1
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
3
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
4
|
Nakakura T, Tanaka H, Suzuki T. Caveolae-mediated endocytosis pathway regulates endothelial fenestra homeostasis in the rat pituitary. Biochem Biophys Res Commun 2023; 675:177-183. [PMID: 37506534 DOI: 10.1016/j.bbrc.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Endothelial fenestrae are transcellular pores separated by diaphragms formed by plasmalemma vesicle-associated proteins (PLVAP) and function as channels for peptide hormones and other substances. Caveola, a key regulator of clathrin-independent endocytosis, may be involved in the invagination and fusion of plasma membranes, which are essential for fenestra formation. In this study, we first found that caveolin-1 and -2, the major components of caveolae, was localized in fenestrated endothelial cells in the anterior lobe of the rat pituitary by immunohistochemistry. As we also observed caveolae in the endothelial cells of the anterior lobe of the rat pituitary by transmission electron microscopy, we studied the relationship between the caveolae-mediated endocytosis pathway and fenestrae structure in cultured endothelial cells isolated from the anterior lobe of the rat pituitary (CECAL) by immunofluorescence staining and scanning electron microscopy. The inhibition of caveolae-mediated endocytosis by genistein enlarged the PLVAP-positive oval-shaped structure that represented the sieve plate and induced the formation of a doughnut-shaped bulge around the fenestra in CECAL. In contrast, the acceleration of caveolae-mediated endocytosis by okadaic acid induced the diffusion of PLVAP-positive signals in the cytoplasm and reduced the number of fenestrae in CECAL. These results indicate that the caveolae-mediated endocytosis pathway is involved in the fenestra homeostasis in the fenestrated endothelial cells of the rat pituitary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, 060-8556, Japan
| |
Collapse
|
5
|
Kim KM, Son HE, Lim YJ, Jang WG. Topiramate promotes osteogenic differentiation through AMPK-dependent phosphorylation of Smad1/5/9. Acta Histochem 2023; 125:152095. [PMID: 37757516 DOI: 10.1016/j.acthis.2023.152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Topiramate [2,3:4,5-bis-o-(1-methylethylidene) β-D-fructo-pyranose sulfamate; TPM] is one of the most used new-generation antiepileptic drugs. It has been reported to regulate the differentiation of human bone cells. However, the molecular mechanism of TPM in osteoblast differentiation is not fully elucidated. In the present study, we examined the effect of TPM on osteogenic differentiation of C3H10T1/2, MC3T3-E1, primary mouse calvarial cells, and primary bone marrow stem cells (BMSCs). Primary cells were isolated from mice calvaria and bone marrow respectively. Expression of the osteogenic gene was determined by RT-PCR. The osteogenic protein levels were measured by Western blot analysis. Alkaline phosphatase (ALP) staining experiment was performed to evaluate ALP activity. Alizarin red s (ARS) staining was performed to measure zebrafish caudal fin regeneration. Treatment of TPM up-regulated the osteogenic genes including distal-less homeobox 5 (Dlx5) and runt-related transcription factor 2 (Runx2). In addition, TPM also increased the Dlx5 and Runx2 protein levels, Smad1/5/9 phosphorylation, and alkaline phosphatase (ALP) activity. Furthermore, TPM activated AMPK, and inhibition of AMPK decreased TPM-induced osteogenic differentiation. In the zebrafish model, osteogenic effect of TPM was identified. TPM was increased amputated caudal fin rays of zebrafish. These results demonstrate that TPM enhances osteogenic differentiation via AMPK-mediated Smad1/5/9 phosphorylation.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Young-Ju Lim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
6
|
Fu M, Yang C, Sun G. Recent advances in immunomodulatory hydrogels biomaterials for bone tissue regeneration. Mol Immunol 2023; 163:48-62. [PMID: 37742359 DOI: 10.1016/j.molimm.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There is a high incidence of fractures in clinical practice and therapy. The repairment of critical size defects in the skeletal system remains a huge challenge for surgeons and researchers, which can be overcame by the application of bone tissue-engineered biomaterials. An increasing number of investigations have revealed that the immune system plays a vital role in the repair of bone defects, especially macrophages, which can modulate the integration of biomaterials and bone regeneration in multiple ways. Therefore, it has become increasingly important in regenerative medicine to regulate macrophage polarization to prevent inflammation caused by biomaterial implantation. Recent studies have stressed the importance of hydrogel-based modifications and the incorporation of various cellular and molecular signals for regulating immune responses to promote bone tissue regeneration and integrate biomaterials. In this review, we first elaborate briefly on the described the general physiological mechanism and process of bone tissue regeneration. Then, we summarized the immunomodulatory role macrophages play in bone repair. In addition, the role of hydrogel-based immune modification targeting macrophage modulation in accelerating and enhancing bone tissue regeneration was also discussed. Finally, we highlighted future directions and research strategies related to hydrogel optimization for the regulation of the immune response during bone regeneration and healing.
