1
|
Li L, Zhang L, Li Y, Cai Y, Wen X, Zheng C, Wu C, Bao Y, Jiang F, Sun N, Zeng N. Overview of current research on traditional Chinese medicine in skin disease treatment: a bibliometric analysis from 2014 to 2024. PHARMACEUTICAL BIOLOGY 2025; 63:27-41. [PMID: 39745060 DOI: 10.1080/13880209.2024.2443415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
CONTEXT Recent research has revealed significant advancements in the field of traditional Chinese medicine (TCM) for skin diseases. However, there is a lack of visualization analysis within this research domain. OBJECTIVE To analyze the research directions and advancements in TCM research in skin diseases. MATERIALS AND METHODS Publications related to TCM in skin diseases from 2014 to 2024 were searched on the Web of Science Core Collection (WoSCC), VOSviewer, CiteSpace, and the R package "bibliometrix" were employed to visualize and analyze the retrieved data. RESULTS The study included 527 articles published in 25 countries. The number of publications consistently increased from 2014 to 2024. The Guangzhou University of Chinese Medicine was the most noteworthy institution in this field. Among the journals in this domain, the Journal of Ethnopharmacology was the most popular, and most frequently co-cited journal. Chuanjian Lu published the most papers and Yin-Ku Lin was the most frequently co-cited author. Among keywords, "psoriasis" appeared the most frequently. Additionally, several emerging research hotspots were identified, indicating the transition from traditional Chinese therapies to investigations of the molecular interactions and network pharmacology of Chinese herbs in treatment of skin diseases over the past decade. DISCUSSION AND CONCLUSION This visualization analysis summarizes the research directions and advancements in TCM research on skin diseases. It presents a comprehensive examination of the latest research frontiers and trends and serves as a valuable reference for scholars engaged in the study of TCM research.
Collapse
Affiliation(s)
- Lin Li
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lanfang Zhang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Li
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Haikou, China
| | - Yuan Cai
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xue Wen
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chenjie Zheng
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Nana Sun
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zeng
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Ghanem R, Buin X, Haute T, Philippe J, Kaouane G, Leclerc L, Guivarch M, Le Gall T, Pourchez J, Montier T. Impact of nebulizers on nanoparticles-based gene delivery efficiency: in vitro and in vivo comparison of jet and mesh nebulizers using branched-polyethyleneimine. Drug Deliv 2025; 32:2463428. [PMID: 39930696 PMCID: PMC11816613 DOI: 10.1080/10717544.2025.2463428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Nanoparticles-based gene delivery has emerged as a promising approach for the treatment of genetic diseases based on efficient delivery systems for therapeutic nucleic acids (NAs) into the target cells. For pulmonary diseases such as cystic fibrosis (CF), chronic obstructive pulmonary diseases (COPD), infectious disease or lung cancer, aerosol delivery is the best choice to locally deliver NAs into the lungs. It is, therefore, important to investigate the effects of nebulization conditions on the efficiency of delivery. To this purpose, the non-viral vector branched polyethyleneimine (b-PEI, 25 kDa) was investigated for plasmid delivery by aerosol. Two types of nebulizers, jet nebulizer and mesh nebulizer, were compared regarding the properties of the nanoparticles (NPs) formed, the efficiency of NAs delivery in vitro and in vivo models and the pulmonary deposition. The results indicate that the mesh nebulizer has a better gene delivery performance than the jet nebulizer in this application. This superiority was demonstrated in terms of size, concentration, distribution of NPs and efficiency of NAs delivery. However, pulmonary deposition appears to be similar regardless of the nebulizer used, and the difference between the two systems lies in the inhalable dose. These results underline the crucial role of nebulization techniques in optimizing aerosol-mediated gene delivery by b-PEI and highlight the potential of mesh nebulizers as promising tools to improved gene therapy. Therefore, the comparison must be performed for each gene therapy formulation to determine the most suitable nebulizer.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | | | - Ghalia Kaouane
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Maël Guivarch
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Tony Le Gall
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Brest, France
| |
Collapse
|
3
|
Zhang X, Zhou Z, Yang X, Huang L, Wang Q, Chen Y, Du K, Peng J. Inhalable lipid-based nanocarriers covered by polydopamine for effective mucus penetration and pulmonary retention. Colloids Surf B Biointerfaces 2025; 251:114576. [PMID: 39985918 DOI: 10.1016/j.colsurfb.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
To overcome the critical challenge in drug inhalation for pulmonary diseases, we innovatively proposed that polydopamine (PDA) as a surface modification material had great potential to improve the mucus permeation and pulmonary retention of inhalable lipid-based nanocarriers. We prepared PDA coated lipid nanoemulsions/solid lipid nanoparticles/liposomes and systematically evaluated their interactions with mucin and pulmonary retention after inhalation. PDA-coated lipid-based nanocarriers exhibited weaker interactions with mucins, higher mucus permeability and cellular uptake by the respiratory epithelium cells compared to PEGylated lipid-based nanocarriers. However, the pulmonary retention advantage of PDA coating was shown in lipid nanoemulsions (< 50 nm) and solid lipid nanoparticles (< 100 nm). Liposomes (∼ 150 nm) with PEGylation possessed higher pulmonary retention than that coated by PDA. It was suggested that PEGylated liposomes were liable to be phagocytosed by alveolar macrophages due to binding with specific antibodies. Overall, this work suggests that PDA as a surface modification material of inhalable lipid-based nanocarriers holds promise for effective mucus penetration and pulmonary retention.
Collapse
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Zhengli Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Xiaohui Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Qin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China.
| | - Kesi Du
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China.
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
4
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Yang J, Wang Y, Liu F, Zhang Y, Han F. Crosstalk between ferroptosis and endoplasmic reticulum stress: A potential target for ovarian cancer therapy (Review). Int J Mol Med 2025; 55:97. [PMID: 40314096 PMCID: PMC12045474 DOI: 10.3892/ijmm.2025.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Ferroptosis is a unique mode of cell death driven by iron‑dependent phospholipid peroxidation, and its mechanism primarily involves disturbances in iron metabolism, imbalances in the lipid antioxidant system and accumulation of lipid peroxides. Protein processing, modification and folding in the endoplasmic reticulum (ER) are closely related regulatory processes that determine cell function, fate and survival. The uncontrolled proliferative capacity of malignant cells generates an unfavorable microenvironment characterized by high metabolic demand, hypoxia, nutrient deprivation and acidosis, which promotes the accumulation of misfolded or unfolded proteins in the ER, leading to ER stress (ERS). Ferroptosis and ERS share common pathways in several diseases, and the two interact to affect cell survival and death. Additionally, cell death pathways are not linear signaling cascades, and different pathways of cell death may be interrelated at multiple levels. Ferroptosis and ERS in ovarian cancer (OC) have attracted increasing research interest; however, both are discussed separately regarding OC. The present review aims to summarize the associations and potential links between ferroptosis and ERS, aiming to provide research references for the development of therapeutic approaches for the management of OC.
Collapse
Affiliation(s)
- Jiaqi Yang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yu Wang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fangyuan Liu
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yizhong Zhang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fengjuan Han
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
6
|
Jurgelėnė Ž, Morkvėnas A, Dzingelevičienė R, Dzingelevičius N, Baranauskis K, Montvydienė D, Kowalkowski T, Raugelė S, Buszewski B, Karabanovas V. Effects of co-treatment with nano/microplastics and hydroxychloroquine on early development stages of Salmo trutta. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107096. [PMID: 40168853 DOI: 10.1016/j.marenvres.2025.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
As a potential remedy for COVID-19 treatment, hydroxychloroquine (HCQ) attracted considerable scholarly attention early in the pandemic. However, the ecological consequences of HCQ are not well understood, especially regarding their interactions with plastic waste such as nano-and microplastics (PS). This study aimed to investigate colloidal stability, bioaccumulation, and acute toxicity of carboxylate-modified polystyrene-based PS and HCQ, both alone and in combination, to Salmo trutta embryos and larvae. Spectroscopic properties of PS were found to change over time and to be affected by the presence of HCQ in the incubation water of organisms. Confocal microscopy showed that PS and HCQ, both alone and in combination, caused damage to the chorion of the exposed fish embryos. Particles of PS were detected in external tissues of larvae. The impact of the tested substances on fish was found to be dependent on the PS particle size, exposure duration, and the life stage of fish.
Collapse
Affiliation(s)
- Živilė Jurgelėnė
- Laboratory of Ecotoxicology, State Scientific Research Institute Nature Research Centre, Akademijos Street 2, 08412, Vilnius, Lithuania.
| | - Augustas Morkvėnas
- Biomedical Physics Laboratory, National Cancer Center, Baublio 3b, 08406, Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, 10223, Vilnius, Lithuania
| | - Reda Dzingelevičienė
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania; Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania
| | - Nerijus Dzingelevičius
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania
| | - Kęstutis Baranauskis
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania
| | - Danguolė Montvydienė
- Laboratory of Ecotoxicology, State Scientific Research Institute Nature Research Centre, Akademijos Street 2, 08412, Vilnius, Lithuania
| | - Tomasz Kowalkowski
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87100, Torun, Poland
| | - Saulius Raugelė
- Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania; Klaipėda University Hospital, Liepojos str. 41, 92288, Klaipeda, Lithuania
| | - Boguslaw Buszewski
- Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania; Prof. Jan Czochralski Kuyavian-Pomeranium Scientific and Technology Center, 15 Parkowa Street 1, 87134 Przysiek near Toruń, Poland; Interdisciplinary Centre for Ecotechnology, Poznań University of Technology, Berdychowo str. 4, 60-965 Poznań, Poland
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Center, Baublio 3b, 08406, Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, 10223, Vilnius, Lithuania.
