1
|
Li L, Yuan Y, Zhang C, Li Y, Xu R, Zhang X, Shang W. Melatonin Promotes Cerebral Angiogenesis in Ischemic Mice via BMP6/Smad1/5/9 Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04969-4. [PMID: 40274709 DOI: 10.1007/s12035-025-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Angiogenesis facilitates the reinstatement of blood supply to cerebral tissues after stroke by reconstructing the vascular network, thereby rescuing the penumbra region and restoring neural functions. Melatonin can modulate angiogenesis under a variety of biological and disease-related states, and bone morphogenetic protein 6 (BMP6) targets regulators associated with angiogenesis. The specific functions of melatonin and BMP6 in angiogenesis following cerebral infarction, along with the potential intrinsic regulatory interactions between them, are currently unclear and need further investigation. Melatonin was given to the mice from the 1st day through the 28th day post permanent distal middle cerebral artery occlusion (dMCAO). Our research revealed that melatonin enhanced neurological performance and decreased the size of the brain infarction. Additionally, it boosted blood circulation and fostered angiogenesis in the penumbra area. Meanwhile, melatonin facilitated endothelial cells migration and tube formation after oxygen-glucose deprivation (OGD). Melatonin promoted the expression of BMP6 and its downstream targets, Smad1/5/9, as well as factors associated with angiogenesis Vascular Endothelial Growth Factor (VEGF) and Angiopoietin-1 (Ang1) in vivo and in vitro, which was counteracted or partially inhibited by suppression of BMP6 expression. Our research provides strong evidence that melatonin promotes angiogenesis after cerebral infarction through BMP6/Smad1/5/9 signaling pathway, supporting the restoration of neural function.
Collapse
Affiliation(s)
- Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, 050000, People's Republic of China
| |
Collapse
|
2
|
Pistiolis L, Alawieh S, Halldorsdottir T, Kovács A, Olofsson Bagge R. Melatonin MT1 Receptor Expression in Luminal Invasive Ductal Breast Carcinoma in Postmenopausal Women. Biomolecules 2025; 15:581. [PMID: 40305352 PMCID: PMC12024881 DOI: 10.3390/biom15040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study was to investigate the expression of MT1 in hormone-receptor-positive, HER2-negative invasive ductal breast carcinoma in postmenopausal women and its possible correlations with clinicopathological parameters and survival. A total of 118 patients with luminal A/B primary breast cancer with or without axillary metastases were identified. The MT1 receptor expression was immunohistochemically assessed as a percentage of stained cells and a weighted index (WI) (percentage multiplied by staining intensity). Most tumor samples (84.7%) and metastasized lymph nodes (96%) stained positive for MT1, with varying intensity. No statistically significant correlations were found between the MT1 expression or the WI in the primary tumor and the patient and tumor characteristics, or the MT1 and WI in the metastasized lymph nodes. The survival analysis did not reveal a significant effect of MT1 expression or the WI on the risk of recurrence or survival.
Collapse
MESH Headings
- Humans
- Female
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/genetics
- Postmenopause/metabolism
- Middle Aged
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Aged
- Lymphatic Metastasis
- Aged, 80 and over
Collapse
Affiliation(s)
- Leda Pistiolis
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Surgery, Sahlgrenska University Hospital Gothenburg, 41345 Gothenburg, Sweden
| | - Sahar Alawieh
- Department of Clinical Pathology, Sahlgrenska University Hospital Gothenburg, 41345 Gothenburg, Sweden; (S.A.); (A.K.)
| | | | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital Gothenburg, 41345 Gothenburg, Sweden; (S.A.); (A.K.)
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Surgery, Sahlgrenska University Hospital Gothenburg, 41345 Gothenburg, Sweden
- Wallenberg Center of Translational Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
3
|
Zolfagharypoor A, Ajdari A, Seirafianpour F, Pakbaz Y, Hosseinzadeh A, Mehrzadi S. Signaling pathways in skin cancers and the protective functions of melatonin. Biochimie 2025; 231:1-14. [PMID: 39577617 DOI: 10.1016/j.biochi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Melatonin, a hormone primarily synthesized in the pineal gland, has an essential role in the regulation of various physiological processes, such as the sleep-wake cycle, immune function, and antioxidative responses. Emerging evidence suggests that melatonin also exerts significant protective effects against skin cancers, particularly melanoma and non-melanoma skin cancers. This review aims to provide a comprehensive overview of melatonin's multifaceted mechanisms of action in preventing and treating skin cancers, focusing on its antioxidant, photoprotective, and radioprotective properties. Melatonin's capability to modulate skin cancer's related key signaling pathways underscores its complex yet potent anticancer mechanisms. Furthermore, synergistic effects between melatonin and conventional oncology treatments, such as radiotherapy, chemotherapy, and targeted therapies, hold promise for improving treatment outcomes while mitigating adverse effects. However, while melatonin shows great potential as an adjunct in oncology treatment regimens, further research is needed to optimize its clinical applications and fully understand its safety profile and potential side effects. Overall, elucidating melatonin's role in skin cancer prevention and treatment represents a promising avenue for advancing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Azin Zolfagharypoor
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | | | - Yeganeh Pakbaz
- Breast Health & Cancer Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Kazmierska-Grebowska P, Jankowski MM, Obrador E, Kolodziejczyk-Czepas J, Litwinienko G, Grebowski J. Nanotechnology meets radiobiology: Fullerenols and Metallofullerenols as nano-shields in radiotherapy. Biomed Pharmacother 2025; 184:117915. [PMID: 39983431 DOI: 10.1016/j.biopha.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite significant advances in the development of radioprotective measures, the clinical application of radioprotectors and radiomitigators remains limited due to insufficient efficacy and high toxicity of most agents. Additionally, in oncological radiotherapy, these compounds may interfere with the therapeutic effectiveness. Recent progress in nanotechnology highlights fullerenols (FulOHs) and metallofullerenols (Me@FulOHs) as promising candidates for next-generation radioprotectors. These nanostructures possess unique antioxidant properties, demonstrating greater efficacy in rediucing oxidative stress compared to conventional agents. Moreover, their potential to minimize pro-oxidative risks depends on the precise identification of cellular environments and irradiation conditions that optimize their radioprotective effects. In parallel, Me@FulOHs serve as powerful theranostic tools in oncology. Their strong imaging signals enable high-resolution PET and MRI, facilitating early detection and accurate localization of pathogenic alterations. This dual functionality positions Me@FulOHs as key components in advanced radiotherapy. By integrating these nanomaterials with modern theranostic approaches, it is possible to enhance the precision of treatment while minimizing side effects, addressing a critical need in contemporary oncology. This review emphasizes the importance of systematic evaluation of context-dependent effects of Me@FulOHs, particularly in pre- and post-irradiation scenarios, to optimize their clinical relevance. The dual role of Me@FulOHs as both radioprotectors and diagnostic agents distinguishes them from traditional compounds, paving the way for innovative practical applications. Their use in radiotherapy represents a significant step toward the development of safer and more effective strategies in radiation protection and cancer treatment. We also review ionizing radiation effects, classifications, cancer radiotherapy applications, and countermeasures.
