1
|
Gao B, Wang H, Hu S, Zhong K, Liu X, Deng Z, Li Y, Tong A, Zhou L. Sox2-overexpressing neural stem cells alleviate ventricular enlargement and neurological dysfunction in posthemorrhagic hydrocephalus. Neural Regen Res 2026; 21:769-779. [PMID: 40326987 DOI: 10.4103/nrr.nrr-d-24-01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00045/figure1/v/2025-05-05T160104Z/r/image-tiff Neural stem cells (NSCs) have the potential for self-renewal and multidirectional differentiation, and their transplantation has achieved good efficacy in a variety of diseases. However, only 1%-10% of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus. Sox2 is an important factor for NSCs to maintain proliferation. Therefore, Sox2-overexpressing NSCs (NSCSox2) may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus. In this study, human NSCSox2 was transplanted into a posthemorrhagic hydrocephalus mouse model, and retinoic acid was administered to further promote NSC differentiation. The results showed that NSCSox2 attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function. NSCSox2 also promoted nerve regeneration, inhibited neuroinflammation and promoted M2 polarization (anti-inflammatory phenotype), thereby reducing cerebrospinal fluid secretion in choroid plexus. These findings suggest that NSCSox2 rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation.
Collapse
Affiliation(s)
- Baocheng Gao
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuang Hu
- Department of Otolaryngology & Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Kunhong Zhong
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ziang Deng
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Neurosurgery, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital),School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
- Department of Neurosurgery, Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
2
|
Zhou HY, Wang X, Li Y, Wang D, Zhou XZ, Xiao N, Li GX, Li G. Dynamic development of microglia and macrophages after spinal cord injury. Neural Regen Res 2025; 20:3606-3619. [PMID: 39101644 PMCID: PMC11974661 DOI: 10.4103/nrr.nrr-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00029/figure1/v/2025-01-31T122243Z/r/image-tiff Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response, with resident microglia and infiltrating macrophages playing pivotal roles. While previous studies have grouped these two cell types together based on similarities in structure and function, an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes. In this study, we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury. Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury, gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed. Regarding macrophages, our findings highlighted abundant communication with other cells, including fibroblasts and neurons. Both pro-inflammatory and neuroprotective effects of macrophages were also identified; the pro-inflammatory effect may be related to integrin β2 ( Itgb2 ) and the neuroprotective effect may be related to the oncostatin M pathway. These findings were validated by in vivo experiments. This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury, and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hu-Yao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xia Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Yi Li
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Duan Wang
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xuan-Zi Zhou
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Guo-Xing Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Spicer MM, Yang J, Fu D, DeVore AN, Lauffer M, Atasoy NS, Atasoy D, Fisher RA. Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis, learning, and memory in a mouse model of Alzheimer's disease. Neural Regen Res 2025; 20:2969-2981. [PMID: 39248184 PMCID: PMC11826473 DOI: 10.4103/nrr.nrr-d-23-01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00027/figure1/v/2024-11-26T163120Z/r/image-tiff Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer's disease. Adult hippocampal neurogenesis is reduced in patients with Alzheimer's disease. Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer's disease. However, the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer's disease are poorly understood. Recently, regulator of G protein signaling 6 (RGS6) was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice. Here, we generated novel RGS6 fl/fl ; APP SWE mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer's disease mouse model. We found that voluntary running in APP SWE mice restored their hippocampal cognitive impairments to that of control mice. This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells, which also abolished running-mediated increases in adult hippocampal neurogenesis. Adult hippocampal neurogenesis was reduced in sedentary APP SWE mice versus control mice, with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells. RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer's disease with significant loss of these RGS6-expressing neurons. Thus, RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP SWE mice, identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer's disease.
Collapse
Affiliation(s)
- Mackenzie M. Spicer
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jianqi Yang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daniel Fu
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Alison N. DeVore
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Marisol Lauffer
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Neural Circuits and Behavior Core, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nilufer S. Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Rory A. Fisher
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
4
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
5
|
Xiao B, Chu C, Lin Z, Fang T, Zhou Y, Zhang C, Shan J, Chen S, Li L. Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways. Neural Regen Res 2025; 20:2706-2726. [PMID: 39105365 PMCID: PMC11801291 DOI: 10.4103/nrr.nrr-d-23-01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 03/23/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Biao Xiao
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chaoyang Chu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhicheng Lin
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Tianyuan Fang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yuyu Zhou
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuxia Zhang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianghui Shan
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiyu Chen
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Ningbo Key Laboratory of Behavioral Neuroscience, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
6
|
Ishihara Y, Ando M, Goto Y, Kotani S, Watanabe N, Nakatani Y, Ishii S, Miyamoto N, Mano Y, Ishikawa Y. A novel selective phosphodiesterase 9 inhibitor, irsenontrine (E2027), enhances GluA1 phosphorylation in neurons and improves learning and memory via cyclic GMP elevation. Neuropharmacology 2025; 273:110428. [PMID: 40147639 DOI: 10.1016/j.neuropharm.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Phosphodiesterase 9 (PDE9) plays a critical role in synaptic plasticity and cognitive function by modulating cyclic GMP (cGMP). Many reports have shown that PDE9 inhibition improves cognitive function and synaptic plasticity in rodents. Several studies have found that the NO/cGMP/PKG pathway is downregulated in patients with Alzheimer's disease (AD) or dementia with Lewy bodies (DLB) and in older individuals. A PDE9 inhibitor could therefore be a potential therapeutic approach for improving cognitive dysfunction in dementia, including in AD and DLB. We previously discovered a novel PDE9 inhibitor, irsenontrine (E2027). In the current study, irsenontrine showed highly selective affinity for PDE9 with more than 1800-fold selectivity over other PDEs. Irsenontrine maleate significantly increased intracellular cGMP levels in rat cortical primary neurons, and phosphorylation of AMPA receptor subunit GluA1 was induced following cGMP elevation. Oral administration of irsenontrine significantly upregulated cGMP levels in the hippocampus and cerebrospinal fluid (CSF) of naïve rats, and a novel object recognition test showed that irsenontrine administration also significantly improved learning and memory. The effects of irsenontrine were confirmed in rats treated with Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME), a model of learning and memory impairment due to downregulation of the cGMP pathway. l-NAME downregulated cGMP in the CSF and hippocampus and impaired novel object recognition, but oral administration of irsenontrine clearly attenuated these phenotypes. These results indicate that irsenontrine improves learning and memory via the elevation of cGMP levels, and they strongly suggest that irsenontrine could be a novel therapeutic approach against cognitive dysfunction.
Collapse
Affiliation(s)
- Yasuharu Ishihara
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, Degree Program in Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Mai Ando
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yasuaki Goto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Sadaharu Kotani
- Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Naoto Watanabe
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yosuke Nakatani
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Satoko Ishii
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Norimasa Miyamoto
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuji Mano
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yukio Ishikawa
- Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
7
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 PMCID: PMC11759009 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| |
Collapse
|
8
|
Chen G, Zhang K, Sun M, Xie N, Wu L, Zhang G, Guo B, Huang C, Man Hoi MP, Zhang G, Shi C, Sun Y, Zhang Z, Wang Y. Multi-functional memantine nitrate attenuated cognitive impairment in models of vascular dementia and Alzheimer's disease through neuroprotection and increased cerebral blood flow. Neuropharmacology 2025; 272:110410. [PMID: 40081796 DOI: 10.1016/j.neuropharm.2025.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are two prevalent forms of dementia. VaD is linked to cerebrovascular lesions, such as those from white matter ischemia and chronic cerebral hypoperfusion, which can also occur in AD. Nitric oxide (NO) regulates cerebral blood flow (CBF) in the central nervous system. Memantine is an NMDA receptor antagonist approved for AD treatment. This study investigated the efficacy and molecular mechanism of MN-08, a novel memantine nitrate, in one VaD model (2VO) and two AD models (APP/PS1 mice and Aβ1-42-induced mice). MN-08 increased CBF, ameliorated cognitive and memory functions in VaD and AD, and was more effective than memantine. MN-08 increased the survival rate of CA1 neurons and mitigated white matter lesions and axonal damage. Moreover, MN-08 protected neurons from OGD-induced loss and promoted axonal outgrowth in the hippocampus by upregulating phosphorylated Akt (p-Akt), glycogen synthase kinase-3β (p-GSK3β), and high-molecular-weight neurofilaments (p-NFH). The beneficial effects of MN-08 were attenuated by carboxy-PTIO, a potent NO scavenger, suggesting that MN-08-derived NO may alleviate cognitive impairment from cerebral hypoperfusion. Taken together, our studies demonstrate that MN-08 is a promising therapeutic agent for the treatment of dementia including VaD and AD.
Collapse
Affiliation(s)
- Guangying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Kexin Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Minghua Sun
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Radiology, The Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Liangmiao Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China; Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Chunhui Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| |
Collapse
|
9
|
Pedrinolla A, Dorelli G, Porcelli S, Burleigh M, Mendo M, Martignon C, Fonte C, Dalle Carbonare LG, Easton C, Muti E, Schena F, Venturelli M. Increasing nitric oxide availability via ingestion of nitrate-rich beetroot juice improves vascular responsiveness in individuals with Alzheimer's Disease. Nitric Oxide 2025; 156:50-56. [PMID: 40089052 DOI: 10.1016/j.niox.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Poor vascular function and reduced nitric oxide (NO)-bioavailability have been recognized to be involved in aging and Alzheimer's Disease (AD). A non-pharmacological treatment that is gaining clinical interest in the context of vascular function is dietary inorganic nitrate (NO3-) supplementation which increases NO-bioavailability through the NO3- -nitrite (NO2-) - NO pathway. This treatment has been demonstrated to improve vascular function in several clinical populations, but no study has investigated the effects in individuals with AD. Therefore, changes in plasma NO3- and NO2- and vascular responsiveness (hyperemic response to single-passive leg movement (ΔPLM)) were measured in individuals with AD (n = 10, 76 ± 9 years), healthy elderly (OLD, n = 10, 75 ± 6 years), and young individuals (YN, n = 10, 25 ± 4 years) before (T0) and hourly for 4 h (T1, T2, T3, and T4) after ingestion of either NO3--rich beetroot juice (BR) or a placebo (PLA). No changes in NO3- and NO2-, nor ΔPLM were detected in any group following PLA intake. Plasma NO3- and NO2- increased significantly in all three groups at T1 (p < 0.001) and remained elevated for the rest of the trial. The same trend was found in ΔPLM, which significantly increased in all three groups over the time (p < 0.001). However, AD exhibited significantly lower ΔPLM values at any time point compared to YN (p < 0.001) and OLD (p < 0.001). These data suggest that AD-individuals included in this study were able to reduce NO3- to NO2- and to increase NO-mediated vascular responsiveness as non-AD-individuals. Other mechanisms, beyond NO-bioavailability, may be involved in vascular dysfunction in patients with AD. This research suggests that an acute administration of inorganic nitrate is not enough to revert chronically adapted vascular properties and completely restore vascular responsiveness in AD.