| |
Collapse
|
7
|
Yang G, Ren D, Yu T, Fang J. Biodegradable copper-doped calcium phosphate nanoplatform enables tumor microenvironment modulations for amplified ferroptosis in cervical carcinoma treatment. Int J Pharm X 2025; 9:100315. [PMID: 39811248 PMCID: PMC11731240 DOI: 10.1016/j.ijpx.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL). BCCL was conducted by a biomineralization approach using lactate oxidases (LOD) as a bio-template to obtain Cu-doped CaP nanoparticles. Then, BSO was loaded to form BCCL nanoparticles with pH-responsive biodegradability to endow controlled release of Cu2+ and BSO in response to acidic TME. Benefiting from the catalytic performance of LOD, BCCL efficiently depletes the level of lactate in tumor, which can generate endogenous H2O2 for subsequent Fenton-like reaction. The Cu2+ and BSO intracellular GSH depletion followed by GSH-mediated Cu2+/Cu+ conversion, leading to the inhibition of glutathione peroxidase 4 (GPX4) and generation of •OH radicals via Cu+-mediated Fenton-like reaction. BCCL confers enhanced ferroptosis induction via intracellular LOD-induced H2O2 production, BSO-mediated GSH depletion, and Cu+-mediated ROS generation, leading to cause effective ferroptotic cell damage. As verified by in vitro and in vivo assays, the designed BCCL nanoplatform is highly biocompatible and exhibits superior anticancer therapy on uterine cervical carcinoma U14 tumor xenografts. This study, therefore, provides a biocompatible therapeutic platform that modulating the TME to enable intensive ROS generating efficacy and GSH depleting performance, as well as provides an innovative paradigm for achieving effective ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
| | | | - Tao Yu
- Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Junfeng Fang
- Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China
| |
Collapse
|
8
|
Qin L, Zhai Q, Cui Z, Li H, Guan J, Zhang Z, Xu E, Zhang X, Mao S. Elucidating structure of endogenous phospholipids on in vivo absorption of octreotide following lung administration. Eur J Pharm Biopharm 2025; 211:114706. [PMID: 40174681 DOI: 10.1016/j.ejpb.2025.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Phospholipids as endogenous pulmonary components have received extensive attention on promoting the transmembrane absorption of peptides and proteins. However, considering their diversified structure, influence of phospholipid structural characteristics on drug absorption across lung epithelial cells, together with the underlying absorption-promoting mechanisms, remain unclear. Therefore, in this study, taking octreotide as a model drug, phospholipids with different "tail" and "head" structures were adopted in the form of blank liposomes to investigate their structural characteristics on drug absorption utilizing both 3D Transwell cell models and Sprague Dawley rats. It was demonstrated that indeed the absorption-enhancing capacity of phospholipids was their structure-dependent. Among the tail (non-polar) structures, a moderately increased alkyl chain length could facilitate drug absorption across the pulmonary epithelium, with the highest enhancement ratio observed for Dipalmitoyl Phosphatidylcholine (DPPC) containing a palmitoyl group of 16 carbons, and its apparent permeability coefficient (Papp) increased 2.4 times compared to octreotide solution. Among the head (polar) structures, charged functional groups could contribute to better drug permeation, and Dipalmitoyl Phosphatidylserine (DPPS) containing a protonated amino (NH3+) and a deprotonated carboxyl (COO-) exhibited a 4.6-fold increase in Papp compared to octreotide solution. Mechanism studies disclosed a paracellular pathway-mediated drug transport across lung epithelial cells. In summary, phospholipids can serve as biosafe absorption enhancers for pulmonary drug delivery, with the extent depending on their structure, which could provide a theoretical basis for pulmonary delivery of macromolecules for systemic absorption.
Collapse
Affiliation(s)
- Lu Qin
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiyao Zhai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhixiang Cui
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongfang Li
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Ziwei Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Enyu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
9
|
Wei S, Zhai Z, Kong X, Wu C, Zhu B, Zhao Z, Zhang X. The review of nasal drug delivery system: The strategies to enhance the efficiency of intranasal drug delivery by improving drug absorption. Int J Pharm 2025; 676:125584. [PMID: 40216038 DOI: 10.1016/j.ijpharm.2025.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Nasal drug administration constitutes an efficient and non-invasive modality of drug delivery, and its distinctive physiological structure offers potentialities for treating a variety of diseases. To elevate the drug absorption and delivery efficiency, it is of paramount importance to delineate the transport routes and their enhancement mechanisms. Nevertheless, drug absorption pathways vary depending on the disease target, these variations present opportunities for targeted delivery and challenges for achieving precision. Hence, this review outlines the anatomical structure of the nasal cavity, and subsequently elaborates on the drug transport pathways within the nasal cavity and their influencing factors. Based on the distinct sites of drug action, diseases suitable for nasal drug administration are categorized into three types: systemic diseases, local nasal diseases, and central nervous system diseases. Grounded on multiple transport routes and their influencing factors, this review proposes strategies like optimizing formulation viscosity, using penetration enhancers, adding mucosal adhesives and improving delivery device, offering insights into future advancements in nasal drug delivery systems.
Collapse
Affiliation(s)
- Shuhua Wei
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Xi Kong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Bing Zhu
- Respirent Pharmaceuticals Co. Ltd., Chongqing 40070, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
10
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Chen Y, Huang X, Hu R, Lu E, Luo K, Yan X, Zhang Z, Ma Y, Zhang M, Sha X. Inhalable biomimetic polyunsaturated fatty acid-based nanoreactors for peroxynitrite-augmented ferroptosis potentiate radiotherapy in lung cancer. J Nanobiotechnology 2025; 23:338. [PMID: 40340938 PMCID: PMC12060495 DOI: 10.1186/s12951-025-03409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/19/2025] [Indexed: 05/10/2025] Open
Abstract
The limited efficacy and poor tumor accumulation remain crucial challenges for radiotherapy against lung cancer. To address these limitations, we rationally developed a polyunsaturated fatty acid (PUFA)-based nanoreactor (DHA-N@M) camouflaged with macrophage cell membrane to improve tumoral distribution and achieve peroxynitrite-augment ferroptosis for enhanced radiotherapy against lung cancer. After nebulization, the nanoreactors exhibited superior pulmonary accumulation in orthotopic lung cancer-bearing mice, with 70-fold higher than intravenously injected nanoreactors at 12 h post-administration, and distributed deeply in the tumors. DHA-N@M selectively released nitric oxide (NO) in glutathione (GSH)-enriched tumor cells, with consumption of GSH and subsequent inactivation of glutathione peroxidase 4 (GPX4). Under radiation, NO reacted with radiotherapy-induced reactive oxygen species (ROS) to generate peroxynitrite (ONOO-), resulting in redox homeostasis disruption. Combined with docosahexaenoic acid (DHA)-induced lipid metabolism disruption, overwhelming ferroptosis was induced both in vitro and in vivo. Notably, DHA-N@M mediated ferroptosis-radiotherapy significantly suppressed tumor growth with a 93.91% inhibition in orthotopic lung cancer models. Therefore, this design provides a nebulized ferroptosis-radiotherapy strategy for lung cancer.
Collapse
Affiliation(s)
- Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xueli Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Yan Ma
- Department of Pharmacy, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Minghe Zhang
- Naval Medical Center, Naval Medical University, Shanghai, Shanghai, 200052, China.
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China.
- Quzhou Fudan Institute, 108 Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324002, China.
| |
Collapse
|
12
|
Rabiee N. Revolutionizing biosensing with wearable microneedle patches: innovations and applications. J Mater Chem B 2025; 13:5264-5289. [PMID: 40264330 DOI: 10.1039/d5tb00251f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Wearable microneedle (MN) patches have emerged as a transformative platform for biosensing, offering a minimally invasive and user-friendly approach to real-time health monitoring and disease diagnosis. Primarily designed to access interstitial fluid (ISF) through shallow skin penetration, MNs enable precise and continuous sampling of biomarkers such as glucose, lactate, and electrolytes. Additionally, recent innovations have integrated MN arrays with microfluidic and porous structures to support sweat-based analysis, where MNs act as structural or functional components in hybrid wearable systems. This review explores the design, fabrication, and functional integration of MNs into wearable devices, highlighting advances in multi-analyte detection, wireless data transmission, and self-powered sensing. Challenges related to material biocompatibility, sensor stability, scalability, and user variability are addressed, alongside emerging opportunities in microfluidics, artificial intelligence, and soft materials. Overall, MN-based biosensing platforms are poised to redefine personalized healthcare by enabling dynamic, decentralized, and accessible health monitoring.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
13
|
Wang M, Zhang W, Liu B, Ding B, Li K, Ma P, Lin J. Boosting Cancer Cell Ferroptosis with Carbon Monoxide Poisoned Hemoglobin. J Am Chem Soc 2025. [PMID: 40334178 DOI: 10.1021/jacs.5c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The peroxidase (POD)-like nanozymes, particularly those with atomic Fe-Nx sites, have demonstrated exceptional catalytic potential in cancer cell ferroptosis. The biodegradable hemoglobin (Hb) is recognized as an Fe-N5 POD-like nanozyme expected to replace the carbon-based ones, while its uncontrollable catalytic reaction remains a safety concern. Here, inspired by the carbon monoxide (CO) poisoned Hb, we develop a controllable and biodegradable catalytic nanoplatform DPHCO which integrates carboxyhemoglobin (HbCO) and platinum(IV) prodrug into -CH2SSCH2- bridged dendritic mesoporous organosilica nanoparticles (DMON). The Fe-N5 site of HbCO could be temporarily deactivated during the blood circulation. In tumor tissue, the poisoned site will be in situ reactivated by the H2O2-driven valence modulation of heme iron, along with CO desorption. The reactivated Hb performs POD-like activity during the ferric-ferryl redox cycle, adhering to Michaelis-Menten kinetics and density function theory (DFT) calculation results. Both in vitro and in vivo data suggest that the reactivated Hb and released CO could induce lipid peroxidation and cancer cell ferroptosis, which is further boosted by cisplatin synergy. This gas modification and iron valence-driven modulation provide a feasible approach for toggling the "OFF/ON" activity of the catalytic site, which would inspire the development of nanozymes for precision oncotherapy.
