1
|
Li J, Jia K, Zhao W, Yuan B, Liu Y. Natural and socio-environmental factors contribute to the transmissibility of COVID-19: evidence from an improved SEIR model. Int J Biometeorol 2023:10.1007/s00484-023-02539-8. [PMID: 37561207 DOI: 10.1007/s00484-023-02539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
COVID-19 has ravaged Brazil, and its spread showed spatial heterogeneity. Changes in the environment have been implicated as potential factors involved in COVID-19 transmission. However, considerable research efforts have not elucidated the risk of environmental factors on COVID-19 transmission from the perspective of infectious disease dynamics. The aim of this study is to model the influence of the environment on COVID-19 transmission and to analyze how the socio-ecological factors affecting the probability of virus transmission in 10 states dramatically shifted during the early stages of the epidemic in Brazil. First, this study used a Pearson correlation to analyze the interconnection between COVID-19 morbidity and socio-ecological factors and identified factors with significant correlations as the dominant factors affecting COVID-19 transmission. Then, the time-lag effect of dominant factors on the morbidity of COVID-19 was investigated by constructing a distributed lag nonlinear model and standard two-stage meta-analytic model, and the results were considered in the improved SEIR model. Lastly, a machine learning method was introduced to explore the nonlinear relationship between the environmental propagation probability and socio-ecological factors. By analyzing the impact of environmental factors on virus transmission, it can be found that population mobility directly caused by human activities had a greater impact on virus transmission than temperature and humidity. The heterogeneity of meteorological factors can be accounted for by the diverse climate patterns in Brazil. The improved SEIR model was adopted to explore the interconnection of COVID-19 transmission and the environment, which revealed a new strategy to probe the causal links between them.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Kun Jia
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Wenwu Zhao
- Stake Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yuan
- State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yanxu Liu
- Stake Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Tariq MU, Ismail SB, Babar M, Ahmad A. Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting. PLoS One 2023; 18:e0287755. [PMID: 37471397 DOI: 10.1371/journal.pone.0287755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
The pandemic has significantly affected many countries including the USA, UK, Asia, the Middle East and Africa region, and many other countries. Similarly, it has substantially affected Malaysia, making it crucial to develop efficient and precise forecasting tools for guiding public health policies and approaches. Our study is based on advanced deep-learning models to predict the SARS-CoV-2 cases. We evaluate the performance of Long Short-Term Memory (LSTM), Bi-directional LSTM, Convolutional Neural Networks (CNN), CNN-LSTM, Multilayer Perceptron, Gated Recurrent Unit (GRU), and Recurrent Neural Networks (RNN). We trained these models and assessed them using a detailed dataset of confirmed cases, demographic data, and pertinent socio-economic factors. Our research aims to determine the most reliable and accurate model for forecasting SARS-CoV-2 cases in the region. We were able to test and optimize deep learning models to predict cases, with each model displaying diverse levels of accuracy and precision. A comprehensive evaluation of the models' performance discloses the most appropriate architecture for Malaysia's specific situation. This study supports ongoing efforts to combat the pandemic by offering valuable insights into the application of sophisticated deep-learning models for precise and timely SARS-CoV-2 case predictions. The findings hold considerable implications for public health decision-making, empowering authorities to create targeted and data-driven interventions to limit the virus's spread and minimize its effects on Malaysia's population.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | | - Muhammad Babar
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, Saudi Arabia
| | - Ashir Ahmad
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
3
|
V R N, Chandra S S V. ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector. Diagnostics (Basel) 2023; 13:2206. [PMID: 37443600 DOI: 10.3390/diagnostics13132206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is an abnormality where the body's cells multiply uncontrollably. The disease can be deadly if not detected in the initial stage. To address this issue, an automated lung cancer malignancy detection (ExtRanFS) framework is developed using transfer learning. We used the IQ-OTH/NCCD dataset gathered from the Iraq Hospital in 2019, encompassing CT scans of patients suffering from various lung cancers and healthy subjects. The annotated dataset consists of CT slices from 110 patients, of which 40 were diagnosed with malignant tumors and 15 with benign tumors. Fifty-five patients were determined to be in good health. All CT images are in DICOM format with a 1mm slice thickness, consisting of 80 to 200 slices at various sides and angles. The proposed system utilized a convolution-based pre-trained VGG16 model as the feature extractor and an Extremely Randomized Tree Classifier as the feature selector. The selected features are fed to the Multi-Layer Perceptron (MLP) Classifier for detecting whether the lung cancer is benign, malignant, or normal. The accuracy, sensitivity, and F1-Score of the proposed framework are 99.09%, 98.33%, and 98.33%, respectively. To evaluate the proposed model, a comparison is performed with other pre-trained models as feature extractors and also with the existing state-of-the-art methodologies as classifiers. From the experimental results, it is evident that the proposed framework outperformed other existing methodologies. This work would be beneficial to both the practitioners and the patients in identifying whether the tumor is benign, malignant, or normal.
Collapse
Affiliation(s)
- Nitha V R
- Department of Computer Science, University of Kerala, Thiruvananthapuram 695581, India
| | - Vinod Chandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram 695581, India
| |
Collapse
|
4
|
Butt MJ, Malik AK, Qamar N, Yar S, Malik AJ, Rauf U. A Survey on COVID-19 Data Analysis Using AI, IoT, and Social Media. Sensors (Basel) 2023; 23:5543. [PMID: 37420714 DOI: 10.3390/s23125543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Coronaviruses are a well-established and deadly group of viruses that cause illness in both humans and animals. The novel type of this virus group, named COVID-19, was firstly reported in December 2019, and, with the passage of time, coronavirus has spread to almost all parts of the world. Coronavirus has been the cause of millions of deaths around the world. Furthermore, many countries are struggling with COVID-19 and have experimented with various kinds of vaccines to eliminate the deadly virus and its variants. This survey deals with COVID-19 data analysis and its impact on human social life. Data analysis and information related to coronavirus can greatly help scientists and governments in controlling the spread and symptoms of the deadly coronavirus. In this survey, we cover many areas of discussion related to COVID-19 data analysis, such as how artificial intelligence, along with machine learning, deep learning, and IoT, have worked together to fight against COVID-19. We also discuss artificial intelligence and IoT techniques used to forecast, detect, and diagnose patients of the novel coronavirus. Moreover, this survey also describes how fake news, doctored results, and conspiracy theories were spread over social media sites, such as Twitter, by applying various social network analysis and sentimental analysis techniques. A comprehensive comparative analysis of existing techniques has also been conducted. In the end, the Discussion section presents different data analysis techniques, provides future directions for research, and suggests general guidelines for handling coronavirus, as well as changing work and life conditions.
Collapse
Affiliation(s)
- Muhammad Junaid Butt
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Ahmad Kamran Malik
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Nafees Qamar
- School of Health and Behavioral Sciences, Bryant University, Smithfield, RI 02917, USA
| | - Samad Yar
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Arif Jamal Malik
- Department of Software Engineering, Foundation University, Islamabad 44000, Pakistan
| | - Usman Rauf
- Department of Mathematics and Computer Science, Mercy College, Dobbs Ferry, NY 10522, USA
| |
Collapse
|
5
|
Goceri E. Medical image data augmentation: techniques, comparisons and interpretations. Artif Intell Rev 2023; 56:1-45. [PMID: 37362888 PMCID: PMC10027281 DOI: 10.1007/s10462-023-10453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Designing deep learning based methods with medical images has always been an attractive area of research to assist clinicians in rapid examination and accurate diagnosis. Those methods need a large number of datasets including all variations in their training stages. On the other hand, medical images are always scarce due to several reasons, such as not enough patients for some diseases, patients do not want to allow their images to be used, lack of medical equipment or equipment, inability to obtain images that meet the desired criteria. This issue leads to bias in datasets, overfitting, and inaccurate results. Data augmentation is a common solution to overcome this issue and various augmentation techniques have been applied to different types of images in the literature. However, it is not clear which data augmentation technique provides more efficient results for which image type since different diseases are handled, different network architectures are used, and these architectures are trained and tested with different numbers of data sets in the literature. Therefore, in this work, the augmentation techniques used to improve performances of deep learning based diagnosis of the diseases in different organs (brain, lung, breast, and eye) from different imaging modalities (MR, CT, mammography, and fundoscopy) have been examined. Also, the most commonly used augmentation methods have been implemented, and their effectiveness in classifications with a deep network has been discussed based on quantitative performance evaluations. Experiments indicated that augmentation techniques should be chosen carefully according to image types.