Collapse
Affiliation(s)
- Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gabriela Narutowicza 11/12, Gdansk 80-233, Poland
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Jacek Grebowski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, Warsaw 04-141, Poland.
| |
Collapse
|
5
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
8
|
Kahvecioglu A, Yigit E, Rustamova N, Sezer A, Yabanoglu Ciftci S, Yildiz D, Surucu HS, Koc I, Kiratli H, Zorlu AF, Yazici G. Intravitreal melatonin for the prevention of radiation retinopathy: a step beyond bevacizumab. Int J Radiat Biol 2025; 101:391-397. [PMID: 39804149 DOI: 10.1080/09553002.2025.2451621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE Intravitreal bevacizumab has been utilized to mitigate radiation retinopathy, yet the potential role of intravitreal melatonin for its prevention remains unexplored. This study aims to evaluate and compare the efficacy of intravitreal melatonin and bevacizumab in preventing radiation retinopathy in an experimental animal model. MATERIALS AND METHODS Twelve healthy male New Zealand white rabbits (n = 24 eyes) received a single 3000 cGy irradiation dose in both eyes. Intravitreal melatonin (100 mcg/kg = 300 mcg/0.05 mL) was administered to the left eyes of six rabbits, and bevacizumab (1.25 mg/0.05 mL) to the left eyes of the remaining six, with sham injections given to the right eyes as controls. Six weeks after irradiation, bilateral enucleation was performed for biochemical and histopathological evaluation. RESULTS Oxidative stress markers did not differ significantly between the groups (p = .827). Both melatonin and bevacizumab treatments markedly reduced axonal damage compared to the sham control group (p < .001). Melatonin also demonstrated a trend toward superior neuroprotective effects relative to bevacizumab, though this difference was not statistically significant (p = .07). CONCLUSIONS Intravitreal melatonin demonstrated efficacy comparable to bevacizumab in reducing radiation-induced retinopathy, with an encouraging trend toward enhanced neuroprotection. These findings position melatonin as a potential novel therapeutic for radiation retinopathy prophylaxis. Further research with larger, long-term studies is warranted to validate these results and investigate melatonin's broader applications in retinal protection.
Collapse
Affiliation(s)
- Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nargiz Rustamova
- Department of Opthalmology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aysima Sezer
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Demet Yildiz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Irem Koc
- Department of Opthalmology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hayyam Kiratli
- Department of Opthalmology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Abdullah Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Noh SW, Kim DK, Nam SM, Yeu J, Lee S, Lee JW, Cho SK, Choi HK. Co-treatment with melatonin and ortho-topolin riboside exhibits anti-proliferation activity in radioresistant MDA-MB-231 cells by altering metabolic and transcriptomic profiles. Biochem Biophys Res Commun 2025; 742:151132. [PMID: 39667070 DOI: 10.1016/j.bbrc.2024.151132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Radiation therapy represents the primary treatment option for triple-negative breast cancer. However, radio resistance is associated with a poor prognosis and an increased risk of recurrence. Radioresistant MDA-MB-231 cells, a radioresistant triple-negative breast cancer cell line, were co-treated with ortho-topolin riboside and melatonin. The energy metabolism, metabolic profile, and transcriptomic profile of these cells were studied using XFe, gas chromatography, and next-generation sequencing. The combination treatment simultaneously inhibited glycolysis and mitochondrial respiration and inhibited the glycolytic transport chain by decreasing ATP5MC1 and ATP5ME1 gene expression, which synthesize ATP synthase, resulting in a decrease in aspartate, a precursor to pyrimidine. Furthermore, reduced CDA and NME1 gene expression impeded pyrimidine metabolism. Conversely, augmented AKR1C2 and AKR1C3 expression and elevated CDKN1A expression, which synthesizes p21, curtailed cell proliferation. Additionally, diminished TSNAX-DISC1 and CYP1B1 expression similarly restrained cell proliferation, potentially by reducing Wnt/β-catenin signaling. These findings may represent a novel therapeutic approach for patients with radioresistant triple-negative breast cancer.