Collapse
Affiliation(s)
- Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
14
|
Xu H, Liu N, Wang Q, Liu J, Qu C, Zhang W, Qian J. Ferrous Fumarate-Encapsulated Nanoformulation Triggering a Domino Effect for Enhanced Ferroptosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327625 DOI: 10.1021/acsami.5c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fenton-induced ferroptosis has emerged as a promising therapeutic strategy for malignant tumors. However, the therapeutic efficacy of ferroptosis is limited by factors such as suboptimal Fenton efficiency, intracellular antioxidant systems, and insufficient drug accumulation. Here, we report a domino effect triggered by a homologous cancer cell membrane-camouflaged nanoformulation: disrupting intracellular redox homeostasis, inducing enhanced oxidative stress and leading to specific ferroptosis. This strategy involves using pure red-emission upconversion nanoparticles (NaErF4:4%Tm@NaYF4, U NPs), a ferroptosis inducer (ferrous fumarate, an iron-deficiency anemia therapeutic reagent), and glucose oxidase (GOx). The nanoformulation, U@mSiO2/ferrous fumarate/GOx@lecithin/cell membrane (USFGM), enables efficient in vivo deep tissue upconversion luminescence (UCL) imaging by pure red-emission. Lecithin-modified cancer cell membranes are characterized by homologous target "homing" and acid-responsive release. Exogenous GOx depletes intratumoral glucose and generates H+/H2O2, which disrupts the nutrient supply and promotes efficient generation of reactive oxygen species (ROS). Subsequently, Fe2+/fumaric acids (FAs) are acid-responsively released from ferrous fumarate, which synchronously triggers and exacerbates the process of ferroptosis through mechanisms such as lipid ROS generation and glutathione (GSH) depletion. Here, we report for the first time that FA depletes GSH and leads to inactivation of GSH-dependent peroxidase 4 (GPX4). This concept is also confirmed in tumor-bearing mice of salivary adenoid cystic carcinoma (SACC). In summary, this work identifies a systemic, low-toxicity, and highly efficient cancer inhibitory nanoformulation from existing clinical drugs, which provides a promising direction for exploring therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Na Liu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Qian Wang
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jinyang Liu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Chen Qu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenchao Zhang
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jing Qian
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
15
|
Iwakawa K, Sato R, Konaka M, Yamada Y, Harashima H, Sato Y. Cubic Phase-Inducible Zwitterionic Phospholipids Improve the Functional Delivery of mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413016. [PMID: 39960324 PMCID: PMC12061338 DOI: 10.1002/advs.202413016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Indexed: 05/10/2025]
Abstract
Lipid nanoparticles (LNPs) are clinically advanced delivery systems for RNA. The extensively developed structure of ionizable lipids greatly contributes to the functional delivery of mRNA. However, endosomal escape is one of the severe biological barriers that continue to render this process inefficient (e.g., less than 10%). Although LNPs contain phospholipids, their role is poorly understood, and there have been few attempts to perform the chemical engineering required to improve their functionality. Herein, a cubic phase-inducible fusogenic zwitterionic phospholipid derived from 1,2-dioleoyl-3-sn-glycero-phosphoethanolamine (DOPE), DOPE-Cx is described, that is designed to correct this problem. The orientation of a zwitterionic head group of DOPE is engineered by attaching a series of hydrophobic moieties for zwitterionic intermolecular interaction with the head structure of phosphatidylcholine (PC), and this is followed by a lipid-phase transition into non-lamellar phases to facilitate membrane fusion-mediated endosomal escape. A structure-activity relationship study reveals that DOPE-Cx lipids with small hydrophobic chains induce cubic phases instead of a hexagonal phase when mixed with PC, which enhances the functional delivery of mRNA in the liver as opposed to the action of the typically utilized and naturally occurring phospholipids. Engineered functionalized phospholipids will be of great value for the therapeutic applications of mRNAs.
Collapse
Affiliation(s)
- Kazuki Iwakawa
- Laboratory for Molecular Design of PharmaceuticsFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| | - Rikako Sato
- Laboratory for Molecular Design of PharmaceuticsFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| | - Mariko Konaka
- Laboratory for Molecular Design of PharmaceuticsFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of PharmaceuticsFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
- Laboratory of Innovative NanomedicineFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative NanomedicineFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of PharmaceuticsFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
- Laboratory of Innovative NanomedicineFaculty of Pharmaceutical SciencesHokkaido UniversityKita‐12 Nishi‐6, Kita‐kuSapporo060‐0812Japan
| |
Collapse
|
16
|
Huang Y, Patil CD, Arte KS, Zhou Q(T, Qu L(L. Particle surface coating for dry powder inhaler formulations. Expert Opin Drug Deliv 2025; 22:711-727. [PMID: 40101203 PMCID: PMC12055444 DOI: 10.1080/17425247.2025.2482052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION The development of dry powder inhalers (DPIs) is challenging due to the need for micronized particles to achieve lung delivery. The high specific surface area of micronized particles renders them cohesive and adhesive. Addition of certain excipients like magnesium stearate has been reported to coat the particles and improve the aerosolization in the carrier-based DPI. Therefore, application of particle coating in DPI developments has been investigated and expanded over the years, along with the growing need of high-dose carrier-free DPIs. AREA COVERED In addition to modifying inter-particulate forces, particle coating has also been demonstrated to effectively provide moisture resistance, modify particle morphology, improve the stability of biologics, alter dissolution behaviors for DPI developments. These different coating functions have been discussed in the current work. Moreover, various coating techniques including solvent-based coating, dry coating, and vapor coating, as well as coating characterization have been summarized in the present review. EXPERT OPINION The extent of particle coating is critical to DPI performance; however, there is a demand for advanced characterization techniques to quantify and understand the coating quality. Further advancements in coating materials, methods, characterization techniques are needed to better relate coating properties to performance, especially for complex drug modalities.
Collapse
Affiliation(s)
- Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Chanakya D. Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li (Lily) Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Yang M, Yan H, Zhou J, Zhang J, Pan Y, Zhong H, Cai H, Xu Y, Wang J, Feng F, Zhao M. Physicochemical characterization, release profile, and antibacterial mechanisms of caffeic acid phenethyl ester loaded in lipid nanocapsules with lauric acid and glycerol monolaurate. Food Res Int 2025; 209:116208. [PMID: 40253176 DOI: 10.1016/j.foodres.2025.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Numerous studies have demonstrated the biological activities of caffeic acid phenethyl ester (CAPE), including antibacterial, antioxidant, and anti-inflammatory properties. However, the application of CAPE is limited by its low bioavailability and stability. In this work, we designed a CAPE loaded nanocapsule system by using polyoxyl-15-hydroxystearate, coconut oil and lecithin (LE)/lauric acid (LA)/glycerol monolaurate (GML) to improve the release rate of CAPE. The Blank-GML-lipid nanocapsules (BK-GML) and CAPE loaded BK-GML (CAPE-GML) were mainly assembled by hydrophobic forces and electrostatic forces, exhibited a typical spherical shape with a diameter size of less than 90 nm. The encapsulation and loading efficiencies of BK-GML and CAPE-GML reached 74.27 % and 9.61 %, respectively. Lipid nanocapsules (LNCs) also demonstrated a good sustained release of CAPE during in vitro stimulated digestion, indicating LNCs enable sustained CAPE release to the colon. Additionally, they showed a strong antibacterial activity against Escherichia coli and Staphylococcus aureus through the damage of the bacterial cytoderm. Also, BK-GML and CAPE-GML could inhibit the contamination and spread of pathogenic bacteria to be further applied in foods and pharmaceuticals industries.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China; Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, 512000, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Guillot AJ, Melero A. (Re)evolution in nanoparticles-loaded microneedle delivery systems: are we getting closer to a clinical translation? Nanomedicine (Lond) 2025; 20:1195-1207. [PMID: 40257286 DOI: 10.1080/17435889.2025.2492538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
The deposition of drug-loaded nanoparticles within the skin structure has been a challenge due to the inexorable skin barrier function. Unless specific nanoparticles like liposomes and lipid-based related vesicles, most nanoparticles cannot penetrate the epidermal layers by themselves. This is the reason why microneedle-based systems are nowadays the most straightforward systems in skin research. They can greatly bypass the stratum corneum and deposit the supramolecular cargo entities in the dermal layers, which can perform specific features such as drug-controlled release, specific targeting or stimuli-responsive behaviors. At this point, after more than 20 years of research using this nanoparticle-microneedle combination and all the positive results, the clinical experience is still so limited. Therefore, how is it possible that the everlasting promise of the clinical translation of these systems has not reached a real clinical practice? In this piece of work, based on authors' review, a series of limiting factors as the regulatory framework and guidelines are identified and discussed, while it is highlighted that revolutionary advances in the biomedical field such as 3D-printing technology and microfluidics will contribute to accelerate the clinical translation of nanoparticle-microneedle-based devices and make possible their use and entrance to the biomedical market.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| |
Collapse
|
20
|