Collapse
Affiliation(s)
- Evgin Goceri
- Department of Biomedical Engineering, Engineering Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Koichubekov B, Takuadina A, Korshukov I, Turmukhambetova A, Sorokina M. Is It Possible to Predict COVID-19? Stochastic System Dynamic Model of Infection Spread in Kazakhstan. Healthcare (Basel) 2023; 11:752. [PMID: 36900757 PMCID: PMC10000940 DOI: 10.3390/healthcare11050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Since the start of the COVID-19 pandemic, scientists have begun to actively use models to determine the epidemiological characteristics of the pathogen. The transmission rate, recovery rate and loss of immunity to the COVID-19 virus change over time and depend on many factors, such as the seasonality of pneumonia, mobility, testing frequency, the use of masks, the weather, social behavior, stress, public health measures, etc. Therefore, the aim of our study was to predict COVID-19 using a stochastic model based on the system dynamics approach. METHOD We developed a modified SIR model in AnyLogic software. The key stochastic component of the model is the transmission rate, which we consider as an implementation of Gaussian random walks with unknown variance, which was learned from real data. RESULTS The real data of total cases turned out to be outside the predicted minimum-maximum interval. The minimum predicted values of total cases were closest to the real data. Thus, the stochastic model we propose gives satisfactory results for predicting COVID-19 from 25 to 100 days. The information we currently have about this infection does not allow us to make predictions with high accuracy in the medium and long term. CONCLUSIONS In our opinion, the problem of the long-term forecasting of COVID-19 is associated with the absence of any educated guess regarding the dynamics of β(t) in the future. The proposed model requires improvement with the elimination of limitations and the inclusion of more stochastic parameters.
Collapse
Affiliation(s)
- Berik Koichubekov
- Department of Informatics and Biostatistics, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan
| | - Aliya Takuadina
- Department of Informatics and Biostatistics, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan
| | - Ilya Korshukov
- Department of Informatics and Biostatistics, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan
| | - Anar Turmukhambetova
- Institute of Life Sciences, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan
| | - Marina Sorokina
- Department of Informatics and Biostatistics, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan
| |
Collapse
|
7
|
Barnawi A, Boulares M, Somai R. Simple and Powerful PCG Classification Method Based on Selection and Transfer Learning for Precision Medicine Application. Bioengineering (Basel) 2023; 10:bioengineering10030294. [PMID: 36978685 PMCID: PMC10045405 DOI: 10.3390/bioengineering10030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization (WHO) highlights that cardiovascular diseases (CVDs) are one of the leading causes of death globally, with an estimated rise to over 23.6 million deaths by 2030. This alarming trend can be attributed to our unhealthy lifestyles and lack of attention towards early CVD diagnosis. Traditional cardiac auscultation, where a highly qualified cardiologist listens to the heart sounds, is a crucial diagnostic method, but not always feasible or affordable. Therefore, developing accessible and user-friendly CVD recognition solutions can encourage individuals to integrate regular heart screenings into their routine. Although many automatic CVD screening methods have been proposed, most of them rely on complex prepocessing steps and heart cycle segmentation processes. In this work, we introduce a simple and efficient approach for recognizing normal and abnormal PCG signals using Physionet data. We employ data selection techniques such as kernel density estimation (KDE) for signal duration extraction, signal-to-noise Ratio (SNR), and GMM clustering to improve the performance of 17 pretrained Keras CNN models. Our results indicate that using KDE to select the appropriate signal duration and fine-tuning the VGG19 model results in excellent classification performance with an overall accuracy of 0.97, sensitivity of 0.946, precision of 0.944, and specificity of 0.946.
Collapse
Affiliation(s)
- Ahmed Barnawi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Mehrez Boulares
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Research Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), Higher National School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1008, Tunisia
| | - Rim Somai
- ESPRIT School of Engineering, Tunis 2035, Tunisia
| |
Collapse
|
8
|
Ilu SY, Prasad R. Improved autoregressive integrated moving average model for COVID-19 prediction by using statistical significance and clustering techniques. Heliyon 2023; 9:e13483. [PMID: 36776910 DOI: 10.1016/j.heliyon.2023.e13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose The COVID-19 pandemic has affected more than 192 countries. The condition results in a respiratory illness (e.g., influenza) with signs and symptoms such as cold, cough, fever, and breathing difficulties. Predicting new instances of COVID-19 is always a challenging task. Methods This study improved the autoregressive integrated moving average (ARIMA)-based time series prediction model by incorporating statistical significance for feature selection and k-means clustering for outlier detection. The accuracy of the improved model (ARIMAI) was examined using World Health Organization's official data on the COVID-19 pandemic worldwide and compared with that of many modern, cutting-edge algorithms. Results The ARIMAI model (RSS score = 0.279, accuracy = 97.75%) outperformed the current ARIMA model (RSS score = 0.659, accuracy = 93%). Conclusions The ARIMAI model is not only an efficient but also a rapid and simple technique to forecast COVID-19 trends. The usage of this model enables the prediction of any disease that will affect patients in the future pandemics.
Collapse
|
9
|
Mazhar T, Haq I, Ditta A, Mohsan SAH, Rehman F, Zafar I, Gansau JA, Goh LPW. The Role of Machine Learning and Deep Learning Approaches for the Detection of Skin Cancer. Healthcare (Basel) 2023; 11. [PMID: 36766989 DOI: 10.3390/healthcare11030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Machine learning (ML) can enhance a dermatologist's work, from diagnosis to customized care. The development of ML algorithms in dermatology has been supported lately regarding links to digital data processing (e.g., electronic medical records, Image Archives, omics), quicker computing and cheaper data storage. This article describes the fundamentals of ML-based implementations, as well as future limits and concerns for the production of skin cancer detection and classification systems. We also explored five fields of dermatology using deep learning applications: (1) the classification of diseases by clinical photos, (2) der moto pathology visual classification of cancer, and (3) the measurement of skin diseases by smartphone applications and personal tracking systems. This analysis aims to provide dermatologists with a guide that helps demystify the basics of ML and its different applications to identify their possible challenges correctly. This paper surveyed studies on skin cancer detection using deep learning to assess the features and advantages of other techniques. Moreover, this paper also defined the basic requirements for creating a skin cancer detection application, which revolves around two main issues: the full segmentation image and the tracking of the lesion on the skin using deep learning. Most of the techniques found in this survey address these two problems. Some of the methods also categorize the type of cancer too.
Collapse
|
10
|
Mohammadi F, Dehbozorgi L, Akbari‐Hasanjani HR, Joz Abbasalian Z, Akbari‐Hasanjani R, Sabbaghi‐Nadooshan R, Moradi Tabriz H. Evaluation of effective features in the diagnosis of Covid-19 infection from routine blood tests with multilayer perceptron neural network: A cross-sectional study. Health Sci Rep 2023; 6:e1048. [PMID: 36620509 PMCID: PMC9817491 DOI: 10.1002/hsr2.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Aim Coronavirus is an infectious disease that is now known as an epidemic, early and accurate diagnosis helps the patient receive more care. The aim of this study is to investigate Covid-19 using blood tests and multilayer perceptron neural network and affective factors in improving and preventing Covid-19. Methods This cross-sectional study was performed on 200 patients referred to Sina Hospital, Tehran, Iran, who were confirmed cases of Covid-19 by computerized tomography-scan analysis between 2 March 2020 to 5 April 2020. After verification of lung involvement, blood sampling was done to separate the sera for C-reactive protein (CRP), magnesium (Mg), lymphocyte percentage, and vitamin D analysis in healthy and unhealthy people. Blood samples from healthy and sick people were applied to the multilayer perceptron network for 70% of the data for training and 30% for testing. Result By examining the features, it was found that in patients with Covid-19, there was a significant relationship between increased CRP and decreased lymphocyte levels, and increased Mg (p < 0.01). In these patients, the amount of CRP and Mg in women and the number of lymphocytes and vitamin D in men were significantly higher (p < 0.01). Conclusion The important advantage of using a multilayer perceptron neural network is to speed up the diagnosis and treatment.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Pathology, Sina Clinical‐Research CenterTehran University of Medical SciencesTehranIran
| | - Leila Dehbozorgi
- Department of Electrical Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran
| | | | - Zahra Joz Abbasalian
- Department of Pathology, Sina Clinical‐Research CenterTehran University of Medical SciencesTehranIran
| | - Reza Akbari‐Hasanjani
- Department of Electrical Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran
| | - Reza Sabbaghi‐Nadooshan
- Department of Electrical Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran
| | - Hedieh Moradi Tabriz
- Department of Pathology, Sina Clinical‐Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Rane R, Dubey A, Rasool A, Wadhvani R. Data Mining Based Techniques for Covid-19 Predictions. Procedia Comput Sci 2023; 218:210-219. [PMID: 36743794 PMCID: PMC9886325 DOI: 10.1016/j.procs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 is a pandemic that has resulted in numerous fatalities and infections in recent years, with a rising tendency in both the number of infections and deaths and the pace of recovery. Accurate forecasting models are important for making accurate forecasts and taking relevant actions. As a result, accurate short-term forecasting of the number of new cases that are contaminated and recovered is essential for making the best use of the resources at hand and stopping or delaying the spread of such illnesses. This paper shows the various techniques for forecasting the covid-19 cases. This paper classifies the various models according to their category and shows the merits and demerits of various fore-casting techniques. The research provides insight into potential issues that may arise during the forecasting of covid-19 instances for predicting the positive, negative, and death cases in this pandemic. In this paper, numerous forecasting techniques and their categories have been studied. The goal of this work is to aggregate the findings of several forecasting techniques to aid in the fight against the pandemic.
