complexes in the dark or low photosynthetic conditions, with or without the regulatory protein CP12. In the complexes, enzymes are transiently inactivated but ready to recover full activity after complex dissociation. Fully active GAPDH and PRK are in large excess for the functioning of the Calvin-Benson cycle, but they can limit the cycle upon complex formation. Complex dissociation contributes to photosynthetic induction. CP12 also controls PRK concentration in model photosynthetic organisms like Arabidopsis thaliana and Chlamydomonas reinhardtii. The review combines in vivo and in vitro data into an integrated physiological view of the role of GAPDH and PRK dark complexes in the regulation of photosynthesis.
Collapse
Affiliation(s)
- Libero Gurrieri
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francesca Sparla
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Mirko Zaffagnini
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| | - Paolo Trost
- University of Bologna, Department of Pharmacy and Biotechnology, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Rasheed A, Al-Huqail AA, Ali B, Alghanem SMS, Shah AA, Azeem F, Rizwan M, Al-Qthanin RN, Soudy FA. Molecular characterization of genes involved in tolerance of cadmium in Triticum aestivum (L.) under Cd stress. J Hazard Mater 2024; 464:132955. [PMID: 37976857 DOI: 10.1016/j.jhazmat.2023.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
7
|
Hochstoeger T, Chao JA. Towards a molecular understanding of the 5'TOP motif in regulating translation of ribosomal mRNAs. Semin Cell Dev Biol 2024; 154:99-104. [PMID: 37316417 DOI: 10.1016/j.semcdb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Vertebrate cells have evolved a simple, yet elegant, mechanism for coordinated regulation of ribosome biogenesis mediated by the 5' terminal oligopyrimidine motif (5'TOP). This motif allows cells to rapidly adapt to changes in the environment by specifically modulating translation rate of mRNAs encoding the translation machinery. Here, we provide an overview of the origin of this motif, its characterization, and progress in identifying the key regulatory factors involved. We highlight challenges in the field of 5'TOP research, and discuss future approaches that we think will be able to resolve outstanding questions.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
8
|
Joseph J, Spantzel L, Ali M, Moonnukandathil Joseph D, Unger S, Reglinski K, Krafft C, Müller AD, Eggeling C, Heintzmann R, Börsch M, Press AT, Täuber D. Nanoscale chemical characterization of secondary protein structure of F-Actin using mid-infrared photoinduced force microscopy (PiF-IR). Spectrochim Acta A Mol Biomol Spectrosc 2024; 306:123612. [PMID: 37931494 DOI: 10.1016/j.saa.2023.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The recently developed photoinduced force microscopy for mid-infrared (PiF-IR) offers high spectral resolution in combination with surface sensitivity and a spatial resolution in the range of a few nanometers. Although PiF-IR has primarily been applied to polymer materials, this technology presents significant potential for the chemical characterization of cellular structures approaching single-molecule sensitivity. We applied PiF-IR to differently polymerized F-Actin samples finding general agreement with FTIR spectra from the same samples. Single PiF-IR spectra of F-Actin show variations in the amide I band spectral region, which is related to secondary protein structure. Local variations are also seen in PiF-IR hyperspectra in this region. Such high sensitivity is a necessary requirement for discriminating Actin organization into bundles and other networks in cells and tissue. We applied PiF-IR to mouse liver tissue ex vivo. Single-frequency PiF-IR scans at three different IR frequencies show significant variations in local contrast. However, the presence of other proteins and the unique spatial resolution of PiF-IR pose a challenge to interpreting and validating such data. Careful design of model systems and further theoretical understanding of PiF-IR data far from bulk averages are needed to fully unfold the potential of PiF-IR for high-resolution chemical investigation in the Life Sciences.
Collapse
Affiliation(s)
- Jesvin Joseph
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Lukas Spantzel
- Jena University Hospital, Single-Molecule Microscopy Group, Jena, Germany; Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany
| | - Maryam Ali
- Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Dijo Moonnukandathil Joseph
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Sebastian Unger
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology, Biophysical Imaging, Jena, Germany; Friedrich Schiller University Jena, Institute for Applied Optics and Biophysics, Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Department of Spectroscopy & Imaging, Jena, Germany
| | | | - Christian Eggeling
- Leibniz Institute of Photonic Technology, Biophysical Imaging, Jena, Germany; Friedrich Schiller University Jena, Institute for Applied Optics and Biophysics, Jena, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Michael Börsch
- Jena University Hospital, Single-Molecule Microscopy Group, Jena, Germany; Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany
| | - Adrian T Press
- Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany; Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Daniela Täuber
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany; Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany.