Swami R, Popli P, Sal K, Challa RR, Vallamkonda B, Garg M, Dora CP. A review on biomacromolecular ligand-directed nanoparticles: New era in macrophage targeting. Int J Biol Macromol 2025; 306:141740. [PMID: 40058437 DOI: 10.1016/j.ijbiomac.2025.141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Traditional drug delivery strategies often have side effects due to uneven drug distribution leading to the subtherapeutic impacts. Ligand-modified nanoparticles offer a revolutionary approach to precise drug delivery. These modified nanoparticles can potentially target macrophages, which is crucial for defense and disease progression efficiently. Out of many classes of ligands, biomacromolecular ligands emerged as potential ligands for directing these nanoparticles to macrophages due to their consecutive receptors over the macrophage surface, assisting easy internalization and thus supporting elevated efficacy and reduced toxicity. This approach could significantly improve treatment for diseases like cancer, tuberculosis, etc. by directing drugs to macrophages and reducing side effects. By leveraging nanotechnology and biomacromolecular-based ligand-directed targeting, we can achieve more precise and effective treatments, paving the way for advancements in precision medicine.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Komal Sal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
21
|
Tai W, Khanal D, Arnold JC, Chan HK, Kwok PCL. Solubilising and Aerosolising Cannabidiol Using Methyl β-Cyclodextrin and Human Serum Albumin. AAPS PharmSciTech 2025; 26:120. [PMID: 40307653 DOI: 10.1208/s12249-025-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Pulmonary delivery can deliver cannabidiol (CBD) with high bioavailability and fast onset of action. One formulation obstacle is the low aqueous solubility of CBD, so solubilsers are necessary. This study aimed to develop inhalable CBD powders using excipients that help dissolving CBD. The solubilisation effects of human serum albumin (HSA), β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin, and methyl-β-cyclodextrin (mbCD) were investigated with phase solubility test. MbCD showed the highest CBD solubilisation ability at all tested concentrations, followed by HSA. Therefore, mbCD and HSA were co-spray freeze dried with CBD to obtain CBD + mbCD and CBD + HSA powders, respectively. Both powders were amorphous, had < 3% residual solvent, and contained CBD in complexes. CBD + mbCD maintained its amorphicity at < 70% relative humidity. On the other hand, CBD + HSA resisted recrystallisation even at 90% relative humidity. However, although both formulations emitted about 90% of CBD, CBD + HSA was less dispersible than CBD + mbCD (fine particle fraction < 5 µm: 30.2 ± 1.0% vs 53.5 ± 1.5%). The higher level of CBD solubility enhancement and better aerosol performance from mbCD indicated that it was an effective excipient to deliver CBD and potentially other cannabinoids in the future.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
22
|
Forte J, D'Intino E, Cappiello F, Vetrano C, Fabiano MG, Viscido A, Ammendolia MG, Casciaro B, Rinaldi F, Carafa M, Mangoni ML, Marianecci C. Optimization of aerosolizable and bioactive essential oils-based nanoemulsions: Physico-chemical and biological characterization. Colloids Surf B Biointerfaces 2025; 253:114733. [PMID: 40318398 DOI: 10.1016/j.colsurfb.2025.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Antibiotic resistance is one of the major threats to public health, with an increasing number of deaths annually and respiratory tract infections are considered a leading cause of global death, particularly in vulnerable populations. It is therefore extremely urgent to find new therapeutic strategies to overcome this problem and one of these is represented by the design of aerosolizable nanoformulations (NEs). In this work we designed NEs composed by a mixture of Rosmarinus officinalis and Thymus vulgaris essential oils aiming to obtain an active nanocarrier capable and useful to entrap different active compounds. The formulation, NEs-1, was deeply characterized in terms of dynamic light scattering, ζ-potential measurements, stability studies, antimicrobial activity and cytotoxicity. Our results showed that NEs-1 exhibited useful physico-chemical properties for nose-to lung applications, as well as significant biological activity. However, at the selected oil concentration, it induced cytotoxic effects on eukaryotic cells. We subsequently identified the optimum oil concentration, and the formulation was then optimized to obtain NEs-2, nanoemulsions with similar physico-chemical properties to NEs-1. NEs-2 was furthermore characterized by morphological analysis, in terms of resistance to nebulization process and stability in simulated biological fluid such as nasal and artificial sputum. Moreover, NEs-2 demonstrated the ability to slow down the growth of E. coli and K. pneumoniae, confirming its potential as a bioactive carrier with the aim of encapsulating antimicrobial molecules and increasing their effectiveness and reducing their adverse effects.
Collapse
Affiliation(s)
- Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Eleonora D'Intino
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Floriana Cappiello
- Department of Environment and Health, Mechanisms, Biomarkers and Models Section, Genome Stability Group, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Carlo Vetrano
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy.
| | - Maria Gioia Fabiano
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Agnese Viscido
- Microbiology and Virology Unit, Sapienza University Hospital "Policlinico Umberto I ", Italy.
| | - Maria Grazia Ammendolia
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy.
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Ahmed R, Tewes F, Aucamp M, Dube A. Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases. Drug Deliv Transl Res 2025:10.1007/s13346-025-01861-5. [PMID: 40301249 DOI: 10.1007/s13346-025-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Pulmonary infections caused by bacteria, viruses and fungi are a significant global health issue. Inhalation therapies are gaining interest as an effective approach to directly target infected lung sites and nanoparticle-based pulmonary delivery systems are increasingly investigated for this purpose. In this review, we provide an overview of common pulmonary infectious diseases and review recent work on the application of inhalable nanoparticle-based formulations for pulmonary infectious diseases, the formulation strategies, and the current research for delivering inhalable nanomedicines. We also evaluate the current clinical development status, market landscape, and discuss challenges that impede clinical translation and propose solutions to overcome these obstacles, highlighting promising opportunities for future advancements in the field. Despite advancements made and products reaching the market, notable gap persists in translational research, with challenges in achieving the target product profile, availability of appropriate in vivo disease models, scale-up, and market related questions, likely hindering research translation to the clinic.
Collapse
Affiliation(s)
- Rami Ahmed
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Frederic Tewes
- INSERM U1070, Pôle Biologie-Santé - B36, 1 Rue Georges Bonnet, 51106, 86073, POITIERS Cedex 9, TSA, France
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
24
|
Song L, Gao F, Man J. Ferroptosis: the potential key roles in idiopathic pulmonary fibrosis. Eur J Med Res 2025; 30:341. [PMID: 40296070 PMCID: PMC12036158 DOI: 10.1186/s40001-025-02623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by recurrent injury to alveolar epithelial cells, epithelial-mesenchymal transition, and fibroblast activation, which leads to excessive deposition of extracellular matrix (ECM) proteins. However, effective preventative and therapeutic interventions are currently lacking. Ferroptosis, a unique form of iron-dependent lipid peroxidation-induced cell death, exhibits distinct morphological, physiological, and biochemical features compared to traditional programmed cell death. Recent studies have revealed a close relationship between iron homeostasis and the pathogenesis of pulmonary interstitial fibrosis. Ferroptosis exacerbates tissue damage and plays a crucial role in regulating tissue repair and the pathological processes involved. It leads to recurrent epithelial injury, where dysregulated epithelial cells undergo epithelial-mesenchymal transition via multiple signaling pathways, resulting in the excessive release of cytokines and growth factors. This dysregulated environment promotes the activation of pulmonary fibroblasts, ultimately culminating in pulmonary fibrosis. This review summarizes the latest advancements in ferroptosis research and its role in the pathogenesis and treatment of IPF, highlighting the significant potential of targeting ferroptosis for IPF management. Importantly, despite the rapid developments in this emerging research field, ferroptosis studies continue to face several challenges and issues. This review also aims to propose solutions to these challenges and discusses key concepts and pressing questions for the future exploration of ferroptosis.
Collapse
Affiliation(s)
- Longfei Song
- Department of Rehabilitation Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428 Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Fusheng Gao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Jun Man
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, No. 4948, Shengli East Street, Kuiwen District, Weifang City, 261041, Shandong Province, China.
| |
Collapse
|
25
|
Yue X, Liang J, Zhou Y, Zhao Z, Wang G, Cui Y, Wang W, Luo Y, Wu C, Huang Y, Zhang X. Elucidating mixing process effects on pulmonary delivery efficiency of dry powder inhalers: A dual-dimensional macroscopic and microscopic perspective. Int J Pharm 2025; 677:125652. [PMID: 40306444 DOI: 10.1016/j.ijpharm.2025.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Dry powder inhalers (DPIs) have been widely recommended in lung diseases on account of direct pulmonary delivery, desired drug stability, and satisfactory patient compliance. More than 90% of DPIs products consist of micronized drugs mixed with larger carrier particles for required dose delivery uniformity and desired pulmonary delivery efficiency. In formulation development, researchers often focus on the influence of mixing process on the macroscopic quantitative results of pulmonary drug delivery efficiency. However, the critical influence and underlying modulatory mechanisms of mixing parameters remain poorly understood, posing formidable challenges to the optimization of DPI formulations. In the present study, an internationally recognized cascade impactor method was employed to investigate the effects of mixing parameters on the ultimate pulmonary drug delivery efficiency from a macroscopic perspective. Subsequently, Confocal Microscopic Raman Spectroscopy (CMRS) was applied to innovatively investigate the material distribution and adhesive status of the mixed DPI particles. Meanwhile, the self-constructed Modular Process Analysis Platform (MPAP) was employed the detached behavior during pulmonary delivery, allowing us to explore the influence mechanisms from a microscopic perspective. Ultimately, correlations were established between the mixing parameters and the drug adhesive status, pulmonary drug delivery process and efficiency. This study was expected to provide novelty pioneering paradigms and dual-dimensional perspective for the direction development and optimization of DPIs.
Collapse
Affiliation(s)
- Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| | - Junhui Liang
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510006, PR China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006 Guangdong, PR China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006 Guangdong, PR China.
