1
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
2
|
Arafa FM, Mogahed NMFH, Eltarahony MM, Diab RG. Biogenic selenium nanoparticles: trace element with promising anti-toxoplasma effect. Pathog Glob Health 2023; 117:639-654. [PMID: 36871204 PMCID: PMC10498805 DOI: 10.1080/20477724.2023.2186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Toxoplasmosis is an opportunistic infection caused by the coccidian Toxoplasma gondii which represents a food and water contaminant. The available chemotherapeutic agents for toxoplasmosis are limited and the choice is difficult when considering the side effects. Selenium is an essential trace element. It is naturally found in dietary sources, especially seafood, and cereals. Selenium and selenocompounds showed anti-parasitic effects through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. The present study evaluated the potential efficacy of environmentally benign selenium nanoparticles (SeNPs) against acute toxoplasmosis in a mouse model. SeNPs were fabricated by nanobiofactory Streptomyces fulvissimus and characterized by different analytical techniques including, UV-spectrophotometry, transmission electron microscopy, EDX, and XRD. Swiss albino mice were infected with Toxoplasma RH strain in a dose of 3500 tachyzoites in 100 μl saline to induce acute toxoplasmosis. Mice were divided into five groups. Group I: non-infected, non-treated, group II: infected, non-treated, group III: non-infected, treated with SeNPs, group IV: infected, treated with co-trimoxazole (sulfamethoxazole/trimethoprim) and group V: infected, treated with SeNPs. There was a significant increase in survival time in the SeNPs-treated group and minimum parasite count was observed compared to untreated mice in hepatic and splenic impression smears. Scanning electron microscopy showed tachyzoites deformity with multiple depressions and protrusions, while transmission electron microscopy showed excessive vacuolization and lysis of the cytoplasm, especially in the area around the nucleus and the apical complex, together with irregular cell boundary and poorly demarcated cell organelles. The present study demonstrated that the biologically synthesized SeNPs can be a potential natural anti-Toxoplasma agent in vivo.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine M. F. H. Mogahed
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M. Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research centers District, Alexandria, Egypt
| | - Radwa G. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Li H, Zhang Y, Liu T, Zhang L, Li M, Li H, Li D, Wang X, Yu J. Transglutaminase, glucono-δ-lactone, and citric acid-induced whey protein isolation-milk fat emulsion gel embedding lutein and its application in processed cheese. J Dairy Sci 2023; 106:6635-6645. [PMID: 37210368 DOI: 10.3168/jds.2022-23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
In this study, transglutaminase (TG), glucono-δ-lactone (GDL), and citric acid (CA) were used to induce the formation of whey protein isolate (WPI)-milk fat emulsion gels to embed lutein, and the emulsion gels induced in different ways were used for the preparation of processed cheese. The protective effect of emulsion gels induced in different ways on lutein was investigated, and the stability of lutein in emulsion gels and processed cheese was analyzed. The results showed that the acidification rate of CA was higher than that of GDL, which was the key step in acid-induced gels, and that the difference in acidification rate led to differences in gel structure. Compared with the 2 acid inducers (GDL and CA), TG exhibited greater potential for forming gel structures with high strength. The TG-induced emulsion gels showed the best physical stability and the highest embedding efficiency for lutein. After heat treatment (85°C), the GDL-induced emulsion gels had higher retention rate of lutein and showed good thermal stability compared with the CA-induced emulsion gels. The processed cheese added with the TG-induced emulsion gel had higher hardness and springiness compared with the processed cheese added with the other 2 kinds of emulsion gels, whereas the processed cheese added with the CA-induced emulsion gel had a lower density of network structure, showing porosity and a larger aggregated structure, but the highest bioavailability of lutein. These results provide valuable information for the formation of cold-set emulsion gel and provide the possibility for the application of emulsion gel embedding active substances in processed cheese.