Collapse
Affiliation(s)
- Mei Fu
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chensong Yang
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guixin Sun
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Tang J, Li J, Lian J, Huang Y, Zhang Y, Lu Y, Zhong G, Wang Y, Zhang Z, Bai X, Fang M, Wu L, Shen H, Wu J, Wang Y, Zhang L, Zhang H. CDK2-activated TRIM32 phosphorylation and nuclear translocation promotes radioresistance in triple-negative breast cancer. J Adv Res 2023:S2090-1232(23)00260-6. [PMID: 37734566 DOI: 10.1016/j.jare.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Despite radiotherapy being one of the major treatments for triple-negative breast cancer (TNBC), new molecular targets for its treatment are still required due to radioresistance. CDK2 plays a critical role in TNBC. However, the mechanism by which CDK2 promotes TNBC radioresistance remains to be clearly elucidated. OBJECTIVES We aimed to elucidate the relationship between CDK2 and TRIM32 and the regulation mechanism in TNBC. METHODS We performed immunohistochemical staining to detect nuclear TRIM32, CDK2 and STAT3 on TNBC tissues. Western blot assays and PCR were used to detect the protein and mRNA level changes. CRISPR/Cas9 used to knock out CDK2. shRNA-knockdown and transfection assays also used to knock out target genes. GST pull-down analysis, immunoprecipitation (IP) assay and in vitro isomerization analysis also used. Tumorigenesis studies also used to verify the results in vitro. RESULTS Herein, tripartite motif-containing protein 32 (TRIM32) is revealed as a substrate of CDK2. Radiotherapy promotes the binding of CDK2 and TRIM32, thus leading to increased CDK2-dependent phosphorylation of TRIM32 at serines 328 and 339. This causes the recruitment of PIN1, involved in cis-trans isomerization of TRIM32, resulting in importin α3 binding to TRIM32 and contributing to its nuclear translocation. Nuclear TRIM32 inhibits TC45-dephosphorylated STAT3, Leading to increased transcription of STAT3 and radioresistance in TNBC. These results were validated by clinical prognosis confirmed by the correlative expressions of the critical components of the CDK2/TRIM32/STAT3 signaling pathway. CONCLUSIONS Our findings demonstrate that regulating the CDK2/TRIM32/STAT3 pathway is a promising strategy for reducing radioresistance in TNBC.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jiayan Lian
- Department of Pathology, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen 510275, Guandong, PR China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, PR China
| | - Yaqing Zhang
- Department of Obstetrics and Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu 730050, PR China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Yaqi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhitao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Min Fang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Luming Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Haofei Shen
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jingyuan Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yiqing Wang
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
8
|
Chen SF, Wu CH, Lee YM, Tam K, Liou JY, Shyue SK. Surf4 collaborates with derlin-2 and derlin-1 to mediate cyclooxygenase-2 translocation to the cytosol for degradation. J Cell Sci 2023; 136:jcs260995. [PMID: 37676109 DOI: 10.1242/jcs.260995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Derlin family members participate in the retrotranslocation of endoplasmic reticulum (ER) lumen proteins to the cytosol for ER-associated degradation (ERAD); however, the proteins facilitating this retrotranslocation remain to be explored. Using CRISPR library screening, we have found that derlin-2 and surfeit locus protein 4 (Surf4) are candidates to facilitate degradation of cyclooxygenase-2 (COX-2, also known as PTGS2). Our results show that derlin-2 acts upstream of derlin-1 and that Surf4 acts downstream of derlin-2 and derlin-1 to facilitate COX-2 degradation. Knockdown of derlin-2 or Surf4 impedes the ubiquitylation of COX-2 and the interaction of COX-2 with caveolin-1 (Cav-1) and p97 (also known as VCP) in the cytosol. Additionally, COX-2 