Collapse
Affiliation(s)
- Soon-Wook Noh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung Min Nam
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jungmin Yeu
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seungcheol Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Won Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Gupta J, Almulla AF, Jalil AT, Jasim NY, Aminov Z, Alsaikhan F, Ramaiah P, Chinnasamy L, Jawhar ZH. Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review. Curr Med Chem 2025; 32:511-538. [PMID: 37916636 DOI: 10.2174/0109298673262122231011172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
11
|
Yousefi T, Yousef Memar M, Ahmadi Jazi A, Zand S, Reiter RJ, Amirkhanlou S, Mostafa Mir S. Molecular pathways and biological roles of melatonin and vitamin D; effects on immune system and oxidative stress. Int Immunopharmacol 2024; 143:113548. [PMID: 39488920 DOI: 10.1016/j.intimp.2024.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Melatonin and vitamin D are associated with the immune system and have important functions as antioxidants. Numerous attempts have been made to identify up to date activities of these molecules in various physiological conditions. The biosynthetic pathways of melatonin and vitamin D are correlated to sun exposure in an inverse manner. Vitamin D is biosynthesized when the skin is exposed to the sun's UV radiation, while melatonin synthesis occurs in the pineal gland principally during night. Additionally, vitamin D is particularly associated with intestinal absorption, metabolism, and homeostasis of ions including calcium, magnesium. However, melatonin has biological marks and impacts on the sleep-wake cycle. The roles of vitamin D and melatonin are opposed to each other individually, but either of them is implicated in the immune system. Recently studies have shown that melatonin and vitamin D have their specific set of aberrations in different cell signaling pathways, such as serine/threonine-specific protein kinase (Akt), phosphoinositide 3-kinase (PI3K), nuclear factor-κB (NF-κB), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Notch. The aim of this review is to clarify the common biological functions and molecular mechanisms through which melatonin and vitamin D could deal with different signaling pathways.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Ahmadi Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahabedin Zand
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, USA
| | - Saeid Amirkhanlou
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Nephrology, Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mostafa Mir
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
12
|
Palomar-Cros A, Deprato A, Papantoniou K, Straif K, Lacy P, Maidstone R, Adan A, Haldar P, Moitra S, Navarro JF, Durrington H, Moitra S, Kogevinas M, Harding BN. Indoor and outdoor artificial light-at-night (ALAN) and cancer risk: A systematic review and meta-analysis of multiple cancer sites and with a critical appraisal of exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177059. [PMID: 39437923 DOI: 10.1016/j.scitotenv.2024.177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Exposure to artificial light-at-night (ALAN) has been linked to cancer risk. Few meta-analyses on this topic have reviewed only breast cancer. This study aimed to systematically review and meta-analyze existing studies on ALAN exposure and cancer incidence, thoroughly evaluating exposure assessment quality. We considered observational studies (cohort, case-control, cross-sectional) on ALAN exposure (indoor and outdoor) and cancer incidence, measured by relative risk, hazard ratio, and odds ratio. We searched six databases, two registries, and Google Scholar from inception until April 17, 2024. Quality of studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools. Random-effects meta-analysis was used to estimate relative risks (RR) and 95 % confidence intervals (CI) for ALAN exposures. We identified 9835 studies and included 28 for qualitative synthesis with 2,508,807 individuals (15 cohort, 13 case-control). Out of the included studies, 20 studies on breast cancer (731,493 individuals) and 2 studies on prostate cancer (53,254 individuals) were used for quantitative synthesis. Higher levels of outdoor ALAN were associated with breast cancer risk (meta-estimate = 1.12, 95 % CI 1.03-1.23 (I2 = 69 %)). We observed a non-significant positive association between indoor ALAN levels and breast cancer risk (meta-estimate = 1.07, 0.95-1.21, I2 = 60 %), and no differences by menopausal status. The meta-analysis for prostate cancer suggested a non-statistically significant increased risk for higher levels of outdoor ALAN (meta-estimate = 1.43, 0.75-2.72, I2 = 90 %). In the qualitative synthesis, we observed positive associations with non-Hodgkin lymphoma and colorectal, pancreatic and thyroid cancer. We found an association between outdoor ALAN and breast cancer risk. However, most studies relied on satellite-images with a very low resolution (1 to 5 km, from the Defense Meteorological Program [DMSP]) and without information on color of light. Future studies with better exposure assessment should focus on investigating other cancer sites.
Collapse
Affiliation(s)
- Anna Palomar-Cros
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Andy Deprato
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kyriaki Papantoniou
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Kurt Straif
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Boston College, Chestnut Hill, MA, United States
| | - Paige Lacy
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Maidstone
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Prasun Haldar
- Department of Medical Laboratory Technology, Supreme Institute of Management and Technology, Mankundu, India
| | - Saibal Moitra
- Department of Allergy and Immunology, Apollo Gleneagles Hospital, Kolkata, India
| | - José Francisco Navarro
- Department of Psychobiology and Methodology of Behavioural Sciences, University of Málaga, Málaga, Spain
| | - Hannah Durrington
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Subhabrata Moitra
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Bagchi School of Public Health, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain; Hospital del Mar Research Institute, Barcelona, Spain
| | - Barbara N Harding
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain.
| |
Collapse
|
13
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
14
|
Pourbarkhordar V, Rahmani S, Roohbakhsh A, Hayes AW, Karimi G. Melatonin effect on breast and ovarian cancers by targeting the PI3K/Akt/mTOR pathway. IUBMB Life 2024; 76:1035-1049. [PMID: 39212097 DOI: 10.1002/iub.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Melatonin, the hormone of the pineal gland, possesses a range of physiological functions, and recently, its anticancer effect has become more apparent. A more thorough understanding of molecular alterations in the components of several signaling pathways as new targets for cancer therapy is needed because of current innate restrictions such as drug toxicity, side effects, and acquired or de novo resistance. The PI3K/Akt/mTOR pathway is overactivated in many solid tumors, such as breast and ovarian cancers. This pathway in normal cells is essential for growth, proliferation, and survival. However, it is an undesirable characteristic in malignant cells. We have reviewed multiple studies about the effect of melatonin on breast and ovarian cancer, focusing on the PI3K/Akt/mTOR pathway. Melatonin exerts its inhibitory effects via several mechanisms. A: Downregulation of downstream or upstream components of the signaling pathway such as phosphatase and tensin homolog (PTEN), phosphatidylinositol (3,4,5)-trisphosphate kinase (PI3K), p-PI3K, Akt, p-Akt, mammalian target of rapamycin (mTOR), and mTOR complex1 (mTORC1). B: Apoptosis induction by decreasing MDM2 expression, a downstream target of Akt, and mTOR, which leads to Bad activation in addition to Bcl-XL and p53 inhibition. C: Induction of autophagy in cancer cells via activating ULK1 after mTOR inhibition, resulting in Beclin-1 phosphorylation. Beclin-1 with AMBRA1 and VPS34 promotes PI3K complex I activity and autophagy in cancer cells. The PI3K/Akt/mTOR pathway overlaps with other intracellular signaling pathways and components such as AMP-activated protein kinase (AMPK), Wnt/β-catenin, mitogen-activated protein kinase (MAPK), and other similar pathways. Cancer therapy can benefit from understanding how these pathways interact and how melatonin affects these pathways.