Collapse
Affiliation(s)
- Rahul Rane
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Aditya Dubey
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Akhtar Rasool
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Rajesh Wadhvani
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| |
Collapse
|
12
|
Abstract
The recent COVID-19 outbreak has severely affected people around the world. There is a need of an efficient decision making tool to improve awareness about the spread of COVID-19 infections among the common public. An accurate and reliable neural network based tool for predicting confirmed, recovered and death cases of COVID-19 can be very helpful to the health consultants for taking appropriate actions to control the outbreak. This paper proposes a novel Nonlinear Autoregressive (NAR) Neural Network Time Series (NAR-NNTS) model for forecasting COVID-19 cases. This NAR-NNTS model is trained with Scaled Conjugate Gradient (SCG), Levenberg Marquardt (LM) and Bayesian Regularization (BR) training algorithms. The performance of the proposed model has been compared by using Root Mean Square Error (RMSE), Mean Square Error (MSE) and correlation co-efficient i.e. R-value. The results show that NAR-NNTS model trained with LM training algorithm performs better than other models for COVID-19 epidemiological data prediction.
Collapse
Affiliation(s)
- Suyel Namasudra
- Department of Computer Science and Engineering, National Institute of Technology Patna, Bihar, India
| | | | - R Rathipriya
- Department of Computer Science, Periyar University, Salem, India
| |
Collapse
|
13
|
Khan AR, Hasan KT, Abedin S, Khan S. Distributed lag inspired machine learning for predicting vaccine-induced changes in COVID-19 hospitalization and intensive care unit admission. Sci Rep 2022; 12:18748. [PMID: 36335113 DOI: 10.1038/s41598-022-21969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
Abstract
Distributed lags play important roles in explaining the short-run dynamic and long-run cumulative effects of features on a response variable. Unlike the usual lag length selection, important lags with significant weights are selected in a distributed lag model (DLM). Inspired by the importance of distributed lags, this research focuses on the construction of distributed lag inspired machine learning (DLIML) for predicting vaccine-induced changes in COVID-19 hospitalization and intensive care unit (ICU) admission rates. Importance of a lagged feature in DLM is examined by hypothesis testing and a subset of important features are selected by evaluating an information criterion. Akin to the DLM, we demonstrate the selection of distributed lags in machine learning by evaluating importance scores and objective functions. Finally, we apply the DLIML with supervised learning for forecasting daily changes in COVID-19 hospitalization and ICU admission rates in United Kingdom (UK) and United States of America (USA). A sharp decline in hospitalization and ICU admission rates are observed when around 40% people are vaccinated. For one percent more vaccination, daily changes in hospitalization and ICU admission rates are expected to reduce by 4.05 and 0.74 per million after 14 days in UK, and 5.98 and 1.04 per million after 20 days in USA, respectively. Long-run cumulative effects in the DLM demonstrate that the daily changes in hospitalization and ICU admission rates are expected to jitter around the zero line in a long-run. Application of the DLIML selects fewer lagged features but provides qualitatively better forecasting outcome for data-driven healthcare service planning.
Collapse
|
14
|
Kamalov F, Rajab K, Cherukuri AK, Elnagar A, Safaraliev M. Deep learning for Covid-19 forecasting: State-of-the-art review. Neurocomputing 2022; 511:142-54. [PMID: 36097509 DOI: 10.1016/j.neucom.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
Abstract
The Covid-19 pandemic has galvanized scientists to apply machine learning methods to help combat the crisis. Despite the significant amount of research there exists no comprehensive survey devoted specifically to examining deep learning methods for Covid-19 forecasting. In this paper, we fill the gap in the literature by reviewing and analyzing the current studies that use deep learning for Covid-19 forecasting. In our review, all published papers and preprints, discoverable through Google Scholar, for the period from Apr 1, 2020 to Feb 20, 2022 which describe deep learning approaches to forecasting Covid-19 were considered. Our search identified 152 studies, of which 53 passed the initial quality screening and were included in our survey. We propose a model-based taxonomy to categorize the literature. We describe each model and highlight its performance. Finally, the deficiencies of the existing approaches are identified and the necessary improvements for future research are elucidated. The study provides a gateway for researchers who are interested in forecasting Covid-19 using deep learning.
Collapse
|
15
|
Atchadé MN, Tchanati P. P. On computational analysis of nonlinear regression models addressing heteroscedasticity and autocorrelation issues: An application to COVID-19 data. Heliyon 2022; 8:e11057. [PMID: 36254279 PMCID: PMC9568860 DOI: 10.1016/j.heliyon.2022.e11057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
This paper develops a method for nonlinear regression models estimation that is robust to heteroscedasticity and autocorrelation of errors. Using nonlinear least squares estimation, four popular growth models (Exponential, Gompertz, Verhulst, and Weibull) were computed. Some assumptions on the errors of these models (independence, normality, and homoscedasticity) being violated, the estimates are improved by modeling the residuals using the ETS method. For an application purpose, this approach has been used to predict the daily cumulative number of novel coronavirus (COVID-19) cases in Africa for the study period, from March 13, 2020, to June 26, 2021. The comparison of the proposed model to the competitors was done using statistical metrics such as MAPE, MAE, RMSE, AIC, BIC, and AICc. The findings revealed that the modified Gompertz model is the most accurate in forecasting the total number of COVID-19 cases in Africa. Moreover, the developed approach will be useful for researchers and policymakers for predicting purpose and for better decision making in different fields of its applications.
Collapse
Affiliation(s)
- Mintodê Nicodème Atchadé
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin,University of Abomey-Calavi/International Chair in Mathematical Physics and Applications (ICMPA: UNESCO-Chair), 072 BP 50 Cotonou, Benin,Corresponding author at: National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin.
| | - Paul Tchanati P.
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin
| |
Collapse
|
16
|
Sardar I, Akbar MA, Leiva V, Alsanad A, Mishra P. Machine learning and automatic ARIMA/Prophet models-based forecasting of COVID-19: methodology, evaluation, and case study in SAARC countries. Stoch Environ Res Risk Assess 2022; 37:345-359. [PMID: 36217358 PMCID: PMC9533996 DOI: 10.1007/s00477-022-02307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Machine learning (ML) has proved to be a prominent study field while solving complex real-world problems. The whole globe has suffered and continues suffering from Coronavirus disease 2019 (COVID-19), and its projections need to be forecasted. In this article, we propose and derive an autoregressive modeling framework based on ML and statistical methods to predict confirmed cases of COVID-19 in the South Asian Association for Regional Cooperation (SAARC) countries. Automatic forecasting models based on autoregressive integrated moving average (ARIMA) and Prophet time series structures, as well as extreme gradient boosting, generalized linear model elastic net (GLMNet), and random forest ML techniques, are introduced and applied to COVID-19 data from the SAARC countries. Different forecasting models are compared by means of selection criteria. By using evaluation metrics, the best and suitable models are selected. Results prove that the ARIMA model is found to be suitable and ideal for forecasting confirmed infected cases of COVID-19 in these countries. For the confirmed cases in Afghanistan, Bangladesh, India, Maldives, and Sri Lanka, the ARIMA model is superior to the other models. In Bhutan, the Prophet time series model is appropriate for predicting such cases. The GLMNet model is more accurate than other time-series models for Nepal and Pakistan. The random forest model is excluded from forecasting because of its poor fit.
Collapse
Affiliation(s)
- Iqra Sardar
- Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad, Pakistan
| | | | - Víctor Leiva
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ahmed Alsanad
- STC’s Artificial Intelligence Chair, Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pradeep Mishra
- Department of Statistics, College of Agriculture, Powarkheda, India
| |
Collapse
|
17
|
Nguyen Duc T, Tran CM, Bach NG, Tan PX, Kamioka E. Repetition-Based Approach for Task Adaptation in Imitation Learning. Sensors (Basel) 2022; 22:6959. [PMID: 36146306 PMCID: PMC9502931 DOI: 10.3390/s22186959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Transfer learning is an effective approach for adapting an autonomous agent to a new target task by transferring knowledge learned from the previously learned source task. The major problem with traditional transfer learning is that it only focuses on optimizing learning performance on the target task. Thus, the performance on the target task may be improved in exchange for the deterioration of the source task's performance, resulting in an agent that is not able to revisit the earlier task. Therefore, transfer learning methods are still far from being comparable with the learning capability of humans, as humans can perform well on both source and new target tasks. In order to address this limitation, a task adaptation method for imitation learning is proposed in this paper. Being inspired by the idea of repetition learning in neuroscience, the proposed adaptation method enables the agent to repeatedly review the learned knowledge of the source task, while learning the new knowledge of the target task. This ensures that the learning performance on the target task is high, while the deterioration of the learning performance on the source task is small. A comprehensive evaluation over several simulated tasks with varying difficulty levels shows that the proposed method can provide high and consistent performance on both source and target tasks, outperforming existing transfer learning methods.