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006 Guangdong, PR China.
| | - Yinjia Luo
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510006, PR China; Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen 529031 Guangdong Province, PR China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006 Guangdong, PR China.
| |
Collapse
|
26
|
Peng C, Luan H, Shang Q, Xiang W, Yasin P, Song X. Mannosamine-Modified Poly(lactic- co-glycolic acid)-Polyethylene Glycol Nanoparticles for the Targeted Delivery of Rifapentine and Isoniazid in Tuberculosis Therapy. Bioconjug Chem 2025. [PMID: 40262736 DOI: 10.1021/acs.bioconjchem.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is the leading cause of mortality attributed to a single infectious agent. Following macrophage invasion, M. tuberculosis uses various mechanisms to evade immune responses and to resist antituberculosis drugs. This study aimed to develop a targeted drug delivery system utilizing mannosamine (MAN)-modified nanoparticles (NPs) composed of poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG), loaded with rifapentine and isoniazid, to enhance macrophage-directed therapy and enhance bacterial elimination. PLGA-PEG copolymer was modified with mannosamine through an amidation reaction. Rifapentine- and isoniazid-loaded PLGA-PEG-MAN NPs were synthesized by using the double emulsion solvent evaporation technique. The NPs exhibited an average particle size of 117.67 nm and displayed favorable physicochemical properties without evidence of cellular or hemolytic toxicity. The drug loading rates were 11.73% for rifapentine and 5.85% for isoniazid. Sustained drug release was achieved over a period exceeding 72 h, with antibacterial activity remaining intact during encapsulation. Synergistic bactericidal effects were noted. Additionally, mannosamine-modified NPs enhanced the phagocytic activity of macrophages via mannose receptor-mediated endocytosis, thereby improving drug delivery efficiency and significantly boosting the antibacterial efficacy of the NPs within macrophages. Pathological staining and biochemical analysis of rat organs following intravenous injection indicated that the NPs did not cause any significant toxic side effects in vivo. The findings of this study indicate that mannosamine-modified PLGA-PEG NPs loaded with rifapentine and isoniazid represent a promising drug delivery system for targeting macrophages to enhance the efficacy of antitubercular therapy.
Collapse
Affiliation(s)
- Cong Peng
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Haopeng Luan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Qisong Shang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Wei Xiang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Parhat Yasin
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Xinghua Song
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| |
Collapse
|
27
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
28
|
Lapčík L, Lapčíková B, Valenta T, Vašina M, Dudová P, Fišera M. Study of Natural Dyes' Liposomal Encapsulation in Food Dispersion Model Systems via High-Pressure Homogenization. Molecules 2025; 30:1845. [PMID: 40333878 PMCID: PMC12029904 DOI: 10.3390/molecules30081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), copper complexes of chlorophyllins (C), or commercial-grade β-carotene (B). The phospholipid envelope was composed of sunflower lecithin and carboxymethylcellulose sodium salt as a surface stabilizer treated by high-pressure homogenization. The median particle diameter of R and C systems fluctuated around 200 nm, while B systems showed a broader range of 165-405 nm. The rheological results demonstrated a specific flow behaviour pattern dependent on the rotational shear applied, indicating a flow-induced structural change in the dispersions. Samples were characterized by a translucent profile with relatively high lightness, accompanied by a hue angle (h*) typical of the dye encapsulated. The zeta potential was approx. -30 mV, showing electrokinetically stabilized dispersions. The encapsulation efficiency (EE) varied significantly, with the highest EE observed for anthocyanins, ranging from 36.17 to 84.61%. The chlorophyll encapsulation was the least effective, determined in the range between 1.82 and 16.03%. Based on the suitability index, optimal liposomal formulations were evaluated by means of the Central Composite Design (CCD).
Collapse
Affiliation(s)
- Lubomír Lapčík
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic; (B.L.); (T.V.); (M.V.); (P.D.); (M.F.)
| | | | | | | | | | | |
Collapse
|
29
|
Sun H, Xu C, Xiong Z, Liu M, Ning X, Zhuang Y. Therapeutic prospects and potential mechanisms of Prdx6: as a novel target in musculoskeletal disorders. Front Physiol 2025; 16:1524100. [PMID: 40313876 PMCID: PMC12043587 DOI: 10.3389/fphys.2025.1524100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/27/2025] [Indexed: 05/03/2025] Open
Abstract
With the global population aging, musculoskeletal disorders (MSDs) have posed significant physical and psychological health challenges for patients as well as a substantial economic burden on society. The advancements in conservative and surgical interventions for MSDs have been remarkable in recent years; however, the current treatment modalities still fall short of meeting the optimal requirements of patients. Recently, peroxiredoxin 6 (Prdx6) has gained considerable attention from researchers due to its remarkable antioxidative, anti-inflammatory, and anti-apoptotic properties. It has been found that Prdx6 is involved in multiple system diseases, including MSDs; however, the exact role of Prdx6 in MSDs is still lacking. This study aimed to summarize the structure, regulatory mechanism, and potential function of Prdx6. These findings may demonstrate Prdx6 as a novel target for inhibiting the advancement of MSDs.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
30
|
Lins A, Keuter L, Mulac D, Humpf HU, Langer K. Are stabilizers, located on the surface of PLGA nanoparticles, able to modify the protein adsorption pattern? Int J Pharm 2025; 674:125488. [PMID: 40107467 DOI: 10.1016/j.ijpharm.2025.125488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is an FDA-approved, biodegradable, and biocompatible polymer, which makes it a promising starting material for the development of nanoparticles. However, in vivo studies have revealed a short biological half-life due to recognition and consequently internalization of these nanoparticles by cells of the mononuclear phagocyte system, resulting in their accumulation in the liver and spleen. In this study, we analyzed the adsorption pattern of proteins on PLGA nanoparticles after incubation with human plasma and human serum. For this analysis, different nanoparticle stabilizer systems were manufactured, and the adsorbed protein amounts were determined after incubation. Additionally, the adsorbed proteins were identified and enrichment and depletion processes of specific proteins that take place during protein incubation were measured via LC-MS/MS. The results showed a high enrichment of several opsonins on the nanoparticle surface and a depletion of most dysopsonins. Therefore, we hypothesize that an explanation for the unfavorable in vivo behavior of PLGA nanoparticles could be the formation of a biomolecular corona with a preferential adsorption of opsonins. Furthermore, we aimed to analyze whether different stabilizers, located on the surface of PLGA nanoparticles, were able to modify the protein adsorption pattern. Our findings suggest that the use of different stabilizers can influence the amount of total bound proteins on the nanoparticle surface. However, the change of stabilizers has only a minor impact on the composition of the biomolecular corona.
Collapse
Affiliation(s)
- Anika Lins
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany
| | - Lucas Keuter
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Muenster 48149, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Muenster 48149, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Münster, Corrensstr. 48, Muenster 48149, Germany.
| |
Collapse
|
31
|
Zhang T, Liu S, He S, Shi L, Ma R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. Chembiochem 2025; 26:e202400962. [PMID: 39744852 DOI: 10.1002/cbic.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Diabetes is a metabolic disorder characterized by insufficient endogenous insulin production or impaired sensitivity to insulin. In recent years, a class of incretin-based hypoglycemic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs), have attracted great attention in the management of type 2 diabetes mellitus (T2DM) due to their benefits, including stable glycemic control ability, a low risk of hypoglycemia, and weight reduction for patients. However, like other peptide drugs, GLP-1RAs face challenges such as instability, susceptibility to enzymatic degradation, and immunogenicity, which severely limit their clinical application. In recent years, various strategies have been developed to improve the bioavailability and therapeutic efficacy of GLP-1RAs, including structural modification and carrier-mediated delivery. This article briefly introduces the research and application status of several common GLP-1RAs and their limitations. Taking exendin-4 as an example, we focus on the research progress of improving bioavailability and therapeutic efficacy based on structural modification and carrier delivery strategies, aiming to provide reference for the development of new GLP-1RAs treatment systems.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sainan Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Suning He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
32
|
Sbarbaro C, Márquez-Miranda V, Leal M, Pino-Rios R, Olivares P, González M, Díaz-Franulic I, González-Nilo F, Yáñez O, Duarte Y. Exploring the Mechanism of β-Cyclodextrin-Encased Phenolic Acids Functionalized with TPP for Antioxidant Activity and Targeting. Antioxidants (Basel) 2025; 14:465. [PMID: 40298777 PMCID: PMC12023939 DOI: 10.3390/antiox14040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidative stress on the mitochondria in a human cell is attributed to several life-risking conditions, and as such, the importance of molecular structures packed with antioxidant properties and structural characteristics to enter the cell to help prevent such stress has been substantially relevant in recent years. In this study, we investigated the antioxidant properties of triphenylphosphonium (TPP)-conjugated phenolic acids encapsulated in β-cyclodextrin (β-CD). We synthesized TPP conjugates of caffeic, coumaric, and cinnamic acids and formed inclusion complexes with β-CD. Our results showed successful encapsulation of TPP conjugates in β-CD with high efficiency. The TPP conjugates maintained antioxidant activity, with slight reductions observed in β-CD complexes. Furthermore, cell viability studies showed low cytotoxicity of the dds. Computational analyses revealed that TPP conjugation preserved the chemical reactivity of the phenolic acids. Molecular dynamics simulations demonstrated stable inclusion complexes with β-CD and the free energy calculations indicated that TPP conjugation significantly enhanced the ability of caffeic acid to translocate across mitochondrial membranes. These results highlight the potential of TPP-conjugated phenolic acids encapsulated in β-CD as effective antioxidants with improved mitochondrial targeting capabilities.
Collapse
Affiliation(s)
- Christopher Sbarbaro
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Matías Leal
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
| | - Ricardo Pino-Rios
- Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat, Playa Brava 3256, Iquique 1111346, Chile;
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Makarena González
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Osvaldo Yáñez
- Centro de Modelación Ambiental y Dinámica de Sistemas (CEMADIS), Universidad de las Américas, Santiago 7500975, Chile;
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| |
Collapse
|
33
|
Menezes Pinto N, das Chagas Mendonça MR, da Silva Santos J, Dos Santos Ferraz CM, Santos Oliveira D, Dos Santos LVB, de Souza Araújo AA, José Quintans Júnior L, Lyra Júnior DP, de Oliveira Filho AD, Lira AAM, Russo Serafini M, de Souza Nunes R. Lessons learned from the COVID-19 pandemic: the intranasal administration as a route for treatment - a patent review. Pharm Dev Technol 2025:1-17. [PMID: 40186505 DOI: 10.1080/10837450.2025.2487575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic exposed the fragility of today's marketed treatments for respiratory infections. As a primary site of infection, the upper airways may represent a key access route for the control and treatment for these conditions. The present study aims to explore and identify, through a patent review, the novelty of therapies for COVID-19 that use the intranasal route for drug administration. A search was carried out in Wipo and Espacenet, using the descriptors 'COVID-19 OR SARS-CoV 2' AND 'treatment OR therapy' AND NOT 'vaccine OR immunizing' and the classification 'A61K9/0043'. Of the 151 patents identified, we excluded 73 duplicates, and 36 documents that meet the criteria adopted for exclusion (not nasally administered formulations, vaccines, post COVID-19 treatments, uncertain route of administration or form). We identified 78 unique patents on patent databases, of which 42 were selected for this review. The documents revealed the use of the intranasal pathway not only for drug repositioning but also for using plant-derived and biological molecules. Overall, the new formulations explore a variety of known drugs and natural products incorporated in drug carrier systems and devices for drug delivery and administration. Thus, the intranasal route remains a promising strategy for drug delivery, offering direct access to the primary infection site and warranting further exploration.
