1
|
Zhu J, Li W. Role of metabolites in mediating the effect of triacylglycerol on aplastic anemia. Hematology 2024; 29:2379178. [PMID: 39017035 DOI: 10.1080/16078454.2024.2379178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Observational studies have found a link between lipid metabolism disorders and aplastic anemia (AA). However, due to confounding variables and reverse causation, it is difficult to conclude such a causal link. The precise mechanism and potential implications of lipid metabolism disorder in AA remain unclear, necessitating further studies in this area. METHOD This study aimed to examine the causal relationship between 38 different subtypes of triacylglycerols and AA using two-sample Mendelian randomization (MR). Additionally, two-step MR analyses were conducted to investigate the mediating effects of vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio. RESULTS MR analysis showed that triacylglycerol (53:3) levels were positively associated with the risk of AA [inverse variance weighting (IVW): odds ratio (OR) = 1.131,95% confidence interval (CI):1.029-1.243, P = 0.011; Bayesian weighted MR (BWMR): OR = 1.137,95% CI:1.031-1.254, P = 0.010]. Triacylglycerol (53:3) level showed no inverse causality with AA (IVW:P = 0.834; BWMR:P = 0.349). Mediation analyses showed that increasing the vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio can decrease the risk of AA. CONCLUSION This study revealed the association between vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio, triacylglycerol (53:3) levels and AA, and indicated that lowering triacylglycerol (53:3) levels can reduce the risk of AA.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, People's Republic of China
| | | |
Collapse
|
2
|
Chen X, Wang L, Cheng Q, Deng Z, Tang Y, Yan Y, Xie L, Li X. Multiple myeloma exosomal miRNAs suppress cGAS-STING antiviral immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167457. [PMID: 39134287 DOI: 10.1016/j.bbadis.2024.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Liwen Wang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Qian Cheng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Zuqun Deng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yishu Tang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yuhan Yan
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Linzhi Xie
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China.
| |
Collapse
|
3
|
Hou D, Yin B, Wang S, Li H, Weng S, Jiang X, Li H, Li C, He J, Huang Z. Intestine bacterial community affects the growth of the Pacific white shrimp (Litopenaeus vannamei). Appl Microbiol Biotechnol 2024; 108:59. [PMID: 38180551 DOI: 10.1007/s00253-023-12897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024]
Abstract
Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: • A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. • The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. • Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bin Yin
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiewu Jiang
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Hui Li
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| |
Collapse
|
4
|
Liu Z, Li S, Wang L, Zhang W, Cao Y, Bao C, Zhang C. Integration of high-resolution mass spectrometry technology with molecular network analysis and systems biology techniques to elucidate the active ingredients and mechanisms of Shiduqing capsules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9903. [PMID: 39198930 DOI: 10.1002/rcm.9903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE Shiduqing Capsules, a well-known Chinese patent medicine, are widely used clinically for the treatment of pruritus. However, to date, there is a lack of research on its pharmacological substances and mechanisms of action. METHODS In the current study, the chemical components of Shiduqing Capsules were identified using UHPLC-QE-Orbitrap-MS technology. Molecular network analysis was employed to identify structurally similar compounds to the known chemical components. The potential molecular targets of the active ingredients were predicted using the SwissTargetPrediction website. The identified targets were further analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis through the DAVID database. Molecular docking was used to validate the network pharmacology results. RESULTS Ultimately, A total of 51 chemical components of Shiduqing Capsules were identified. Molecular network analysis identified 21 flavonoids and 13 terpenoids. The core targets of these ingredients include TP53, AKT1, and STAT3. GO and KEGG enrichment analysis revealed 1,371 different biological functions and 177 signaling pathways. Molecular docking confirmed the high affinity between multiple core active ingredients of Shiduqing Capsules and pruritus targets. CONCLUSION In conclusion, the effective ingredients of Shiduqing Capsules exert a multifaceted therapeutic effect on pruritus through multiple targets and pathways.