Collapse
Affiliation(s)
- Tho Nguyen Duc
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Chanh Minh Tran
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Nguyen Gia Bach
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Phan Xuan Tan
- Department of Information and Communications Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Eiji Kamioka
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| |
Collapse
|
18
|
Jain P, Sahu S. Prediction and forecasting of worldwide corona virus (COVID-19) outbreak using time series and machine learning. Concurr Comput 2022; 34:e7286. [PMID: 36247093 PMCID: PMC9539277 DOI: 10.1002/cpe.7286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
How will the newly discovered coronavirus (COVID-19) affect the world and what will be its global impact? For answering this question, we will require a prediction of overall recoveries and fatalities, as well as a reliable prognosis of coronavirus cases. Predicting, however, requires an ample total of past data related to it. On any particular day, the prediction is unclear since events in the future rarely repeat themselves the way that they did in the past. Furthermore, forecasts and predictions are determined by the absolute interests, accuracy of the data, and prophesied variables. In addition, psychological factors play an enormous role in how people perceive and react to the danger from the disease and therefore the fear that it is going to affect them personally. This research paper advances an unbiased method for predicting the increase of the COVID-19 employing a simple, but powerful method to do so. Assumed that the data are accurate and reliable which the longer term will still follow an equivalent disease pattern, our projections intimate with a large association. Within the COVID-19 cases were documented, in contingency, there is a steady increase. The hazards are far away from symmetric, as underestimating a pandemic's spread and failing to do enough to prevent it is far a lot worse than overspending and being too cautious when it will not be needed. This paper illustrates the timeline of a live forecasting study with huge implied implications for devising and decision-making and gives unbiased predictions on COVID-19 confirmed cases, recovered cases, deaths, and ongoing cases are shown on a continental map using data science and machine learning (ML) approaches. Utilizing these ML-based techniques, the proposed system predicts the accurate COVID-19 cases and gives better performance.
Collapse
Affiliation(s)
- Priyank Jain
- Indian Institute of Information TechnologyBhopalMadhya PradeshIndia
| | - Shriya Sahu
- Atal Bihari Vajpayee UniversityBilaspurChhattisgarhIndia
| |
Collapse
|
19
|
Alafif T, Etaiwi A, Hawsawi Y, Alrefaei A, Albassam A, Althobaiti H. DISCOVID: discovering patterns of COVID-19 infection from recovered patients: a case study in Saudi Arabia. Int J Inf Technol 2022;:1-14. [PMID: 35812263 DOI: 10.1007/s41870-022-00973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
A respiratory syndrome COVID-19 pandemic has become a serious global concern. Still, a large number of people have been daily infected worldwide. Discovering COVID-19 infection patterns is significant for health providers towards understanding the infection factors. Current COVID-19 research works have not been attempted to discover the infection patterns, yet. In this paper, we employ an Association Rules Apriori (ARA) algorithm to discover the infection patterns from COVID-19 recovered patients’ data. A non-clinical COVID-19 dataset is introduced and analyzed. A sample of recovered patients’ data is manually collected in Saudi Arabia. Our manual computation and experimental results show strong associative rules with high confidence scores among males, weight above 70 kilograms, height above 160 centimeters, and fever patterns. These patterns are the strongest infection patterns discovered from COVID-19 recovered patients’ data.
Collapse
|
20
|
Jin W, Dong S, Yu C, Luo Q. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning. Comput Biol Med 2022; 146:105560. [PMID: 35551008 PMCID: PMC9042415 DOI: 10.1016/j.compbiomed.2022.105560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 outbreak poses a huge challenge to international public health. Reliable forecast of the number of cases is of great significance to the planning of health resources and the investigation and evaluation of the epidemic situation. The data-driven machine learning models can adapt to complex changes in the epidemic situation without relying on correct physical dynamics modeling, which are sensitive and accurate in predicting the development of the epidemic. In this paper, an ensemble hybrid model based on Temporal Convolutional Networks (TCN), Gated Recurrent Unit (GRU), Deep Belief Networks (DBN), Q-learning, and Support Vector Machine (SVM) models, namely TCN-GRU-DBN-Q-SVM model, is proposed to achieve the forecasting of COVID-19 infections. Three widely-used predictors, TCN, GRU, and DBN are used as elements of the hybrid model ensembled by the weights provided by reinforcement learning method. Furthermore, an error predictor built by SVM, is trained with validation set, and the final prediction result could be obtained by combining the TCN-GRU-DBN-Q model with the SVM error predictor. In order to investigate the forecasting performance of the proposed hybrid model, several comparison models (TCN-GRU-DBN-Q, LSTM, N-BEATS, ANFIS, VMD-BP, WT-RVFL, and ARIMA models) are selected. The experimental results show that: (1) the prediction effect of the TCN-GRU-DBN-Q-SVM model on COVID-19 infection is satisfactory, which has been verified in three national infection data from the UK, India, and the US, and the proposed model has good generalization ability; (2) in the proposed hybrid model, SVM can efficiently predict the possible error of the predicted series given by TCN-GRU-DBN-Q components; (3) the integrated weights based on Q-learning can be adaptively adjusted according to the characteristics of the data in the forecasting tasks in different countries and multiple situations, which ensures the accuracy, robustness and generalization of the proposed model.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Shuqing Dong
- School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China
| | - Chengqing Yu
- School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China,Corresponding author. Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| |
Collapse
|
21
|
Ormeño P, Márquez G, Guerrero-Nancuante C, Taramasco C. Detection of COVID-19 Patients Using Machine Learning Techniques: A Nationwide Chilean Study. IJERPH 2022; 19:ijerph19138058. [PMID: 35805713 PMCID: PMC9265284 DOI: 10.3390/ijerph19138058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Epivigila is a Chilean integrated epidemiological surveillance system with more than 17,000,000 Chilean patient records, making it an essential and unique source of information for the quantitative and qualitative analysis of the COVID-19 pandemic in Chile. Nevertheless, given the extensive volume of data controlled by Epivigila, it is difficult for health professionals to classify vast volumes of data to determine which symptoms and comorbidities are related to infected patients. This paper aims to compare machine learning techniques (such as support-vector machine, decision tree and random forest techniques) to determine whether a patient has COVID-19 or not based on the symptoms and comorbidities reported by Epivigila. From the group of patients with COVID-19, we selected a sample of 10% confirmed patients to execute and evaluate the techniques. We used precision, recall, accuracy, F1-score, and AUC to compare the techniques. The results suggest that the support-vector machine performs better than decision tree and random forest regarding the recall, accuracy, F1-score, and AUC. Machine learning techniques help process and classify large volumes of data more efficiently and effectively, speeding up healthcare decision making.
Collapse
Affiliation(s)
- Pablo Ormeño
- Escuela de Ingenieria y Negocios, Universidad de Viña del Mar, Viña del Mar 2520000, Chile
- Correspondence: (P.O.); (G.M.); (C.G.-N.); (C.T.)
| | - Gastón Márquez
- Departamento de Electrónica e Informática, Universidad Técnica Federico Santa María, Millennium Nucleus on Sociomedicine, Concepción 4030000, Chile
- Correspondence: (P.O.); (G.M.); (C.G.-N.); (C.T.)
| | - Camilo Guerrero-Nancuante
- Escuela de Enfermería, Universidad de Valparaíso, Valparaíso 2500000, Chile
- Correspondence: (P.O.); (G.M.); (C.G.-N.); (C.T.)
| | - Carla Taramasco
- Facultad de Ingeniería, Universidad Andrés Bello, Millennium Nucleus on Sociomedicine, Viña del Mar 2520000, Chile
- Correspondence: (P.O.); (G.M.); (C.G.-N.); (C.T.)