Collapse
Affiliation(s)
- Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Yumeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Tingting Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Leilei Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Mengfan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Dan Li
- Miao Ke Landuo (Tianjin) Food Technology Co. Ltd., Tianjin Economic-Technological Development Area, Tianjin, 300462, China
| | - Xiaopeng Wang
- Henan Huahuaniu Dairy Co. Ltd., Zhengzhou, 463514, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China.
| |
Collapse
|
5
|
Mejia Diaz LF, Karasinski J, Wrobel K, Corrales Escobosa AR, Yanez Barrientos E, Halicz L, Bulska E, Wrobel K. Fractionation of selenium isotopes during biofortification of Saccharomyces cerevisiae and the influence of metabolic labeling with 15N. J Biol Inorg Chem 2023; 28:655-667. [PMID: 37646892 DOI: 10.1007/s00775-023-02016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Isotope fractionation of metals/metalloids in biological systems is an emerging research area that demands the application of state-of-the-art analytical chemistry tools and provides data of relevance to life sciences. In this work, Se uptake and Se isotope fractionation were measured during the biofortification of baker's yeast (Saccharomyces cerevisiae)-a product widely used in dietary Se supplementation and in cancer prevention. On the other hand, metabolic labeling with 15N is a valuable tool in mass spectrometry-based comparative proteomics. For Se-yeast, such labeling would facilitate the assessment of Se impact on yeast proteome; however, the question arises whether the presence of 15N in the microorganisms affects Se uptake and its isotope fractionation. To address the above-mentioned aspects, extracellularly reduced and cell-incorporated Se fractions were analyzed by hydride generation-multi-collector inductively coupled plasma-mass spectrometry (HG MC ICP-MS). It was found that extracellularly reduced Se was enriched in light isotopes; for cell-incorporated Se, the change was even more pronounced, which provides new evidence of mass fractionation during biological selenite reduction. In the presence of 15N, a weaker preference for light isotopes was observed in both, extracellular and cell-incorporated Se. Furthermore, a significant increase in Se uptake for 15N compared to 14N biomass was found, with good agreement between hydride generation microwave plasma-atomic emission spectrometry (HG MP-AES) and quadrupole ICP-MS results. Biological effects observed for heavy nitrogen suggest 15N-driven alteration at the proteome level, which facilitated Se access to cells with decreased preference for light isotopes.
Collapse
Affiliation(s)
| | - Jakub Karasinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000, Guanajuato, Mexico
| | | | | | - Ludwik Halicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland
- Geological Survey of Israel, Y. Leibovitz, 969200, Jerusalem, Israel
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland.
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000, Guanajuato, Mexico.
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
7
|
Li L, Wang M, Ma YM, Yang L, Zhang DH, Guo FY, Jing L, Zhang JZ. Selenium inhibits ferroptosis in hyperglycemic cerebral ischemia/reperfusion injury by stimulating the Hippo pathway. PLoS One 2023; 18:e0291192. [PMID: 37682882 PMCID: PMC10490962 DOI: 10.1371/journal.pone.0291192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperglycemia can exacerbate cerebral ischemia/reperfusion (I/R) injury, and the mechanism involves oxidative stress, apoptosis, autophagy and mitochondrial function. Our previous research showed that selenium (Se) could alleviate this injury. The aim of this study was to examine how selenium alleviates hyperglycemia-mediated exacerbation of cerebral I/R injury by regulating ferroptosis. Middle cerebral artery occlusion (MCAO) and reperfusion models were established in rats under hyperglycemic conditions. An in vitro model of hyperglycemic cerebral I/R injury was created with oxygen-glucose deprivation and reoxygenation (OGD/R) and high glucose was employed. The results showed that hyperglycemia exacerbated cerebral I/R injury, and sodium selenite pretreatment decreased infarct volume, edema and neuronal damage in the cortical penumbra. Moreover, sodium selenite pretreatment increased the survival rate of HT22 cells under OGD/R and high glucose conditions. Pretreatment with sodium selenite reduced the hyperglycemia mediated enhancement of ferroptosis. Furthermore, we observed that pretreatment with sodium selenite increased YAP and TAZ levels in the cytoplasm while decreasing YAP and TAZ levels in the nucleus. The Hippo pathway inhibitor XMU-MP-1 eliminated the inhibitory effect of sodium selenite on ferroptosis. The findings suggest that pretreatment with sodium selenite can regulate ferroptosis by activating the Hippo pathway, and minimize hyperglycemia-mediated exacerbation of cerebral I/R injury.