Collapse
Affiliation(s)
- Anna Pedrinolla
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| | - Gianluigi Dorelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Martina Mendo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Camilla Martignon
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cristina Fonte
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK; School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK
| | | | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Internal Medicine Section of Geriatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Oliveira MS, Fernandes RA, Pinto LS, Moreira FA, Castro OWD, Santos VR. Balancing efficacy and safety: The dual impact of antiseizure medications on the developing brain. Epilepsy Behav 2025; 167:110400. [PMID: 40187052 DOI: 10.1016/j.yebeh.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
The number of neurons in the developing brain is greater than typically found in adulthood, and the brain possesses delicate mechanisms to induce the death of excess cells and refine neural circuitry. The correct tuning between the processes of neuronal death and survival generates a mature and functional brain in its complexity and plastic capacity. Epilepsy is a highly prevalent neurological condition worldwide, including among young individuals. However, exposure to the main treatment approaches, the long-term use of Antiseizure Medication (ASM), during the critical period of development can induce a series of changes in this delicate balance. Acting by various mechanisms of action, ASMs may induce an increase in neuronal death, something that translates into deleterious neuropsychiatric effects in adulthood. Several investigations conducted in recent years have brought to light new aspects related to this dynamic, yet many questions, such as the cellular mechanisms of death and the pathophysiology of late effects, still have unresolved elements. In this review, we aimed to explore the mechanisms of action of the most widely used ASMs in the treatment of neonatal epilepsy, the broad aspects of neuronal death in the developing brain and the repercussions of this death and other effects in adulthood. We review the evidence indicating a relationship between exposure to ASMs and the manifestation of associated psychiatric comorbidities in adulthood and discuss some possible mechanisms underlying the induction of this process by morphological and physiological changes in the related behaviors.
Collapse
Affiliation(s)
- M S Oliveira
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - R A Fernandes
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - L S Pinto
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - O W de Castro
- Departament of Physiology, Institute of Biological Science and Health, Universidade Federal de Alagoas - UFAL, Brazil
| | - V R Santos
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| |
Collapse
|
11
|
Qi G, Tang H, Hu J, Kang S, Qin S. Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. Neural Regen Res 2025; 20:1599-1612. [PMID: 38934388 PMCID: PMC11688558 DOI: 10.4103/nrr.nrr-d-23-01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianian Hu
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Orellana AM, Port's NMS, de Sá Lima L, Leite JA, Andreotti DZ, Kinoshita PF, Cantanzaro AB, Neto JAM, Scavone C, Kawamoto EM. Ouabain increases neuronal differentiation of hippocampal neural precursor cells. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100147. [PMID: 40166632 PMCID: PMC11957680 DOI: 10.1016/j.crneur.2025.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Natacha Medeiros S. Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, 74045-155, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Arthur B. Cantanzaro
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - João Agostinho M. Neto
- Laboratory of Cancer biology and Antineoplastic agents. Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| | - Elisa M. Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, Brazil
| |
Collapse
|
13
|
Peng XQ, Guo HS, Zhang X, Wu XY, Ruganzu JB, Wu SD, Zhao MT, Li L, Yang Y, Ji SF, Yang WN, Ren PY. TREM2 promotes hippocampal neurogenesis through regulating microglial M2 polarization in APP/PS1 mice. Exp Neurol 2025; 388:115205. [PMID: 40049315 DOI: 10.1016/j.expneurol.2025.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) mainly expressed on microglia in the brain, and its mutations can increase the risk of Alzheimer's disease (AD). Upregulation or activation of TREM2 has been found to ameliorate several pathological features of AD, such as the reduction of amyloid beta (Aβ) plaques and tau hyperphosphorylation. However, the effects of TREM2 on neurogenesis are little understood. Here, we aimed to investigate the effects of TREM2 on hippocampal neurogenesis associated with microglial M2 polarization in APP/PS1 mice. Lentivirus vectors were used to interfere with the expression of TREM2 on microglia in the hippocampus of APP/PS1 mice and BV2 cells. The supernatant was collected from BV2 cells as a conditioned medium (CM) to culture neural stem cells (NSCs) in vitro. Upregulation of TREM2 partially salvaged the proliferation of NSCs and the decrease of the number of immature/mature neurons in the hippocampus of APP/PS1 mice, which was accompanied by an improvement in cognitive ability. Furthermore, upregulation of TREM2 increased the M2 microglia marker CD206, brain-derived neurotrophic factor (BDNF), and anti-inflammatory factors, while decreased the M1 microglia markers CD16/32 and CD86 and pro-inflammatory factors in vivo and in vitro. Importantly, the upregulation of TREM2 also led to a significant increase in the phosphorylation of PI3K and Akt. In vitro, treatment with LY294002, a PI3K inhibitor, abolished the beneficial effects of TREM2 on shifting microglia from M1 to M2 and the proliferation and differentiation of NSCs. Taken together, these findings indicated that upregulation of TREM2 activated the PI3K/Akt signaling pathway to promote microglial M2 polarization and led to the secretion of more BDNF, accompanied by an improved hippocampal neurogenesis and spatial cognitive function in APP/PS1 mice. Thus, TREM2 might be a promising target for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Qian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Song Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiang-Yuan Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Song-Di Wu
- Department of Neurology and Neuro-ophthalmology, The First Affiliated Hospital of Northwest University (The First Hospital of Xi'an), Xi'an 710002, China; Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an 710002, China
| | - Ming-Tao Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Zonglian College, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Zonglian College, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yang Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sheng-Feng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei-Na Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Peng-Yu Ren
- Institute of Medical Artificial Intelligence, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
14
|
Dabbaghi MM, Fadaei MS, Goldoozian M, Fadaei MR, Baradaran Rahimi V, Askari VR. Promising impacts of Achillea spp., beyond A medicinal plant, against toxins, toxicities, and injuries: In vivo and in vitro mechanisms. Biochem Biophys Rep 2025; 42:102023. [PMID: 40330076 PMCID: PMC12051127 DOI: 10.1016/j.bbrep.2025.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Natural toxins produced by various living organisms pose significant risks to health, food security, and environmental balance through inhalation, ingestion, and other exposure routes. This review focuses on the ameliorative effects of different Achillea species, which comprise over 130 perennial herbs known for their therapeutic properties. A systematic examination of data from Scopus, PubMed, and Web of Science was conducted, encompassing various studies without date restrictions, ensuring a comprehensive selection of articles based on full-text availability. The results of this study indicate that Achillea millefolium exhibits anti-hyperglycemic and anti-hyperlipidemic properties, enhances collagen proliferation regulation, suppresses inflammatory responses, and displays significant antioxidant activity. Similarly, A. wilhelmsii has been shown to have hepatoprotective effects, as evidenced by reduced malondialdehyde levels and increased total thiol concentrations. A. fragrantissima has also been demonstrated to have cardioprotective effects, with a decrease in inflammatory markers and edema levels. The protective benefits of other species within the Achillea genus extend to various toxins. This comprehensive review underscores the potential of Achillea species as natural remedies for combating toxicities and promoting health.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maral Goldoozian
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Kim E, Tanzi RE, Choi SH. Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. Neural Regen Res 2025; 20:1555-1564. [PMID: 38993140 PMCID: PMC11688551 DOI: 10.4103/nrr.nrr-d-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Martins YA, Cardinali CAEF, Torrão AS. Age-related differences in long-term memory performance and astrocyte morphology in rat hippocampus. Neurobiol Aging 2025; 150:19-43. [PMID: 40043468 DOI: 10.1016/j.neurobiolaging.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.
Collapse
Affiliation(s)
- Yandara A Martins
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| | | | - Andréa S Torrão
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Aggarwal R, Kumar P, Kumar S, Tiwari S, Chaturvedi RK. Synthesis and biological evaluation of novel Trifluoromethylated Arylidene-hydrazinyl-thiazoles as neuroprotective agents. Bioorg Chem 2025; 159:108390. [PMID: 40139118 DOI: 10.1016/j.bioorg.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Neurodegenerative diseases, a substantial global health challenge affecting millions, underscore the pressing need for novel and effective pharmacotherapeutic drugs to address these disorders. In this concern, a library of novel trifluoromethylated arylidene-hydrazinyl-thiazoles has been synthesized and assessed for their anti-neurodegenerative potential. Multicomponent regioselective chemical transformation has been carried out utilizing thiosemicarbazide, trifluoromethylated 1,3-diketones and heteroaryl aldehydes in the presence of N-bromosuccinimide (NBS) in refluxing ethanol. The regioisomeric structure of the synthesized products was unambiguously characterized by employing heteronuclear 2D NMR spectroscopic studies. All the synthesized derivatives were evaluated for their anti-neurodegenerative properties on rat brain hippocampus-derived Neural Stem Cells (NSCs), examining their impact on survival, proliferation and neuronal differentiation in vitro. Among the tested thiazole derivatives, compounds 4a, 4b, 4c, 4f, 4 g, 4b' and 4i' demonstrated a remarkable increase in the number of neuronal cells as compared to the control group within the NSC culture and also exhibited the ability to promote NSC differentiation towards the neuronal lineage. Additionally, the selected compounds showed protection against amyloid beta (Aβ)-induced neurotoxicity in NSCs culture. Incorporating the trifluoromethyl group into the thiazole scaffold is a pivotal factor in augmenting biopotency, resulting in a marked increase in the count of neuronal cells compared to their non-fluorinated thiazole counterparts.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India; Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India.