Collapse
Affiliation(s)
- Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Yang S, Chen P, Mao X, Lin K, Li W, He T, Huang H, Wu A, Luo W, Ye G, Yao G, Zhou D. Differential Response to Cisplatin between Co-cultured Cells and Pure Cultured Cells Based on Single-cell RNA Sequencing of Three-dimensional-cultured Breast Cancer Cells. FRONT BIOSCI-LANDMRK 2024; 29:406. [PMID: 39735986 DOI: 10.31083/j.fbl2912406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq). METHODS The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1. Cisplatin was applied at a concentration of 1.25 μg/mL, and the cells were harvested after 2 days and subjected to scRNA-seq. Data were analyzed using a single-cell RNA sequencing data analysis pipeline with R language. RESULTS The response of MCF-7 cells to cisplatin differed among the four groups. The transcriptomic response of MCF-7 cells to cisplatin in the co-culture model was not as significant as that in the mono-culture model. Moreover, the pathways related to apoptosis, DNA damage, hypoxia, and metastasis in the co-culture groups were enriched in the genes that were differentially expressed based on cisplatin treatment. CONCLUSION scRNA-seq analysis revealed that the response of MCF-7 cells to cisplatin in the co-culture model was lower than that in the mono-culture model. Therefore, the three-dimensional cell co-culture model can be applied to tumor research to better mimic the pathophysiological environment in vivo and can be a well-modified research method.
Collapse
Affiliation(s)
- Shuqing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
- Breast Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - KaiRong Lin
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Wei Li
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Tiancheng He
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Huiqi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - AiGuo Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, 51000 Guangzhou, Guangdong, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| |
Collapse
|
16
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
17
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
18
|
Cai X, Wang D, Ding C, Li Y, Zheng J, Xue W. Exploration of the causal relationship between inflammatory cytokines and prostate carcinoma: a comprehensive Mendelian randomization study. Front Oncol 2024; 14:1381803. [PMID: 39267848 PMCID: PMC11390350 DOI: 10.3389/fonc.2024.1381803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most prevalent malignancies affecting males; however, the role of inflammatory activity in the pathogenesis of this disease is not yet fully elucidated. Although inflammation is recognized as being closely associated with the onset and progression of PCa, the specific causal relationships between individual inflammatory factors and the disease require further clarification. Methods Mendelian randomization (MR) methodologies can mitigate bias by utilizing whole-genome sequencing data, leveraging specific genetic variants to assess causal relationships between a given exposure and an outcome of interest. This research employed an MR approach to investigate the association between inflammatory cytokines and PCa. Results In total, 44 inflammatory cytokines were evaluated in a large GWAS dataset to enable the drawing of robust conclusions. Elevated circulating C-reactive protein (CRP) and prostaglandin E2 (PGE-2) levels were related to greater PCa risk. The reverse Mendelian randomization (MR) study indicates a causal relationship between prostate cancer and stem cell factor (SCF) (P=0.025). Conclusion CRP and PGE-2 play crucial roles in the regulation of PCa development. Moreover, PCa may have an impact on SCF levels. Further research is imperative to elucidate whether these biomarkers can be effectively utilized to prevent or treat PCa.
Collapse
Affiliation(s)
- Xianfu Cai
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Urology, Mianyang Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China Mianyang Central Hospital, Mianyang, China
| | - Decai Wang
- Department of Urology, Mianyang Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China Mianyang Central Hospital, Mianyang, China
| | - Chenguang Ding
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Li
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Zheng
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wujun Xue
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
20
|
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA, Gouda SAA. Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch 2024; 476:1155-1168. [PMID: 38740599 PMCID: PMC11166745 DOI: 10.1007/s00424-024-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflammation, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a useful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin-MSCs). We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thickening. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt.
| | - Sabreen Sayed Elnassag
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Dina Hisham Mohamed
- Department of Histology, Faculty of Medicine, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Olfat Shaker
- Department of Biochemistry, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Effat A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| |
Collapse
|
21
|
Chatterjee A, Roy T, Jyothi D, Mishra VK, Singh UP, Swarnakar S. Melatonin Inhibits AGS Cell Proliferation by Binding to the ATP Binding Site of CDK2 Under Hyperglycemic Conditions. Cell Biochem Biophys 2024; 82:895-908. [PMID: 38453745 DOI: 10.1007/s12013-024-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Cancer cells utilize glucose as their primary energy source. The aggressive nature of cancer cells is therefore enhanced in hyperglycemic conditions. This study has been adopted to investigate the therapeutic potential of melatonin against such aggressive proliferation of AGS cells-a human gastric cancer cell line, under hyperglycemic conditions. AGS cells were incubated with high glucose-containing media, and the effects of melatonin have been evaluated, therein. Cell proliferation, ROS generation, flow-cytometric analysis for cell cycle and apoptosis, wound healing, immunoblotting, zymography, reverse zymography assays, in-silico analysis, and kinase activity assays were performed to evaluate the effects of melatonin. We observed that melatonin inhibited the hyperglycemia-induced cell proliferation in a dose-dependent manner. It further altered the expression and activity of MMP-9 and TIMP-1. Moreover, melatonin inhibited AGS cell proliferation by arresting AGS cells in the G0/G1 phase after binding in the ATP binding site of CDK-2, thereby inhibiting its kinase activity. In association, a significant decrease in the expression of cyclin D1, cyclin E, CDK-4, and CDK-2 were observed. In conclusion, these findings suggest that melatonin has anti-gastric cancer potential. Melatonin could therefore be included in future drug designs for gastric cancer-hyperglycemia co-morbidity treatment.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Tapasi Roy
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Deeti Jyothi
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Umesh Prasad Singh
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
22