degradation is N-glycosylation dependent. Although derlin-2 facilitates degradation of N-glycosylated COX-2, the interaction between derlin-2 and COX-2 is independent of COX-2 N-glycosylation. Derlin-1, Surf4 and p97 preferentially interact with non-glycosylated COX-2, whereas Cav-1 preferentially interacts with N-glycosylated COX-2, regardless of the N-glycosylation pattern. Collectively, our results reveal that Surf4 collaborates with derlin-2 and derlin-1 to mediate COX-2 translocation from the ER lumen to the cytosol. The derlin-2-derlin-1-Surf4-Cav-1 machinery might represent a unique pathway to accelerate COX-2 degradation in ERAD.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Hu Wu
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Ming Lee
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kabik Tam
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Xu Y, Xu J, Zhu W, Yan Y, Jiang X, Xie Z, Feng F, Zhang J. Bioassay-Guided Fractionation and Biological Activity of Cardenolides from Streptocaulon juventas. Planta Med 2023. [PMID: 37709286 DOI: 10.1055/a-2114-5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The discovery that Na/K-ATPase acts as a signal transducer led us to investigate the structural diversity of cardiotonic steroids and study their ligand effects. By applying Na/K-ATPase activity assay-guided fractionation, we isolated a total of 20 cardiotonic steroids from Streptocaulon juventas, including an undescribed juventasoside B (10: ) and 19 known cardiotonic steroids. Their structures have been elucidated. Using our platform of purified Na/K-ATPase and an LLC-PK1 cell model, we found that 10: , at a concentration that induces less than 10% Na/K-ATPase inhibition, can stimulate the Na/K-ATPase/Src receptor complex and selectively activate downstream pathways, ultimately altering prostate cancer cell growth. By assessing the ligand effect of the isolated cardiotonic steroids, we found that the regulation of cell viability by the isolated cardiotonic steroids was not associated with their inhibitory potencies against Na/K-ATPase activity but reflected their ligand-binding affinity to the Na/K-ATPase receptor. Based on this discovery, we identified a unique active cardiotonic steroid, digitoxigenin (1: ), and verified that it can protect LLC-PK1 cells from hypoxic injury, implicating its potential use in ischemia/reperfusion injury and inducing collagen synthesis in primary human dermal fibroblast cells, and implicating that compound 2: is the molecular basis of the wound healing activity of S. juventas.
Collapse
Affiliation(s)
- Yunhui Xu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wanfang Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yanling Yan
- Departments of Clinical & Translational Sciences, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Xueyang Jiang
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei, China
| | - Zijian Xie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal P, Alexandria S, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma M, Sisk R, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg S, Ho K, Ley K, Giannarelli C, Thorp EB, Feinstein MJ. Single-cell profiling reveals inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight 2023; 8:e171359. [PMID: 37471165 DOI: 10.1172/jci.insight.171359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Femoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles. Inflammatory foam cell-like macrophages and monocytes comprised higher proportions of myeloid cells in carotid plaques, whereas noninflammatory foam cell-like macrophages and LYVE1-overexpressing macrophages comprised higher proportions of myeloid cells in femoral plaque (P < 0.001 for all). A significant comparative excess of CCR2+ macrophages in carotid versus plaque was observed by flow cytometry in a separate validation cohort. B cells were more prevalent and exhibited a comparatively antiinflammatory profile in femoral plaque, whereas cytotoxic CD8+ T cells were more prevalent in carotid plaque. In conclusion, human femoral plaques exhibit distinct macrophage phenotypic and transcriptional profiles as well as diminished CD8+ T cell populations compared with human carotid plaques.