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Pan W, Xu LF, Wang YX, Wang YJ, Wang JQ, Qian X, Zhou CZ, Wang H, Fan XH, Wang J. FOXG1 Improves Cognitive Function in Alzheimer's Disease by Promoting Endogenous Neurogenesis. FASEB J 2025; 39:e70582. [PMID: 40297942 DOI: 10.1096/fj.202403299rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Strategies aimed at enhancing the capacity of neural stem cells (NSCs) to generate multipotential, proliferative, and migratory cell populations capable of efficient neuronal differentiation are crucial for structural repair following neurodegenerative damage. The role of Forkhead-box gene 1 (FOXG1) in pattern formation, cell proliferation, and specification has been established. However, its involvement in Alzheimer's disease (AD) remains largely unknown. Here, we investigated the association between Foxg1 gene variants and AD-like behavioral deficits, amyloid-β (Aβ) aggregate formation, as well as p21 expression. Furthermore, we explored whether targeting the FOXG1-regulated cell cycle contributes to the promotion of adult neurogenesis in the context of AD. In this study, we successfully induced overexpression of FOXG1 in the hippocampus of AD brains through adeno-associated virus-Foxg1 infusion. Activation of FOXG1 rescued spatial learning disabilities, short-term memory deficits, and sensorimotor gating impairments observed in AD transgenic animals. By inhibiting p21 WAF1/cyclin-dependent kinase interacting protein 1 (p21cip1/waf1)-mediated cell cycle arrest, FOXG1 facilitates the activation and proliferation of NSCs. Additionally, the Foxg1 gene promotes an increase in precursor population size and enhances neuroblast differentiation. These combined effects on proliferation and differentiation lead to the generation of postmitotic neurons within the hippocampus in AD animals. Together, these findings demonstrate the importance of cooperation between FOXG1 and p21 for maintaining NSC self-renewal while facilitating neuronal lineage progression and contributing to endogenous neurogenesis during AD. Elevating levels of FOXG1 either pharmacologically or through alternative means could potentially serve as a therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Wen Pan
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Long-Fei Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu-Xin Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yi-Jie Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Qing Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Cheng-Zhi Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hua Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Zhenjiang Jieshengrui Biotechnology Co., Ltd, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiao-Hua Fan
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia Wang
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Zhenjiang Jieshengrui Biotechnology Co., Ltd, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Yalçin T, Kaya S. Effect of thymoquinone on hippocampal spexin levels in cisplatin-induced rats. Neurol Res 2025:1-9. [PMID: 40340641 DOI: 10.1080/01616412.2025.2504158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Neurotoxicity is a known side effect of the chemotherapeutic drug cisplatin (CIS). Thymoquinone (THQ) is a natural compound with strong neuroprotective, antioxidant, and anti-inflammatory effects. The objective of this study is to ascertain the impact of CIS on histopathological, biochemical, and spexin (SPX) immunoreactivity in the hippocampus, and to determine whether THQ has a protective role against these effects.Twenty-eight male Sprague - Dawley rats (8-10 weeks old,200 ± 20 g) were used in the study and randomly divided into four groups (n = 7): control (no administration), CIS (7 mg/kg on the first day), CIS+THQ (7 mg/kg CIS on the first day + 10 mg/kg/day THQ), and THQ (10 mg/kg/day THQ). On the 15th day, the rats were sacrificed. Hippocampus tissue samples were used for biochemical, histological, and immunohistochemical analyses. CISadministration significantly increased interleukin-6 (IL-6), malondialdehyde(MDA), histopathological changes, and SPX immunoreactivity in the hippocampus.THQ treatment was found to significantly reduce the adverse effects of.THQ treatment demonstrated neuroprotective effects againstCIS-induced damage in the hippocampus by modulating antioxidant activity, inflammatory response, and SPX immunoreactivity. We suggest that SPX, whose role and mechanism of action in cognitive, physiological, and pathological processes remains unclear, plays an active role in hippocampus-related functions. Further and more comprehensive studies on SPX are warranted.
Collapse
Affiliation(s)
- Tuba Yalçin
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| |
Collapse
|
20
|
Huang D, Lv J, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Combining Metabolomics and Quantitative Analysis to Investigate Purine Metabolism Disorders in Depression and the Therapeutic Effect of Chaigui Granules. ACS Chem Neurosci 2025; 16:1749-1766. [PMID: 40209102 DOI: 10.1021/acschemneuro.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
Depression is a complex mental disorder. Studies have shown that purine metabolism disorders in depression and regulation of purine metabolites and related purinergic receptors may be an effective way to alleviate depression. Chaigui granules (CG) are a Chinese medicine prescription with antidepressant effects. Its antidepressant effect has been shown to be related to the improvement of purine metabolism disorders in depression. In this study, exogenous purine metabolite adenosine supplementation and adenosine A1 receptor antagonist (DPCPX) were employed to investigate the potential of Chaigui granules to exert an antidepressant effect by examining the behavioral indices of CUMS rats. The aim of this study was to determine whether the antidepressant effect of Chaigui granules is mediated by A1R receptors using DPCPX, an A1R receptor antagonist. Nontargeted metabolomic analysis was employed to compare and analyze the alterations in the metabolic profile of plasma and peripheral blood mononuclear cells (PBMCs) in each experimental group. Subsequently, combining the results from the metabolomics profile, targeted metabolomics was employed to identify key metabolites for purine metabolism. The objective was to investigate the effects of Chaigui granules, exogenous adenosine supplementation, and DPCPX on purine metabolism in depressed rats. Finally, the relevant signal pathways were validated by molecular biological means. The results of the depression-like behavior indicate that the antidepressant efficacy of Chaigui granules was associated with the modulation of adenosine and adenosine A1 receptor. Metabolomic analysis demonstrated that the Chaigui granule and adenosine exerted a pronounced regulatory effect on purine metabolism, and the regulatory effect on peripheral blood mononuclear cells (PBMCs) was markedly superior to that observed in plasma. In addition, targeted quantitative analysis showed that all eight purine metabolites were reversed after the administration of Chaigui granules and adenosine. Concurrently, the administration of an adenosine A1 receptor antagonist may serve to mitigate the regulatory impact of Chaigui granules on purine metabolites. Finally, the molecular biological results indicate that the antidepressant effect of Chaigui granules may be mediated by the A1R receptor, and it can play an antidepressant role by regulating the CAMP-PKA-CREB-BDNF pathway.
Collapse
Affiliation(s)
- Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Jiale Lv
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
21
|
Zhang J, Liu T, Wu H, Wei J, Qu Q. Identification of NDUFV2, NDUFS7, OPA1, and NDUFA1 as biomarkers for Alzheimer's disease: Insights from oxidative stress and mitochondrial dysfunction in the hippocampus. J Alzheimers Dis 2025:13872877251339771. [PMID: 40329774 DOI: 10.1177/13872877251339771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BackgroundAlzheimer's disease (AD) is characterized by amyloid-β deposits, neurofibrillary tangles, and hippocampal neurodegeneration, with oxidative stress and mitochondrial dysfunction playing critical roles in its pathogenesis. Identifying hub genes associated with these processes could advance biomarker discovery and therapeutic strategies.ObjectiveThis study aimed to identify key oxidative stress- and mitochondrial dysfunction-related genes in the AD hippocampus, evaluate their diagnostic potential, and explore therapeutic agents targeting these genes.MethodsWe analyzed datasets GSE48350 and GSE5281, encompassing 56 controls and 29 AD patients. Weighted gene co-expression network analysis (WGCNA) selected genes with significance (adjusted p-value < 0.05 and |logFC| ≥ 0.5). Further studies involved immune cell infiltration, Gene set enrichment analysis (GSEA), and intersecting differentially expressed genes (DEGs) with oxidative stress-related genes (ORGs) and mitochondrial dysfunction-related genes (MDRGs). Functional enrichment and Protein-protein interaction (PPI) analyses were conducted. Experimental validation was done in AD mouse models, and diagnostic potential was tested using datasets GSE28146 and GSE29652. Therapeutic drugs were predicted based on hub genes.ResultsAD showed altered immune cell expression. GSEA linked DEGs to nervous system processes and neurotransmitters. 194 oxidative stress-related DEGs were enriched in neuronal death and mitochondrial processes. PPI analysis identified 24 DEGs related to both oxidative stress and mitochondrial dysfunction (DEO-MDRGs), with diagnostic potential (AUC > 0.5). LASSO regression selected four DEO-MDRGs: NDUFV2, NDUFS7, OPA1, and NDUFA1. Their protein levels were reduced in AD mice with decreased mitochondrial function. These genes showed good diagnostic performance. Potential drugs, like ME-344 and metformin hydrochloride, may be useful in AD treatment.ConclusionsNDUFV2, NDUFS7, OPA1, and NDUFA1 can serve as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Junshi Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianshe Wei
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Yang W, Ma K, Yin S, Wang W, An H, Huang Y, Guo H, Ao L, Yang Z, Zhang F. Multiomic Landscape of Primary Hypothyroidism Induced by Subchronic Exposure to Low-Dose Novel PFOS Substitute OBS in Human and Murine Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8329-8344. [PMID: 40178189 DOI: 10.1021/acs.est.4c10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) as a novel surrogate for perfluorooctanesulfonate (PFOS) has been extensively utilized in industrial manufacturing and daily life. However, studies on OBS-induced environmental health risks of obstructive biosynthesis (OBS) are currently limited, particularly the risk for thyroid diseases. Following the construction of in vivo (mouse) and in vitro (normal human primary thyrocytes) models of subchronic low-dose OBS exposure, we explored the thyroid-disrupting effects of OBS through multiomics approaches and experimental validations. Our results showed that subchronic exposure to low doses of OBS led to primary hypothyroidism in mice, presenting with reduced number and functional abnormalities of thyrocytes. Further in vitro assays confirmed that low-dose OBS-induced disulfidptosis, a newly discovered form of programmed cell death, in human primary thyrocytes. Meanwhile, exposure to low-dose OBS remarkably suppressed thyroid hormone synthesis pathways in mouse and human thyrocytes. The charted multiomic landscape of OBS-induced primary hypothyroidism in mammals revealed the thyroid toxicity and endocrine-disrupting properties of OBS, suggesting that it is not a safe alternative to PFOS.