| |
Collapse
|
22
|
Gouda W, Sama NU, Al-Waakid G, Humayun M, Jhanjhi NZ. Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning. Healthcare (Basel) 2022; 10:healthcare10071183. [PMID: 35885710 PMCID: PMC9324455 DOI: 10.3390/healthcare10071183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
An increasing number of genetic and metabolic anomalies have been determined to lead to cancer, generally fatal. Cancerous cells may spread to any body part, where they can be life-threatening. Skin cancer is one of the most common types of cancer, and its frequency is increasing worldwide. The main subtypes of skin cancer are squamous and basal cell carcinomas, and melanoma, which is clinically aggressive and responsible for most deaths. Therefore, skin cancer screening is necessary. One of the best methods to accurately and swiftly identify skin cancer is using deep learning (DL). In this research, the deep learning method convolution neural network (CNN) was used to detect the two primary types of tumors, malignant and benign, using the ISIC2018 dataset. This dataset comprises 3533 skin lesions, including benign, malignant, nonmelanocytic, and melanocytic tumors. Using ESRGAN, the photos were first retouched and improved. The photos were augmented, normalized, and resized during the preprocessing step. Skin lesion photos could be classified using a CNN method based on an aggregate of results obtained after many repetitions. Then, multiple transfer learning models, such as Resnet50, InceptionV3, and Inception Resnet, were used for fine-tuning. In addition to experimenting with several models (the designed CNN, Resnet50, InceptionV3, and Inception Resnet), this study’s innovation and contribution are the use of ESRGAN as a preprocessing step. Our designed model showed results comparable to the pretrained model. Simulations using the ISIC 2018 skin lesion dataset showed that the suggested strategy was successful. An 83.2% accuracy rate was achieved by the CNN, in comparison to the Resnet50 (83.7%), InceptionV3 (85.8%), and Inception Resnet (84%) models.
Collapse
Affiliation(s)
- Walaa Gouda
- Department of Computer Engineering and Network, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
- Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 4272077, Egypt
- Correspondence: (W.G.); (M.H.)
| | - Najm Us Sama
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - Ghada Al-Waakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: (W.G.); (M.H.)
| | - Noor Zaman Jhanjhi
- School of Computer Science and Engineering (SCE), Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
23
|
Larabi-Marie-Sainte S, Alhalawani S, Shaheen S, Almustafa KM, Saba T, Khan FN, Rehman A. Forecasting COVID19 parameters using time-series: KSA, USA, Spain, and Brazil comparative case study. Heliyon 2022; 8:e09578. [PMID: 35694424 PMCID: PMC9162784 DOI: 10.1016/j.heliyon.2022.e09578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Many countries are suffering from the COVID19 pandemic. The number of confirmed cases, recovered, and deaths are of concern to the countries having a high number of infected patients. Forecasting these parameters is a crucial way to control the spread of the disease and struggle with the pandemic. This study aimed at forecasting the number of cases and deaths in KSA using time-series and well-known statistical forecasting techniques including Exponential Smoothing and Linear Regression. The study is extended to forecast the number of cases in the main countries such that the US, Spain, and Brazil (having a large number of contamination) to validate the proposed models (Drift, SES, Holt, and ETS). The forecast results were validated using four evaluation measures. The results showed that the proposed ETS (resp. Drift) model is efficient to forecast the number of cases (resp. deaths). The comparison study, using the number of cases in KSA, showed that ETS (with RMSE reaching 18.44) outperforms the state-of-the art studies (with RMSE equal to 107.54). The proposed forecasting model can be used as a benchmark to tackle this pandemic in any country.
Collapse
Affiliation(s)
- Souad Larabi-Marie-Sainte
- Department of Computer Science, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Sawsan Alhalawani
- Department of Computer Science, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Sara Shaheen
- Department of Computer Science, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Khaled Mohamad Almustafa
- Department of Information Sciences, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Tanzila Saba
- Artificial Intelligence Data Analytics (AIDA) Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Fatima Nayer Khan
- Department of Information Sciences, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Amjad Rehman
- Artificial Intelligence Data Analytics (AIDA) Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia
| |
Collapse
|
24
|
Mydukuri RV, Kallam S, Patan R, Al‐Turjman F, Ramachandran M. Deming least square regressed feature selection and Gaussian neuro-fuzzy multi-layered data classifier for early COVID prediction. Expert Syst 2022; 39:e12694. [PMID: 34230740 PMCID: PMC8250320 DOI: 10.1111/exsy.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 05/31/2023]
Abstract
Coronavirus disease (COVID-19) is a harmful disease caused by the new SARS-CoV-2 virus. COVID-19 disease comprises symptoms such as cold, cough, fever, and difficulty in breathing. COVID-19 has affected many countries and their spread in the world has put humanity at risk. Due to the increasing number of cases and their stress on administration as well as health professionals, different prediction techniques were introduced to predict the coronavirus disease existence in patients. However, the accuracy was not improved, and time consumption was not minimized during the disease prediction. To address these problems, least square regressive Gaussian neuro-fuzzy multi-layered data classification (LSRGNFM-LDC) technique is introduced in this article. LSRGNFM-LDC technique performs efficient COVID prediction with better accuracy and lesser time consumption through feature selection and classification. The preprocessing is used to eliminate the unwanted data in input features. Preprocessing is applied to reduce the time complexity. Next, Deming Least Square Regressive Feature Selection process is carried out for selecting the most relevant features through identifying the line of best fit. After the feature selection process, Gaussian neuro-fuzzy classifier in LSRGNFM-LDC technique performs the data classification process with help of fuzzy if-then rules for performing prediction process. Finally, the fuzzy if-then rule classifies the patient data as lower risk level, medium risk level and higher risk level with higher accuracy and lesser time consumption. Experimental evaluation is performed by Novel Corona Virus 2019 Dataset using different metrics like prediction accuracy, prediction time, and error rate. The result shows that LSRGNFM-LDC technique improves the accuracy and minimizes the time consumption as well as error rate than existing works during COVID prediction.
Collapse
Affiliation(s)
- Rathnamma V Mydukuri
- Department of Computer Science and EngineeringKSRM College Of Engineering (A)KadapaAndhra PradeshIndia
| | - Suresh Kallam
- Department of Computer Science & EngineeringSree Vidyanikethan Engineering CollegeTirupatiAndhra PradeshIndia
| | - Rizwan Patan
- Department of Computer Science & EngineeringVelagapudi Ramakrishna Siddhartha Engineering CollegeVijayawadaAndhra PradeshIndia
| | - Fadi Al‐Turjman
- Research Center for AI and IoT, Artificial Intelligence Engineering DepartmentNear East UniversityMersinTurkey
| | | |
Collapse
|
25
|
Mir MH, Jamwal S, Mehbodniya A, Garg T, Iqbal U, Samori IA. IoT-Enabled Framework for Early Detection and Prediction of COVID-19 Suspects by Leveraging Machine Learning in Cloud. Journal of Healthcare Engineering 2022; 2022:1-16. [PMID: 35432824 PMCID: PMC9006083 DOI: 10.1155/2022/7713939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is the repugnant but the most searched word since its outbreak in November 2019 across the globe. The world has to battle with it until an effective solution is developed. Due to the advancement in mobile and sensor technology, it is possible to come up with Internet of things-based healthcare systems. These novel healthcare systems can be proactive and preventive rather than traditional reactive healthcare systems. This article proposes a real-time IoT-enabled framework for the detection and prediction of COVID-19 suspects in early stages, by collecting symptomatic data and analyzing the nature of the virus in a better manner. The framework computes the presence of COVID-19 virus by mining the health parameters collected in real time from sensors and other IoT devices. The framework is comprised of four main components: user system or data collection center, data analytic center, diagnostic system, and cloud system. To point out and detect the COVID-19 suspected in real time, this work proposes the five machine learning techniques, namely support vector machine (SVM), decision tree, naïve Bayes, logistic regression, and neural network. In our proposed framework, the real and primary dataset collected from SKIMS, Srinagar, is used to validate our work. The experiment on the primary dataset was conducted using different machine learning techniques on selected symptoms. The efficiency of algorithms is calculated by computing the results of performance metrics such as accuracy, precision, recall, F1 score, root-mean-square error, and area under the curve score. The employed machine learning techniques have shown the accuracy of above 95% on the primary symptomatic data. Based on the experiment conducted, the proposed framework would be effective in the early identification and prediction of COVID-19 suspect realizing the nature of the disease in better way.