Collapse
Affiliation(s)
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine
| | | | | | | | - Inhyeok Lee
- Division of Cardiology, Department of Medicine
| | - Kristofor Glinton
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Shaina Alexandria
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | - Ching Man Wai
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ricardo Tellez
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
| | | | | | - Xinkun Wang
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Matthew Schipma
- Northwestern University Sequencing Core, Chicago, Illinois, USA
| | - Ryan Sisk
- Division of Cardiology, Department of Medicine
| | - Rishab Gulati
- La Jolla Institute of Immunology, La Jolla, California, USA
| | | | | | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| | | | | | - Karen Ho
- Division of Vascular Surgery, NUFSM, Chicago, Illinois, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta, Georgia, USA
| | - Chiara Giannarelli
- Department of Medicine and
- Department of Pathology, New York University, New York, New York, USA
| | | | - Matthew J Feinstein
- Division of Cardiology, Department of Medicine
- Department of Pathology, and
- Department of Preventive Medicine at Northwestern University Feinberg School of Medicine (NUFSM), Chicago, Illinois, USA
| |
Collapse
|
11
|
Morales-Paytuví F, Fajardo A, Ruiz-Mirapeix C, Rae J, Tebar F, Bosch M, Enrich C, Collins BM, Parton RG, Pol A. Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation. J Cell Biol 2023; 222:e202204020. [PMID: 37526691 PMCID: PMC10394380 DOI: 10.1083/jcb.202204020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.
Collapse
Affiliation(s)
- Frederic Morales-Paytuví
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Ruiz-Mirapeix
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Francesc Tebar
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland (UQ), Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona, Spain
| |
Collapse
|
12
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas-cicCartuja, Universidad de Sevilla-C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
13
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
14
|
Kenworthy AK, Han B, Ariotti N, Parton RG. The Role of Membrane Lipids in the Formation and Function of Caveolae. Cold Spring Harb Perspect Biol 2023; 15:a041413. [PMID: 37277189 PMCID: PMC10513159 DOI: 10.1101/cshperspect.a041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Caveolae are plasma membrane invaginations with a distinct lipid composition. Membrane lipids cooperate with the structural components of caveolae to generate a metastable surface domain. Recent studies have provided insights into the structure of essential caveolar components and how lipids are crucial for the formation, dynamics, and disassembly of caveolae. They also suggest new models for how caveolins, major structural components of caveolae, insert into membranes and interact with lipids.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
15
|
Yegambaram M, Kumar S, Wu X, Lu Q, Sun X, Garcia Flores A, Meadows ML, Barman S, Fulton D, Wang T, Fineman JR, Black SM. Endothelin-1 acutely increases nitric oxide production via the calcineurin mediated dephosphorylation of Caveolin-1. Nitric Oxide 2023; 140-141:50-57. [PMID: 37659679 DOI: 10.1016/j.niox.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sanjiv Kumar
- Department of Medicine, Augusta University, Augusta, GA, USA; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona, Tucson, AZ, 33174, USA
| | - Qing Lu
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alejandro Garcia Flores
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | | | - Scott Barman
- Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
16
|
Li SC. Mastering the craft: Creating an insightful and widely-cited literature review. World J Stem Cells 2023; 15:781-786. [PMID: 37700820 PMCID: PMC10494571 DOI: 10.4252/wjsc.v15.i8.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023] Open
Abstract
The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz et al (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership a |