| |
Collapse
|
9
|
Sun S, Zhu R, Zhu M, Wang Q, Li N, Yang B. Visualization of conformational transition of GRP94 in solution. Life Sci Alliance 2024; 7:e202302051. [PMID: 37949474 PMCID: PMC10638095 DOI: 10.26508/lsa.202302051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
GRP94, an ER paralog of the heat-shock protein 90 family, binds and hydrolyses ATP to chaperone the folding and maturation of its selected clients. Compared with other hsp90 proteins, the in-solution conformational dynamics of GRP94 along the ATP hydrolysis cycle are less understood, hindering our understanding of its chaperoning mechanism. Leveraging small-angle X-ray scattering, negative-staining EM, and hydrogen-deuterium exchange coupled mass-spec, here we show that in its apo form, ∼60% of mouse GRP94 (mGRP94) populates an "extended" conformation, whereas the rest exist in either "close V" or "twist V" like "compact" conformations. Different from other hsp90 proteins, the presence of AMPPNP only impacts the relative abundance of the two compact conformations, rather than shifting the equilibrium between the "extended" and "compact" conformations of mGRP94. HDX-MS study of apo, AMPPNP-bound, and ADP-bound mGRP94 suggests a conformational transition from "twist V" to "close V" upon ATP binding and a back transition from "close V" to "twist V" upon ATP hydrolysis. These results illustrate the dissimilarities of GRP94 in conformation transition during ATP hydrolysis from other hsp90 paralogs.
Collapse
Affiliation(s)
- Shangwu Sun
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rui Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengyao Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Wang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- https://ror.org/030bhh786 Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
10
|
Wegener JW, Mitronova GY, ElShareif L, Quentin C, Belov V, Pochechueva T, Hasenfuss G, Ackermann L, Lehnart SE. A dual-targeted drug inhibits cardiac ryanodine receptor Ca 2+ leak but activates SERCA2a Ca 2+ uptake. Life Sci Alliance 2024; 7:e202302278. [PMID: 38012000 PMCID: PMC10681910 DOI: 10.26508/lsa.202302278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
In the heart, genetic or acquired mishandling of diastolic [Ca2+] by ryanodine receptor type 2 (RyR2) overactivity correlates with risks of arrhythmia and sudden cardiac death. Strategies to avoid these risks include decrease of Ca2+ release by drugs modulating RyR2 activity or increase in Ca2+ uptake by drugs modulating SR Ca2+ ATPase (SERCA2a) activity. Here, we combine these strategies by developing experimental compounds that act simultaneously on both processes. Our screening efforts identified the new 1,4-benzothiazepine derivative GM1869 as a promising compound. Consequently, we comparatively studied the effects of the known RyR2 modulators Dantrolene and S36 together with GM1869 on RyR2 and SERCA2a activity in cardiomyocytes from wild type and arrhythmia-susceptible RyR2R2474S/+ mice by confocal live-cell imaging. All drugs reduced RyR2-mediated Ca2+ spark frequency but only GM1869 accelerated SERCA2a-mediated decay of Ca2+ transients in murine and human cardiomyocytes. Our data indicate that S36 and GM1869 are more suitable than dantrolene to directly modulate RyR2 activity, especially in RyR2R2474S/+ mice. Remarkably, GM1869 may represent a new dual-acting lead compound for maintenance of diastolic [Ca2+].
Collapse
Affiliation(s)
- Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lina ElShareif
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
| | - Christine Quentin
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vladimir Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tatiana Pochechueva
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Georg-August University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Sakata J, Tatsumi T, Sugiyama A, Shimizu A, Inagaki Y, Katoh H, Yamashita T, Takahashi K, Aki S, Kaneko Y, Kawamura T, Miura M, Ishii M, Osawa T, Tanaka T, Ishikawa S, Tsukagoshi M, Chansler M, Kodama T, Kanai M, Tokuyama H, Yamatsugu K. Antibody-mimetic drug conjugate with efficient internalization activity using anti-HER2 VHH and duocarmycin. Protein Expr Purif 2024; 214:106375. [PMID: 37797818 DOI: 10.1016/j.pep.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antibody-mimetic drug conjugate (AMDC) is a cancer cell-targeted drug delivery system based on the non-covalent binding of mutated streptavidin and modified biotin, namely Cupid and Psyche. However, the development of AMDCs is hampered by difficulties in post-translational modification or poor internalization activity. Here, we report an expression, refolding, and purification method for AMDC using a variable heavy chain of heavy chain-only antibodies (VHHs). Monomeric anti-HER2 VHH fused to Cupid was expressed in Escherichia coli inclusion bodies. Solubilization and refolding at optimized reducing conditions and pH levels were selected to form a functional, tetrameric protein (anti-HER2 VHH-Cupid) that can be easily purified based on molecular weight. Anti-HER2 VHH-Cupid non-covalently creates a tight complex with Psyche linked to a potent DNA-alkylating agent, duocarmycin. This complex can be absorbed by the HER2-expressing human breast cancer cell line, KPL-4, and kills KPL-4 cells in vitro and in vivo. The production of a targeting protein with internalizing activity, combined with the non-covalent conjugation of a highly potent payload, renders AMDC a promising platform for developing cancer-targeted therapy.