Collapse
Affiliation(s)
- Wang Yang
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ke Ma
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
- Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Supeng Yin
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Weihua Wang
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Huihui An
- Medical Research Center, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Yinde Huang
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Lin Ao
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Fan Zhang
- Chongqing Specialized Center for Diagnosis and Treatment of Thyroid Nodules and Thyroid Cancer, Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
- Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
23
|
Ferreira GAM, Pinto LAM. Neural Stem Cell-Derived Astrogliogenesis: The Hidden Player of the Adult Hippocampal Cytogenic Niche. Glia 2025. [PMID: 40326621 DOI: 10.1002/glia.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The adult mammalian brain exhibits remarkable forms of neural plasticity, enabling it to adapt and reorganize in response to internal and external stimuli. These plastic mechanisms include cytogenesis, the capacity of producing new neuronal and glial cells in restricted brain regions through processes known as neuro- and gliogenesis, respectively. Although many advances have been made in understanding adult brain plastic processes associated with cell genesis, as well as its functional and behavioral implications, most of the evidence is focused on neuronal cells. Even though astrocytes play a critical role in maintaining a neurochemical and electrophysiological homeostasis in the brain and provide a pivotal support to neuronal activity, the molecular mechanisms underlying the formation and functional integration of newly formed astroglial cells are poorly understood. However, some studies have provided key insights into the molecular mechanisms driving the generation of adult neural stem cell (NSC)-derived astrocytes, focusing on the dentate gyrus of the hippocampal cytogenic niche. Recent work has demonstrated that intrinsic and extrinsic factors can modulate astrogliogenesis. In the context of neuropathogenesis, this mechanism may be compromised in the hippocampus, contributing to functional and behavioral impairments. Here, we review the mechanisms underlying NSC-derived hippocampal astrogliogenesis, examining current perspectives on how adult-born astrocytes develop in the adult brain, their functional relevance, and the intricate regulation of the astrogliogenic process.
Collapse
Affiliation(s)
- Gonçalo Alexandre Martins Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Alexandra Meireles Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Bn'ML-Behavioral and Molecular Lab, Braga, Portugal
| |
Collapse
|
24
|
Li MJ, Lan MN, Du YX, Liu Y, Zhang HY, Guo M, Liu SW, Xia HY, Wu ZJ, Zheng HJ. EPRCN exerts neuroprotective function by regulating gut microbiota and restoring gut immune homeostasis in Alzheimer's disease model mice. J Alzheimers Dis 2025:13872877251339762. [PMID: 40325871 DOI: 10.1177/13872877251339762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundNo effective drug treatment is currently available for Alzheimer's disease (AD), highlighting the urgent need to develop efficient therapeutic options. We have developed a formula based on medicine and food homology (MFH) consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN), and demonstrated that it can treat AD by alleviating neuroinflammation and oxidative stress. However, whether EPRCN can improve AD by regulating gut microbiota remains unknown.ObjectiveThe current study aimed to evaluate the effect of EPRCN on regulating gut microbiota and neuroprotection.Methods16S rRNA sequencing was used to assess the structure of gut microbiota. Hematoxylin-eosin (HE) staining, qRT-PCR, and ELISA were used to evaluate gut inflammation. Detected indexes associated with cholinergic dysfunction and neuronal damage to investigate the neuroprotective effects of EPRCN.Results16S rRNA gene analysis revealed that EPRCN remodeled the gut microbiota, inhibited gut metabolic disorders, and promoted CoA biosynthesis in scopolamine-induced mice. EPRCN can ameliorates gut inflammation by activating the cholinergic anti-inflammatory pathway. The results further indicated that EPRCN improved cholinergic dysfunction by inhibiting the activity of acetylcholinesterase and restoring cholinergic receptors. Additionally, EPRCN administration suppressed the neuronal loss and elevated brain derived neurotrophic factor expression in hippocampus. Correlation analysis found that alteration of several gut microbes was associated with indexes improved by EPRCN.ConclusionsThese findings suggest that EPRCN may serve as a promising dietary intervention for treating AD by regulating the microbiota-gut-brain axis and exerting neuroprotective function.
Collapse
Affiliation(s)
- Ming-Jie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zheng-Jun Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
25
|
Dong L, Qi Y, Luan M, Liu Q, Wang M, Tian C, Zheng Y. A multi-channel implantable micro-magnetic stimulator for synergistic magnetic neuromodulation. Brain Res 2025:149679. [PMID: 40334964 DOI: 10.1016/j.brainres.2025.149679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/27/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Micro-magnetic stimulation (μMS) is an emerging technology in magnetic neuromodulation. However, for larger brain structures with complex neural pathways, such as deep brain neural clusters, traditional implantable single-point μMS devices are immobile and incapable of multi-regional magnetic modulation. While multi-channel μMS can effectively address this limitation, its large size, difficulty in implantation, and unclear synergistic modulation patterns restrict its application. To tackle these challenges, this study designs a 4 × 4 array micro-coil structure targeted at the deep hippocampal region of the mouse brain. Numerical simulations were performed to analyze the coupling coefficients among the micro-coils and the distribution of the electromagnetic field in the structure, indicating that, with optimized parameters, the effective magnetic stimulation threshold can be achieved. Based on this, a multi-channel μMS device was fabricated, solving key issues such as waterproofing, biocompatibility, and dual-brain-region implantation of both stimulation and recording electrodes. A multi-point synergistic magnetic stimulation protocol was developed. After determining the synergistic magnetic stimulation parameters and effective target positions through in vitro experiments, real-time monitoring of calcium signal changes in the CA1 region of the hippocampus in mice during synergistic magnetic stimulation was performed. The results demonstrate that synergistic magnetic stimulation significantly enhances synaptic plasticity and calcium signal activity. This validates the feasibility of the implantable multi-channel micro-magnetic stimulator.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, 300387 Tianjin, China
| | - Yenan Qi
- School of Electronics & Information Engineering, Tiangong University, 300387 Tianjin, China
| | - Mengying Luan
- School of Life Sciences, Tiangong University, 300387 Tianjin, China
| | - Qiwen Liu
- School of Control Science and Engineering, Tiangong University, 300387 Tianjin, China
| | - Meng Wang
- School of Life Sciences, Tiangong University, 300387 Tianjin, China
| | - Chunxiao Tian
- School of Biomedical Engineering, Tianjin Medical University, 300070 Tianjin, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, 300387 Tianjin, China.
| |
Collapse
|
26
|
Song KW, Lim M, Monje M. Complex neural-immune interactions shape glioma immunotherapy. Immunity 2025:S1074-7613(25)00180-3. [PMID: 40324379 DOI: 10.1016/j.immuni.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Rich neural-immune interactions in the central nervous system (CNS) shape its function and create a unique immunological microenvironment for immunotherapy in CNS malignancies. Far from the now-debunked concept of CNS "immune privilege," it is now understood that unique immunological niches and constant immune surveillance of the brain contribute in multifaceted ways to brain health and robustly influence immunotherapy approaches for CNS cancers. Challenges include immune-suppressive and neurotoxicity-promoting crosstalk between brain, immune, and tumor cells. Developing effective immunotherapies for cancers of the nervous system will require a deeper understanding of these neural-immune-malignant cell interactions. Here, we review progress and challenges in immunotherapy for gliomas of the brain and spinal cord in light of these unique neural-immune interactions and highlight future work needed to optimize promising immunotherapies for gliomas.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
27
|
Snapyan M, Desmeules F, Munro J, Bérard M, Saikali S, Gould PV, Richer M, Pourcher E, Langlois M, Dufresne A, Prud'homme M, Cantin L, Parent A, Saghatelyan A, Parent M. Adult Neurogenesis in the Subventricular Zone of Patients with Huntington's and Parkinson's Diseases and following Long-Term Treatment with Deep Brain Stimulation. Ann Neurol 2025; 97:894-906. [PMID: 39829080 PMCID: PMC12010058 DOI: 10.1002/ana.27181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Parkinson's and Huntington's diseases are characterized by progressive neuronal loss. Previous studies using human postmortem tissues have shown the impact of neurodegenerative disorders on adult neurogenesis. The extent to which adult neural stem cells are activated in the subventricular zone and whether therapeutic treatments such as deep brain stimulation promote adult neurogenesis remains unclear. The goal of the present study is to assess adult neural stem cells activation and neurogenesis in the subventricular zone of patients with Huntington's and Parkinson's diseases who were treated or not by deep brain stimulation. METHODS Postmortem brain samples from Huntington's and Parkinson's disease patients who had received or not long-term deep brain stimulation of the subthalamic nucleus were used. RESULTS Our results indicate a significant increase in the thickness of the subventricular zone and in the density of proliferating cells and activated stem cells in the brain of Huntington's disease subjects and Parkinson's disease patients treated with deep brain stimulation. We also observed an increase in the density of immature neurons in the brain of these patients. INTERPRETATION Overall, our data indicate that long-term deep brain stimulation of the subthalamic nucleus promotes cell proliferation and neurogenesis in the subventricular zone that are reduced in Parkinson's disease. Taken together, our results also provide a detailed characterization of the cellular composition of the adult human subventricular zone and caudate nucleus in normal condition and in Parkinson's and Huntington's diseases and demonstrate the plasticity of these regions in response to neurodegeneration. ANN NEUROL 2025;97:894-906.