Collapse
|
26
|
Perone G. Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries. Econometrics 2022; 10:18. [DOI: 10.3390/econometrics10020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic is a serious threat to all of us. It has caused an unprecedented shock to the world’s economy, and it has interrupted the lives and livelihood of millions of people. In the last two years, a large body of literature has attempted to forecast the main dimensions of the COVID-19 outbreak using a wide set of models. In this paper, I forecast the short- to mid-term cumulative deaths from COVID-19 in 12 hard-hit big countries around the world as of 20 August 2021. The data used in the analysis were extracted from the Our World in Data COVID-19 dataset. Both non-seasonal and seasonal autoregressive integrated moving averages (ARIMA and SARIMA) were estimated. The analysis showed that: (i) ARIMA/SARIMA forecasts were sufficiently accurate in both the training and test set by always outperforming the simple alternative forecasting techniques chosen as benchmarks (Mean, Naïve, and Seasonal Naïve); (ii) SARIMA models outperformed ARIMA models in 47 out 48 metrics (in forecasting future values), i.e., on 97.9% of all the considered forecast accuracy measures (mean absolute error [MAE], mean absolute percentage error [MAPE], mean absolute scaled error [MASE], and the root mean squared error [RMSE]), suggesting a clear seasonal pattern in the data; and (iii) the forecasted values from SARIMA models fitted very well the observed (real-time) data for the period 21 August 2021–19 September 2021 for almost all the countries analyzed. This article shows that SARIMA can be safely used for both the short- and medium-term predictions of COVID-19 deaths. Thus, this approach can help government authorities to monitor and manage the huge pressure that COVID-19 is exerting on national healthcare systems.
Collapse
|
27
|
Aruleba RT, Adekiya TA, Ayawei N, Obaido G, Aruleba K, Mienye ID, Aruleba I, Ogbuokiri B. COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods. Bioengineering (Basel) 2022; 9:153. [PMID: 35447713 PMCID: PMC9024895 DOI: 10.3390/bioengineering9040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused 5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed. The review provided in this article should be beneficial to researchers in this field and health policymakers at large.
Collapse
|
28
|
Abstract
Forecasting the outcome of outbreaks as early and as accurately as possible is crucial for decision-making and policy implementations. A significant challenge faced by forecasters is that not all outbreaks and epidemics turn into pandemics, making the prediction of their severity difficult. At the same time, the decisions made to enforce lockdowns and other mitigating interventions versus their socioeconomic consequences are not only hard to make, but also highly uncertain. The majority of modeling approaches to outbreaks, epidemics, and pandemics take an epidemiological approach that considers biological and disease processes. In this paper, we accept the limitations of forecasting to predict the long-term trajectory of an outbreak, and instead, we propose a statistical, time series approach to modelling and predicting the short-term behavior of COVID-19. Our model assumes a multiplicative trend, aiming to capture the continuation of the two variables we predict (global confirmed cases and deaths) as well as their uncertainty. We present the timeline of producing and evaluating 10-day-ahead forecasts over a period of four months. Our simple model offers competitive forecast accuracy and estimates of uncertainty that are useful and practically relevant.
Collapse
Affiliation(s)
| | - Spyros Makridakis
- Institute for the Future (IFF), University of Nicosia, Nicosia, Cyprus
| | - Neophytos Stylianou
- International Institute for Compassionate Care, Cyprus
- School of Management, University of Bath, UK
| |
Collapse
|
29
|
Guadiana-Alvarez JL, Hussain F, Morales-Menendez R, Rojas-Flores E, García-Zendejas A, Escobar CA, Ramírez-Mendoza RA, Wang J. Prognosis patients with COVID-19 using deep learning. BMC Med Inform Decis Mak 2022; 22:78. [PMID: 35346166 PMCID: PMC8959787 DOI: 10.1186/s12911-022-01820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background The coronavirus (COVID-19) is a novel pandemic and recently we do not have enough knowledge about the virus behaviour and key performance indicators (KPIs) to assess the mortality risk forecast. However, using a lot of complex and expensive biomarkers could be impossible for many low budget hospitals. Timely identification of the risk of mortality of COVID-19 patients (RMCPs) is essential to improve hospitals' management systems and resource allocation standards. Methods For the mortality risk prediction, this research work proposes a COVID-19 mortality risk calculator based on a deep learning (DL) model and based on a dataset provided by the HM Hospitals Madrid, Spain. A pre-processing strategy for unbalanced classes and feature selection is proposed. To evaluate the proposed methods, an over-sampling Synthetic Minority TEchnique (SMOTE) and data imputation approaches are introduced which is based on the K-nearest neighbour. Results A total of 1,503 seriously ill COVID-19 patients having a median age of 70 years old are comprised in the research work, with 927 (61.7%) males and 576 (38.3%) females. A total of 48 features are considered to evaluate the proposed method, and the following results are achieved. It includes the following values i.e., area under the curve (AUC) 0.93, F2 score 0.93, recall 1.00, accuracy, 0.95, precision 0.91, specificity 0.9279 and maximum probability of correct decision (MPCD) 0.93. Conclusion The results show that the proposed method is significantly best for the mortality risk prediction of patients with COVID-19 infection. The MPCD score shows that the proposed DL outperforms on every dataset when evaluating even with an over-sampling technique. The benefits of the data imputation algorithm for unavailable biomarker data are also evaluated. Based on the results, the proposed scheme could be an appropriate tool for critically ill Covid-19 patients to assess the risk of mortality and prognosis.
Collapse
|
30
|
Alyasseri ZAA, Al‐Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert Syst 2022; 39:e12759. [PMID: 34511689 PMCID: PMC8420483 DOI: 10.1111/exsy.12759] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Collapse
Affiliation(s)
- Zaid Abdi Alkareem Alyasseri
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- ECE Department‐Faculty of EngineeringUniversity of KufaNajafIraq
| | - Mohammed Azmi Al‐Betar
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Information TechnologyAl‐Huson University College, Al‐Balqa Applied UniversityIrbidJordan
| | - Iyad Abu Doush
- Computing Department, College of Engineering and Applied SciencesAmerican University of KuwaitSalmiyaKuwait
- Computer Science DepartmentYarmouk UniversityIrbidJordan
| | - Mohammed A. Awadallah
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Department of Computer ScienceAl‐Aqsa UniversityGazaPalestine
| | - Ammar Kamal Abasi
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Sharif Naser Makhadmeh
- Artificial Intelligence Research Center (AIRC)Ajman UniversityAjmanUnited Arab Emirates
- Faculty of Information TechnologyMiddle East UniversityAmmanJordan
| | | | | | - Afzan Adam
- Center for Artificial Intelligence Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | | | - Mazin Abed Mohammed
- College of Computer Science and Information TechnologyUniversity of AnbarAnbarIraq
| | - Raed Abu Zitar
- Sorbonne Center of Artificial IntelligenceSorbonne University‐Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
31
|
Grekousis G, Feng Z, Marakakis I, Lu Y, Wang R. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health Place 2022; 74:102744. [PMID: 35114614 PMCID: PMC8801594 DOI: 10.1016/j.healthplace.2022.102744] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
Abstract
A growing number of studies show that the uneven spatial distribution of COVID-19 deaths is related to demographic and socioeconomic disparities across space. However, most studies fail to assess the relative importance of each factor to COVID-19 death rate and, more importantly, how this importance varies spatially. Here, we assess the variables that are more important locally using Geographical Random Forest (GRF), a local non-linear regression method. Through GRF, we estimated the non-linear relationships between the COVID-19 death rate and 29 socioeconomic and health-related factors during the first year of the pandemic in the USA (county level). GRF outputs are compared to global (Random Forest and OLS) and local (Geographically Weighted Regression) models. Results show that GRF outperforms all models and that the importance of variables highly varies by location. For example, lack of health insurance is the most important factor in one-third (34.86%) of the US counties. Most of these counties are (concentrated mainly in the Midwest region and South region). On the other hand, no leisure-time physical activity is the most important primary factor for 19.86% of the US counties. These counties are found in California, Oregon, Washington, and parts of the South region. Understanding the location-based characteristics and spatial patterns of socioeconomic and health factors linked to COVID-19 deaths is paramount for policy designing and decision making. In this way, interventions can be designed and implemented based on the most important factors locally, avoiding thus general guidelines addressed for the entire nation.