Collapse
Affiliation(s)
- Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Sugiyama
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Akihiro Shimizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuya Inagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Medical & Biological Laboratories Co., Ltd, 2-11-8 Shibadaimon, Minato-ku, Tokyo, 105-0012, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Michael Chansler
- Savid Therapeutics Inc., Eifuku 3-9-10, Suginami-ku, Tokyo, 168-0064, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| |
Collapse
|
12
|
Falconieri A, Coppini A, Raffa V. Microtubules as a signal hub for axon growth in response to mechanical force. Biol Chem 2024; 405:67-77. [PMID: 37674311 DOI: 10.1515/hsz-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
Microtubules are highly polar structures and are characterized by high anisotropy and stiffness. In neurons, they play a key role in the directional transport of vesicles and organelles. In the neuronal projections called axons, they form parallel bundles, mostly oriented with the plus-end towards the axonal termination. Their physico-chemical properties have recently attracted attention as a potential candidate in sensing, processing and transducing physical signals generated by mechanical forces. Here, we discuss the main evidence supporting the role of microtubules as a signal hub for axon growth in response to a traction force. Applying a tension to the axon appears to stabilize the microtubules, which, in turn, coordinate a modulation of axonal transport, local translation and their cross-talk. We speculate on the possible mechanisms modulating microtubule dynamics under tension, based on evidence collected in neuronal and non-neuronal cell types. However, the fundamental question of the causal relationship between these mechanisms is still elusive because the mechano-sensitive element in this chain has not yet been identified.
Collapse
Affiliation(s)
| | - Allegra Coppini
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
13
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
14
|
Halder T, Stroeher E, Liu H, Chen Y, Yan G, Siddique KHM. Protein biomarkers for root length and root dry mass on chromosomes 4A and 7A in wheat. J Proteomics 2024; 291:105044. [PMID: 37931703 DOI: 10.1016/j.jprot.2023.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Improving the wheat (Triticum aestivum L.) root system is important for enhancing grain yield and climate resilience. Total root length (RL) and root dry mass (RM) significantly contribute to water and nutrient acquisition directly impacting grain yield and stress tolerance. This study used label-free quantitative proteomics to identify proteins associated with RL and RM in wheat near-isogenic lines (NILs). NIL pair 6 had 113 and NIL pair 9 had 30 differentially abundant proteins (DAPs). Three of identified DAPs located within the targeted genomic regions (GRs) of NIL pairs 6 (qDT.4A.1) and 9 (QHtscc.ksu-7A), showed consistent gene expressions at the protein and mRNA transcription (qRT-PCR) levels for asparagine synthetase (TraesCS4A02G109900), signal recognition particle 19 kDa protein (TraesCS7A02G333600) and 3,4-dihydroxy-2-butanone 4-phosphate synthase (TraesCS7A02G415600). This study discovered, for the first time, the involvement of these proteins as candidate biomarkers for increased RL and RM in wheat. However, further functional validation is required to ascertain their practical applicability in wheat root breeding. SIGNIFICANCE OF THE STUDY: Climate change has impacted global demand for wheat (Triticum aestivum L.). Root traits such as total root length (RL) and root dry mass (RM) are crucial for water and nutrient uptake and tolerance to abiotic stresses such as drought, salinity, and nutrient imbalance in wheat. Improving RL and RM could significantly enhance wheat grain yield and climate resilience. However, breeding for these traits has been limited by lack of appropriate root phenotyping methods, advanced genotypes, and the complex nature of the wheat genome. In this study, we used a semi-hydroponic root phenotyping system to collect accurate root data, near-isogenic lines (NILs; isolines with similar genetic backgrounds but contrasting target genomic regions (GRs)) and label-free quantitative proteomics to explore the molecular mechanisms underlying high RL and RM in wheat. We identified differentially abundant proteins (DAPs) and their molecular pathways in NIL pairs 6 (GR: qDT.4A.1) and 9 (GR: QHtscc.ksu-7A), providing a foundation for further molecular investigations. Furthermore, we identified three DAPs within the target GRs of the NIL pairs with differential expression at the transcript level, as confirmed by qRT-PCR analysis which could serve as candidate protein biomarkers for RL and RM improvement.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Elke Stroeher
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
15
|
Sepali C, Lafiosca P, Gómez S, Giovannini T, Cappelli C. Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 2024; 305:123485. [PMID: 37827000 DOI: 10.1016/j.saa.2023.123485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Raman and Raman Optical Activity (ROA) signals are amply affected by solvent effects, especially in the presence of strongly solute-solvent interactions such as Hydrogen Bonding (HB). In this work, we extend the fully atomistic polarizable Quantum Mechanics/Molecular Mechanics approach, based on the Fluctuating Charges and Fluctuating Dipoles force field to the calculation of Raman and ROA spectra. Such an approach is able to accurately describe specific HB interactions, by also accounting for anisotropic contributions due to the inclusion of fluctuating dipoles. To highlight the potentiality of the novel approach, Raman and ROA spectra of L-Serine and L-Cysteine dissolved in aqueous solution are computed and compared both with alternative theoretical approaches and experimental measurements.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
|
|