Collapse
Affiliation(s)
| | - Francis Desmeules
- CERVO Brain Research CentreQuebec CityQuebecCanada
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | | | | | - Stephan Saikali
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Peter V. Gould
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Maxime Richer
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Emmanuelle Pourcher
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Mélanie Langlois
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Anne‐Marie Dufresne
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Michel Prud'homme
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Léo Cantin
- Hôpital de l'Enfant‐Jésus, CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - André Parent
- CERVO Brain Research CentreQuebec CityQuebecCanada
- Department of Psychiatry and NeuroscienceFaculty of Medicine, Université LavalQuebec CityQuebecCanada
| | - Armen Saghatelyan
- CERVO Brain Research CentreQuebec CityQuebecCanada
- Department of Psychiatry and NeuroscienceFaculty of Medicine, Université LavalQuebec CityQuebecCanada
- Department of Cellular and Molecular MedicineFaculty of Medicine, University of OttawaOttawaOntarioCanada
| | - Martin Parent
- CERVO Brain Research CentreQuebec CityQuebecCanada
- Department of Psychiatry and NeuroscienceFaculty of Medicine, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
28
|
Fatima G, Ashiquzzaman A, Kim SS, Kim YR, Kwon HS, Chung E. Vascular and glymphatic dysfunction as drivers of cognitive impairment in Alzheimer's disease: Insights from computational approaches. Neurobiol Dis 2025; 208:106877. [PMID: 40107629 DOI: 10.1016/j.nbd.2025.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is driven by complex interactions between vascular dysfunction, glymphatic system impairment, and neuroinflammation. Vascular aging, characterized by arterial stiffness and reduced cerebral blood flow (CBF), disrupts the pulsatile forces necessary for glymphatic clearance, exacerbating amyloid-beta (Aβ) accumulation and cognitive decline. This review synthesizes insights into the mechanistic crosstalk between these systems and explores their contributions to AD pathogenesis. Emerging machine learning (ML) tools, such as DeepLabCut and Motion sequencing (MoSeq), offer innovative solutions for analyzing multimodal data and enhancing diagnostic precision. Integrating ML with imaging and behavioral analyses bridges gaps in understanding vascular-glymphatic dysfunction. Future research must prioritize these interactions to develop early diagnostics and targeted interventions, advancing our understanding of neurovascular health in AD.
Collapse
Affiliation(s)
- Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Akm Ashiquzzaman
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| |
Collapse
|
29
|
Tchekalarova J, Atanasova D, Krushovlieva D, Barbutska D, Atanasova M, Rashev P, Nenchovska Z, Mourdjeva M, Koeva Y. Age-related memory decline is accelerated by pinealectomy in young adult and middle-aged rats via BDNF / ERK / CREB signalling. Neurochem Int 2025; 185:105960. [PMID: 40043851 DOI: 10.1016/j.neuint.2025.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Memory decline is considered a normal part of aging, while the relationship between melatonin deficiency and cognitive function is complex and not fully understood. The present study investigated the role of melatonin deficiency at different ages on working and short-term recognition and spatial memory in rats. An age-related decline in memory function was tested using the Y-maze, the object recognition test, and the radial arm maze. The brain-derived neurotrophic factor (BDNF), TrkB receptor, the extracellular signal-regulated kinase (ERK)1/2 and pERK1/2 expression in the hippocampus was assessed by immunohistochemistry. The pCREB/CREB ratio in the frontal cortex (FC) and hippocampus was evaluated by ELISA. Young adult and middle-aged rats with pinealectomy had memory impairment whereas old melatonin-deficient rats were unaffected. Aging was associated with reduced expression of BDNF and its receptor throughout the hippocampus and reduced ratio of pCREB/CREB in the FC and hippocampus, whereas pinealectomy exacerbated this process in 3- and 14-month-old rats. The region-specific reduced expression of the ERK1/2 and pERK1/2 was observed in young adult rats with pinealectomy. However, in middle-aged rats, the expression of these signaling molecules was either downregulated or upregulated in different regions of the hippocampus. Our study provides insights into the molecular pathways involved in age-related memory changes associated with melatonin deficiency, highlighting the importance of the BDNF/ERK1/2/CREB pathway in the hippocampus and suggesting a critical period for intervention.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria; Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, 6003, Bulgaria
| | | | - Darina Barbutska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University - Plovdiv, 4002, Bulgaria
| | - Milena Atanasova
- Medical University - Pleven, 1 Kliment Ochridski Str., Pleven, 5800, Bulgaria
| | - Pavel Rashev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria; Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yvetta Koeva
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University - Plovdiv, 4002, Bulgaria
| |
Collapse
|
30
|
Nuovo GJ, Rice M, Zanesi N, Sawant D, Crilly C, Tili E. The Prevention of Fatal Tauopathy in a Mouse Model of Alzheimer Disease by Blocking BCL2. Appl Immunohistochem Mol Morphol 2025; 33:142-151. [PMID: 39931956 DOI: 10.1097/pai.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/09/2025] [Indexed: 05/07/2025]
Abstract
A major goal in Alzheimer disease (AD) research is the reduction of the abnormal tau burden. Using multispectral analyses on brain tissues from humans who died of AD it was documented that neurons with hyperphosphorylated tau protein accumulate many proteins of the BCL2 family, including those that block cell turnover (eg, BCL2, MCL1, BCLXL) and those that promote cell turnover (eg, NOXA, PUMA, BAK, BAX). A mouse model of AD with the humanized hyperphosphorylated tau protein was used to test the hypothesis that shifting this balance to a pro-cell turnover milieu would reduce the tau burden with concomitant clinical improvement. Here, we show that a mouse model of AD with death at 11 to 15 months due to CNS tauopathy had a marked reduction in the tau burden after treatment with the FDA-approved drug venetoclax, which blocks BCL2. The reduction of the number of target neurons positive for hyperphosphorylated tau protein after venetoclax treatment in the brain and spinal cord neurons was 94.5% as determined by immunohistochemistry and 98.1% as documented with the modified Bielchowsky stain. The venetoclax treatment began after documented neurofibrillary tangles (NFTs) were evident and there was a concomitant reduction in neuroinflammation. The treated mice were robust until sacrificed at 13 months as compared with the untreated mice that showed unequivocal evidence of brain and spinal cord damage both clinically and at autopsy. We conclude that otherwise inexorable abnormal tau protein deposition, even after initiation, can be prevented by a drug that blocks one anti-cell turnover protein abundant in the NFTs of human AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Esmerina Tili
- Anesthesiology, Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
31
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
32
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Matthews LC, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights From (Female) Mice and (Wo)men. Biol Psychiatry 2025; 97:900-914. [PMID: 39349155 PMCID: PMC11949853 DOI: 10.1016/j.biopsych.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety affects AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity using the ArcCreERT2 x eYFP (enhanced yellow fluorescent protein) x amyloid precursor protein/presenilin 1 (APP/PS1) (AD) mice. The Alzheimer's Disease Neuroimaging Initiative dataset was used to determine the impact of anxiety on AD progression in humans. RESULTS Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control mice and male mice. Brainwide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3, whereas male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus. In the Alzheimer's Disease Neuroimaging Initiative dataset, anxiety predicted transition to dementia. Female participants positive for anxiety and amyloid transitioned more quickly to dementia than male participants. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction and that personalized medicine may benefit male and female patients with AD rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York; Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Data Science Institute, Columbia University, New York, New York; Department of Psychology, Seoul National University, Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College, Poughkeepsie, New York
| | - Louise C Matthews
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York.
| |
Collapse
|
33
|
Mandino F, Shen X, Desrosiers-Grégoire G, O'Connor D, Mukherjee B, Owens A, Qu A, Onofrey J, Papademetris X, Chakravarty MM, Strittmatter SM, Lake EMR. Aging-dependent loss of functional connectivity in a mouse model of Alzheimer's disease and reversal by mGluR5 modulator. Mol Psychiatry 2025; 30:1730-1745. [PMID: 39424929 PMCID: PMC12015114 DOI: 10.1038/s41380-024-02779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD (AppNL-G-F/hMapt), monitoring brain connectivity by means of resting-state fMRI. While the 4-month-old AD mice are indistinguishable from wild-type controls (WT), decreased connectivity in the default-mode network is significant for the AD mice relative to WT mice by 6 months of age and is pronounced by 9 months of age. In a second cohort of 20-month-old mice with persistent functional connectivity deficits for AD relative to WT, we assess the impact of two-months of oral treatment with a silent allosteric modulator of mGluR5 (BMS-984923/ALX001) known to rescue synaptic density. Functional connectivity deficits in the aged AD mice are reversed by the mGluR5-directed treatment. The longitudinal application of fMRI has enabled us to define the preclinical time trajectory of AD-related changes in functional connectivity, and to demonstrate a translatable metric for monitoring disease emergence, progression, and response to synapse-rescuing treatment.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Bandhan Mukherjee
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ashley Owens
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA
| | - An Qu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - John Onofrey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Urology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale School of Medicine, New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
34
|
Li HS, Liu HJ, Zhang Y, Zhang J, Yan HY, Yuan WC, Wang S, Yu S, Yang SQ, Sun MW, Qi CY, Miao SB, Zhang LP, Guo H, Zhang Y, Ma HJ, Guan Y. Chronic intermittent hypobaric hypoxia prevents pulmonary arterial hypertension through maintaining eNOS homeostasis. Arch Biochem Biophys 2025; 767:110340. [PMID: 39954797 DOI: 10.1016/j.abb.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a pathological condition in which pulmonary artery pressure is elevated which causes patients to die of right heart failure. Chronic intermittent hypobaric hypoxia (CIHH) represents a novel method of intermittently exposing subjects to a simulated plateau hypobaric hypoxia environment. This study investigates the potential preventive and protective effects of CIHH on PAH. MAIN METHODS Male Sprague-Dawley rats were randomly divided into four groups: control group (Con), chronic intermittent hypobaric hypoxia group (CIHH), pulmonary arterial hypertension group (PAH), chronic intermittent hypobaric hypoxia + pulmonary arterial hypertension group (CIHH + PAH). To evaluate the effects of CIHH on PAH, a range of techniques was employed, including pulmonary hemodynamics, vascular reactivity assay, Western blot, RNA sequencing, HE staining and co-immunoprecipitation. KEY FINDINGS CIHH was demonstrated to reduce pulmonary artery constriction and enhance relaxation, reducing the mean pulmonary artery pressure in PAH rats. This is achieved through attenuating the CaM/eNOS (Calmodulin,CaM)protein interaction and increasing the CaV1/eNOS (Caveolin-1,CaV1) protein interaction, thereby preventing eNOS overactivation contribution to improving NO bioavailability in PAH rats. SIGNIFICANCE CIHH prevents PAH by maintaining eNOS homeostasis in PAH rats.