Collapse
Affiliation(s)
- George Grekousis
- School of Geography and Planning, Department of Urban and Regional Planning, Sun Yat-Sen University, Xingang Xi Road, Guangzhou, 510275, China; Guangdong Key Laboratory for Urbanization and Geo-simulation, China; Guangdong Provincial Engineering Research Center for Public Security and Disaster, China.
| | - Zhixin Feng
- School of Geography and Planning, Department of Urban and Regional Planning, Sun Yat-Sen University, Xingang Xi Road, Guangzhou, 510275, China.
| | - Ioannis Marakakis
- Department of Geography and Regional Planning, School of Rural & Surveying Engineering, National Technical University of Athens (NTUA), 15780, Zografou Campus, Greece.
| | - Yi Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Ruoyu Wang
- Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Singh A, Jindal V, Sandhu R, Chang V. A scalable framework for smart COVID surveillance in the workplace using Deep Neural Networks and cloud computing. Expert Syst 2022; 39:e12704. [PMID: 34177036 PMCID: PMC8209860 DOI: 10.1111/exsy.12704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
A smart and scalable system is required to schedule various machine learning applications to control pandemics like COVID-19 using computing infrastructure provided by cloud and fog computing. This paper proposes a framework that considers the use case of smart office surveillance to monitor workplaces for detecting possible violations of COVID effectively. The proposed framework uses deep neural networks, fog computing and cloud computing to develop a scalable and time-sensitive infrastructure that can detect two major violations: wearing a mask and maintaining a minimum distance of 6 feet between employees in the office environment. The proposed framework is developed with the vision to integrate multiple machine learning applications and handle the computing infrastructures for pandemic applications. The proposed framework can be used by application developers for the rapid development of new applications based on the requirements and do not worry about scheduling. The proposed framework is tested for two independent applications and performed better than the traditional cloud environment in terms of latency and response time. The work done in this paper tries to bridge the gap between machine learning applications and their computing infrastructure for COVID-19.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Computer Science and Engineering and Information TechnologyJaypee University of Information TechnologySolanIndia
| | - Vaibhav Jindal
- Department of Computer Science and Engineering and Information TechnologyJaypee University of Information TechnologySolanIndia
| | - Rajinder Sandhu
- Department of Computer Science and Engineering and Information TechnologyJaypee University of Information TechnologySolanIndia
| | - Victor Chang
- Artificial Intelligence and Information Systems Research Group, School Computing, Engineering and Digital TechnologiesTeesside UniversityMiddlesbroughUK
| |
Collapse
|
33
|
Kalezhi J, Chibuluma M, Chembe C, Chama V, Lungo F, Kunda D. Modelling Covid-19 infections in Zambia using data mining techniques. Results Eng 2022; 13:100363. [PMID: 35317385 PMCID: PMC8813672 DOI: 10.1016/j.rineng.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of Covid-19 pandemic has been declared a global health crisis by the World Health Organization since its emergence. Several researchers have proposed a number of techniques to understand how the pandemic affects the populations. Reported among these techniques are data mining models which have been successfully applied in a wide range of situations before the advent of Covid-19 pandemic. In this work, the researchers have applied a number of existing data mining methods (classifiers) available in the Waikato Environment for Knowledge Analysis (WEKA) machine learning library. WEKA was used to gain a better understanding on how the epidemic spread within Zambia. The classifiers used are J48 decision tree, Multilayer Perceptron and Naïve Bayes among others. The predictions of these techniques are compared against simpler classifiers and those reported in related works.
Collapse
Affiliation(s)
- Josephat Kalezhi
- Department of Computer Engineering, Copperbelt University, Kitwe, Zambia
| | - Mathews Chibuluma
- Department of Information Technology/Systems, Copperbelt University, Kitwe, Zambia
| | | | - Victoria Chama
- Department of Computer Science and Information Technology, Mulungushi University, Kabwe, Zambia
| | - Francis Lungo
- School of Social Sciences, Mulungushi University, Kabwe, Zambia
| | | |
Collapse
|
34
|
Mohammad Ayoub Khan, Rijwan Khan, Fahad Algarni, Indrajeet Kumar, Akshika Choudhary, Aditi Srivastava. Performance evaluation of regression models for COVID-19: A statistical and predictive perspective. Ain Shams Engineering Journal 2022; 13. [ DOI: 10.1016/j.asej.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Research is very important in the pandemic situation of COVID-19 to deliver a speedy solution to this problem. COVID-19 has presented governments, corporations and ordinary citizens around the world with technology playing an essential role to tackle the crisis. Moderate and flexible innovation arrangements that can speed up progress towards giving critical well-being ability are proved hourly. Knowledge with the aid of creativity must be obtained, accepted and analysed in a short time frame. In this example, the machine learning model has a major role to play in predicting the number of next positive COVID-19 cases to come. For government departments to take effective and strengthened future COVID-19 planning and innovation. The ongoing global pandemic of COVID-19 has been non-linear and dynamic. Due to the especially perplexing nature of the COVID-19 episode and its diversity from country to country, this study recommends machine learning as a convincing means to demonstrate flare-up. In this linear regression, polynomial regression, ridge regression, polynomial ridgeregression, support vector regression models, the COVID-19 data set from multiple on-line tools have been evaluated. During the work process comprehensive experiments were performed and each test was evaluated with the parameters mean square error (MSE), medium absolute error (MAE), root mean square error (RMSE) and R2 score. This study also offers a path for future research using regression models based on machine learning. Precise validation and data analysis can contribute to strategies for healing and disease prevention at an early stage. A systematic comprehensive strategy is a new philosophy in which statistical data for government agencies and community can be forecast.
Collapse
|
35
|
Abdu Gumaei, Walaa N. Ismail, Md. Rafiul Hassan, Mohammad Mehedi Hassan, Ebtsam Mohamed, Abdullah Alelaiwi, Giancarlo Fortino. A Decision-Level Fusion Method for COVID-19 Patient Health Prediction. Big Data Research 2022; 27. [ DOI: 10.1016/j.bdr.2021.100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 06/16/2023]
Abstract
With the continuous attempts to develop effective machine learning methods, information fusion approaches play an important role in integrating data from multiple sources and improving these methods' performance. Among the different fusion techniques, decision-level fusion has unique advantages to fuse the decisions of various classifiers and getting an effective outcome. In this paper, we propose a decision-level fusion method that combines three well-calibrated ensemble classifiers, namely, a random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGB) methods. It is used to predict the COVID-19 patient health for early monitoring and efficient treatment. A soft voting technique is used to generate the final decision result from the predictions of these calibrated classifiers. The method uses the COVID-19 patient's health information, travel demographic, and geographical data to predict the possible outcome of the COVID-19 case, recovered, or death. A different set of experiments is conducted on a public novel Corona Virus 2019 dataset using a different ratio of test sets. The experimental results show that the proposed fusion method achieved an accuracy of 97.24% and an F1-score of 0.97, which is higher than the current related work that has an accuracy of 94% and an F1-score 0.86, on 20% test set taken from the dataset.
Collapse
|
36
|
Zhang H, Wang Y, Chen D, Feng D, You X, Wu W. Temperature Forecasting Correction Based on Operational GRAPES-3km Model Using Machine Learning Methods. Atmosphere 2022; 13:362. [DOI: 10.3390/atmos13020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Postprocess correction is essential to improving the model forecasting result, in which machine learning methods play more and more important roles. In this study, three machine learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out the correction of temperature forecasting of an operational high-resolution model GRAPES-3km. The input parameters include 2 m temperature, relative humidity, local pressure and wind speed forecasting and observation data in Shaanxi province of China from 1 January 2019 to 31 December 2020. The dataset from September 2018 was used for model evaluation using the metrics of root mean square error (RMSE), average absolute error (MAE) and coefficient of determination (R2). All three machine learning methods perform very well in correcting the temperature forecast of GRAPES-3km model. The RMSE decreased by 33%, 32% and 40%, respectively, the MAE decreased by 33%, 34% and 41%, respectively, the R2 increased by 21.4%, 21.5% and 25.2%, respectively. Among the three methods, LightGBM performed the best with the forecast accuracy rate reaching above 84%.
Collapse
|
37
|
Li C, Sampene AK, Agyeman FO, Robert B, Ayisi AL, Liao C. Forecasting the Severity of COVID-19 Pandemic Amidst the Emerging SARS-CoV-2 Variants: Adoption of ARIMA Model. Computational and Mathematical Methods in Medicine 2022; 2022:1-17. [PMID: 35069779 PMCID: PMC8776442 DOI: 10.1155/2022/3163854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Currently, the global report of COVID-19 cases is around 110 million, and more than 2.43 million related death cases as of February 18, 2021. Viruses continuously change through mutation; hence, different virus of SARS-CoV-2 has been reported globally. The United Kingdom (UK), South Africa, Brazil, and Nigeria are the countries from which these emerged variants have been notified and now spreading globally. Therefore, these countries have been selected as a research sample for the present study. The datasets analyzed in this study spanned from March 1, 2020, to January 31, 2021, and were obtained from the World Health Organization website. The study used the Autoregressive Integrated Moving Average (ARIMA) model to forecast coronavirus incidence in the UK, South Africa, Brazil, and Nigeria. ARIMA models with minimum Akaike Information Criterion Correction (AICc) and statistically significant parameters were chosen as the best models in this research. Accordingly, for the new confirmed cases, ARIMA (3,1,14), ARIMA (0,1,11), ARIMA (1,0,10), and ARIMA (1,1,14) models were chosen for the UK, South Africa, Brazil, and Nigeria, respectively. Also, the model specification for the confirmed death cases was ARIMA (3,0,4), ARIMA (0,1,4), ARIMA (1,0,7), and ARIMA (Brown); models were selected for the UK, South Africa, Brazil, and Nigeria, respectively. The results of the ARIMA model forecasting showed that if the required measures are not taken by the respective governments and health practitioners in the days to come, the magnitude of the coronavirus pandemic is expected to increase in the study's selected countries.