Collapse
Affiliation(s)
- Lu Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan-Mei Ma
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan Yang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Deng-Hai Zhang
- The Shanghai Health Commission Key Lab of AI-Based Management of Inflammation and Chronic Diseases, The Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Feng-Ying Guo
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Jing
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Zhong Zhang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
9
|
Ferrari L, Cattaneo DM, Abbate R, Manoni M, Ottoboni M, Luciano A, von Holst C, Pinotti L. Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. Anim Nutr 2023; 14:193-203. [PMID: 37484993 PMCID: PMC10362088 DOI: 10.1016/j.aninu.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Donata M.I.R. Cattaneo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Rossella Abbate
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Michele Manoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Alice Luciano
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | | | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Zhang X, Xiao Y, Huang Q. The cellular uptake of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles and their induced apoptosis of HepG2 cells via mitochondria- and death receptor-mediated pathways. Int J Biol Macromol 2023; 247:125747. [PMID: 37429344 DOI: 10.1016/j.ijbiomac.2023.125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
This wok investigated the effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles (EPS-SeNPs), EPS-Se-1, EPS-Se-2, EPS-Se-3, and EPS-Se-4) with particle sizes (79-124 nm) and Se contents (20.11-40.80 μg/mg) on endocytosis and antitumor activity against human hepatocellular carcinoma (HepG2) cells and revealed the apoptosis-related mechanisms. EPS-SeNPs inhibited HepG2 cells proliferation in a dose and Se content-dependent manner by disrupting cell membrane and mitochondrial integrity, promoting reactive oxygen species production. EPS-SeNPs were endocytosed by HepG2 cells through a clathrin-mediated pathway and followed the quasi-first-order kinetics model, indicating physical adsorption played a dominant role in cellular uptake behavior of EPS-SeNPs. Notably, EPS-Se-3 with the lowest particle size (79 nm) showed the highest antitumor activity and the strongest ability to promote cell apoptosis. Western blotting results revealed that EPS-Se-3 increased expressions of Bax, Cytochrome c, cleaved caspase-9, cleaved caspase-3, Fas, p53, and cleaved caspase-8, while decreased the expressions of Bcl-2 and PARP, as contrast to that of control. Overall, EPS-SeNPs induced cell apoptosis through intrinsic mitochondria-mediated and extrinsic death receptor-mediated pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
12
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Chen Y, Zhang Y, Wang X, Qiao S. Methylseleninic acid induces apoptosis of human bladder cancer cells through the ROS-mediated mitochondrial pathway. J Biochem Mol Toxicol 2023; 37:e23387. [PMID: 37247193 DOI: 10.1002/jbt.23387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/25/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2 /M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinsheng Wang
- Postdoctoral Mobile Research Station, Tianjin Medical University, Tianjin, China
| | - Saifeng Qiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
14
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
15
|
Kot AM, Błażejak S, Nosek K, Synowiec A, Chlebowska-Śmigiel A, Pobiega K. Magnesium Binding by Cyberlindnera jadinii Yeast in Media from Potato Wastewater and Glycerol. Microorganisms 2023; 11:1923. [PMID: 37630483 PMCID: PMC10459593 DOI: 10.3390/microorganisms11081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/gd.m.) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/gd.m.) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%).
Collapse
Affiliation(s)
- Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland; (S.B.); (K.N.); (A.S.); (A.C.-Ś.); (K.P.)
| | | | | | | | | | | |
Collapse
|
16
|
Zhang W, Cui Y, Liu J. The association between blood heavy metals level and sex hormones among postmenopausal women in the US. Front Endocrinol (Lausanne) 2023; 14:1175011. [PMID: 37534216 PMCID: PMC10391169 DOI: 10.3389/fendo.2023.1175011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Environmental pollutants could be implicated in female endocrine setting Q6 beyond traditional factors. Until now, few study has focused on the association of environmental exposure to heavy metals with sex hormones in postmenopausal women. This study intended to investigate whether serum levels of heavy metals(i.e., Cd, Pb, Hg, Mn, Se) would influence sex hormones in postmenopausal women. Methods and results A cross-sectional study was performed on 614 nationally representative participants from 2013-2016 National Health and Nutrition Examination Survey (NHANES) in the US. Multivariate linear regression models and restricted cubic spline plots revealed cadmium(Cd) had linear positive association with TT(β=3.25, 95%CI= 1.12, 5.38), bioavailable TT(β=1.78, 95%CI=0.36,3.21) and TT/E2(β=0.76, 95%CI=0.28,1.24), which was more apparent in natural menopausal and obese women. Lead(Pb) had linear positive association with SHBG(β=12.84, 95%CI= 6.77,18.91), which was apparent in nearly all subgroups except in normal BMI group, and TT/E2 (β=0.69, 95%CI 0.134,1.25), which was apparent in natural menopausal and normal BMI women. Manganese(Mn) had non-linear association with SHBG, which was more apparent in natural menopausal and obese women, and TT/E2, which was more apparent in natural menopausal and normal BMI women. Selenium(Se) had U shaped non-linear association with TT, which was more apparent in hysterectomy, overweight and obese women, and SHBG, which was apparent in nearly all subgroups except in normal BMI group. Conclusion In summary, this cross-sectional study indicates a possible role that various degree of environmental exposure to heavy metals plays in the disruption of sex Q5 hormone levels in postmenopausal women. Further experiments are needed to elucidate the underlying mechanisms.