Collapse
Affiliation(s)
- Hai-Shuang Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui-Jie Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han-Yu Yan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei-Cheng Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuo Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sheng-Qiang Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng-Wei Sun
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Can-Yang Qi
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sui-Bing Miao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Ping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
35
|
Miller LN, Walters AE, Denninger JK, Hanson MA, Marshall AH, Johantges AC, Hosawi M, Sebring G, Rieskamp JD, Ding T, Rindani R, Chen KS, Goldberg ME, Senthilvelan S, Volk A, Zhao F, Askwith C, Wester JC, Kirby ED. Neural stem and progenitor cells support and protect adult hippocampal function via vascular endothelial growth factor secretion. Mol Psychiatry 2025; 30:2152-2167. [PMID: 39528687 PMCID: PMC12014380 DOI: 10.1038/s41380-024-02827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis. Here, we asked whether NSPC-derived VEGF alters hippocampal function independent of adult neurogenesis. We found that loss of NSPC-derived VEGF acutely impaired hippocampal memory, caused neuronal hyperexcitability and exacerbated excitotoxic injury. Conversely, we observed that overexpression of VEGF reduced microglial response to excitotoxic injury. We also found that NSPCs generate substantial proportions of total DG VEGF and VEGF disperses widely throughout the DG, both of which help explain how this anatomically-restricted cell population could modulate function broadly. These findings suggest that NSPCs actively support and protect DG function via secreted VEGF, thereby providing a non-neurogenic functional dimension to endogenous NSPCs.
Collapse
Affiliation(s)
- Lisa N Miller
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ashley E Walters
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Meretta A Hanson
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Manal Hosawi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gwendolyn Sebring
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Joshua D Rieskamp
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Tianli Ding
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Raina Rindani
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- UC Health, Cincinnati, OH, USA
| | - Kelly S Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Megan E Goldberg
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Abigail Volk
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
36
|
Manescu MD, Catalin B, Baldea I, Mateescu VO, Rosu GC, Boboc IKS, Istrate‐Ofiteru A, Liliac IM, Streba CT, Kumar‐Singh S, Pirici D. Aquaporin 4 modulation drives amyloid burden and cognitive abilities in an APPPS1 mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e70164. [PMID: 40329616 PMCID: PMC12056304 DOI: 10.1002/alz.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Deficiency in the aquaporin-4 (AQP4) water channel has been linked to impaired amyloid beta (Aβ) clearance. However, a detailed morphopathological analysis of amyloid deposition following AQP4 therapeutic modulation remains unexplored. METHODS Two-month-old amyloid precursor protein presenilin 1 (APPPS1) mice were treated daily for 28 days with either the AQP4 facilitator N-(3-(Benzyloxy)pyridin-2-yl) benzene-sulfonamide (TGN-073) or the AQP4 inhibitor N-(1,3,4-thiadiazol-2-yl)pyridine-3-carboxamide dihydrochloride (TGN-020) (both at 200 mg/kg). Controls included vehicle-treated APPPS1 and WT C57BL/6J mice. Comprehensive histopathological, biochemical, and behavioral analyses were conducted. RESULTS Mice treated with AQP4 facilitator showed a significant reduction in total Aβ, fibrillar deposits, and soluble Aβ, while the AQP4 inhibitor caused a substantial increase in brain Aβ. AQP4-facilitator treatment also reduced Aβ40 levels and Aβ40/Aβ42 ratio, whereas the inhibitor treatment increased both Aβ40 and Aβ42. Additionally, facilitator-treated mice demonstrated reduced anxiety and improved memory performance. DISCUSSION These findings suggest that AQP4 modulation is a promising strategy to enhance Aβ clearance and a potential therapeutic target in Alzheimer's disease. HIGHLIGHTS Intramural periarterial drainage of the interstitial fluid mediated by aquaporin-4 (AQP4) is a key element that ensures clearance of catabolites/Aβ peptide from within the brain parenchyma. Inhibition of AQP4 in an APPPS1 mouse model of AD leads to increased amyloid deposition and deficient behavior compared to untreated transgenic animals. Pharmaceutical facilitation of AQP4 in the same APPPS1 mouse model leads to a massive decrease in amyloid burden and improves the behavioral performance of the animals compared to untreated control APPPS1 mice.
Collapse
Affiliation(s)
| | - Bogdan Catalin
- Department of PhysiologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Ioana Baldea
- Department of PhysiologyIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | | | | | | | | | - Ilona Mihaela Liliac
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Costin Teodor Streba
- Department of PulmonologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Samir Kumar‐Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medical and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Daniel Pirici
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
37
|
Duenias D, Nichyporuk B, Arbel T, Riklin Raviv T. Hyperfusion: A hypernetwork approach to multimodal integration of tabular and medical imaging data for predictive modeling. Med Image Anal 2025; 102:103503. [PMID: 40037055 DOI: 10.1016/j.media.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion.
Collapse
Affiliation(s)
- Daniel Duenias
- Ben Gurion University of the Negev, blvd 1, Beer Sheva 84105, Israel
| | - Brennan Nichyporuk
- Centre for Intelligent Machines, McGill University, 3480 University St, Montreal, QC, H3A 0E9, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Tal Arbel
- Centre for Intelligent Machines, McGill University, 3480 University St, Montreal, QC, H3A 0E9, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | | |
Collapse
|
38
|
Farmand S, Du Preez A, Kim C, de Lucia C, Ruepp MD, Stubbs B, Thuret S. Cognition on the move: Examining the role of physical exercise and neurogenesis in counteracting cognitive aging. Ageing Res Rev 2025; 107:102725. [PMID: 40064399 DOI: 10.1016/j.arr.2025.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Structural and functional aspects of the hippocampus have been shown to be sensitive to the aging process, resulting in deficits in hippocampal-dependent cognition. Similarly, adult hippocampal neurogenesis (AHN), described as the generation of new neurons from neural stem cells in the hippocampus, has shown to be negatively affected by aging throughout life. Extensive research has highlighted the role of physical exercise (PE) in positively regulating hippocampal-dependent cognition and AHN. Here, by critically reviewing preclinical and clinical studies, we discuss the significance of PE in reversing age-associated changes of the hippocampus via modulation of AHN. We indicate that PE-induced changes operate on two main levels. On the first level, PE can potentially cause structural modifications of the hippocampus, and on the second level, it regulates the molecular and cellular pathways involved. These changes result in the vascular remodelling of the neurogenic niche, as well as the secretion of neurotrophic and antioxidant factors, which can in turn activate quiescent neural stem cells, while restoring their proliferation capacity and boosting their survival - features which are negatively impacted during aging. Understanding these mechanisms will allow us to identify new targets to tackle cognitive aging and improve quality of life.
Collapse
Affiliation(s)
- Sahand Farmand
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Curie Kim
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; UK Dementia Research Institute at King's College London, London, United Kingdom
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
39
|
Wang Y, Zhou Y, Liu J, Liu C, Li Z, Sun X. Temporal and spatial expression of Phosphodiesterase-4B after sciatic nerve compression in rats and its mechanism of action on sciatic nerve repair. Neurochem Int 2025; 185:105940. [PMID: 39914666 DOI: 10.1016/j.neuint.2025.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Macrophage phenotype transformation is vital in sciatic nerve injury. The study of biomolecule expression and its impact on macrophage phenotype transformation is a current research focus. MATERIAL AND METHODS We created a rat model of sciatic nerve compression injury to examine the expression of PDE4B and the distribution of M1 and M2 macrophages over time and their relationship. We confirmed the effect of inhibiting PDE4B expression on macrophage phenotype changes and its role in sciatic nerve injury repair. The experiments consisted of immunofluorescence, western blotting, HE staining, TEM, and behavioral evaluation. Investigate in vivo experiment results with RAW264.7 cells in vitro. PDE4B knockdown lentivirus was transfected into RAW264.7 cells and stimulated with LPS and IFN-γ. We assessed CD86 and CD206 expression using flow cytometry and western blot. The relationship between PDE4B and the TLR4/NF-κB pathway was studied. RESULTS PDE4B peaked on day 7 after surgery, alongside the highest M1 macrophages count. PDE4B and M1 macrophages decreased, and M2 macrophages increased. PDE4B inhibition reduced M1 macrophages, increased M2 macrophages, suppressed inflammation, and promoted sciatic nerve repair while alleviating pain. In vitro experiments confirmed that PDE4B regulated macrophage phenotype via the TLR4/NF-κB pathway. Inhibiting PDE4B disrupted this pathway and promoted M2 macrophage transformation. CONCLUSIONS In the sciatic nerve injury, PDE4B expression is linked to the M1 macrophage phenotype. Low PDE4B expression facilitates the M1 to M2 macrophage transformation and supports sciatic nerve repair. The TLR4/NF-κB pathway is involved in this process.