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Pardi PC, Turri JAO, Bayer LHCM, Nóbrega GB, Filassi JR, Simões RDS, Mota BS, Sorpreso ICE, Baracat EC, Soares Júnior JM. Biological action of melatonin on target receptors in breast cancer. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231260. [PMID: 38656007 DOI: 10.1590/1806-9282.20231260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 04/26/2024]
Affiliation(s)
- Paulo Celso Pardi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Antonio Orellana Turri
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Luiza Helena Costa Moreira Bayer
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Gabriela Bezerra Nóbrega
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Roberto Filassi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Ricardo Dos Santos Simões
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Bruna Salani Mota
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Isabel Cristina Espósito Sorpreso
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Edmund Chada Baracat
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Maria Soares Júnior
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| |
Collapse
|
24
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
25
|
Namusamba M, Wu Y, Yang J, Zhang Q, Wang C, Wang T, Wang B. BAP31 Promotes Angiogenesis via Galectin-3 Upregulation in Neuroblastoma. Int J Mol Sci 2024; 25:2946. [PMID: 38474195 PMCID: PMC10931962 DOI: 10.3390/ijms25052946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroblastoma (NB) is one of the highly vascularized childhood solid tumors, and understanding the molecular mechanisms underlying angiogenesis in NB is crucial for developing effective therapeutic strategies. B-cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression, but its role in angiogenesis remains unexplored. This study investigated BAP31 modulation of pro-angiogenic factors in SH-SY5Y NB cells. Through protein overexpression, knockdown, antibody blocking, and quantification experiments, we demonstrated that overexpression of BAP31 led to increased levels of vascular endothelial growth factor A (VEGFA) and Galectin-3 (GAL-3), which are known to promote angiogenesis. Conditioned medium derived from BAP31-overexpressing neuroblastoma cells stimulated migration and tube formation in endothelial cells, indicating its pro-angiogenic properties. Also, we demonstrated that BAP31 enhances capillary tube formation by regulating hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target, GAL-3. Furthermore, GAL-3 downstream proteins, Jagged 1 and VEGF receptor 2 (VEGFR2), were up-regulated, and blocking GAL-3 partially inhibited the BAP31-induced tube formation. These findings suggest that BAP31 promotes angiogenesis in NB by modulating GAL-3 and VEGF signaling, thereby shaping the tumor microenvironment. This study provides novel insights into the pro-angiogenic role of BAP31 in NB.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Yufei Wu
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Jiaying Yang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| |
Collapse
|
26
|
Bicer E, Bese T, Tuzun DD, Ilvan S, Kayan BO, Demirkiran F. The Relationship Between Melatonin 1-2 Receptor Expression in Patients With Epithelial Ovarian Cancer and Survival. Int J Gynecol Pathol 2024; 43:190-199. [PMID: 37922887 DOI: 10.1097/pgp.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Melatonin has antiproliferative, antiangiogenic, apoptotic, and immunomodulatory properties in ovarian cancer. Considering those, we evaluated the relationship between melatonin 1 (MT1) and melatonin 2 receptor (MT2) expression in tumor tissues of patients with epithelial ovarian cancer, disease-free survival (DFS), and overall survival (OS). Patients who received primary surgical treatment for epithelial ovarian cancer in our clinic between 2000 and 2019 were retrospectively scanned through patient files, electronic databases, and telephone calls. One hundred forty-two eligible patients were included in the study, their tumoral tissues were examined to determine MT1 and MT2 expression by immunohistochemical methods. The percentage of receptor-positive cells and intensity of staining were determined. MT1 receptor expression ( P = 0.002 for DFS and P = 0.002 for OS) showed a significant effect on DFS and OS. MT2 expression had no effect on survival ( P = 0.593 for DFS and P = 0.209 for OS). The results showed that the higher the MT1 receptor expression, the longer the DFS and OS. It is suggested that melatonin should be considered as adjuvant therapy for ovarian cancer patients in addition to standard treatment, and clinical progress should be observed.
Collapse
|
27
|
Martínez-Campa C, Álvarez-García V, Alonso-González C, González A, Cos S. Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer. Cancers (Basel) 2024; 16:956. [PMID: 38473317 DOI: 10.3390/cancers16050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
28
|
Qi Q, Yang J, Li S, Liu J, Xu D, Wang G, Feng L, Pan X. Melatonin alleviates oxidative stress damage in mouse testes induced by bisphenol A. Front Cell Dev Biol 2024; 12:1338828. [PMID: 38440074 PMCID: PMC10910031 DOI: 10.3389/fcell.2024.1338828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
We investigated the effect of melatonin on bisphenol A (BPA)-induced oxidative stress damage in testicular tissue and Leydig cells. Mice were gavaged with 50 mg/kg BPA for 30 days, and concurrently, were injected with melatonin (10 mg/kg and 20 mg/kg). Leydig cells were treated with 10 μmol/L of BPA and melatonin. The morphology and organ index of the testis and epididymis were observed and calculated. The sperm viability and density were determined. The expressions of melatonin receptor 1A and luteinizing hormone receptor, and the levels of malonaldehyde, antioxidant enzymes, glutathione, steroid hormone synthases, aromatase, luteinizing hormone, testosterone, and estradiol were measured. TUNEL assay was utilized to detect testicular cell apoptosis. The administration of melatonin at 20 mg/kg significantly improved the testicular index and epididymis index in mice treated with BPA. Additionally, melatonin promoted the development of seminiferous tubules in the testes. Furthermore, the treatment with 20 mg/kg melatonin significantly increased sperm viability and sperm density in mice, while also promoting the expressions of melatonin receptor 1A and luteinizing hormone receptor in Leydig cells of BPA-treated mice. Significantly, melatonin reduced the level of malonaldehyde in testicular tissue and increased the expression of antioxidant enzymes (superoxide dismutase 1, superoxide dismutase 2, and catalase) as well as the content of glutathione. Moreover, melatonin also reduced the number of apoptotic Leydig cells and spermatogonia, aromatase expression, and estradiol level, while increasing the expression of steroid hormone synthases (steroidogenic acute regulatory protein, cytochrome P450 family 17a1, cytochrome P450 17α-hydroxylase/20-lyase, and, 17β-hydroxysteroid dehydrogenase) and the level of testosterone. Melatonin exhibited significant potential in alleviating testicular oxidative stress damage caused by BPA. These beneficial effects may be attributed to melatonin's ability to enhance the antioxidant capacity of testicular tissue, promote testosterone synthesis, and reduce testicular cell apoptosis.