Collapse
|
34
|
Fu X, Shi Y, Wu H, Zhang Y, Liu Y, Wan X, Chen X, Zhou J, Qiu S, Zhao X, Tian Z, Li L, Zang H, Lin G. Inhalable liposomal delivery of osimertinib and DNA for treating primary and metastasis lung cancer. Nat Commun 2025; 16:3336. [PMID: 40199846 PMCID: PMC11978822 DOI: 10.1038/s41467-025-58312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Lung cancer remains one of the most common malignancies, and its brain metastases significantly worsen the prognosis for patients. Current treatments for lung cancer face many challenges, including poor drug accumulation and the inability to simultaneously control primary and metastatic tumors. Here, we show that the mRNA-binding protein insulin-like growth factor 3 is crucial for non-small cell lung cancer progression and metastasis. We construct an inhalable nanoliposome system to co-deliver osimertinib and DNA plasmid for gene knockdown. Upon inhalation, these nanoparticles efficiently penetrate pulmonary barriers and accumulate in lungs by mimicking natural lung surfactants. Within tumor cells, released osimertinib inhibits tumor growth, while the DNA triggers the production of engineered exosomes that can travel to the brain to suppress tumors. This strategy effectively inhibits both primary and metastatic tumors while enhancing antitumor immune responses. This work suggests that this inhalable nanomedicine offers a safe and versatile strategy for cancer therapy.
Collapse
Affiliation(s)
- Xianglei Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Hang Wu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yankun Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yingying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaoyu Wan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiangqin Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jiamin Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Shengnan Qiu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Guimei Lin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
35
|
Party P, Klement ML, Gaudio BM, Sorrenti M, Ambrus R. Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy. Pharmaceutics 2025; 17:486. [PMID: 40284481 PMCID: PMC12030394 DOI: 10.3390/pharmaceutics17040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a "nano-in-micro" structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections.
Collapse
Affiliation(s)
- Petra Party
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.P.); (M.L.K.)
| | - Márk László Klement
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.P.); (M.L.K.)
| | - Bianca Maria Gaudio
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (B.M.G.); (M.S.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (B.M.G.); (M.S.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.P.); (M.L.K.)
| |
Collapse
|
36
|
Roy H, Maddiboyina B, Nandi S, Srungarapati S, Nayak BS, Gade NJ, Anjana TLNS, Vinayasri KM, Gummadi A, Haseena S. Enhanced rivastigmine delivery through nanoemulsion and pyridoxine supplementation: An in-vivo study on Alzheimer's disease intervention. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102810. [PMID: 40024487 DOI: 10.1016/j.nano.2025.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025]
Abstract
Nanoemulsions are nanostructured material and stabilized colloidal in nature evolved as a highly desirable mechanism for the delivery of drugs. Our objective of the study deals with a successful Rivastigmine (RSG) loaded nanoemulsion which can effectively progress the treatment of AD patients. We developed nanoemulsion containing RSG by combining pyridoxine, an essential vitamin supplement for central nervous system development, with linseed oil, which functioned as the lipophilic phase in the nanoemulsion formulation. The optimal formulation having globular size of 202.3 nm was further evaluated by various analytical techniques, including zeta potential analysis, ATR, DSC, and XRD study. The study utilized the Morris Water Maze (MWM) model to assess the cognitive abilities of Long-Evans rats. The current investigation establishes that the utilization of RSG nanoemulsion incorporating blend of linseed oil and pyridoxine which reduced travel distance in animal mode and can be successfully contribute to therapeutic advancements in patients with AD.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Balaji Maddiboyina
- Scientific Writing Services, Medical and Scientific Communications CoE, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hyderabad, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University, Kashipur, India
| | - Swati Srungarapati
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Bhabani Shankar Nayak
- KIIT School of Pharmacy, KIMS, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Nirmala Jyothi Gade
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | | | - Kammula Mounika Vinayasri
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Asha Gummadi
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Shaik Haseena
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| |
Collapse
|
37
|
Kumar M, Jukanti A, Cahan R, Nause A, Minnes R. Second harmonic generation-mediated Photodynamic Therapy for Staphylococcus aureus: A novel approach using Bismuth Ferrite-Protoporphyrin IX conjugates. Photodiagnosis Photodyn Ther 2025; 52:104512. [PMID: 39920955 DOI: 10.1016/j.pdpdt.2025.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment modality that utilizes photosensitizing agents, light, and molecular oxygen to produce cytotoxic reactive oxygen species (ROS) to treat cancerous cells and bacterial infections. However, the effectiveness of PDT is often limited by the penetration depth of the light used to activate the photosensitizer (PS). We propose an effective method to address this challenge using Second Harmonic Generation (SHG), a nonlinear optical process in which two identical photons combine to form a new photon with double the frequency. This technique enables the utilization of longer wavelengths for enhanced tissue penetration, subsequently converting them into shorter wavelengths that align with the absorption characteristics of the photosensitizer. Thus, to achieve a highly effective production of SHG, we successfully synthesized the Harmonic Nanoparticle (HNP), Bismuth Ferrite (BFO). Subsequently, BFO was conjugated with Protoporphyrin IX (PPIX) to get BFO-PPIX conjugates for PDT treatment. These were exposed to Near Infrared (NIR) femtoseconds pulsed laser with a wavelength of 798 nm. PDT experiments using BFO-PPIX conjugates and an 8-minute irradiation by a 798 nm pulse laser reduced the survival rate of cultured Staphylococcus aureus (S. aureus) bacterial cells to 44.5 % ± 3.4 %. To the best of our knowledge, BFO and BFO-PPIX conjugates have not been used previously for advancing the conventional PDT treatment using SHG for deeper and precise treatment in S. aureus.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Physics, Ariel University, Ariel 40700, Israel
| | - Avinash Jukanti
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel.
| | - Ariel Nause
- Department of Physics, Ariel University, Ariel 40700, Israel.
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
38
|
Sahar NU, Gul M, Choi HI, Ryu JS, Noh HY, Vo DK, Nguyen TH, Ansari MM, Kim W, Maeng HJ, Zeb A, Kim JK. Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib. Int J Biol Macromol 2025; 299:140030. [PMID: 39848373 DOI: 10.1016/j.ijbiomac.2025.140030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs. The developed SRF-SLNs and CS-SRF-SLNs displayed uniform and well-separated spherical particles with small particle size (112.2 and 124.6 nm), low PDI (0.114 and 0.148), adequate zeta potential (-18.6 and +21.2 mV) and high encapsulation efficiency (92.0 and 91 %). Thermal and crystallinity studies (DSC and PXRD) confirmed the successful incorporation of SRF into the lipid matrix and its conversion to the amorphous state. The CS-SRF-SLNs demonstrated sustained SRF release in simulated gastric and intestinal fluids with improved aqueous solubility. Following oral administration to rats, CS-SRF-SLNs significantly improved SRF bioavailability compared with SRF-SLNs and SRF dispersion. Collectively, CS-SRF-SLNs were found to be superior to SRF-SLNs owing to their better sustained-release profile and pharmacokinetic parameters, thereby demonstrating their usefulness for oral delivery by minimizing the solubility-related issues of SRF.
Collapse
Affiliation(s)
- Najam Us Sahar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Maleeha Gul
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jeong-Su Ryu
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Thu-Hang Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| |
Collapse
|
39
|
Ge D, Ma S, Sun T, Li Y, Wei J, Wang C, Chen X, Liao Y. Pulmonary delivery of dual-targeted nanoparticles improves tumor accumulation and cancer cell targeting by restricting macrophage interception in orthotopic lung tumors. Biomaterials 2025; 315:122955. [PMID: 39547139 DOI: 10.1016/j.biomaterials.2024.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Despite the recognized potential of inhaled nanomedicines to enhance and sustain local drug concentrations for lung cancer treatment, the influence of macrophage uptake on targeted nanoparticle delivery to and within tumors remains unclear. Here, we developed three ligand-coated nanoparticles for pulmonary delivery in lung cancer therapy: phenylboronic acid-modified nanoparticles (PBA-NPs), PBA combined with folic acid (FA-PBA-NPs), and PBA with mannose (MAN-PBA-NPs). In vitro, MAN-PBA-NPs were preferentially internalized by macrophages, whereas FA-PBA-NPs exhibited superior uptake by cancer cells compared to macrophages. Following intratracheal instillation into mice with orthotopic Lewis lung carcinoma tumors, all three nanoparticles showed similar lung retention. However, MAN-PBA-NPs were more prone to interception by lung macrophages, which limited their accumulation in tumor tissues. In contrast, both PBA-NPs and FA-PBA-NPs achieved comparable high tumor accumulation (∼11.3% of the dose). Furthermore, FA-PBA-NPs were internalized by ∼30% of cancer cells, significantly more than the 10-18% seen with PBA-NPs or MAN-PBA-NPs. Additionally, FA-PBA-NPs loaded with icaritin effectively inhibited the Wnt/β-catenin pathway, resulting in superior anti-tumor efficacy through targeted cancer cell delivery. Overall, FA-PBA-NPs demonstrated advantageous competitive uptake kinetics by cancer cells compared to macrophages, enhancing tumor targeting and therapeutic outcomes.