Collapse
Affiliation(s)
- Zhiyan Liu
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Shuang Li
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lei Wang
- Department of Cardiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW, Australia
| | - Yuanyuan Cao
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Bao
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chenning Zhang
- Department of Child Health Care, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
5
|
Zhan H, Xie D, Yan Z, Yi Z, Xiang D, Niu Y, Liang X, Geng B, Wu M, Xia Y, Jiang J. Fluid shear stress-mediated Piezo1 alleviates osteocyte apoptosis by activating the PI3K/Akt pathway. Biochem Biophys Res Commun 2024; 730:150391. [PMID: 39002199 DOI: 10.1016/j.bbrc.2024.150391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm2 for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway. Additionally, qRT-PCR was utilized to quantify the mRNA expression levels of these molecules. Hoechst 33258 staining and flow cytometry were utilized to evaluate the apoptosis levels. The results indicate that FSS at 9 dyne/cm2 for 30 min significantly upregulates Piezo1 in osteocytes. Following Dex-induced apoptosis, the phosphorylation levels of PI3K and Akt are markedly suppressed. FSS-mediated Piezo1 exerts a protective effect against Dex-induced apoptosis by activating the PI3K/Akt pathway. Additionally, downregulating the expression of Piezo1 in osteocytes using siRNA exacerbates Dex-induced apoptosis. To further demonstrate the role of the PI3K/Akt signaling pathway, after intervention with the PI3K pathway inhibitor, the activation of the PI3K/Akt pathway by FSS-mediated Piezo1 in osteocytes was significantly inhibited, reversing the anti-apoptotic effect. This study indicates that under FSS, Piezo1 in MLO-Y4 osteocytes is significantly upregulated, providing protection against Dex-induced apoptosis through the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongwei Zhan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Daijun Xie
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhenxing Yan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhi Yi
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Dejian Xiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yongkang Niu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Xiaoyuan Liang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Bin Geng
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Meng Wu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yayi Xia
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Jin Jiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Li X, Si Y, Liang J, Li M, Wang Z, Qin Y, Sun L. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci 2024; 672:179-199. [PMID: 38838627 DOI: 10.1016/j.jcis.2024.05.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaorong Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunhui Si
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jingxian Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengsha Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Zhiwei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yinying Qin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Rashed HR, Milone M. The spectrum of rippling muscle disease. Muscle Nerve 2024. [PMID: 39370631 DOI: 10.1002/mus.28270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Rippling muscle disease (RMD) is a rare disorder of muscle hyperexcitability. It is characterized by rippling wave-like muscle contractions induced by mechanical stretch or voluntary contraction followed by sudden stretch, painful muscle stiffness, percussion-induced rapid muscle contraction (PIRC), and percussion-induced muscle mounding (PIMM). RMD can be hereditary (hRMD) or immune-mediated (iRMD). hRMD is caused by pathogenic variants in caveolin-3 (CAV3) or caveolae-associated protein 1/ polymerase I and transcript release factor (CAVIN1/PTRF). CAV3 pathogenic variants are autosomal dominant or less frequently recessive while CAVIN1/PTRF pathogenic variants are autosomal recessive. CAV3-RMD manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic creatine kinase elevation to severe muscle weakness. Overlapping phenotypes are common. Muscle caveolin-3 immunoreactivity is often absent or diffusely reduced in CAV3-RMD. CAVIN1/PTRF-RMD is characterized by congenital generalized lipodystrophy (CGL, type 4) and often accompanied by several extra-skeletal muscle manifestations. Muscle cavin-1/PTRF immunoreactivity is absent or reduced while caveolin-3 immunoreactivity is reduced, often in a patchy way, in CAVIN1/PTRF-RMD. iRMD is often accompanied by other autoimmune disorders, including myasthenia gravis. Anti-cavin-4 antibodies are the serological marker while the mosaic expression of caveolin-3 and cavin-4 is the pathological feature of iRMD. Most patients with iRMD respond to immunotherapy. Rippling, PIRC, and PIMM are usually electrically silent. Different pathogenic mechanisms have been postulated to explain the disease mechanisms. In this article, we review the spectrum of hRMD and iRMD, including clinical phenotypes, electrophysiological characteristics, myopathological findings, and pathogenesis.