Collapse
|
17
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
18
|
Xu S, Kang Z, Li K, Li X, Zhang Y, Gao XJ. Selenium Deficiency Causes Iron Death and Inflammatory Injury Through Oxidative Stress in the Mice Gastric Mucosa. Biol Trace Elem Res 2023:10.1007/s12011-023-03754-5. [PMID: 37394681 DOI: 10.1007/s12011-023-03754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Selenium (Se) is a trace element essential for the maintenance of normal physiological functions in living organisms. Oxidative stress is a state in which there is an imbalance between oxidative and antioxidant effects in the body. A deficiency of Se can make the body more inclined to oxidation, which can induce related diseases. The aim of this experimental study was to investigate the mechanisms by which Se deficiency affects the digestive system through oxidation. The results showed that Se deficiency treatment led to a decrease in the levels of GPX4 and antioxidant enzymes and an increase in the levels of ROS, MDA, and lipid peroxide (LPO) in the gastric mucosa. Oxidative stress was activated. Triple stimulation of ROS, Fe2+, and LPO induced iron death. The TLR4/NF-κB signaling pathway was activated, inducing an inflammatory response. The expression of the BCL family and caspase family genes was increased, leading to apoptotic cell death. Meanwhile, the RIP3/MLKL signaling pathway was activated, leading to cell necrosis. Taken together, Se deficiency can induce iron death through oxidative stress. Meanwhile, the production of large amounts of ROS activated the TLR4/NF-κB signaling pathway, leading to apoptosis and necrosis of the gastric mucosa.
Collapse
Affiliation(s)
- Shuang Xu
- Laboratory of Animal Physiology, College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zibo Kang
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150000, People's Republic of China
| | - Kan Li
- Laboratory of Animal Physiology, College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xueying Li
- Laboratory of Animal Physiology, College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanhe Zhang
- Laboratory of Animal Physiology, College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xue-Jiao Gao
- Laboratory of Animal Physiology, College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150000, People's Republic of China.
| |
Collapse
|
19
|
Stabnikova O, Khonkiv M, Kovshar I, Stabnikov V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J Microbiol Biotechnol 2023; 39:230. [PMID: 37341841 DOI: 10.1007/s11274-023-03673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Lactic acid bacteria, being generally recognized as safe, are the preferred choice among other microbial producers of selenium nanoparticles. For successful production of SeNPs, it is necessary to take into account the physiological properties of the bacterium used as a biotransformer of inorganic forms of selenium in Se0. The antimicrobial and antioxidant activity of SeNPs allows to use them in the form of pure nanoparticles or biomass of lactic acid bacteria enriched with selenium in preparation of food, in agriculture, aquaculture, medicine, veterinary, and manufacturing of packing materials for food products. To attract attention to the promising new directions of lactic acid bacteria applications and to accelerate their implementation, the examples of the use of SeNPs synthesized by lactic acid bacteria in the mentioned above areas of human activity are described.
Collapse
Affiliation(s)
- Olena Stabnikova
- Advanced Research Laboratory, National University of Food Technologies, Kiev, Ukraine.