Collapse
Affiliation(s)
- Di Ge
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Siqi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Tingting Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaxing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Chenao Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore, 117544, Singapore.
| | - Yonghong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
40
|
Krasilnikov MS, Mazur RV, Chumakov SP, Denisov VS, Goldenberg EA, Nikolaenko YI, Bersenev EA, Nikitin TD, Orinicheva PS, Brylev VA, Gulyak EL, Korshun VA, Alferova VA, Gvozdev DA, Ustinov AV. Donor-Acceptor (Perylenethienyl)Ethylenes as Singlet Oxygen-Photogenerating Viral Inhibitors. Chembiochem 2025; 26:e202401019. [PMID: 40042395 DOI: 10.1002/cbic.202401019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Indexed: 03/19/2025]
Abstract
The development of broad-spectrum antiviral drugs effective against a wide range of viruses is of significant practical importance. Derivatives of perylene, a pentacyclic aromatic hydrocarbon, demonstrate pronounced antiviral activity. These compounds act primarily as membrane-active singlet oxygen photogenerators, disrupting virions and inhibiting their fusion with the host cell membrane. Modification of the perylene core allows for chemical diversification of antiviral photosensitizers. Additionally, achieving a bathochromic shift of the absorption band is crucial for effective treatment of superficial lesions, as it facilitates deeper tissue penetration of therapeutic light. In this work, donor-acceptor perylenylethylenes and (perylenethienyl)ethylenes were synthesized and evaluated for their spectral properties, singlet oxygen photogeneration, and inhibitory activity against vesicular stomatitis virus (VSV), a representative enveloped virus. Incorporation of a thiophene moiety into the molecule significantly enhanced both the singlet oxygen generation ability and the antiviral activity. These findings provide useful insights into the relationship between the structure, spectral/photochemical properties, and biological activity of perylene-based photosensitizers.
Collapse
Affiliation(s)
- Maxim S Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Roman V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vladislav S Denisov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Efim A Goldenberg
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Yan I Nikolaenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Evgeny A Bersenev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Timofei D Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Polina S Orinicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University Trubetskaya Str. 8/2, 119991, Moscow, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Evgeny L Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Daniil A Gvozdev
- Department of Biology, Lomonosov Moscow State University Leninskie Gory 1-12, 119991, Moscow, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
41
|
K K SP, Narayansamy D. Advancements in nanotechnology for targeted drug delivery in idiopathic pulmonary fibrosis: a focus on solid lipid nanoparticles and nanostructured lipid carriers. Drug Dev Ind Pharm 2025; 51:285-294. [PMID: 39963904 DOI: 10.1080/03639045.2025.2468811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE This review aims to explore innovative therapeutic strategies, with a particular focus on recent advancements in drug delivery systems using bioinspired nanomaterials such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the idiopathic pulmonary fibrosis (IPF). SIGNIFICANCE OF THE REVIEW Current treatments for IPF, including the FDA-approved anti-fibrotic agents pirfenidone and nintedanib, primarily aim to slow disease progression rather than reverse fibrosis. Bioinspired nanomaterials like SLNs and NLCs have shown promise in enhancing the efficacy of anti-fibrotic agents by improving drug solubility, stability, and targeted delivery. These systems not only minimize systemic side effects but also maximize therapeutic impact in lung tissues, offering a new hope for improved patient management and outcomes in this debilitating disease. KEY FINDINGS SLNs facilitate sustained drug release and have demonstrated potential in delivering phosphodiesterase type 5 inhibitors effectively to lung cells. NLCs, on the other hand, exhibit superior biocompatibility and controlled release properties, making them suitable for pulmonary applications. Studies indicate that both SLNs and NLCs can enhance the bioavailability of drugs like ciprofloxacin and montelukast, thereby improving treatment outcomes in pulmonary conditions. CONCLUSION The integration of nanotechnology into anti-fibrotic therapy represents a significant advancement in addressing the challenges posed by IPF. By leveraging the unique properties of SLNs and NLCs, there is potential to overcome the limitations of current treatments and provide new therapeutic options that offer better management and improved outcomes for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Suriya Prakaash K K
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayansamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
42
|
Khulood MT, Jijith US, Naseef PP, Kallungal SM, Geetha VS, Pramod K. Advances in metal-organic framework-based drug delivery systems. Int J Pharm 2025; 673:125380. [PMID: 39988215 DOI: 10.1016/j.ijpharm.2025.125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging crystalline porous materials with significant potential in biomedical applications, particularly as drug delivery systems (DDS). MOFs, composed of metal ions or clusters linked by organic ligands, feature large surface areas, adjustable pores, and diverse functionalities. This review comprehensively examines MOFs as advanced DDS, detailing their structures, synthesis, and drug loading mechanisms. We highlight high drug loading capacity and controlled release capabilities of MOF. Developments of design strategies for MOF-based DDS, namely, surface functionalization for targeted delivery and stimuli-responsive MOFs for controlled release, have been discussed and explored. The use of MOFs for delivering therapeutic agents such as small molecules, peptides, proteins, nucleic acids, and cancer drugs is discussed. Challenges addressed include stability, degradation in biological environments, potential toxicity, and scalability. Advances in hybrid MOF-based DDS, integrating MOFs with polymers, lipids, or nanoparticles for improved delivery, are also examined.
Collapse
Affiliation(s)
- M T Khulood
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India; Kerala University of Health Sciences, Medical College P.O., Thrissur 680596 Kerala, India
| | - U S Jijith
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - P P Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna, Malappuram 679321 Kerala, India
| | - Sirajudheen M Kallungal
- Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram 673637 Kerala, India
| | - V S Geetha
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India.
| |
Collapse
|
43
|
Banat H, Nagy A, Farkas Á, Ambrus R, Csóka I. Comprehensive Aerodynamic and Physicochemical Stability Evaluations of Nanocrystal-Based Dry Powder Inhalers: The Role of Mannitol and Leucine in Enhancing Performance. Pharmaceutics 2025; 17:436. [PMID: 40284431 PMCID: PMC12030377 DOI: 10.3390/pharmaceutics17040436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based dry powders (NC-DPs). Methods: Nanocrystalline suspensions were produced via wet media milling and subjected to stability studies before undergoing nano spray drying. A factorial design was employed to optimize the process parameters. The influence of mannitol and leucine, individually and in combination, was evaluated in terms of aerodynamic properties (Aerodynamic Particle Sizer (APS), in silico modeling) and the physicochemical stability at room temperature (in a desiccator) and accelerated conditions (40 ± 2 °C, 75 ± 5% relative humidity). Results: APS analysis revealed that leucine-containing powders (K-NC-Ls) exhibited the smallest median (1.357 µm) and geometric mean (1.335 µm) particle sizes, enhancing dispersibility. However, in silico results indicated the highest exhaled fraction for K-NC-L, highlighting the need for optimized excipient selection. Although mannitol showed the lowest exhaled fraction, it was mainly deposited in the extra-thoracic region in silico. The mannitol/leucine combination (K-NC-ML) revealed a low exhaled fraction and high lung deposition in silico. Also, K-NC-ML demonstrated superior stability, with a 6% reduction in D[0.5] and a 5% decrease in span overtime. Furthermore, no significant changes in crystallinity, thermal behavior, drug release, or mass median aerodynamic diameter were observed under stress conditions. Conclusions: These findings confirm that combined incorporation of mannitol and leucine in NC-DP formulations enhances stability and aerodynamic performance, making it a promising approach for pulmonary drug delivery.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Attila Nagy
- HUN_REN Wigner Research Centre for Physics, Konkoly Thege Miklós Street 29-33, 1121 Budapest, Hungary;
| | - Árpád Farkas
- Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Konkoly Thege Miklós Street 29-33, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
44
|
Kakati A, Banerjee A, Das P, Rakshit G, Ghosh R, Chakraborty R, Saha B, Goyary D, Bhutia YD, Karmakar S, Kishor S, Mazumder B, Chattopadhyay P. In silico screening and validation of natural compounds with fabrication and characterization of a lead compound-loaded chitosome for targeting lung fibrosis. J Mater Chem B 2025; 13:4118-4137. [PMID: 40042397 DOI: 10.1039/d4tb01664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Lung fibrosis (LF) is a serious complication with very limited therapeutic options. This study aimed to find a potential compound for targeting LF and develop a chitosome formulation to minimize any inherent drawbacks of the compound and achieve effective drug delivery. In total, 79 natural compounds were screened using an in silico approach against five targeted proteins (3HMG, 6B8Y, 2FAP, 3CQU, and 3DK9). Amongst these, quercetin (QER) exhibited the best efficacy (-14.725 kcal mol-1) and ΔG average (-86.45 ± 6.24) kcal mol-1 against the TGF-β receptor (PDB ID: 6B8Y). In vitro studies revealed that bleomycin-challenged A549 cells showed a fibrosis-like behaviour. Upon treatment with QER, the cell viability decreased owing to a reduction in the mitochondrial membrane potential and increased apoptosis. Furthermore, cell migration was inhibited with an improvement in cellular morphology. A QER-loaded chitosome formulation (QCF) was prepared through modified thin-film hydration. Variables were optimized using a response surface methodology Box-Behnken design. The QCF was further characterized on the basis of microscopic observation, zeta potential, entrapment efficiency, drug release and kinetics and by evaluating the effect of temperature on the QCF. Its zeta potential was +24.83 ± 0.32 mV, while microscopic observation showed that it had a spherical morphology with slightly rough surfaces after chitosan coating. Furthermore, the EE% was determined to be 81.75 ± 0.46%. The QCF also demonstrated a 74.23 ± 1.01% release of QER till 24 h, following Higuchi model kinetics. In conclusion, the in silico and in vitro cell line studies provided evidence for QER as a lead molecule for targeting LF. Moreover, the prepared QCF demonstrated sustained release with prospective QER targeted delivery. However, further extensive research is required to provide a promising strategy for the management of LF in the future.