Collapse
|
8
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
9
|
Su Y, Yin X. The Molecular Mechanism of Macrophages in Response to Mechanical Stress. Ann Biomed Eng 2024:10.1007/s10439-024-03616-8. [PMID: 39354279 DOI: 10.1007/s10439-024-03616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Macrophages, a type of functionally diversified immune cell involved in the progression of many physiologies and pathologies, could be mechanically activated. The physical properties of biomaterials including stiffness and topography have been recognized as exerting a considerable influence on macrophage behaviors, such as adhesion, migration, proliferation, and polarization. Recent articles and reviews on the physical and mechanical cues that regulate the macrophage's behavior are available; however, the underlying mechanism still deserves further investigation. Here, we summarized the molecular mechanism of macrophage behavior through three parts, as follows: (1) mechanosensing on the cell membrane, (2) mechanotransmission by the cytoskeleton, (3) mechanotransduction in the nucleus. Finally, the present challenges in understanding the mechanism were also noted. In this review, we clarified the associated mechanism of the macrophage mechanotransduction pathway which could provide mechanistic insights into the development of treatment for diseases like bone-related diseases as molecular targets become possible.
Collapse
Affiliation(s)
- Yuntong Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Huang G, Yang S, Long T, Gao Y, Lin G. Proteomic analysis of brain tissue from ducks with meningitis caused by Riemerella anatipestifer infection. Poult Sci 2024; 103:104059. [PMID: 39068696 PMCID: PMC11338091 DOI: 10.1016/j.psj.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium that is flagellated, non-budded, and encapsulated, measuring approximately 0.4 μm × 0.7 μm. After infecting ducklings with R. anatipestifer, the hosts exhibited pathological changes, such as bacterial meningitis, fibrinous pericarditis, and fibrinous peripheral hepatitis. The pathogenesis of meningitis caused by R. anatipestifer has not yet been elucidated. To investigate the key molecules or proteins involved in R. anatipestifer's penetration of the blood-brain barrier (BBB) and the subsequent development of duck meningitis, a duck meningitis model was established and characterized. Duckling brain tissues were collected and analyzed using 4D label-free proteomic technology. Differentially expressed proteins were analyzed using a series of bioinformatics methods and verified using RT-qPCR and Western-Blot. The results showed that the differentially expressed proteins were primarily related to intracellular transport, transport protein activity, and transmembrane transport protein activity, and were mainly enriched in pathways associated with reducing intercellular connections and adhesion and increasing cell migration and apoptosis. Thus, it is suggested that R. anatipestifer may penetrate the BBB via transcellular and paracellular pathways, causing neurological diseases such as meningitis. This study is the first to analyze R. anatipestifer-infected duckling brain tissue using proteomics, thus providing a direction for further research into the mechanisms of R. anatipestifer's penetration of the BBB.