Collapse
Affiliation(s)
- Yufei Wang
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youfei Zhou
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jinhao Liu
- The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
| | - Chen Liu
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zirui Li
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xuehua Sun
- Pain Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| |
Collapse
|
40
|
Lu J, Chen K, Lin H, Ju Z, Ge J, Lu J, Guan Y, Guo Q, Chu S, Zhao Q, Zuo C, Wu P. Phenotype-specific metabolic patterns in Posterior cortical atrophy and early-onset typical Alzheimer's disease. Ann Nucl Med 2025; 39:506-517. [PMID: 40019732 DOI: 10.1007/s12149-025-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Posterior cortical atrophy (PCA) is generally considered an atypical variant of Alzheimer's disease (AD) and is an important component of early-onset AD. Symptomatologic heterogeneity has led to a high rate of misdiagnosis or delayed diagnosis of early-onset AD. We sought to establish the phenotypic-specific metabolic patterns of PCA and early-onset typical AD (tAD) and to assess whether phenotype-specific neuroimaging biomarkers are more valuable for disease recognition. METHODS Patients accepting 18F-FDG PET with an onset age younger than 65 years (PCA, n = 40; early-onset tAD, n = 37; behavioral variant frontotemporal dementia (bv-FTD), n = 35) and healthy controls (HCs, n = 30) were enrolled and divided into two cohorts for pattern establishment and validation, respectively. Similarities and differences between patterns were assessed by pattern topography, expression, classification performance and correlation with clinical severity. RESULTS PCA-related pattern (PCARP) was characterized by extensively relative hypometabolism in the parietal lobe, occipital lobe, temporal lobe, cingulate gyrus, and relative hypermetabolism mainly in vermis, thalamus. Early-onset tAD-related pattern (EOtADRP) was characterized by relative hypometabolism mainly in the middle frontal gyrus, angular gyrus, precuneus, middle temporal gyrus, cingulate gyrus, caudate, and relative hypermetabolism mainly in vermis, thalamus, postcentral gyrus. PCARP and EOtADRP were closely related in topography (r = 0.909, P < 0.001) and expression (r = 0.862, P < 0.001). High accuracies in distinguishing corresponding patient group from HC were found in both, while only PCARP was capable of phenotype discrimination (PCA versus early-onset tAD; area under the receiver operating characteristic curve [AUC] = 0.84-0.88 for PCARP, AUC = 0.57-0.62 for EOtADRP) and distinguishment between PCA/early-onset tAD and bv-FTD (AUC = 1.00/0.91 for PCARP, AUC = 0.73/0.62 for EOtADRP). PCARP showed great potential in detecting clinical severity in both phenotypes whereas EOtADRP only worked in early-onset tAD. CONCLUSION PCARP outperformed EOtADRP in phenotype discrimination with better potential in severity assessment.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Keliang Chen
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, No.12, Middle Wulumuqi Road, Shanghai, 200040, China
| | - Huamei Lin
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
| | - Zizhao Ju
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People'S Hospital, Shanghai, China
| | - Shuguang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No.150, Jimo Road, Shanghai, 200120, China.
| | - Qianhua Zhao
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Neurology, Huashan Hospital, Fudan University, No.12, Middle Wulumuqi Road, Shanghai, 200040, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, No.518, East Wuzhong Road, Shanghai, 200235, China.
- National Center for Neurological Disorders & National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Butovsky O, Rosenzweig N. Alzheimer's disease and age-related macular degeneration: Shared and distinct immune mechanisms. Immunity 2025:S1074-7613(25)00176-1. [PMID: 40324382 DOI: 10.1016/j.immuni.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) represent the leading causes of dementia and vision impairment in the elderly, respectively. The retina is an extension of the brain, yet these two central nervous system (CNS) compartments are often studied separately. Despite affecting cognition vs. vision, AD and AMD share neuroinflammatory pathways. By comparing these diseases, we can identify converging immune mechanisms and potential cross-applicable therapies. Here, we review immune mechanisms highlighting the shared and distinct aspects of these two age-related neurodegenerative conditions, focusing on responses to hallmark disease manifestations, the opposite role of overlapping immune risk loci, and potential unified therapeutic approaches. We also discuss unique tissue requirements that may dictate different outcomes of conserved immune mechanisms and how we can reciprocally utilize lessons from AD therapeutics to AMD. Looking forward, we suggest promising directions for research, including the exploration of regenerative medicine, gene therapies, and innovative diagnostics.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Fang CW, Hsieh CY, Yang HY, Tsai CF, Sung SF. Comparative effectiveness and safety of direct oral anticoagulants in atrial fibrillation patients with dementia. Thromb Res 2025; 250:109332. [PMID: 40311503 DOI: 10.1016/j.thromres.2025.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/05/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION Patients with atrial fibrillation (AF) and dementia face unique challenges in stroke prevention, particularly in selecting appropriate anticoagulation therapy. Direct oral anticoagulants (DOACs) effectively reduce stroke and embolism risks, but evidence comparing their effectiveness and safety in this population remains limited. METHODS This retrospective, population-based cohort study used data from Taiwan's National Health Insurance Research Database to evaluate outcomes of four DOACs (dabigatran, apixaban, edoxaban, and rivaroxaban) in AF patients with dementia aged 50 years or older. We used propensity score matching to balance baseline characteristics across six DOAC comparison pairs. RESULTS Dabigatran demonstrated superior outcomes, reducing the composite risk of ischemic stroke, acute myocardial infarction, intracranial hemorrhage, major bleeding, and all-cause mortality compared to apixaban (hazard ratio [HR], 0.82; 95 % confidence interval [CI], 0.73-0.92), edoxaban (HR, 0.81; 95 % CI, 0.71-0.92), and rivaroxaban (HR, 0.82; 95 % CI, 0.73-0.91). It also showed lower risks of intracranial hemorrhage and all-cause mortality. Sensitivity analyses excluding patients with nasogastric tubes or severe renal impairment showed smaller differences in overall outcomes but maintained dabigatran's advantage in reducing intracranial hemorrhage risk. CONCLUSIONS This study demonstrates the need for tailored anticoagulation strategies in this vulnerable population, with dabigatran emerging as a potentially safer and more effective option for stroke prevention in AF patients with dementia. Future research should examine individual DOAC effects across diverse clinical settings to optimize treatment outcomes.
Collapse
Affiliation(s)
- Chen-Wen Fang
- Department of Neurology, National Taiwan University Hospital, Yunlin Branch, Douliu City, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
| | - Hsin-Yi Yang
- Clinical Data Center, Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Ching-Fang Tsai
- Clinical Data Center, Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Zhang Q, Yi Y, Chen T, Ai Y, Chen Z, Liu G, Tang Z, Chen J, Xu T, Chen X, Liu J, Xia Y. M2 microglia-derived small extracellular vesicles modulate NSC fate after ischemic stroke via miR-25-3p/miR-93-5p-TGFBR/PTEN/FOXO3 axis. J Nanobiotechnology 2025; 23:311. [PMID: 40270025 PMCID: PMC12020034 DOI: 10.1186/s12951-025-03390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Endogenous neurogenesis could promote stroke recovery. Furthermore, anti-inflammatory phenotypical microglia (M2-microglia) could facilitate Neural Stem Cell (NSC)-mediated neurogenesis following Ischemic Stroke (IS). Nonetheless, the mechanisms through which M2 microglia influence NSC-mediated neurogenesis post-IS remain unclear. On the other hand, M2 microglia-derived small Extracellular Vesicles (M2-sEVs) could exert phenomenal biological effects and play significant roles in cell-to-cell interactions, highlighting their potential involvement in NSC-mediated neurogenesis post-IS, forming the basis of this study. METHODS M2-sEVs were first isolated from IL-4-stimulated microglia. For in vivo tests, M2-sEVs were intravenously injected into mice every day for 14 days after transient Middle Cerebral Artery Occlusion (tMCAO). Following that, the infarct volume and neurological function, as well as NSC proliferation in the Subventricular Zone and dentate gyrus, migration, and differentiation in the infarct area, were examined. For in vitro tests, M2-sEVs were administered to NSC subjected to Oxygen-Glucose Deprivation (OGD) and then reoxygenation, after which NSC proliferation and differentiation were assessed. Finally, M2-sEVs were subjected to microRNA sequencing to explore the regulatory mechanisms. RESULTS Our findings revealed that M2-sEVs reduced the infarct volume and increased the neurological score in mice post-tMCAO. Furthermore, M2-sEV treatment promoted NSC proliferation and neuronal differentiation both in vivo and in vitro. Additionally, microRNA sequencing revealed miR-93-5p and miR-25-3p enrichment in M2-sEVs. Inhibitors of these miRNAs prevented TGFBR, PTEN, and FOXO3 downregulation in NSC, reversing M2-sEVs' beneficial effects on neurogenesis and sensorimotor recovery. CONCLUSIONS M2-sEVs increased NSC proliferation and neuronal differentiation, and protected against IS, at least partially, via delivering miR-25-3p and miR-93-5p to downregulate TGFBR, PTEN, and FOXO3 expression in NSC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Yan Yi
- Reproductive Medicine Center, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Tiange Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ying Ai
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ziyang Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ganzhi Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Zexuan Tang
- School of Graduate Studies, Biomedical Science - Dental Scholars Track Program, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, 07103, USA
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| |
Collapse
|
44
|
Yokoyama K, Mukkatt J, Mathewson N, Fazzolari MD, Hackert VD, Ali MM, Monichan AC, Wilson AJ, Durisile BC, Neuwirth LS. Oligomer sensitive in-situ detection and characterization of gold colloid aggregate formations observed within the hippocampus of the Alzheimer's disease rat. Neurosci Lett 2025; 855:138218. [PMID: 40147752 DOI: 10.1016/j.neulet.2025.138218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In order to better understand the dynamics governing the formation of pathological oligomers leading to Alzheimer's disease (AD) in a rat model the present study examined the protein aggregates accumulating on gold colloids in the hippocampus. Sections of the hippocampus of the Long Evans Cohen's AD(+) rat model were mixed with gold colloids and the resulting aggregates were examined by Surface Enhanced Raman Scattering (SERS) imaging. Compared to AD(-) rat tissues, the AD(+) rat hippocampal tissues produced a larger sized gold colloid aggregates. The SERS spectrum of each hippocampal section exhibited similar spectral patterns in the Amide I, II, and III band regions, but showed distinct spectral patterns in the region between 300 cm-1 - 1250 cm-1 in AD(+) rat tissues, respectively. Amyloid fibrils with a β-sheet conformation were previously reported to form gold colloid aggregates in mouse and human AD brain tissues. The gold colloid aggregates in the AD (+) rat hippocampal brain sections showed distinct morphological traits compared to those observed in AD(-) rats. This suggests that there is a spatial distribution of oligomer concentration in the hippocampus, which induces fibril formation to disrupt neuronal networks within the hippocampus and between other parts of the brain.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA.