Collapse
Affiliation(s)
- Ajay Kakati
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Amartya Banerjee
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Parikshit Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Rahul Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Reshmi Chakraborty
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Buddhadeb Saha
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Yangchen D Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| |
Collapse
|
45
|
Huang Y, Wang XY, Huang JY, Huang ZW. Incorporation of human β-defensin-1 into immunoliposomes to facilitate targeted autophagy therapy of colon carcinoma. World J Clin Oncol 2025; 16:101098. [PMID: 40130061 PMCID: PMC11866080 DOI: 10.5306/wjco.v16.i3.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Based on the discovery that human β-defensin-1 (hBD-1) triggers autophagy in colon cancer cells and inhibits proliferation, we proposed the consideration of its druggability. As a protein, its stability, targetability and bioavailability must be improved. Compared with the traditional medicinal chemistry technology, nanotechnology is more economical for increasing the druggability of hBD-1 and can be readily scaled up. Here, we propose an immunoliposome system containing hBD-1 to improve its stability and bioavailability. To enhance its targetability, anti-epidermal growth factor receptor (EGFR) antibodies were conjugated to the liposomal bilayer to produce immunoliposomes that can target EGFR, which is highly expressed in colon cancer cells. Although more studies are needed to support clinical trials and large-scale manufacturing, these immunoliposomes have great potential as therapeutics. Thus, immunoliposomes are suitable nanovesicles to improve the druggability of hBD-1; however, additional basic and translational research of these systems is warranted.
Collapse
Affiliation(s)
- Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Xi-Ye Wang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Jia-Yue Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Zheng-Wei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| |
Collapse
|
46
|
Luan H, Peng C, Yasin P, Shang Q, Xiang W, Song X. Mannosamine-Engineered Nanoparticles for Precision Rifapentine Delivery to Macrophages: Advancing Targeted Therapy Against Mycobacterium Tuberculosis. Drug Des Devel Ther 2025; 19:2081-2102. [PMID: 40129488 PMCID: PMC11931292 DOI: 10.2147/dddt.s505682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Background Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death among infectious diseases. Enhancing the ability of anti-tuberculosis drugs to eradicate Mycobacterium tuberculosis within host cells remains a significant challenge. Methods A mannosamine-modified nanoparticle delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) copolymers to enhance the targeted delivery of rifapentine (RPT) to macrophages. D-mannosamine was conjugated to PLGA-polyethylene glycol (PLGA-PEG) copolymers through EDC/NHS coupling chemistry, and the resultant RPT-MAN-PLGA-PEG nanoparticles (NPs) were prepared through a combination of phacoemulsification and solvent evaporation methods. The physicochemical properties, toxicity, in vitro drug release profiles, stability, cellular uptake, and anti-TB efficacy of the NPs were systematically evaluated. Results The RPT-MAN-PLGA-PEG NPs had a mean particle size of 108.2 ± 7.2 nm, with encapsulation efficiency and drug loading rates of 81.2 ± 6.3% and 13.7 ± 0.7%, respectively. RPT release from the NPs was sustained for over 60 hours. Notably, the phagocytic uptake of the MAN-PLGA NPs by macrophages was significantly higher compared to PLGA-PEG NPs. Both NPs improved pharmacokinetic parameters without inducing significant organ toxicity. The minimum inhibitory concentration for the NPs was 0.047 μg/mL, compared to 0.2 μg/mL for free RPT. Conclusion The engineered RPT-MAN-PLGA-PEG NPs effectively enhanced macrophage uptake in vitro and facilitated the intracellular clearance of Mtb. This nanoparticle-based delivery system offers a promising approach for improving the precision of anti-TB therapy, extending drug release, optimizing pharmacokinetic profiles, augmenting antimicrobial efficacy, and mitigating drug-related toxicities.
Collapse
Affiliation(s)
- Haopeng Luan
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Cong Peng
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Parhat Yasin
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Qisong Shang
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Wei Xiang
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Xinghua Song
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| |
Collapse
|
47
|
Qian W, Lu J, Wang T, Liu Q, Liu N, Chen S, Li Y. Isobavachalcone confers protection against Cryptococcus neoformans-induced ferroptosis in Caenorhabditis elegans via lifespan extension and GSH-GPX-1 axis modulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137969. [PMID: 40154123 DOI: 10.1016/j.jhazmat.2025.137969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
The recent designation of Cryptococcus neoformans as a critical-priority fungal pathogen by the World Health Organization highlights the imperative need for novel antifungal agents with distinct mechanisms of action. This study elucidates the novel ferroptotic pathway underlying C. neoformans-induced cell death in Caenorhabditis elegans and investigates the therapeutic potential of isobavachalcone (IBC) through comprehensive evaluation of core biochemical markers: total glutathione (GSH), malondialdehyde, ferrous iron content, and lipid reactive oxygen species (ROS). Integrated transcriptomic analysis via RNA-seq and subsequent RT-qPCR validation revealed critical gene expression patterns associated with antiferroptotic regulation. Our findings demonstrate that C. neoformans infection initiates ferroptosis in C. elegans through iron-dependent lipid peroxidation cascades. Remarkably, IBC administration conferred significant protection against fungal-induced ferroptosis by restoring redox homeostasis-evidenced by elevated GSH levels, attenuated ROS accumulation, and decreased ferrous iron content. Mechanistic investigations identified IBC-mediated upregulation of SKN-1 and GSH biosynthesis genes, coupled with suppression of GPX-1 activity. These coordinated effects disrupted the iron-ROS amplification loop through modulation of the GSH-GPX-1 axis, ultimately extending host lifespan in C. neoformans-challenged models. Our results position IBC as a ferroptosis inhibitor with dual antioxidant and iron-chelating properties, offering a therapeutic strategy against cryptococcal infections through targeting of evolutionary conserved cell death pathways.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiming Liu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Na Liu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yongdong Li
- Ningbo Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| |
Collapse
|
48
|
Zhang Y, Zou X, Du Q, Dong X, Chinta UK, Yu R, Wu F, Jin T. Burst-Free Sustained Release of Proteins from Thermal Gelling Polymer Solutions. Pharmaceutics 2025; 17:376. [PMID: 40143039 PMCID: PMC11945406 DOI: 10.3390/pharmaceutics17030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: Thermo-gelling hydrophilic polymers like PLGA-PEG-PLGA are known as injectable sustained-release depots for biologics, but they face challenges due to the occurrence of severe burst release. This study aimed to develop a strategy to avoid the initial burst release by pre-encapsulating proteins in polysaccharide microparticles through an aqueous-aqueous emulsion mechanism, thereby enhancing therapeutic retention and linear release kinetics. Methods: Five model proteins (G-CSF, GM-CSF, IGF-1, FVIII, BSA) were encapsulated in dextran microparticles, using an organic solvent-free aqueous-aqueous emulsion method. These particles were dispersed in a 23% (w/w) PLGA-PEG-PLGA solution and injected into a 37 °C release buffer to form a gel depot. The in vitro release profiles were quantified using ELISA and MicroBCA assays over 9-42 days. The bioactivity of the proteins was validated using cell proliferation assays (NFS-60, TF-1, MCF-7) and chromogenic kits. The in vivo pharmacokinetics of the FVIII-loaded formulations were evaluated in Sprague-Dawley rats (n = 5/group) over 28 days. Results: Protein-loaded dextran particles retained their structural integrity within the hydrogel and exhibited minimal burst release (≤5% within 30 min vs. >25% for free proteins). Sustained near-linear release profiles were observed for all the proteins, with complete release by day 9 (G-CSF, GM-CSF, BSA) or day 42 (FVIII). Rats administered with the thermal gel with FVIII-dextran particles showed a significantly lower peak plasma concentration (Cmax: 88.25 ± 30.21 vs. 132.63 ± 66.67 ng/mL) and prolonged therapeutic coverage (>18 days vs. 15 days) compared to those administered with the thermal gel with the FVIII solution. The bioactivity of the released proteins remained at ≥90% of the native forms. Conclusions: Pre-encapsulation in dextran microparticles effectively mitigates burst release from thermosensitive hydrogels, while preserving protein functionality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (X.Z.); (Q.D.); (X.D.); (U.K.C.); (R.Y.)
| | - Tuo Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (X.Z.); (Q.D.); (X.D.); (U.K.C.); (R.Y.)
| |
Collapse
|
49
|
Rathee J, Kishore N. Interaction of solid lipid nanoparticles with bovine serum albumin: physicochemical mechanistic insights. Phys Chem Chem Phys 2025; 27:5876-5888. [PMID: 40028927 DOI: 10.1039/d4cp04737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study investigates the interaction of solid lipid nanoparticles (SLNs) with the transport protein bovine serum albumin (BSA) in terms of thermodynamic signatures, employing both spectroscopic and calorimetric techniques. When nanoparticles are exposed to biological media, proteins are adsorbed on their surfaces, leading to protein corona formation. Therefore, controlling the formation of the protein corona is essential for in vivo therapeutic efficacy. Although SLNs have previously been explored solely as potential nano-carriers for drug delivery, no prior efforts have been made to study their interactions with biomolecules from a biophysical and mechanistic perspective. SLNs are colloidal dispersions of the solid lipid in an aqueous solution stabilized by surfactants. Herein, a hot emulsification methodology was employed to formulate SLNs, and their interactions with BSA were analyzed. The SLNs were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques to obtain information on their size, zeta potential, and shape. Fluorescence data suggested the presence of weak interactions between the SLNs and BSA. Static quenching is confirmed using time-correlated single-photon counting (TCSPC) experiments. Differential scanning calorimetric (DSC) and fluorescence spectroscopic experiments suggest the thermal stabilization of BSA by the SLNs. This stabilization results from the enhancement of the secondary structure of the protein without significantly altering the tertiary structure. Isothermal calorimetry (ITC) results suggest weak interactions between the SLNs and BSA, although not in a site-specific manner. Overall, mechanistic insights into lipid nanoparticle-protein interactions obtained from such studies efficiently overcome the hurdles associated with targeted drug delivery.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
50
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|