Collapse
Affiliation(s)
- Qi Qi
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jiaxin Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Shuang Li
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jingjing Liu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Da Xu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Guoqing Wang
- School of Medical Technology, Beihua University, Jilin, China
| | - Lei Feng
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
29
|
Jiang Y, Tong W, Li Y, Ma Q, Chen Y. Melatonin inhibits the formation of intraplaque neovessels in ApoE-/- mice via PPARγ- RhoA-ROCK pathway. Biochem Biophys Res Commun 2024; 696:149391. [PMID: 38184922 DOI: 10.1016/j.bbrc.2023.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND According to former research, the atherosclerotic plaque is thought to be aggravated by intraplaque neovessels (IPN) and intraplaque hemorrhage (IPH). Intriguingly, a lower incidence of IPH was found in plaque treated with melatonin. In this study, we attempted to investigate the impact and underlying mechanism regarding the influences of melatonin upon IPN. METHODS A mouse model was established by subjecting the high fat diet (HFD)-fed ApoE-/- mice to tandem stenosis (TS) surgery with melatonin and GW9662, a PPARγ antagonist, being given by gavage. In vitro experiment was conducted with HUVECs exposing to according treatments of VEGF, melatonin, GW9662, or Y27632. RESULTS Plaque and IPN were attenuated by treatment with melatonin, which was then reversed by blocking PPARγ. Western blotting results showed that melatonin increased PPARγ and decreased RhoA/ROCK signaling in carotid artery. Elevated RhoA/ROCK signaling was observed in melatonin-treated mice when PPARγ was blocked. In accordance with it, experiments using protein and mRNA from HUVECs revealed that melatonin inhibited the RhoA/ROCK signaling by enhancing PPARγ. According to in vitro study, melatonin was able to inhibit cell migration and angiogenesis, which was aborted by GW9662. Blockage of ROCK using Y27632 was able to cease the effect of GW9662 and restored the suppression on cell migration and angiogenesis by melatonin. CONCLUSIONS Our study demonstrates that melatonin is able to curb development of plaque and IPN formation by inhibiting the migration of endothelial cells via PPARγ- RhoA-ROCK pathway. That provides a therapeutic potential for both melatonin and PPARγ agonist targeting IPN, IPH, and atherosclerotic plaque.
Collapse
Affiliation(s)
- YuFan Jiang
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Tong
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yueyang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang Ma
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - YunDai Chen
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
30
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Rafiyian M, Gouyandeh F, Saati M, Davoodvandi A, Rasooli Manesh SM, Asemi R, Sharifi M, Asemi Z. Melatonin affects the expression of microRNA-21: A mini-review of current evidence. Pathol Res Pract 2024; 254:155160. [PMID: 38277748 DOI: 10.1016/j.prp.2024.155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Melatonin (MLT) is an endogenous hormone produced by pineal gland which possess promising anti-tumor effects. Anti-inflammatory and anti-oxidant properties of MLT, along with its immunomodulatory, proapoptotic, and anti-angiogenic properties, are often referred to the main mechanisms of its anti-tumor effects. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of MLT. Among these MLT-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs(miRNAs). MiRNAs are among the most promising and potential therapeutic and diagnostic tools in different diseases and enhanced the development of better therapeutic drugs. Suppression of oncomicroRNAs such as microRNA-21, - 20a, and - 27a as well as, up-regulation of microRNA-34 a/c are among the most important effects of MLT on microRNAs homeostasis. Recently, miR-21 has attracted the attention of scientists due to the its wide range of effects on different cancers and diseases. Regulation of this RNA may be a key to the development of better therapeutic targets. The present review will summarize the findings of in vitro and experimental studies of MLT-induced impacts on the expression of microRNAs which are involved in different models and numerous stages of tumor initiation, growth, metastasis, and chemo-resistance.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Gouyandeh
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
32
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
33
|
Das N, Mukherjee S, Das A, Gupta P, Bandyopadhyay A, Chattopadhyay S. Intra-tumor ROS amplification by melatonin interferes in the apoptosis-autophagy-inflammation-EMT collusion in the breast tumor microenvironment. Heliyon 2024; 10:e23870. [PMID: 38226217 PMCID: PMC10788523 DOI: 10.1016/j.heliyon.2023.e23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention. Contrary to its conventional antioxidant role, melatonin was shown to augment intracellular ROS and initiate ROS-dependent apoptosis in our system, by modulating the p53/JNK & NF-κB/pJNK expressions/interactions. Melatonin-induced ROS promoted SIRT1 activity. Interplay between SIRT1 and NF-κB/p65 is known to play a pivotal role in regulating the crosstalk between autophagy and inflammation. Persistent inflammation in the tumor microenvironment and subsequent activation of the IL-6/STAT3/NF-κB feedback loop promoted EMT and suppression of autophagy through activation of PI3K/Akt/mTOR signaling pathway. Melatonin disrupted NF-κB/SIRT1 interactions blocking IL-6/STAT3/NF-κB pathway. This led to reversal of pro-inflammatory bias in the breast tumor microenvironment and augmented autophagic responses. The interactions between p62/Twist1, NF-κB/Beclin1 and NF-κB/Slug were altered by melatonin to strike a balance between autophagy, inflammation and EMT, leading to tumor regression. This study provides critical insights into how melatonin could be utilized in treating breast cancer via inhibition of the PI3K/Akt/mTOR signaling and differential modulation of SIRT1 and NF-κB proteins, leading to the establishment of apoptotic and autophagic fates in breast cancer cells.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sudeshna Mukherjee
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Department of Physiology and Allied Sciences, Amity Institute of Health Allied Sciences, Amity University, Uttar Pradesh, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Amit Bandyopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata-700098, India
| |
Collapse
|
34
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
35
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
36
|
Wang Q, Chen M, Tang X. Luteolin Inhibits Lung Cancer Cell Migration by Negatively Regulating TWIST1 and MMP2 Through Upregulation of miR-106a-5p. Integr Cancer Ther 2024; 23:15347354241247223. [PMID: 38646808 PMCID: PMC11034356 DOI: 10.1177/15347354241247223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, People’s Republic of China
| | - Mengyuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
37
|
Hassan AA, Abdelgayed SS, Mansour SZ. Liver and ovarian toxicities boosted by bisphenol and gamma radiation in female albino rats. Hum Exp Toxicol 2024; 43:9603271231219264. [PMID: 38263794 DOI: 10.1177/09603271231219264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Bisphenol A (BPA), a carbon-based synthetic polymer compound, was newly classified as an environmental toxicant and an endocrine-disrupting chemical leading to abnormalities in cell proliferation, apoptosis, or migration that contributes to cancer development and progression. This study aims to evaluate the effect of the elevation of γ- radiation dose and BPA on the liver and ovaries of female rats. In this study, eighty female albino rats (130-150 g) were used in this work. Rats in this experiment received BPA in ethanol (50 mg/kg b. wt.) for 30 days, day after day, and in the irradiated groups, animals were administered BPA and then exposed to γ- radiation in doses (2, 4, and 6 Gy) one shot dose. Several members of the cytochrome family were examined. Exposure to γ-radiation and BPA showed an increase in cytochrome P450 and b5 fold change. Further, BPA and γ-radiation activate α and β estrogen receptors and also downregulate aromatase (CYT19) fold change. The current results also revealed that BPA and/or γ-radiation regulate the protein expression of the PI3K/Akt signaling pathway. The steroidogenic acute regulatory protein (StAR) appeared to be targeted by BPA and γ-radiation and its relative expression was elevated significantly by raising the γ-radiation dose. In conclusion, exposure to BPA, an endocrine-disrupting chemical, leads to marked toxicity. Additionally, toxicity is heightened by increasing the γ-radiation dose, either alone or in combination with BPA.