Collapse
|
38
|
Bhattacharyya A, Chakraborty T, Rai SN. Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. Nonlinear Dyn 2022; 107:3025-3040. [PMID: 35039713 PMCID: PMC8754528 DOI: 10.1007/s11071-021-07099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
An unprecedented outbreak of the novel coronavirus (COVID-19) in the form of peculiar pneumonia has spread globally since its first case in Wuhan province, China, in December 2019. Soon after, the infected cases and mortality increased rapidly. The future of the pandemic's progress was uncertain, and thus, predicting it became crucial for public health researchers. These predictions help the effective allocation of health-care resources, stockpiling, and help in strategic planning for clinicians, government authorities, and public health policymakers after understanding the extent of the effect. The main objective of this paper is to develop a hybrid forecasting model that can generate real-time out-of-sample forecasts of COVID-19 outbreaks for five profoundly affected countries, namely the USA, Brazil, India, the UK, and Canada. A novel hybrid approach based on the Theta method and autoregressive neural network (ARNN) model, named Theta-ARNN (TARNN) model, is developed. Daily new cases of COVID-19 are nonlinear, non-stationary, and volatile; thus, a single specific model cannot be ideal for future prediction of the pandemic. However, the newly introduced hybrid forecasting model with an acceptable prediction error rate can help healthcare and government for effective planning and resource allocation. The proposed method outperforms traditional univariate and hybrid forecasting models for the test datasets on an average.
Collapse
Affiliation(s)
- Arinjita Bhattacharyya
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY USA
| | - Tanujit Chakraborty
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, UAE
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY USA
- Biostatistics and Bioinformatics Facility, JG Brown Cancer Center, University of Louisville, Louisville, KY USA
- The Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY USA
| |
Collapse
|
39
|
Abstract
Forecasting the spread of COVID-19 infection is an important aspect of public health management. In this paper, we propose an approach to forecasting the spread of the pandemic based on the vector autoregressive model. Concretely, we combine the time series for the number of new cases and the number of new deaths to obtain a joint forecasting model. We apply the proposed model to forecast the number of new cases and deaths in the UAE, Saudi Arabia, and Kuwait. Test results based on out-of-sample forecast show that the proposed model achieves a high level of accuracy that is superior to many existing methods. Concretely, our model achieves mean absolute percentage error (MAPE) of 0.35%, 2.03%, and 3.75% in predicting the number of daily new cases for the three countries, respectively. Furthermore, interpolating our predictions to forecast the cumulative number of cases, we obtain MAPE of 0.0017%, 0.002%, and 0.024%, respectively. The strong performance of the proposed approach indicates that it could be a valuable tool in managing the pandemic.
Collapse
|
40
|
Chahar S, Roy PK. COVID-19: A Comprehensive Review of Learning Models. Arch Comput Methods Eng 2022; 29:1915-1940. [PMID: 34566404 PMCID: PMC8449694 DOI: 10.1007/s11831-021-09641-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 05/17/2023]
Abstract
Coronavirus disease is communicable and inhibits the infected person's immune system. It belongs to the Coronaviridae family and has affected 213 nations and territories so far. Many kinds of studies are being carried out to filter advice and provide oversight to monitor this outbreak. A comparative and brief review was carried out in this paper on research concerning the early identification of symptoms, estimation of the end of the pandemic, and examination of user-generated conversations. Chest X-ray images, abdominal computed tomography scan, tweets shared on social media are several of the datasets used by researchers. Using machine learning and deep learning methods such as K-means clustering, Random Forest, Convolutional Neural Network, Long Short-Term Memory, Auto-Encoder, and Regression approaches, the above-mentioned datasets are processed. The studies on COVID-19 with machine learning and deep learning models with their results and limitations are outlined in this article. The challenges with open future research directions are discussed at the end.
Collapse
Affiliation(s)
- Shivam Chahar
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, TN India
| | - Pradeep Kumar Roy
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Surat, Gujarat India
| |
Collapse
|
41
|
Abirami RS, Kumar GS. Comparative Study Based on Analysis of Coronavirus Disease (COVID-19) Detection and Prediction Using Machine Learning Models. SN COMPUT SCI 2022; 3:79. [PMID: 34841267 PMCID: PMC8605773 DOI: 10.1007/s42979-021-00965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 11/13/2022]
Abstract
As the number of COVID-19 cases increases day by day, the situation and livelihood of people throughout the world deteriorates. The goal of this study is to use machine learning models to identify disease and forecast whether or not a person is infected with the virus or another common illness. More articles about COVID-19 will be released starting in 2020, but we still do not have a reliable prediction mechanism to diagnose the disease with 100% accuracy. This comparison is done to see which model is the most effective in detecting and predicting disease. Despite the fact that we have immunizations, we require a best-prediction strategy to assist all humans in surviving. Researchers claimed that the supervised learning method predicts more accurately than the unsupervised learning method in the majority of studies. Supervised learning is the process of mapping inputs to derived outputs using a set of variables and created functions. This will also help us to optimize performance criteria using experience. It is further divided into two categories: classification and regression. According to recent studies, classification models are more accurate than other models.
Collapse
|
42
|
dos Reis EVM, Savi MA. A dynamical map to describe COVID-19 epidemics. Eur Phys J Spec Top 2022; 231:893-904. [PMID: 34849187 PMCID: PMC8614223 DOI: 10.1140/epjs/s11734-021-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/30/2021] [Indexed: 05/09/2023]
Abstract
Nonlinear dynamics perspective is an interesting approach to describe COVID-19 epidemics, providing information to support strategic decisions. This paper proposes a dynamical map to describe COVID-19 epidemics based on the classical susceptible-exposed-infected-recovered (SEIR) differential model, incorporating vaccinated population. On this basis, the novel map represents COVID-19 discrete-time dynamics by adopting three populations: infected, cumulative infected and vaccinated. The map promotes a dynamical description based on algebraic equations with a reduced number of variables and, due to its simplicity, it is easier to perform parameter adjustments. In addition, the map description allows analytical calculations of useful information to evaluate the epidemic scenario, being important to support strategic decisions. In this regard, it should be pointed out the estimation of the number deaths, infection rate and the herd immunization point. Numerical simulations show the model capability to describe COVID-19 dynamics, capturing the main features of the epidemic evolution. Reported data from Germany, Italy and Brazil are of concern showing the map ability to describe different scenario patterns that include multi-wave pattern with bell shape and plateaus characteristics. The effect of vaccination is analyzed considering different campaign strategies, showing its importance to control the epidemics.
Collapse
Affiliation(s)
- Eduardo V. M. dos Reis
- Department of Mechanical Engineering, Center for Nonlinear Mechanics, Universidade Federal do Rio de Janeiro, COPPE, P.O. Box 68 503, Rio de Janeiro, RJ Brazil
| | - Marcelo A. Savi
- Department of Mechanical Engineering, Center for Nonlinear Mechanics, Universidade Federal do Rio de Janeiro, COPPE, P.O. Box 68 503, Rio de Janeiro, RJ Brazil
| |
Collapse
|
43
|
Ziyadidegan S, Razavi M, Pesarakli H, Javid AH, Erraguntla M. Factors affecting the COVID-19 risk in the US counties: an innovative approach by combining unsupervised and supervised learning. Stoch Environ Res Risk Assess 2022; 36:1469-1484. [PMID: 35035282 PMCID: PMC8747889 DOI: 10.1007/s00477-021-02148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 05/07/2023]
Abstract
The COVID-19 disease spreads swiftly, and nearly three months after the first positive case was confirmed in China, Coronavirus started to spread all over the United States. Some states and counties reported high number of positive cases and deaths, while some reported lower COVID-19 related cases and death. In this paper, the factors that could affect the risk of COVID-19 infection and death were analyzed in county level. An innovative method by using K-means clustering and several classification models is utilized to determine the most critical factors. Results showed that longitudinal coordinate and population density, latitudinal coordinate, percentage of non-white people, percentage of uninsured people, percent of people below poverty, percentage of Elderly people, number of ICU beds per 10,000 people, percentage of smokers were the most significant attributes.
Collapse
Affiliation(s)
- Samira Ziyadidegan
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Moein Razavi
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Homa Pesarakli
- Department of Architecture, Texas A&M University, College Station, TX 77843 USA
| | - Amir Hossein Javid
- Department of Statistics, Oklahoma State University, Stillwater, OK 74074 USA
| | - Madhav Erraguntla
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
44
|
Priyadarshini I, Chatterjee JM, Sujatha R, Jhanjhi N, Karime A, Masud M. Exploring Internet Meme Activity during COVID-19 Lockdown Using Artificial Intelligence Techniques. Applied Artificial Intelligence 2021. [DOI: 10.1080/08839514.2021.2014218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ishaani Priyadarshini
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | |
|