Collapse
Affiliation(s)
- Guoliang Huang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Shengmei Yang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ting Long
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Yuhan Gao
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Guozhen Lin
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
11
|
Shi M, Wang Y, Yang H, Lai C, Yu J, Sun Y. High doses of radiation cause cochlear immunological stress and sensorineural hearing loss. Heliyon 2024; 10:e37223. [PMID: 39309931 PMCID: PMC11414509 DOI: 10.1016/j.heliyon.2024.e37223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Radiotherapy is a crucial treatment for head and neck malignancies, but it can sometimes cause sensorineural hearing loss (SNHL). Changes in the immune microenvironment and sensory neuroepithelium of the inner ear after radiation exposure remain poorly understood. This study investigated cochlear morphology and macrophages in the inner ear after high-dose irradiation. The heads of heterozygous 8-week-old Cx3cr1GFP/+ male mice were irradiated with 30Gy of X-rays and biological samples were collected on days 1, 7, and 10 after irradiation. Auditory brainstem responses were used to assess auditory function in the mice. Changes in basilar membrane hair cells, spiral ganglion neurons (SGN), and inner ear macrophages were observed using hematoxylin-eosin (HE) staining and immunofluorescence staining. The expression of inflammatory mediators in the inner ear was detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) in cochlear tissue. The results showed no significant hair cell loss after a single high dose of radiation. However, the mice developed pantonal hearing loss on day 10 when HE staining revealed SGN atrophy and immunofluorescence showed decreased neurofilament expression. The number of macrophages in the inner ear reduced over time. RT-qPCR showed that cochlear inflammatory factors and chemokines were briefly upregulated on day 1st after irradiation and then decreased over time. In conclusion, high-dose irradiation causes acute SNHL that is not associated with hair cell loss and may be related to SGN changes. Radiation-induced SNHL is associated with a reduction in cochlear macrophages and changes in the immune microenvironment, but the relationship between the two remains to be investigated.
Collapse
Affiliation(s)
- Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
12
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Deng Y, Chen X, Chen X, Huang C, Zhang Z, Xu Z, Wang X, Wu J, Li L, Song J, Zhou R. UBE2T promotes stage I lung adenocarcinoma progression through PBX1 ubiquitination and PBX1/RORA regulation. BMC Cancer 2024; 24:1158. [PMID: 39289660 PMCID: PMC11409575 DOI: 10.1186/s12885-024-12887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Post-translational modification pathway of protein ubiquitination is intricately associated with tumorigenesis. We previously reported elevated ubiquitin-conjugating enzyme 2T (UBE2T) as an independent risk factor in stage I lung adenocarcinoma and promoting cellular proliferation. However, its underlying mechanisms needed further investigation. METHODS Immunohistochemistry was used to assess the expression of UBE2T and retinoic acid receptor-related orphan receptor α (RORA) in stage I LUAD. Cell proliferation, migration, and invasion of LUAD cell lines were measured by Cell Counting Kit-8 assay (CCK-8), Colony-forming assay and Transwell assay, respectively. Western blot analysis was performed to determine the expression of epithelial-mesenchymal transition (EMT) markers. A xenograft model was established to evaluate the proliferative capacity of UBE2T and its interaction with RORA in promoting LUAD. Mechanistic insights into the promotion of early-stage LUAD by UBE2T were obtained through luciferase reporter assay, chromatin immunoprecipitation and co-immunoprecipitation. RESULTS UBE2T and RORA expression was significantly up- and down-regulated in early-stage LUAD patients which's proved to be associated with unfavorable outcomes, strengthened cell proliferation, migration, EMT and invasion through its interaction with RORA both in vivo and in vitro. The growth NSCLC xenografts was reduced by down-expression of UBE2T but was suppressed by RORA knockout. Mechanistically, UBE2T mediated the ubiquitination of the intermediate transcription factor PBX1, which played a transcriptional role in downstream regulation of RORA. CONCLUSION The oncogenic role of UBE2T and the UBE2T-PBX1-RORA axis in driving malignant progression in Stage I LUAD had been established. UBE2T might be a novel and promising therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, , Fuzhou, Fujian Province, 350005, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Xuzheng Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd. Jin'an District, Fuzhou, Fujian Province, 350014, China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Zhenguo Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiurong Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jiamin Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Li Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China.