Collapse
Affiliation(s)
- Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
38
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
39
|
Nakamura K, Ohno T, Inamoto T, Takai T, Uchimoto T, Fukushima T, Nishimura K, Yano Y, Nishio K, Kinoshita S, Matsunaga T, Nakamori K, Tsutsumi T, Tsujino T, Uehara H, Komura K, Takahara K, Azuma H. Pattern of Expression of MicroRNA in Patients with Radiation-Induced Bladder Injury. Oncology 2023; 102:1. [PMID: 38160665 PMCID: PMC11216355 DOI: 10.1159/000535993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Bladder cancer (BC) is sensitive to radiation treatment and a subset of patients experience radiation-induced injuries including shrinkage of bladder due to bladder fibrosis. METHODS This study is a retrospective cohort study. Three Japanese BC patients were randomly selected. Using a microRNA (miRNA) array, comparing their samples with or without radiation-induced injuries, we have checked the clustering of miRNA expression. RESULTS Hsa-miR-130a, hsa-miR-200c, hsa-miR-141, and hsa-miR-96 were found to be highly expressed (>50 times) in patients with fibrotic bladder shrinkage (FBS) compared to those with intact bladder (IB) function. In patients with FBS, hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 were detected to have lesser than half expression to IB patients. We have analyzed the significance of these genes in relation to overall survival of 409 BC patients retrieved from the Cancer Genome Atlas data set. All available cutoff values between the lower and upper quartiles of expression are used for the selected genes, and false discovery rate using the Benjamini-Hochberg method is computed to correct for multiple hypothesis testing. We have run combined survival analysis of the mean expression of these four miRNAs highly expressed in FBS patients. 175 patients with high expression had a longer median survival of 98.47 months than 23.73 months in 233 patients with low expression (hazard ratio [HR]: 0.53; 0.39-0.72, log-rank p value: 7.3e-0.5). Combination analysis of all 8 genes including hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 showed the same HR for OS. Target scanning for these miRNAs matched specific cytokines known as an early biomarker to develop radiation-induced fibrosis. CONCLUSIONS BC patients with fibrotic radiation injury have specific miRNA expression profile targeting profibrotic cytokines and these miRNAs possibly render to favorable survival.
Collapse
Affiliation(s)
- Ko Nakamura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan,
| | - Takaya Ohno
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Tomoaki Takai
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Taizo Uchimoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Tatsuo Fukushima
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yusuke Yano
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kyosuke Nishio
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Shoko Kinoshita
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Tomohisa Matsunaga
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Keita Nakamori
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Takeshi Tsutsumi
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Hirofumi Uehara
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| |
Collapse
|
40
|
Peng X, Wang J, Li Z, Jia X, Zhang A, Ju J, Eulenburg V, Gao F. Toll-like Receptor 2-Melatonin Feedback Loop Regulates the Activation of Spinal NLRP3 Inflammasome in Morphine-Tolerant Rats. Neurochem Res 2023; 48:3597-3609. [PMID: 37561258 DOI: 10.1007/s11064-023-03998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND PURPOSE Morphine is amongst the most effective analgesics available for the management of severe pain. However, prolonged morphine treatment leads to analgesic tolerance which limits its clinical usage. Previous studies have demonstrated that melatonin ameliorates morphine tolerance by reducing neuroinflammation. However, little is known about the relationship between Toll like receptor 2 (TLR2) and neuroinflammation in morphine tolerance. The aim of this study was to explore the role of TLR2 in morphine tolerance and its connections with melatonin and Nod-like receptor protein 3 (NLRP3) inflammasome. METHODS Sprague-Dawley rats were treated with morphine for 7 days and tail-flick latency test was performed to identify the induction of analgesic tolerance. The roles of TLR2 in microglia activation and morphine tolerance were assessed pharmacologically, and the possible interactions between melatonin, TLR2 and NLRP3 inflammasome were investigated. KEY RESULTS Morphine tolerance was accompanied by increased TLR2 expression and NLRP3 inflammasome activation in spinal cord. whereas melatonin level was down-regulated. Chronic melatonin administration resulted in a reduced TLR2 expression and NLRP3 inflammasome activation. Moreover, the analgesic effect of morphine was partially restored. Inhibition of TLR2 suppressed the microglia and NLRP3 inflammasome activation, as well as restored the spinal melatonin level while attenuated the development of morphine tolerance. Furthermore, the inhibition of microglia activation ameliorated morphine tolerance via inhibiting TLR2-NLRP3 inflammasome signaling in spinal cord. CONCLUSION In this study, we directly demonstrate a TLR2-melatonin negative feedback loop regulating microglia and NLRP3 inflammasome activation during the development of morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Anqi Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Volker Eulenburg
- Department for Translational Anaesthesiology and Intensive Care Medicine, Medical Faculty University of Augsburg, 86156, Augsburg, Germany.