| | - Joel Mukkatt
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Nicole Mathewson
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Marc D Fazzolari
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Victoria D Hackert
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Mohamed M Ali
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Abel C Monichan
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Agnes J Wilson
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Benjamin C Durisile
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Lorenz S Neuwirth
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| |
Collapse
|
45
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
46
|
Luse MA, Schug WJ, Dunaway LS, Nyshadham S, Loeb SA, Carvalho A, Tessema R, Pavelic C, Keller TCS, Shu X, Ruddiman CA, Kosmach A, Sveeggen TM, Mitchell R, Bagher P, Minshal RD, Leitnger N, Columbus L, Levental KR, Levental I, Cortese-Krott M, Isakson BE. Nitrosation of CD36 Regulates Endothelial Function and Serum Lipids. Arterioscler Thromb Vasc Biol 2025. [PMID: 40242868 DOI: 10.1161/atvbaha.124.321964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND During obesity, endothelial cells (ECs) become lipid laden, leading to endothelial dysfunction. We tested posttranslational modification on CD36 that may regulate EC lipid accumulation. METHODS We used an EC-specific Cav1 (caveolin-1) knockout mouse, nitrosation and palmitoylation assays, and whole animal Nγ-nitro-l-arginine methyl ester administration to examine blood lipids. RESULTS EC-specific Cav1 knockout male mice are hyperlipidemic regardless of diet but retain endothelial cell function. We found these mice have significantly increased NO in response to the lack of Cav1, and the presence or absence of NO toggled inversely EC lipid content and plasma lipid in mice. The NO nitrosated the fatty acid translocase CD36 at the same cysteines that are palmitoylated on CD36. The nitrosation of CD36 prevented its trafficking to the plasma membrane and decreased lipid accumulation. The physiological effect of this mechanism was a reliance on NO for endothelial function and not dilation. CONCLUSIONS This work suggests that CD36 nitrosation occurs as a protective mechanism to prevent EC lipotoxicity.
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Wyatt J Schug
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Alicia Carvalho
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Rachel Tessema
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Caitlin Pavelic
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, China (X.S.)
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Anna Kosmach
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Timothy M Sveeggen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Ray Mitchell
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Pooneh Bagher
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | | | - Norbert Leitnger
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville (L.C.)
| | - Kandice R Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Ilya Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | | | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| |
Collapse
|
47
|
Morrissey ZD, Kumar P, Phan TX, Maienschein-Cline M, Leow A, Lazarov O. Neurogenesis drives hippocampal formation-wide spatial transcription alterations in health and Alzheimer's disease. FRONTIERS IN DEMENTIA 2025; 4:1546433. [PMID: 40309339 PMCID: PMC12041076 DOI: 10.3389/frdem.2025.1546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The mechanism by which neurogenesis regulates the profile of neurons and glia in the hippocampal formation is not known. Further, the effect of neurogenesis on neuronal vulnerability characterizing the entorhinal cortex in Alzheimer's disease (AD) is unknown. Here, we used in situ sequencing to investigate the spatial transcription profile of neurons and glia in the hippocampal circuitry in wild-type mice and in familial AD (FAD) mice expressing varying levels of neurogenesis. This approach revealed that in addition to the dentate gyrus, neurogenesis modulates the cellular profile in the entorhinal cortex and CA regions of the hippocampus. Notably, enhancing neurogenesis in FAD mice led to partial restoration of neuronal and cellular profile in these brain areas, resembling the profile of their wild-type counterparts. This approach provides a platform for the examination of the cellular dynamics in the hippocampal formation in health and in AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Trongha X. Phan
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | | | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Zhang X, Xu H, Yin S, Gozal D, Khalyfa A. Obstructive sleep apnea and memory impairments: Clinical characterization, treatment strategies, and mechanisms. Sleep Med Rev 2025; 81:102092. [PMID: 40286536 DOI: 10.1016/j.smrv.2025.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Obstructive sleep apnea (OSA), is associated with dysfunction in the cardiovascular, metabolic and neurological systems. However, the relationship between OSA and memory impairment, intervention effects, and underlying pathways are not well understood. This review summarizes recent advances in the clinical characterization, treatment strategies, and mechanisms of OSA-induced memory impairments. OSA patients may exhibit significant memory declines, including impairments in working memory from visual and verbal sources. The underlying mechanisms behind OSA-related memory impairment are complex and multifactorial with poorly understood aspects that require further investigation. Neuroinflammation, oxidative stress, neuronal damage, synaptic plasticity, and blood-brain barrier dysfunction, as observed under exposures to intermittent hypoxia and sleep fragmentation are likely contributors to learning and memory dysfunction. Continuous positive airway pressure treatment can provide remarkable relief from memory impairment in OSA patients. Other treatments are emerging but need to be rigorously evaluated for cognitive improvement. Clinically, reliable and objective diagnostic tools are necessary for accurate diagnosis and clinical characterization of cognitive impairments in OSA patients. The complex links between gut-brain axis, epigenetic landscape, genetic susceptibility, and OSA-induced memory impairments suggest new directions for research. Characterization of clinical phenotypic clusters can facilitate advances in precision medicine to predict and treat OSA-related memory deficits.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
49
|
Pappas I, Lohman T, Dutt S, Kapoor A, Engstrom AC, Alitin JPM, Barnes S, Chakhoyan A, Saca L, Gaggar R, Nourollahimoghadam E, Wang DJJ, Lai MHC, Joe EB, Ringman JM, Yassine HN, Schneider LS, Chui HC, Toga AW, Zlokovic BV, Nation DA. Cerebral hypoperfusion, brain structural integrity, and cognitive impairment in older APOE4 carriers. GeroScience 2025:10.1007/s11357-025-01642-5. [PMID: 40220152 DOI: 10.1007/s11357-025-01642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Cerebral blood flow (CBF) deficits, cognitive decline, and brain structural changes have been reported in older adults with and without apolipoprotein E-e4 (APOE4)-related risk for dementia. However, it remains unclear whether brain structural changes mediate the effects of hypoperfusion on cognitive impairment in APOE4 carriers and non-carriers. We studied 166 (60-89 years) APOE4 carriers (ε3/ε4 or ε4/ε4) and APOE3 homozygotes (e3/e3) with and without cognitive impairment by clinical dementia rating (CDR) and neuropsychological testing. Pseudocontinuous arterial spin-labeling-MRI assessed regional CBF, and T1-anatomical and diffusion-MRI assessed structural integrity. Mediation analyses examined relationships among grey matter CBF, grey matter volume, and white matter integrity in regions underlying impairment in distinct cognitive ability domains. APOE4 carriers with global/memory impairment (CDR 0.5) exhibited decreased CBF in the posterior cingulate, decreased grey matter volume in the hippocampus, parahippocampal gyrus, and posterior cingulate, and decreased white matter integrity in the cingulum relative to APOE4 carriers with no impairment (CDR 0). Mediation analysis in APOE4 carriers indicated decreased posterior cingulate CBF effects on global/memory impairment were mediated by decreased cingulum integrity. In the combined APOE4 and APOE3 carriers sample, there were direct effects of frontal and inferior parietal CBF and superior longitudinal fasciculus integrity on attention/executive impairment. There were also direct effects of left inferior frontal CBF on language impairment. Findings suggest links between hypoperfusion and brain structural integrity underlying global/memory impairment in APOE4 carriers. Independent CBF relationships with structural integrity are also identified across genotypes and impairment domains.
Collapse
Affiliation(s)
- Ioannis Pappas
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Shubir Dutt
- Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Samuel Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Ararat Chakhoyan
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucas Saca
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA
| | - Raghav Gaggar
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elnaz Nourollahimoghadam
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark H C Lai
- Deparment of Psychology, Dana and David Dornsife College of Arts and Letters, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth B Joe
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hussein N Yassine
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Gaudio A, Gotta F, Ponti C, Geroldi A, La Barbera A, Mandich P. GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies. Int J Mol Sci 2025; 26:3578. [PMID: 40332088 PMCID: PMC12026788 DOI: 10.3390/ijms26083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by loss of muscle atonia and abnormal behaviors occurring during REM sleep. Idiopathic RBD (iRBD) is recognized as the strongest prodromal hallmark of α-synucleinopathies, with an established conversion rate to a neurodegenerative condition that reaches up to 96.6% at 15 years of follow-up. Moreover, RBD-converters display a more severe clinical trajectory compared to those that do not present with RBD. However, the extent to which iRBD represents a distinct genetic entity or an early manifestation of neurodegeneration remains unclear. To address this, we applied Genomic Structural Equation Modeling (GenomicSEM) using a GWAS-by-subtraction approach to disentangle the genetic architecture of iRBD from the shared genomic liability across α-synucleinopathies. Our findings highlight the SNCA locus as a key genetic regulator of iRBD susceptibility. While iRBD exhibits a partially distinct genetic signature, residual genomic overlap with neurodegenerative traits suggests that its genetic architecture exists along a continuum of α-synucleinopathy risk. In this scenario, the associations with neuroanatomical correlates may serve as early indicators of a trajectory toward future neurodegeneration. These findings provide a framework for identifying biomarkers that could aid in disease stratification and risk prediction, potentially improving early intervention strategies.
Collapse
Affiliation(s)
- Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino–UOC Genetica Medica, Largo R. Benzi 10, 16132 Genova, Italy; (F.G.); (A.L.B.); (P.M.)
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino–UOC Genetica Medica, Largo R. Benzi 10, 16132 Genova, Italy; (F.G.); (A.L.B.); (P.M.)
| | - Clarissa Ponti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy; (C.P.); (A.G.)
| | - Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy; (C.P.); (A.G.)
| | - Andrea La Barbera
- IRCCS Ospedale Policlinico San Martino–UOC Genetica Medica, Largo R. Benzi 10, 16132 Genova, Italy; (F.G.); (A.L.B.); (P.M.)
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino–UOC Genetica Medica, Largo R. Benzi 10, 16132 Genova, Italy; (F.G.); (A.L.B.); (P.M.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Largo P. Daneo 3, 16132 Genova, Italy; (C.P.); (A.G.)
| |
Collapse
|