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine.
| | - Myroslav Khonkiv
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Iryna Kovshar
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| | - Viktor Stabnikov
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kiev, Ukraine
| |
Collapse
|
20
|
Xiao H, Tan J, Li M, Yuan Z, Zhou H. The mechanism of Se(IV) multisystem resistance in Stenotrophomonas sp. EGS12 and its prospect in selenium-contaminated environment remediation. J Hazard Mater 2023; 452:131358. [PMID: 37027916 DOI: 10.1016/j.jhazmat.2023.131358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Human activities have led to elevated levels of selenium (Se) in the environment, which poses a threat to ecosystems and human health. Stenotrophomonas sp. EGS12 (EGS12) has been identified as a potential candidate for the bioremediation of repair selenium-contaminated environment because of its ability to efficiently reduce Se(IV) to form selenium nanospheres (SeNPs). To better understand the molecular mechanism of EGS12 in response to Se(IV) stress, a combination of transmission electron microscopy (TEM), genome sequencing techniques, metabolomics and transcriptomics were employed. The results indicated that under 2 mM Se(IV) stress, 132 differential metabolites (DEMs) were identified, and they were significantly enriched in metabolic pathways such as glutathione metabolism and amino acid metabolism. Under the Se(IV) stress of 2 mM, 662 differential genes (DEGs) involved in heavy metal transport, stress response, and toxin synthesis were identified in EGS12. These findings suggest that EGS12 may respond to Se(IV) stress by engaging various mechanisms such as forming biofilms, repairing damaged cell walls/cell membranes, reducing Se(IV) translocation into cells, increasing Se(IV) efflux, multiplying Se(IV) reduction pathways and expelling SeNPs through cell lysis and vesicular transport. The study also discusses the potential of EGS12 to repair Se contamination alone and co-repair with Se-tolerant plants (e.g. Cardamine enshiensis). Our work provides new insights into microbial tolerance to heavy metals and offers valuable information for bio-remediation techniques on Se(IV) contamination.
Collapse
Affiliation(s)
- Hongshi Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Jun Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Mengjia Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China
| | - Zhihui Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling, Yongzhou 425199, China.
| | - Haiyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, No.1Nongda Road, Furong, Changsha 410000, China.
| |
Collapse
|
21
|
He P, Zhang M, Zhang Y, Wu H, Zhang X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker's Yeast. Foods 2023; 12:2343. [PMID: 37372553 DOI: 10.3390/foods12122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
In this research, the effect of selenium (Se) enrichment on dough fermentation characteristics of yeast and the possible mechanisms was investigated. Then, the Se-enriched yeast was used as starter to make Se-enriched bread, and the difference between Se-enriched bread and common bread was investigated. It was found Se enrichment increased CO2 production and sugar consumption rate of Saccharomyces cerevisiae (S. cerevisiae) in dough fermentation, and had positive impacts on final volume and rheological index of dough. The mechanism is possibly related to higher activity and protein expression of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), isocitrate dehydrogenase (ICD), and α-ketoglutarate dehydrogenase (α-KGDHC) in Se-enriched yeast. Moreover, Se-enriched bread (Se content: 11.29 μg/g) prepared by using Se-enriched yeast as starter exhibited higher overall acceptability on sensory, cell density in stomatal morphology, and better elasticity and cohesiveness on texture properties than common bread, which may be due to effect of higher CO2 production on dough quality. These results indicate Se-enriched yeast could be used as both Se-supplements and starter in baked-foods making.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaoyuan Zhang
- Industrial Technology Research Institute, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
22
|
Nan Y, Yang J, Yang J, Wei L, Bai Y. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 2023:10.1007/s12011-023-03722-z. [PMID: 37291467 DOI: 10.1007/s12011-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.
Collapse
Affiliation(s)
- Yaxing Nan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China
| | - Jinyu Yang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Lili Wei
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Dong Gang Xi Road 199, Lanzhou, Gansu, 730000, China.
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
23
|
de Oliveira AP, Naozuka J, Landero Figueroa JA. Feasibility study for mercury remediation by selenium competition in Pleurotus mushrooms. J Hazard Mater 2023; 451:131098. [PMID: 36893598 DOI: 10.1016/j.jhazmat.2023.131098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Mushrooms may incorporate significant levels of Hg making its consumption harmful to human health. Mercury remediation induced by Se competition in edible mushrooms represents a valuable alternative since Se plays effective roles against Hg uptake, accumulation, and toxicity. In this way, Pleurotus ostreatus and Pleurotus djamor were cultivated on Hg-contaminated substrate simultaneously supplemented with Se(IV) or Se(VI) under different dosages in this study. The protective role of Se was assessed taking into account morphological characteristics and Hg and Se total concentrations |