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
41
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
42
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
44
|
Dincer B, Yildiztekin G, Cinar I. Unlocking Synergistic Potential: Agomelatine Enhances the Chemotherapeutic Effect of Paclitaxel in Breast Cancer Cell Through MT1 Melatonin Receptors and ER-alpha Axis. Chem Biodivers 2023; 20:e202301093. [PMID: 37690997 DOI: 10.1002/cbdv.202301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, 55100, Turkey
| | - Gizem Yildiztekin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, 37150, Turkey
| |
Collapse
|
45
|
Amirzargar MR, Shahriyary F, Shahidi M, Kooshari A, Vafajoo M, Nekouian R, Faranoush M. Angiogenesis, coagulation, and fibrinolytic markers in acute promyelocytic leukemia (NB4): An evaluation of melatonin effects. J Pineal Res 2023; 75:e12901. [PMID: 37485730 DOI: 10.1111/jpi.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Melatonin is a powerful biological agent that has been shown to inhibit angiogenesis and also exerts anti-inflammatory effects. It is well known that new blood vessel formation (angiogenesis) has become an urgent issue in leukemia as well as solid tumors. Acute promyelocytic leukemia (APL) is a form of liquid cancer that manifests increased angiogenesis in the bone marrow of patients. Despite high-rate curable treatment with all-trans-retinoic acid (ATRA) and recently arsenic-trioxide (ATO), early death because of hemorrhage, coagulopathy, and Disseminated intravascular coagulation (DIC) remains still a concerning issue in these patients. It is, therefore, urgent to seek treatment strategies with antiangiogenic capabilities that also diminish coagulopathy and hyperfibrinolysis in APL patients. In this study, a coculture system with human umbilical vein endothelial cells (HUVECs) and NB4 APL cells was used to investigate the direct effect of melatonin on angiogenesis and its possible action on tissue factor (TF) and tissue-type plasminogen activator-1 (TPA-1) expression. Our experiments revealed that HUVEC-induced angiogenesis by cocultured NB4 cells was suppressed when melatonin alone or in combination with ATRA was added to the incubation medium. Melatonin at concentrations of 1 mM inhibited tube formation of HUVECs and also decreased interleukin-6 secretion and VEGF mRNA expression in HUVEC and NB4 cells. Taken together, the results of this study demonstrate that melatonin inhibits accelerated angiogenesis of HUVECs and ameliorates the coagulation and fibrinolysis indices stimulated by coculturing with NB4 cells.
Collapse
Affiliation(s)
- Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nekouian
- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Soares JM, Mota BS, Nobrega GB, Filassi JR, Sorpreso ICE, Baracat EC. Breast cancer survivals and hormone therapy: estrogen and melatonin. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e6910EDI. [PMID: 37792874 PMCID: PMC10547489 DOI: 10.1590/1806-9282.6910edi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023]
Affiliation(s)
- José Maria Soares
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| | - Bruna Salani Mota
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| | - Gabriela Bezerra Nobrega
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| | - José Roberto Filassi
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| | - Isabel Cristina Espósito Sorpreso
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo – São Paulo (SP), Brazil
| |
Collapse
|
47
|
Lv T, Cao B, Qin J, Wei Y, Pan B, Ye J, Zhou G. Melatonin promotes parthenogenetic development of vitrified-warmed mouse MII oocytes, potentially by reducing oxidative stress through SIRT1. Theriogenology 2023; 208:132-141. [PMID: 37327742 DOI: 10.1016/j.theriogenology.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have demonstrated that melatonin could ameliorate oxidative stress during the cryopreservation of mouse MII oocytes and their in vitro culture after parthenogenetic activation. However, the underlying molecular mechanism remained poorly understood. This study was conducted to investigate whether melatonin could modulate the oxidative stress in the parthenogenetic 2-cell embryos derived from vitrified-warmed oocytes through SIRT1. The results showed that the reactive oxygen species levels increased, the glutathione levels and SIRT1 expression decreased significantly in parthenogenetic 2-cell embryos derived from cryopreserved oocyte, and the parthenogenetic blastocyst formation rates significantly decreased when compared to those derived from control oocytes. These unfavorable phenomena were prevented by the addition of either 10-9 mol/L melatonin or 10-6 mol/L SRT-1720 (SIRT1 agonist), and it was restored by the supplementation of 10-9 mol/L melatonin in combination with 2 × 10-5 mol/L EX527 (SIRT1 inhibitor). Therefore, the findings from the present study concluded that melatonin may reduce oxidative stress via regulating SIRT1, and potentially promote the parthenogenetic development of vitrified-warmed mouse MII oocytes.
Collapse
Affiliation(s)
- Tianyi Lv
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Beijia Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yaozong Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
48
|
Reiter RJ, Sharma R, Tan DX, Huang G, de Almeida Chuffa LG, Anderson G. Melatonin modulates tumor metabolism and mitigates metastasis. Expert Rev Endocrinol Metab 2023; 18:321-336. [PMID: 37466337 DOI: 10.1080/17446651.2023.2237103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Melatonin, originally isolated from the mammalian pineal gland, was subsequently identified in many animal cell types and in plants. While melatonin was discovered to inhibit cancer more than 5 decades ago, its anti-cancer potential has not been fully exploited despite its lack of serious toxicity over a very wide dose range, high safety margin, and its efficacy. AREAS COVERED This review elucidates the potential mechanisms by which melatonin interferes with tumor growth and metastasis, including its ability to alter tumor cell metabolism, inhibit epithelial-mesenchymal transition, reverse cancer chemoresistance, function synergistically with conventional cancer-inhibiting drugs while limiting many of their side effects. In contrast to its function as a potent antioxidant in normal cells, it may induce oxidative stress in cancer cells, contributing to its oncostatic actions. EXPERT OPINION Considering the large amount of experimental data supporting melatonin's multiple and varied inhibitory effects on numerous cancer types, coupled with the virtual lack of toxicity of this molecule, it has not been thoroughly tested as an anti-cancer agent in clinical trials. There seems to be significant resistance to such investigations, possibly because melatonin is inexpensive and non-patentable, and as a result there would be limited financial gain for its use.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | | | | |
Collapse
|
49
|
Zhao W, Zheng XD, Tang PYZ, Li HM, Liu X, Zhong JJ, Tang YJ. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi-active components combination. Med Res Rev 2023; 43:1778-1808. [PMID: 37183170 DOI: 10.1002/med.21963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
The antitumor efficacy of Chinese herbal medicines has been widely recognized. Leading compounds such as sterols, glycosides, flavonoids, alkaloids, terpenoids, phenylpropanoids, and polyketides constitute their complex active components. The antitumor monomers derived from Chinese medicine possess an attractive anticancer activity. However, their use was limited by low bioavailability, significant toxicity, and side effects, hindering their clinical applications. Recently, new chemical entities have been designed and synthesized by combining natural drugs with other small drug molecules or active moieties to improve the antitumor activity and selectivity, and reduce side effects. Such a novel conjugated drug that can interact with several vital biological targets in cells may have a more significant or synergistic anticancer activity than a single-molecule drug. In addition, antitumor conjugates could be obtained by combining pharmacophores containing two or more known drugs or leading compounds. Based on these studies, the new drug research and development could be greatly shortened. This study reviews the research progress of conjugates with antitumor activity based on Chinese herbal medicine. It is expected to serve as a valuable reference to antitumor drug research and clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Di Zheng
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | | | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xue Liu
- Jinan Intellectual Property Protection Center, Jinan, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|