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
15
|
Matos B, Gomes AAS, Bernardino R, Alves MG, Howl J, Jerónimo C, Fardilha M. CAVPENET Peptide Inhibits Prostate Cancer Cells Proliferation and Migration through PP1γ-Dependent Inhibition of AKT Signaling. Pharmaceutics 2024; 16:1199. [PMID: 39339236 PMCID: PMC11434739 DOI: 10.3390/pharmaceutics16091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Protein phosphatase 1 (PP1) complexes have emerged as promising targets for anticancer therapies. The ability of peptides to mimic PP1-docking motifs, and so modulate interactions with regulatory factors, has enabled the creation of highly selective modulators of PP1-dependent cellular processes that promote tumor growth. The major objective of this study was to develop a novel bioactive cell-penetrating peptide (bioportide), which, by mimicking the PP1-binding motif of caveolin-1 (CAV1), would regulate PP1 activity, to hinder prostate cancer (PCa) progression. The designed bioportide, herein designated CAVPENET, and a scrambled homologue, were synthesized using microwave-assisted solid-phase methodologies and evaluated using PCa cell lines. Our findings indicate that CAVPENET successfully entered PCa cells to influence both viability and migration. This tumor suppressor activity of CAVPENET was attributed to inhibition of AKT signaling, a consequence of increased PP1γ activity. This led to the suppression of glycolytic metabolism and alteration in lipid metabolism, collectively representing the primary mechanism responsible for the anticancer properties of CAVPENET. Our results underscore the potential of the designed peptide as a novel therapy for PCa patients, setting the stage for further testing in more advanced models to fully realize its therapeutic promise.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Antoniel A S Gomes
- Department of Biophysics & Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu 18610-034, SP, Brazil
| | - Raquel Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| | - John Howl
- Faculty of Health, Education and Life Sciences, Birmingham City University, Edgbaston, Birmingham B15 3TN, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Zhang R, Li J, Li X, Zhang S. Therapeutic approaches to CNS diseases via the meningeal lymphatic and glymphatic system: prospects and challenges. Front Cell Dev Biol 2024; 12:1467085. [PMID: 39310229 PMCID: PMC11413538 DOI: 10.3389/fcell.2024.1467085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The brain has traditionally been considered an "immune-privileged" organ lacking a lymphatic system. However, recent studies have challenged this view by identifying the presence of the glymphatic system and meningeal lymphatic vessels (MLVs). These discoveries offer new opportunities for waste clearance and treatment of central nervous system (CNS) diseases. Various strategies have been developed based on these pathways, including modulation of glymphatic system function, enhancement of meningeal lymphatic drainage, and utilization of these routes for drug delivery. Consequently, this review explores the developmental features and physiological roles of the cerebral lymphatic system as well as its significance in various CNS disorders. Notably, strategies for ameliorating CNS diseases have been discussed with a focus on enhancing glymphatic system and MLVs functionality through modulation of physiological factors along with implementing pharmacological and physical treatments. Additionally, emphasis is placed on the potential use of the CNS lymphatic system in drug delivery while envisioning future directions in terms of mechanisms, applications, and translational research.
Collapse
Affiliation(s)
| | | | | | - Si Zhang
- Department of Neurosurgery, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Doktorova M, Daum S, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610209. [PMID: 39257813 PMCID: PMC11383982 DOI: 10.1101/2024.08.28.610209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active and intercalates into lipid monolayers. Molecular simulations of biomimetic bilayers support this 'leaflet replacement' model and reveal that while CAV1-8S effectively displaces phospholipids from one bilayer leaflet, it accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids of the distal leaflet. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies, consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| |
Collapse
|
18
|
Lin C, Xiang Y, Zhang Y, Yang Z, Chen N, Zhang W, Hu L, Chen J, Luo Y, Wang X, Xiao Y, Zhang Q, Ran X, Chen L, Dai J, Li Z, Ran Q. Interleukin-12 sustained release system promotes hematopoietic recovery after radiation injury. MedComm (Beijing) 2024; 5:e704. [PMID: 39268354 PMCID: PMC11391269 DOI: 10.1002/mco2.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted |