451
|
Pattirajawane ID. Phylogenetic networks in the study of sars-cov-2 pandemics and evolution. AIP CONFERENCE PROCEEDINGS 2024; 2867:060005. [DOI: 10.1063/5.0224432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
452
|
Butzler MA, Reed JL, Knapton KM, Afzal T, Agarwal AK, Schaeffer J, Saraiya N, Oti L, White ER, Giacobbe E, Simons LM, Ozer EA, McFall SM. Evaluation of the analytical performance of the 15-minute point-of-care DASH™ SARS-CoV-2 RT-qPCR test. Diagn Microbiol Infect Dis 2024; 108:116120. [PMID: 37898036 PMCID: PMC10842742 DOI: 10.1016/j.diagmicrobio.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Accurate and timely diagnosis for COVID-19 diagnosis allows highly effective antiviral medications to be prescribed. The DASH™ Rapid PCR System is a sample-to-answer point-of-care platform combining state-of-the-art PCR kinetics with sequence specific hybridization. The platform's first assay, the DASH™ SARS-CoV-2/S test for anterior nares direct swab specimens, received FDA Emergency Use Authorization in March 2022 for point-of-care use. Here we report the analytical characteristics of the assay including limit of detection, dynamic range, and robustness of SARS-CoV-2 variant detection. The limit of detection was determined by testing swabs contrived with one hundred copies of wild type or Omicron BA.5 virus and detecting 20/20 and 19/20, respectively. The dynamic range was assessed with contrived swabs containing 102-106 copies; the log-linear relationship between Cq and copy input was plotted, and the qPCR efficiency calculated from the slope of the line was 101.4%. Detection of seven SARS-CoV-2 variants was demonstrated.
Collapse
Affiliation(s)
- Matthew A Butzler
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Jennifer L Reed
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Kirsten M Knapton
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Tania Afzal
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Abhishek K Agarwal
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Jakob Schaeffer
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Neeraj Saraiya
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Lisa Oti
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Ezekiel R White
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Emilie Giacobbe
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States
| | - Lacy M Simons
- Center for Pathogen Genomics and Microbial Evolution (CPGME), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Egon A Ozer
- Center for Pathogen Genomics and Microbial Evolution (CPGME), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Sally M McFall
- Center for Innovation in Global Health Technologies (CIGHT), Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 United States.
| |
Collapse
|
453
|
Ghali-Mohammed I, Odetokun IA, Raufu IA, Adetunji VO. Whole genome sequencing analysis of non-O157 Shiga toxin-producing Escherichia coli in milk in Kwara State, Nigeria. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:92-97. [PMID: 39624192 PMCID: PMC11608529 DOI: 10.22099/ijvr.2024.49643.7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/24/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Escherichia coli is a major cause of poor microbial quality of milk, often resulting from unhygienic milk handling. Milk contamination poses public health concerns. Shiga toxin-producing Escherichia coli (STEC) strains in food products, particularly milk, is a critical concern for public health. Limited information exists on the detection of non-O157 E. coli pathotypes in milk sold by local processors in Nigeria. AIMS This study aimed to explore the diversity of non-O157 STEC isolates found in commercially available milk in Kwara State, Nigeria, to find the genetic diversity and potential risks associated with these strains. METHODS A subgroup of 18 representative non-O157 STEC isolated from milk samples (n=1225) was selected for whole genome sequencing (WGS) analysis. RESULTS Four novel sequence types (ST): ST398, ST540, ST1727, and ST9891 of non-O157 E. coli involving five serotypes: O176:H30, O176:H20, O8:H20, O21:H45, and O22:H7, carrying variable proportions of virulence factors, antimicrobial resistance genes, and plasmids, were identified. CONCLUSION This investigation contributes valuable data to the ongoing efforts to ensure food safety and prevent the transmission of E. coli strains through dairy products. The findings have implications for public health policies and food quality standards in Kwara State, Nigeria. Improved hygienic practices during milk handling are recommended.
Collapse
Affiliation(s)
- I. Ghali-Mohammed
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - I. A. Odetokun
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - I. A. Raufu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - V. O. Adetunji
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
454
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
455
|
Shahrajabian MH, Sun W. The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases. Curr Pharm Des 2024; 30:169-179. [PMID: 38243947 DOI: 10.2174/0113816128276560231218090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
Digital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| |
Collapse
|
456
|
Zhao Y, Yuan J, Xiao D, Zhang L, Li C, Hu J, Chen R, Song D, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Wen X, Cao S, Huang X. HSP90AB1 is a host factor that promotes porcine deltacoronavirus replication. J Biol Chem 2024; 300:105536. [PMID: 38092149 PMCID: PMC10789647 DOI: 10.1016/j.jbc.2023.105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Sichuan Science-Observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Sichuan Science-Observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
457
|
Surma S, Lewek J, Banach M. Pediatric inflammatory multisystem syndrome and SARS-CoV-2. INTERNATIONAL AND LIFE COURSE ASPECTS OF COVID-19 2024:357-371. [DOI: 10.1016/b978-0-323-95648-2.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
458
|
Feng Y, Fan Y, Luo X, Ge J. A Wells-Riley based COVID-19 infectious risk assessment model combining both short range and room scale effects. BUILDING SIMULATION 2024; 17:93-111. [DOI: 10.1007/s12273-023-1060-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2025]
|
459
|
Septiadi WN, Alim M, Adi MNP, Rizkiantoro C, Ramadhani D, Marianti KM, Dwipayana AAGAK. A performance investigation of the portable face mask sterilization device based on the heat pipe and thermoelectric. AIP CONFERENCE PROCEEDINGS 2024; 2891:080013. [DOI: 10.1063/5.0202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
460
|
Kim Y, Lee S, Choi YA, Chung JM, Kim EN, Lee B, Kim SY, Jeong GS, Kim SH. Magnolia kobus DC leaf ethanol extract alleviated lipopolysaccharide-induced acute lung inflammation by suppressing NF-κB and Nrf2 signaling. JOURNAL OF HERBMED PHARMACOLOGY 2024; 13:90-100. [DOI: 10.34172/jhp.2024.48116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 01/05/2025] Open
Abstract
Introduction: Magnolia kobus DC has been used as herbal medicine to treat coughs and is known to exert biological effects such as anti-inflammatory, antioxidant, and antibacterial properties. We aimed to define the pharmacological effects of M. kobus leaf ethanol extract (MLEE) on acute lung inflammation and explore the underlying mechanisms of action. Methods: For in vitro investigations, RAW 264.7 cells were pretreated with MLEE (1, 10, and 100 μg/mL) and stimulated with lipopolysaccharide (LPS). For in vivo investigations, BALB/c mice were intratracheally administered with LPS for 24 hours after injection of MLEE (0.3, 3, and 30 mg/kg). Hematoxylin and eosin staining was used for histopathology analysis of lung tissue. The phytochemical constituents of MLEE were analyzed using high-performance liquid chromatography. Results: In RAW 264.7 cells, MLEE reduced the activation of the inflammatory mediators (inducible nitric oxide synthase and cyclooxygenase-2) and the nuclear translocation of nuclear factor (NF)-κB and nuclear factor erythroid-2-related factor 2 (Nrf2). The intraperitoneal injection of MLEE (30 mg/kg) attenuated interstitial edema and immune cell infiltration in LPS-induced acute lung inflammation. MLEE also inhibited the activation of cyclooxygenase-2, NF-κB, and Nrf2 in the lung tissue. Conclusion: Taken together, MLEE exerted an anti-inflammatory effect by inhibiting inflammatory and oxidative mediators on acute lung inflammation suggesting that it might be used as a natural drug for treating acute lung inflammatory diseases.
Collapse
Affiliation(s)
- Yeyoung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, South Korea
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jae-Min Chung
- Department of Gardens Education, Korea National Arboretum, Pocheon 11186, South Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Sang-Yong Kim
- DMZ Botanic Garden, Korea National Arboretum, Yanggu 24564, South Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
461
|
Batoure Bamana A, Shafiee Kamalabad M, Oberski DL. A systematic literature review of time series methods applied to epidemic prediction. INFORMATICS IN MEDICINE UNLOCKED 2024; 50:101571. [DOI: 10.1016/j.imu.2024.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
462
|
Lingas G, Planas D, Péré H, Porrot F, Guivel-Benhassine F, Staropoli I, Duffy D, Chapuis N, Gobeaux C, Veyer D, Delaugerre C, Le Goff J, Getten P, Hadjadj J, Bellino A, Parfait B, Treluyer JM, Schwartz O, Guedj J, Kernéis S, Terrier B. Neutralizing Antibody Levels as a Correlate of Protection Against SARS-CoV-2 Infection: A Modeling Analysis. Clin Pharmacol Ther 2024; 115:86-94. [PMID: 37795693 DOI: 10.1002/cpt.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Although anti-severe acute respiratory syndrome-coronavirus 2 antibody kinetics have been described in large populations of vaccinated individuals, we still poorly understand how they evolve during a natural infection and how this impacts viral clearance. For that purpose, we analyzed the kinetics of both viral load and neutralizing antibody levels in a prospective cohort of individuals during acute infection with alpha variant. Using a mathematical model, we show that the progressive increase in neutralizing antibodies leads to a shortening of the half-life of both infected cells and infectious viral particles. We estimated that the neutralizing activity reached 90% of its maximal level within 11 days after symptom onset and could reduce the half-life of both infected cells and circulating virus by a 6-fold factor, thus playing a key role to achieve rapid viral clearance. Using this model, we conducted a simulation study to predict in a more general context the protection conferred by pre-existing neutralization titers, due to either vaccination or prior infection. We predicted that a neutralizing activity, as measured by 50% effective dose > 103 , could reduce by 46% the risk of having viral load detectable by standard polymerase chain reaction assays and by 98% the risk of having viral load above the threshold of infectiousness. Our model shows that neutralizing activity could be used to define correlates of protection against infection and transmission.
Collapse
Affiliation(s)
| | - Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Hélène Péré
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Chapuis
- Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Service d'hématologie biologique, Hôpital Cochin, Paris, France
| | - Camille Gobeaux
- Department of Automated Biology, CHU de Cochin, AP-HP, Paris, France
| | - David Veyer
- Virology Unit, Microbiology Department, APHP, Hôpital Européen Georges-Pompidou, Paris, France
- Université Paris Cité, INSERM UMRS1138 Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Constance Delaugerre
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U944, Biology of Emerging Viruses, Paris, France
| | - Jérôme Le Goff
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, France
| | | | - Jérôme Hadjadj
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
| | - Adèle Bellino
- URC-CIC Paris Centre Necker/Cochin, AP-HP, Hôpital Cochin, Paris, France
| | - Béatrice Parfait
- Fédération des Centres de Ressources Biologiques - Plateformes de Ressources Biologiques AP-HP.Centre-Université Paris Cité, Centre de Ressources Biologiques Cochin, Hôpital Cochin, Paris, France
| | - Jean-Marc Treluyer
- Unité de Recherche clinique, Hôpital Cochin, AP-HP.Centre - Université de Paris, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Solen Kernéis
- Université Paris Cité, IAME, INSERM, Paris, France
- Equipe de Prévention du Risque Infectieux (EPRI), AP-HP, Hôpital Bichat, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France
- Université Paris Cité, INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
463
|
Roychoudhury A, Raj R. Role of 3D printing in microfluidics and applications. NEXT-GENERATION SMART BIOSENSING 2024:67-107. [DOI: 10.1016/b978-0-323-98805-6.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
464
|
Deng Y, Xu X, Zheng X, Leung GM, Chui HK, Li Y, Hu Q, Yang M, Huang X, Tang S, Zhang L, Zhang T. Advances and implications of wastewater surveillance for SARS-CoV-2. CHINESE SCIENCE BULLETIN 2024; 69:362-369. [DOI: 10.1360/tb-2022-1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
465
|
Green M, Al-Humadi N. Preclinical Toxicology of Vaccines. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN NONCLINICAL DRUG DEVELOPMENT 2024:849-876. [DOI: 10.1016/b978-0-323-85704-8.00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
466
|
Li C, Wu Q, Song H, Lu H, Yang K, Liu Z, Liu W, Gao T, Yuan F, Zhu J, Guo R, Tian Y, Zhou D. Elucidating the biological characteristics and pathogenicity of the highly virulent G2a porcine epidemic diarrhea virus. J Gen Virol 2024; 105. [PMID: 38270573 DOI: 10.1099/jgv.0.001953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Since the large-scale outbreak of porcine epidemic diarrhoea (PED) in 2010, caused by the genotype 2 (G2) variant of the porcine epidemic diarrhoea virus (PEDV), pig farms in China, even those vaccinated with the G2b vaccine, have experienced infections from the G2a variant, leading to significant economic losses. This study successfully isolated the G2a strain DY2020 from positive small intestine contents (SICs) by blind passage on Vero cells for four generations. The SICs were taken from Daye, Hubei Province, China. The biological characteristics were identified by indirect immunofluorescence assay (IFA) and transmission electron microscopy (TEM). The growth kinetics of the strain on Vero cells were detected by TCID50, and the virus titre could reach 107.35 TCID50 ml-1 (SD: 5.07×106). The pathogenicity towards colostrum-deprived piglets was conducted by assessing faecal viral shedding, morphometric analysis of intestinal lesions, and immunohistochemical staining. The results showed that DY2020 was highly virulent to colostrum-deprived piglets, with severe watery diarrhoea and other clinical symptoms appeared at 6 h post-infection (h p.i.), and all died within 30 h. Pathological tissue examination results showed that the lesions mainly occurred in the intestines of piglets, causing pathological changes such as shortening of intestinal villi. In summary, the discovery of the G2a strain DY2020 in this study is of great significance for understanding Hubei PEDV and provides an important theoretical basis for the development of new efficient PEDV vaccines.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Haofei Song
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Hongyu Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| |
Collapse
|
467
|
Reeve J. De-stabilizing innate immunity in COVID-19: effects of its own positive feedback and erratic viraemia on the alternative pathway of complement. ROYAL SOCIETY OPEN SCIENCE 2024; 11:221597. [PMID: 38234438 PMCID: PMC10791537 DOI: 10.1098/rsos.221597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Complement provides powerful, fast responses in the human circulation to SARS-CoV-2 (COVID-19 virus) infection of the lower respiratory tract. COVID-19 effects were investigated in a revised human in silico Mass Action model of complement's alternative pathway (AP) responses. Bursts of newly circulating virions increased the fission of Complement protein C3 into C3a and C3b via stimulation of the lectin pathway or inhibited complement factor H. Viral reproduction sub-models incorporated smoothly exponential or step-wise exponential growth. Starting complement protein concentrations were drawn randomly from published normal male or female ranges and each infection model run for 10 days. C3 and factor B (FB) syntheses driven by Lectin Pathway stimulation led to declining plasma C3 and increasing FB concentrations. The C3-convertase concentration, a driver of viral elimination, could match viral growth over three orders of magnitude but near-complete exhaustion of circulating C3 was more prevalent with step-wise than with 'smooth' increases in viral stimulation. C3 exhaustion could be prolonged. Type 2 Diabetes and hypertension led to greatly increased peak C3-convertase concentrations, as did short-term variability of COVID-19 viraemia, pulmonary capillary clotting and secondary acidosis. Positive feedback in the AP greatly extends its response range at the expense of stability.
Collapse
Affiliation(s)
- Jonathan Reeve
- Senior Research Fellow, Nuffield Department of Orthopaedics, Rheumatological and Musculoskeletal Sciences, University of Oxford Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| |
Collapse
|
468
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
469
|
Zhao J, Kang M, Wu H, Sun B, Baele G, He WT, Lu M, Suchard MA, Ji X, He N, Su S, Veit M. Risk assessment of SARS-CoV-2 replicating and evolving in animals. Trends Microbiol 2024; 32:79-92. [PMID: 37541811 DOI: 10.1016/j.tim.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
Collapse
Affiliation(s)
- Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Guy Baele
- Department of Microbiology, Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany.
| |
Collapse
|
470
|
Musoles-Cuenca B, Aguiló-Gisbert J, Lorenzo-Bermejo T, Canales R, Ballester B, Romani-Cremaschi U, Martínez-Valverde R, Maiques E, Marteles D, Rueda P, Rubio V, Villanueva-Saz S, Rubio-Guerri C. Molecular and Serological Studies on Potential SARS-CoV-2 Infection among 43 Lemurs under Human Care-Evidence for Past Infection in at Least One Individual. Animals (Basel) 2023; 14:140. [PMID: 38200871 PMCID: PMC10778278 DOI: 10.3390/ani14010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
In the setting of the recent COVID-19 pandemic, transmission of SARS-CoV-2 to animals has been reported in both domestic and wild animals and is a matter of concern. Given the genetic and functional similarities to humans, non-human primates merit particular attention. In the case of lemurs, generally considered endangered, they are believed to be susceptible to SARS-CoV-2 infection. We have conducted a study for evidence of SARS-CoV-2 infection among the 43 lemurs of Mundomar, a zoological park in Benidorm, Spain. They belong to two endangered lemur species, 23 black-and-white ruffed lemurs (Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). Health assessments conducted in 2022 and 2023 included molecular analyses for SARS-CoV-2 RNA of oral and rectal swabs using two different RT-qPCR assays, always with negative results for SARS-CoV-2 in all animals. The assessment also included serological testing for antibodies against the receptor-binding domain (RBD) of the spike protein (S) of SARS-CoV-2, which again yielded negative results in all animals except one black-and-white ruffed lemur, supporting prior infection of that animal with SARS-CoV-2. Our data, while not indicating a high susceptibility of lemurs to SARS-CoV-2 infection, show that they can be infected, adding to the existing information body on potential ways for SARS-CoV-2 virus spreading in zoos, highlighting the need for animal surveillance for the virus.
Collapse
Affiliation(s)
- Beatriz Musoles-Cuenca
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain;
| | - Teresa Lorenzo-Bermejo
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Rocío Canales
- Veterinary Department, Mundomar Benidorm, 03503 Alicante, Spain; (R.C.); (U.R.-C.)
| | - Beatriz Ballester
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | | | | | - Elisa Maiques
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Pablo Rueda
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Vicente Rubio
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
- Group 739, IBV-CSIC, Centre for Biomedical Network Research, Instituto de Salud Carlos III (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Consuelo Rubio-Guerri
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain
| |
Collapse
|
471
|
Li M, Wang Y, Wang Y, Li R, Wang S, Ding P, Zhang G. Accurate location of two conserved linear epitopes of PEDV utilizing monoclonal antibodies induced by S1 protein nanoparticles. Int J Biol Macromol 2023; 253:127276. [PMID: 37804887 DOI: 10.1016/j.ijbiomac.2023.127276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Porcine Epidemic diarrhea virus (PEDV), which can result in severe vomiting, diarrhea, dehydration and death in newborn piglets, poses a great threat to the pig industry around the world. The S1 subunit of S protein is crucial for triggering neutralizing antibodies binding to the receptor. Based on the advantages of high immunogenicity and precise assembly of nanoparticles, the mi3 nanoparticles and truncated S1 protein were assembled by the SpyTag/SpyCatcher system and then expressed in HEK293F cells, whereafter high-efficiency monoclonal antibodies (mAbs) were produced and identified. The obtained five mAbs can bind to various genotypes of PEDV, including a mAb (12G) which can neutralize G1 and G2 genotypes of PEDV in vitro. By further identification of monoclonal antibody target sequences, 507FNDHSF512 and 553LFYNVTNSYG562 were first identified as B-cell linear epitopes, in which 553LFYNVTNSYG562 was a neutralizing epitope. Alanine scans identified the key amino acid sites of two epitopes. Moreover, the results of multiple sequence alignment analysis showed that these two epitopes were highly conserved in various subtype variants. In brief, these findings can serve as a basis for additional research of PEDV and prospective resources for the creation of later detection and diagnostic techniques.
Collapse
Affiliation(s)
- Minghui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siqiao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
472
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
473
|
Zhang L, Cao H, Medlin K, Pearson J, Aristotelous AC, Chen A, Wessler T, Forest MG. Computational Modeling Insights into Extreme Heterogeneity in COVID-19 Nasal Swab Data. Viruses 2023; 16:69. [PMID: 38257769 PMCID: PMC10820884 DOI: 10.3390/v16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Throughout the COVID-19 pandemic, an unprecedented level of clinical nasal swab data from around the globe has been collected and shared. Positive tests have consistently revealed viral titers spanning six orders of magnitude! An open question is whether such extreme population heterogeneity is unique to SARS-CoV-2 or possibly generic to viral respiratory infections. To probe this question, we turn to the computational modeling of nasal tract infections. Employing a physiologically faithful, spatially resolved, stochastic model of respiratory tract infection, we explore the statistical distribution of human nasal infections in the immediate 48 h of infection. The spread, or heterogeneity, of the distribution derives from variations in factors within the model that are unique to the infected host, infectious variant, and timing of the test. Hypothetical factors include: (1) reported physiological differences between infected individuals (nasal mucus thickness and clearance velocity); (2) differences in the kinetics of infection, replication, and shedding of viral RNA copies arising from the unique interactions between the host and viral variant; and (3) differences in the time between initial cell infection and the clinical test. Since positive clinical tests are often pre-symptomatic and independent of prior infection or vaccination status, in the model we assume immune evasion throughout the immediate 48 h of infection. Model simulations generate the mean statistical outcomes of total shed viral load and infected cells throughout 48 h for each "virtual individual", which we define as each fixed set of model parameters (1) and (2) above. The "virtual population" and the statistical distribution of outcomes over the population are defined by collecting clinically and experimentally guided ranges for the full set of model parameters (1) and (2). This establishes a model-generated "virtual population database" of nasal viral titers throughout the initial 48 h of infection of every individual, which we then compare with clinical swab test data. Support for model efficacy comes from the sampling of infection dynamics over the virtual population database, which reproduces the six-order-of-magnitude clinical population heterogeneity. However, the goal of this study is to answer a deeper biological and clinical question. What is the impact on the dynamics of early nasal infection due to each individual physiological feature or virus-cell kinetic mechanism? To answer this question, global data analysis methods are applied to the virtual population database that sample across the entire database and de-correlate (i.e., isolate) the dynamic infection outcome sensitivities of each model parameter. These methods predict the dominant, indeed exponential, driver of population heterogeneity in dynamic infection outcomes is the latency time of infected cells (from the moment of infection until onset of viral RNA shedding). The shedding rate of the viral RNA of infected cells in the shedding phase is a strong, but not exponential, driver of infection. Furthermore, the unknown timing of the nasal swab test relative to the onset of infection is an equally dominant contributor to extreme population heterogeneity in clinical test data since infectious viral loads grow from undetectable levels to more than six orders of magnitude within 48 h.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Han Cao
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Medlin
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason Pearson
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Simulations Plus, Inc., 6 Davis Dr., Durham, NC 27709, USA
| | | | - Alexander Chen
- Department of Mathematics, California State University, Dominguez Hills, CA 90747, USA
| | - Timothy Wessler
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - M. Gregory Forest
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Applied Physical Sciences and Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
474
|
Mohammadi A, Chiang S, Li F, Wei F, Lau CS, Aziz M, Ibarrondo FJ, Fulcher JA, Yang OO, Chia D, Kim Y, Wong DT. Direct Detection of 4-Dimensions of SARS-CoV-2: Infection (vRNA), Infectivity (Antigen), Binding Antibody, and Functional Neutralizing Antibody in Saliva. RESEARCH SQUARE 2023:rs.3.rs-3745787. [PMID: 38234820 PMCID: PMC10793499 DOI: 10.21203/rs.3.rs-3745787/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We developed a 4-parameter clinical assay using Electric Field Induced Release and Measurement (EFIRM) technology to simultaneously assess SARS-CoV-2 RNA (vRNA), nucleocapsid antigen, host binding (BAb) and neutralizing antibody (NAb) levels from a drop of saliva with performance that equals or surpasses current EUA-approved tests. The vRNA and antigen assays achieved lower limit of detection (LOD) of 100 copies/reaction and 3.5 TCID₅₀/mL, respectively. The vRNA assay differentiated between acutely infected (n=10) and infection-naïve patients (n=33) with an AUC of 0.9818, sensitivity of 90%, and specificity of 100%. The antigen assay similarly differentiated these patient populations with an AUC of 1.000. The BAb assay detected BAbs with an LOD of 39 pg/mL and distinguished acutely infected (n=35), vaccinated with prior infection (n=13), and vaccinated infection-naïve patients (n=13) from control (n=81) with AUC of 0.9481, 1.000, and 0.9962, respectively. The NAb assay detected NAbs with an LOD of 31.6 Unit/mL and differentiated between COVID-19 recovered or vaccinated patients (n=31) and pre-pandemic controls (n=60) with an AUC 0.923, sensitivity of 87.10%, and specificity of 86.67%. Our multiparameter assay represents a significant technological advancement to simultaneously address SARS-CoV-2 infection and immunity, and it lays the foundation for tackling potential future pandemics.
Collapse
Affiliation(s)
- Aida Mohammadi
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Samantha Chiang
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Feng Li
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Fang Wei
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Mohammad Aziz
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Francisco J. Ibarrondo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David Chia
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - David T.W. Wong
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
475
|
Huang H, Dai Y, Sun X, Fang Y. The Outbreak of Acute Primary Angle-Closure Cases During the COVID-19 Omicron Variant Pandemic at a Tertiary Eye Center in Shanghai. Clin Ophthalmol 2023; 17:4009-4019. [PMID: 38162694 PMCID: PMC10757803 DOI: 10.2147/opth.s440740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose This study aimed to investigate the outbreak of acute primary angle-closure (APAC) during the COVID-19 Omicron variant pandemic in Shanghai. Methods This single-center retrospective observational study included all newly diagnosed patients with APAC in Eye, Ear, Nose, and Throat Hospital of Fudan University from December 15, 2022, to January 14, 2023 (pandemic group) during the COVID-19 pandemic of Omicron Variant, and from November 15, 2021, to February 14, 2022 (control group) when the infection rate of COVID-19 is very low in Shanghai. Demographic features, intraocular pressure, axial length, anterior chamber depth, lens thickness and pupil diameter were compared between the two groups. Results A total of 223 patients (261 eyes) were included in the pandemic group and 75 patients (82 eyes) in the control group. The number of APAC patients and eyes in the pandemic group is 8.92-fold and 9.55-fold of the monthly average number in the control group. The onset dates of acute angle-closure were mainly between December 17 and December 31, 2022. In the pandemic group, 72.65% of patients with APAC had a recent COVID-19 infection. Among the COVID-19-positive patients, 72% suffered APAC attacks within 24h of the occurrence of COVID-19 symptoms and 92% within 3 days. The pandemic group showed a longer time from symptoms to treatment and larger pupil diameter than the control group (7.92 ± 6.14 vs 3.63 ± 2.93 days, p = 0.006; 4.53 ± 1.17 vs 3.78 ± 1.24 mm, p = 0.003, respectively). Conclusion An outbreak of APAC attack was observed in our eye center during the COVID-19 Omicron variant pandemic in Shanghai. There may be a correlation between the onset of APAC and new COVID-19 Omicron variant infection, but the exact reason needs to be investigated further.
Collapse
Affiliation(s)
- Haili Huang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Yi Dai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People’s Republic of China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Yuan Fang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
| |
Collapse
|
476
|
López-Figueroa C, Cano E, Navarro N, Pérez-Maíllo M, Pujols J, Núñez JI, Vergara-Alert J, Segalés J. Clinical, Pathological and Virological Outcomes of Tissue-Homogenate-Derived and Cell-Adapted Strains of Porcine Epidemic Diarrhea Virus (PEDV) in a Neonatal Pig Model. Viruses 2023; 16:44. [PMID: 38257745 PMCID: PMC10819582 DOI: 10.3390/v16010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is characterized by diarrhea, vomiting, dehydration, and high mortality rates in neonatal piglets. Two distinct genogroups, S-INDEL (G1a, G1b) and non-S INDEL (G2a, G2b, and G2c), circulate worldwide and are characterized by varying degrees of virulence. Here, we compared the early pathogenesis of a PEDV S-INDEL strain obtained from intestine homogenate (CALAF-HOMOG) or adapted to cell culture by 22 passages (CALAF-ADAP) and a virulent non-S INDEL strain (PEDV-USA) in newborn piglets. After orogastric inoculation of PEDV strains, body weight, temperature and clinical signs were monitored for 48 hpi. Pathological studies were performed at 48 hpi and RNA extracts from jejunal content (at 48 hpi) and rectal swabs (at 0 and 48 hpi) were tested for the presence of PEDV RNA as well as sequenced and compared to the inoculum. Piglets inoculated with PEDV-USA and CALAF-HOMOG isolates showed more severe weight loss, diarrhea, villi fusion and atrophy compared to CALAF-ADAP inoculated piglets. The viral load of rectal swabs was higher in the PEDV-USA inoculated group, followed by CALAF-HOMOG and CALAF-ADAP isolates. Similarly, viral RNA load in jejunal content was comparable among PEDV-USA and CALAF-HOMOG inoculated piglets and higher than that of CALAF-ADAP ones. The comparison of three full PEDV sequences of the inocula with the corresponding ones of pigs after 48 hpi yielded a nucleotide identity >99.9%. This study highlights variations in virulence among S-INDEL and non-S INDEL strains and between S-INDEL isolates obtained from homogenate and cell culture.
Collapse
Affiliation(s)
- Carlos López-Figueroa
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Esmeralda Cano
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Núria Navarro
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Mónica Pérez-Maíllo
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Joan Pujols
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - José I. Núñez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; (C.L.-F.); (E.C.); (N.N.); (M.P.-M.); (J.P.); (J.I.N.)
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
477
|
Hernández-Giottonini K, Arellano-Reynoso B, Rodríguez-Córdova RJ, de la Vega-Olivas J, Díaz-Aparicio E, Lucero-Acuña A. Enhancing Therapeutic Efficacy against Brucella canis Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles. ACS OMEGA 2023; 8:49362-49371. [PMID: 38162745 PMCID: PMC10753543 DOI: 10.1021/acsomega.3c07892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The in vivo efficacy of rifampicin encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles was evaluated for the treatment of BALB/c mice experimentally infected with Brucella canis. The PLGA nanoparticles loaded with rifampicin (RNP) were prepared using the single emulsification-solvent evaporation technique, resulting in nanoparticles with a hydrodynamic diameter of 138 ± 6 nm. The zeta potential and polydispersity index values indicated that the system was relatively stable with a narrow size distribution. The release of rifampicin from the nanoparticles was studied in phosphate buffer at pH 7.4 and 37 °C. The release profile showed an initial burst phase, followed by a slower release stage attributed to nanoparticle degradation and relaxation, which continued for approximately 30 days until complete drug release. A combined model of rifampicin release, accounting for both the initial burst and the degradation-relaxation of the nanoparticles, effectively described the experimental data. The efficacy of RNP was studied in vivo; infected mice were treated with free rifampicin at concentrations of 2 mg per kilogram of mice per day (C1) and 4 mg per kilogram of mice per day (C2), as well as equivalent doses of RNP. Administration of four doses of the nanoparticles significantly reduced the B. canis load in the spleen of infected BALB/c mice. RNP demonstrated superior effectiveness compared to the free drug in the spleen, achieving reductions of 85.4 and 49.4%, respectively, when using C1 and 93.3 and 61.8%, respectively, when using C2. These results highlight the improved efficacy of the antibiotic when delivered through nanoparticles in experimentally infected mice. Therefore, the RNP holds promise as a potential alternative for the treatment of B. canis.
Collapse
Affiliation(s)
- Karol
Yesenia Hernández-Giottonini
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad
de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Circuito Exterior Ciudad
Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Rosalva Josefina Rodríguez-Córdova
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | - Efrén Díaz-Aparicio
- CENID
Salud Animal e Inocuidad, Instituto Nacional
de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Federal México-Toluca
Km. 15.5, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Armando Lucero-Acuña
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
478
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
479
|
Yang S, Huang X, Li S, Wang C, Jansen CA, Savelkoul HFJ, Liu G. Linoleic acid: a natural feed compound against porcine epidemic diarrhea disease. J Virol 2023; 97:e0170023. [PMID: 38009930 PMCID: PMC10734519 DOI: 10.1128/jvi.01700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a pig coronavirus that causes severe diarrhea and high mortality in piglets, but as no effective drugs are available, this virus threatens the pig industry. Here, we found that the intestinal contents of specific pathogen-free pigs effectively blocked PEDV invasion. Through proteomic and metabolic analyses of the intestinal contents, we screened 10 metabolites to investigate their function and found that linoleic acid (LA) significantly inhibited PEDV replication. Further investigations revealed that LA inhibited viral replication and release mainly by binding with PEDV NSP5 to regulate the PI3K pathway and, in particular, inhibiting AKT phosphorylation. In vivo experiments illustrated that orally administered LA protected pigs from PEDV challenge and severe diarrhea. These findings provide strong support for exploring antiviral drugs for coronavirus treatment.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Shuxian Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
480
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
481
|
Nishiyama T, Miyamatsu Y, Park H, Nakamura N, Yokokawa Shibata R, Iwami S, Nagasaki Y. Modeling COVID-19 vaccine booster-elicited antibody response and impact of infection history. Vaccine 2023; 41:7655-7662. [PMID: 38008663 DOI: 10.1016/j.vaccine.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The 3-dose COVID-19 vaccine (booster vaccination) has been offered worldwide. As booster vaccinations continue, it is important to understand the antibody dynamics elicited by booster vaccination in order to evaluate and develop vaccination needs and strategies. Here, we investigated longitudinal data by monitoring IgG antibodies against the receptor binding domain (RBD) in health care workers. We extended our previously developed mathematical model to booster vaccines and successfully fitted antibody titers over time in the absence and presence of past SARS-CoV-2 infection. Quantitative analysis using our mathematical model indicated that anti-RBD IgG titers increase to a comparable extent after booster vaccination, regardless of the presence or absence of infection, but infection history extends the duration of antibody response by 1.28 times. Such a mathematical modeling approach can be used to inform future vaccination strategies on the basis of an individual's immune history. Our simple quantitative approach can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.
Collapse
Affiliation(s)
- Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuichiro Miyamatsu
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan; Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Risa Yokokawa Shibata
- Department of Advanced Transdisciplinary Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako 351-0198, Japan; Science Groove Inc., Fukuoka 810-0041, Japan.
| | - Yoji Nagasaki
- Department of Infectious Disease, Clinical Research Institute, National Hospital Organization Kyushu Medical Center,1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan.
| |
Collapse
|
482
|
Riccio S, Childs K, Jackson B, Graham SP, Seago J. The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1. Viruses 2023; 15:2445. [PMID: 38140685 PMCID: PMC10747794 DOI: 10.3390/v15122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.
Collapse
Affiliation(s)
- Sofia Riccio
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Kay Childs
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Julian Seago
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| |
Collapse
|
483
|
Bhargava A, Szachnowski U, Chazal M, Foretek D, Caval V, Aicher SM, Pipoli da Fonseca J, Jeannin P, Beauclair G, Monot M, Morillon A, Jouvenet N. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-κB pathway toward SARS-CoV-2. iScience 2023; 26:108449. [PMID: 38213785 PMCID: PMC10783605 DOI: 10.1016/j.isci.2023.108449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Ugo Szachnowski
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Dominika Foretek
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | | | - Patricia Jeannin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Monot
- Institut Pasteur, Université de Paris, Biomics Platform, C2RT, 75015 Paris, France
| | - Antonin Morillon
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| |
Collapse
|
484
|
Ghai RR, Straily A, Wineland N, Calogero J, Stobierski MG, Signs K, Blievernicht M, Torres-Mendoza Y, Waltenburg MA, Condrey JA, Blankenship HM, Riner D, Barr N, Schalow M, Goodrich J, Collins C, Ahmad A, Metz JM, Herzegh O, Straka K, Arsnoe DM, Duffiney AG, Shriner SA, Kainulainen MH, Carpenter A, Whitehill F, Wendling NM, Stoddard RA, Retchless AC, Uehara A, Tao Y, Li Y, Zhang J, Tong S, Barton Behravesh C. Epidemiologic and Genomic Evidence for Zoonotic Transmission of SARS-CoV-2 among People and Animals on a Michigan Mink Farm, United States, 2020. Viruses 2023; 15:2436. [PMID: 38140677 PMCID: PMC10747742 DOI: 10.3390/v15122436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms.
Collapse
Affiliation(s)
- Ria R. Ghai
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Anne Straily
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Nora Wineland
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Jennifer Calogero
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | | | - Kimberly Signs
- Michigan Department of Health and Human Services, Lansing, MI 48909, USA
| | - Melissa Blievernicht
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | | | | | - Jillian A. Condrey
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | | | - Diana Riner
- Michigan Department of Health and Human Services, Lansing, MI 48909, USA
| | - Nancy Barr
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Michele Schalow
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Jarold Goodrich
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Cheryl Collins
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Ausaf Ahmad
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - John Michael Metz
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Owen Herzegh
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Kelly Straka
- Michigan Department of Natural Resources, Lansing, MI 48909, USA
| | - Dustin M. Arsnoe
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | - Anthony G. Duffiney
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | - Susan A. Shriner
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | | | - Ann Carpenter
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Florence Whitehill
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Natalie M. Wendling
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Robyn A. Stoddard
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Adam C. Retchless
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Anna Uehara
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Ying Tao
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Yan Li
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Jing Zhang
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Suxiang Tong
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | | |
Collapse
|
485
|
Kapczynski DR, Chrzastek K, Shanmugasundaram R, Zsak A, Segovia K, Sellers H, Suarez DL. Efficacy of recombinant H5 vaccines delivered in ovo or day of age in commercial broilers against the 2015 U.S. H5N2 clade 2.3.4.4c highly pathogenic avian Influenza virus. Virol J 2023; 20:298. [PMID: 38102683 PMCID: PMC10724940 DOI: 10.1186/s12985-023-02254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.4.4) have been circulating globally in wild birds with spill over into commercial poultry operations. The negative impact to commercial poultry renewed interest in the development of vaccines against these viruses to control outbreaks in the U.S. METHODS The efficacy of three recombinant H5 vaccines delivered in ovo or day of age were evaluated in commercial broilers challenged with the 2015 U.S. H5N2 clade 2.3.4.4c HPAIV. The recombinant vaccines included an alphavirus RNA particle vaccine (RP-H5), an inactivated reverse genetics-derived (RG-H5) and recombinant HVT vaccine (rHVT-AI) expressing H5 hemagglutinin (HA) genes. In the first experiment, in ovo vaccination with RP-H5 or rHVT-AI was tested against HPAI challenge at 3 or 6 weeks of age. In a second experiment, broilers were vaccinated at 1 day of age with a dose of either 107 or 108 RP-H5, or RG-H5 (512 HA units (HAU) per dose). RESULTS In experiment one, the RP-H5 provided no protection following in ovo application, and shedding titers were similar to sham vaccinated birds. However, when the RP-H5 was delivered in ovo with a boost at 3 weeks, 95% protection was demonstrated at 6 weeks of age. The rHVT-AI vaccine demonstrated 95 and 100% protection at 3 and 6 weeks of age, respectively, of challenged broilers with reduced virus shedding compared to sham vaccinated birds. Finally, when the RP-H5 and rHVT vaccines were co-administered at one day of age, 95% protection was demonstrated with challenge at either 3 or 6 weeks age. In the second experiment, the highest protection (92%) was observed in the 108 RP-H5 vaccinated group. Significant reductions (p < 0.05) in virus shedding were observed in groups of vaccinated birds that were protected from challenge. The RG-H5 provided 62% protection from challenge. In all groups of surviving birds, antibody titers increased following challenge. CONCLUSIONS Overall, these results demonstrated several strategies that could be considered to protected broiler chickens during a H5 HPAI challenge.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Revathi Shanmugasundaram
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Aniko Zsak
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Karen Segovia
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Holly Sellers
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 956 College Station Road, 30602, Athens, Athens, GA, U.S
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S..
| |
Collapse
|
486
|
Le BT, Gallage HC, Kim MH, Park JE. Molecular Characterization of Porcine Epidemic Diarrhea Virus from Field Samples in South Korea. Viruses 2023; 15:2428. [PMID: 38140669 PMCID: PMC10748127 DOI: 10.3390/v15122428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. PEDV has been a major problem in the pig industry since its first identification in 1992. The aim of this study was to investigate the diversity, molecular characteristics, and phylogenetic relationships of PEDVs in field samples from Korea. Six PEDVs were identified from the field samples, and the full spike (S) glycoprotein gene sequences were analyzed. A phylogenetic analysis of the S gene sequences from the six isolates revealed that they were clustered into the G2b subgroup with genetic distance. The genetic identity of the nucleotide sequences and deduced amino acid sequences of the S genes of those isolates was 97.9-100% and 97.4-100%, respectively. A BLAST search for new PEDVs revealed an identity greater than 99.5% compared to the highest similarity of two different Korean strains. The CO-26K equivalent (COE) epitope had a 521H→Y/Q amino acid substitution compared to the subgroup G2b reference strain (KNU-1305). The CNU-22S11 had 28 amino acid substitutions compared to the KNU-1305 strain, which included two newly identified amino acid substitutions: 562S→F and 763P→L in the COE and SS6 epitopes, respectively. Furthermore, the addition and loss of N-linked glycosylation were observed in the CNU-22S11. The results suggest that various strains of PEDV are prevalent and undergoing evolution at swine farms in South Korea and can affect receptor specificity, virus pathogenicity, and host immune system evasion. Overall, this study provides an increased understanding of the prevalence and control of PEDV in South Korea.
Collapse
Affiliation(s)
| | | | | | - Jung-Eun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (B.T.L.); (H.C.G.); (M.-H.K.)
| |
Collapse
|
487
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
488
|
Morozov I, Gaudreault NN, Trujillo JD, Indran SV, Cool K, Kwon T, Meekins DA, Balaraman V, Artiaga BL, Madden DW, McDowell C, Njaa B, Retallick J, Hainer N, Millership J, Wilson WC, Tkalcevic G, Vander Horst H, Burakova Y, King V, Hutchinson K, Hardham JM, Schwahn DJ, Kumar M, Richt JA. Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats. Vaccines (Basel) 2023; 11:1831. [PMID: 38140233 PMCID: PMC10747320 DOI: 10.3390/vaccines11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.
Collapse
Affiliation(s)
- Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bradley Njaa
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | | | | | - William C. Wilson
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| |
Collapse
|
489
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
490
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Martella V, Veneri C, Mancini P, Ferraro GB, Iaconelli M, Suffredini E, La Rosa G. Assessing the Prevalence of Astroviruses in Water Environments: A Systematic Review and Meta-analysis. ACS ES&T WATER 2023; 3:3782-3789. [PMID: 38094915 PMCID: PMC10714392 DOI: 10.1021/acsestwater.3c00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2024]
Abstract
Astroviruses (AstVs) are a major cause of gastroenteritis, especially in children. They can be transmitted through various pathways, including environmental contamination via water matrices. This study aimed to investigate the prevalence of AstV in different types of water, such as untreated and treated wastewater, surface water (e.g., rivers, lakes, and seawater), groundwater, drinking water, and other water matrices (e.g., irrigation water, gray water, reservoir water, floodwater, and pig slaughterhouse effluents). The meta-analysis included 80 articles, and the overall prevalence of AstV in water matrices was 36.6% [95% confidence interval (CI) of 29.6-44.0]. The highest prevalence was found in untreated wastewater at 56.8% (95% CI of 41.5-71.5), followed by treated wastewater at 48.5% (95% CI of 30.6-66.5), surface water at 28.6% (95% CI of 21.1-36.7), other matrices at 9.8% (95% CI of 0.7-25.3), drinking water at 3.3% (95% CI of 0.2-8.7), and groundwater at 0.5% (95% CI of 0.0-3.4). The most frequent AstVs detected in water environments were human AstVs, but canine and feline AstVs were also detected. Our findings highlight the importance of water as a potential route for AstV transmission, even in high-income countries. Effective water surveillance and treatment measures are necessary to minimize AstV environmental circulation and human infection through water.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre
for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Sebastien Kenmoe
- Department
of Microbiology and Parasitology, University
of Buea, Buea 00237, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological
Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala 00237, Cameroon
| | - Donatien Serge Mbaga
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | - Arnol Bowo-Ngandji
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | - Raoul Kenfack-Momo
- Department
of Biochemistry, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | | | - Vito Martella
- Department
of Veterinary Medicine, University of Bari
Aldo Moro, 70010 Valenzano, Italy
| | - Carolina Veneri
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Pamela Mancini
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Giusy Bonanno Ferraro
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Marcello Iaconelli
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina La Rosa
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| |
Collapse
|
491
|
Yu Y, Han F, Yang M, Zhang X, Chen Y, Yu M, Wang Y. Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide. Int J Food Microbiol 2023; 406:110369. [PMID: 37666026 DOI: 10.1016/j.ijfoodmicro.2023.110369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Oysters are recognized as important vectors for human norovirus transmission in the environment. Whether norovirus binds to bacteria in oyster digestive tissues (ODTs) remains unknown. To shed light on this concern, ODT-54 and ODT-32, positive for histo-blood group antigen (HBGA) -like substances, were isolated from ODTs and identified as Pseudomonas composti and Enterobacter cloacae, respectively. The binding of noroviruses (GII.4 and GII.6 P domains) to bacterial cells (ODT-32 and ODT-54; in situ assay) as well as extracted extracellular polysaccharides (EPSs; in vitro assay) was analyzed by flow cytometry, confocal laser scanning microscopy, ELISA, and gene knock-out mutants. ODT-32 bound to neither GII.4 nor GII.6 P domains, while ODT-54 specifically binds with GII.6 P domain through Psl, an exopolysaccharide encoded by the polysaccharide synthesis locus (psl), identified based on gene annotation, gene transcription, Psl specific staining, and ELISAs. These findings attest that ODT bacteria specifically bind with certain norovirus genotypes in a strain-dependent manner, contributing to a better understanding of the transmission and enrichment of noroviruses in the environment.
Collapse
Affiliation(s)
- Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, China
| | - Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Mingshu Yang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Xiaoya Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yunfei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mingxia Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, China.
| |
Collapse
|
492
|
Ip YCA, Tan A, Ong J, Fernandez CJ, Lau C, Wong WK, Chang SF, Yap HH, Er KBH. Anthropogenic Transmission of SARS-CoV-2 from Humans to Lions, Singapore, 2021. Emerg Infect Dis 2023; 29:2550-2553. [PMID: 37885046 PMCID: PMC10683833 DOI: 10.3201/eid2912.221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
In Singapore, 10 captive lions tested positive for SARS-CoV-2 by real-time PCR. Genomic analyses of nanopore sequencing confirmed human-to-animal transmission of the SARS-CoV-2 Delta variant. Viral genomes from the lions and zookeeper shared a unique spike protein substitution, S:A1016V. Widespread SARS-CoV-2 transmission among humans can increase the likelihood of anthroponosis.
Collapse
|
493
|
Serseg T, Linani A, Benarous K, Goumri-Said S. Repurposing antibiotics as potent multi-drug candidates for SARS-CoV-2 delta and omicron variants: molecular docking and dynamics. J Biomol Struct Dyn 2023; 41:10377-10387. [PMID: 36541102 DOI: 10.1080/07391102.2022.2157876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
There is a daunting public health emergency due to the emergence and rapid global spread of the new omicron variants of SARS-CoV-2. The variants differ in many characteristics, such as transmissibility, antigenicity and the immune system of the human hosts' shifting responses. This change in characteristics raises concern, as it leads to unknown consequences and also raises doubts about the efficacy of the currently available vaccines. As of March 2022, there are five variants of SARS-CoV-2 disseminating: the alpha, the beta, the gamma, the delta and the omicron variant. The omicron variant has more than 30 mutations on the spike protein, which is used by the virus to enter the host cell and is also used as a target for the vaccines. In this work, we studied the possible anti-COVID-19 effect of two molecules by molecular docking using Autodock Vina and molecular dynamic simulations using Gromacs 2020 software. We docked amoxicillin and clavulanate to the main protease (Mpro), the RNA-dependent RNA polymerase (RdRp) and the spike protein receptor-binding domain (SRBD) of the wild type with the two variants (delta and omicron) of SARS-CoV-2. The docking results show that the ligands bound tightly with the SRBD of the omicron variant, while the dynamic simulation revealed the ability of amoxicillin to bind to the SRBD of both variants' delta and omicron. The high number of mutations that occurred in both variants increases the affinity of amoxicillin towards them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Talia Serseg
- Département des Sciences Naturelles, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Abderahmane Linani
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Biology Department, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Biology Department, Amar Telidji University, Laghouat, Algeria
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
494
|
Miller MR, Braun E, Ip HS, Tyson GH. Domestic and wild animal samples and diagnostic testing for SARS-CoV-2. Vet Q 2023; 43:1-11. [PMID: 37779468 PMCID: PMC10614713 DOI: 10.1080/01652176.2023.2263864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
From the first cases in 2019, COVID-19 infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in over 6 million human deaths in a worldwide pandemic. SARS-CoV-2 is commonly spread from human to human through close contact and is capable of infecting both humans and animals. Worldwide, there have been over 675 animal outbreaks reported that resulted in over 2000 animal infections including domestic and wild animals. As the role of animal infections in the transmission, pathogenesis, and evolution of SARS-CoV-2 is still unfolding, accurate and reliable animal diagnostic tests are critical to aid in managing both human and animal health. This review highlights key animal samples and the three main diagnostic approaches used for animal testing: PCR, serology, and Next Generation Sequencing. Diagnostic results help inform (often difficult) clinical decision-making, but also possible ways to mitigate spread among pets, food supplies, or wildlife. A One Health approach has been key to monitoring the SARS-CoV-2 pandemic, as consistent human-animal interactions can lead to novel variants. Having multiple animal diagnostic tests for SARS-CoV-2 available is critical to ensure human, animal, and environmental health.
Collapse
Affiliation(s)
- Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Elias Braun
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
- School of Veterinary Medicine, University of PA, Philadelphia, PA, USA
| | - Hon S. Ip
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
495
|
Liu X, Zhou X, Li X, Wei Y, Wang T, Liu S, Yang H, Sun X. Saliva Analysis Based on Microfluidics: Focusing the Wide Spectrum of Target Analyte. Crit Rev Anal Chem 2023; 55:330-352. [PMID: 38039145 DOI: 10.1080/10408347.2023.2287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
496
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
497
|
Vu TH, Heo J, Kang S, Kim C, Lillehoj HS, Hong YH. Chicken miR-26a-5p modulates MDA5 during highly pathogenic avian influenza virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:104921. [PMID: 37611883 DOI: 10.1016/j.dci.2023.104921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
MicroRNAs play crucial roles in immune-related pathways in host animals. In this study, we aimed to investigate the systemic biological function of gga-miR-26a-5p, a chicken miRNA, in the immune responses to HPAIV H5N1 infection in the Vietnamese Ri chicken line. Our results showed a significant downregulation in gga-miR-26a expression in the lung tissue of Ri chickens during HPAIV H5N1 infection. Overexpression of gga-miR-26a and the reporter construct, either containing the wildtype or mutant melanoma differentiation-associated protein 5 (MDA5) 3' untranslated region (3' UTR)-luciferase, into a chicken fibroblast cell line, revealed that gga-miR-26a can act as a direct translational repressor of MDA5 by targeting the 3' UTRs. Additionally, miR-26a negatively regulated the expression of the signaling molecules related to the MDA5 signaling pathway, including MDA5, mitochondrial antiviral-signaling (MAVS), interferon regulatory factor 7 (IRF7), p38 mitogen-activated protein kinases, and nuclear factor-kappa B (NF-κB). Moreover, downstream of the IRF7 and NF-κB signaling pathway, the proinflammatory cytokines such as IL-1β, IFN-γ, IFN-α, IFN-β, and the interferon-stimulated gene (Mx1) were, likewise, downregulated by the overexpression of gga-miR-26a. These findings suggest that gga-miR-26a-5p serves as an important regulator in the MDA5 signaling pathway and antiviral response. Overall, our results contribute to an improved understanding of the biological functions of gga-miR-26a-5p, alongside the mechanisms underlying the MDA5 signaling pathway, and the antiviral response to HPAIV-H5N1 infection in chickens.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, Hanoi, 100000, Viet Nam.
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Chaeeun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
498
|
Termansen MB, Frische S. Fecal-oral transmission of SARS-CoV-2: A systematic review of evidence from epidemiological and experimental studies. Am J Infect Control 2023; 51:1430-1437. [PMID: 37121473 PMCID: PMC10141930 DOI: 10.1016/j.ajic.2023.04.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND SARS-CoV-2 ribonucleic acid (RNA) has been detected in feces, but RNA is not infectious. This systematic review aims to answer if fecal SARS-CoV-2 is experimentally infectious and if evidence of human fecal-oral SARS-CoV-2 transmission exists. METHODS On September 19, 2022, we searched PubMed, Embase, Web of Science, medRxiv, and bioRxiv. Biomedical studies inoculating SARS-CoV-2 from feces, rectal, or anal swabs in cells, tissue, organoids, or animals were included. Epidemiological studies of groups differing in exposure to fecal SARS-CoV-2 were included. Risk of bias was assessed using standardized tools. Results were summarized by vote counting, tabulation, and a harvest plot. PROSPERO registration no. CRD42020221719. RESULTS A total of 4,874 studies were screened; 26 studies were included; and 13 out of 23 biomedical studies (56.5%) succeeded in infection. Two (66.7%) epidemiological studies found limited evidence suggesting fecal-oral transmission. All studies had concerns about the risk of bias. CONCLUSIONS It is possible to experimentally infect cell cultures, organoids, and animals with fecal SARS-CoV-2. No strong epidemiologic evidence was found to support human fecal-oral transmission. We advise future research to study fecal infectivity at different time points during infection, apply appropriate controls, use in vivo models, and study fecal exposure as a risk factor of transmission in human populations.
Collapse
|
499
|
Tosta BR, de Almeida IM, da Cruz Pena L, Dos Santos Silva H, Reis-Goes FS, Silva NN, Cruz JVA, Dos Anjos Silva M, de Araújo JF, Rodrigues JL, Oliveira G, Figueiredo RG, Vaz SN, Montaño-Castellón I, Santana D, de Lima Beltrão FE, Carneiro VL, Campos GS, Brites C, Fortuna V, Figueiredo CA, Trindade SC, Ramos HE, Costa RDS. MTOR gene variants are associated with severe COVID-19 outcomes: A multicenter study. Int Immunopharmacol 2023; 125:111155. [PMID: 37951192 DOI: 10.1016/j.intimp.2023.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND The worst outcomes linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been attributed to the cytokine storm, which contributes significantly to the immunopathogenesis of the disease. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. The individual genetic background might play a role in the exacerbated immune response. OBJECTIVE In this study, we aimed to investigate the association between MTOR genetic variants and COVID-19 outcomes. METHODS This study enrolled groups of individuals with severe (n = 285) and mild (n = 207) COVID-19 from Brazilian states. The MTOR variants, rs1057079 and rs2536, were genotyped. A logistic regression analysis and Kaplan-Meier survival curves were performed. We applied a genotyping risk score to estimate the cumulative contribution of the risk alleles. Tumor necrosis factor (TNF) and interleukin-6 (IL-6) plasma levels were also measured. RESULTS The T allele of the MTOR rs1057079 variant was associated with a higher likelihood of developing the most severe form of COVID-19. In addition, higher levels of IL-6 and COVID-19 death was linked to the T allele of the rs2536 variant. These variants exhibited a cumulative risk when inherited collectively. CONCLUSIONS These results show a potential pathogenetic role of MTOR gene variants and may be useful for predicting severe outcomes following COVID-19 infection, resulting in a more effective allocation of health resources.
Collapse
Affiliation(s)
- Bruna Ramos Tosta
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Ingrid Marins de Almeida
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Laiane da Cruz Pena
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Hatilla Dos Santos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Fabiane S Reis-Goes
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Nívia N Silva
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - João Victor Andrade Cruz
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Mailane Dos Anjos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Jéssica Francisco de Araújo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Juliana Lopes Rodrigues
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | | | | | - Sara Nunes Vaz
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Iris Montaño-Castellón
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Daniele Santana
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | - Gubio Soares Campos
- Laboratório de Virologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Carlos Brites
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Vitor Fortuna
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Camila Alexandrina Figueiredo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Soraya Castro Trindade
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil; Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Helton Estrela Ramos
- Programa de Pós-Graduação em Processos Interativos de Órgãos e Sistema, Instituto de Saúde e Ciência, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ryan Dos Santos Costa
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
500
|
Stone HM, Unal E, Romano TA, Turner PE. Beluga whale and bottlenose dolphin ACE2 proteins allow cell entry mediated by spike protein from three variants of SARS-CoV-2. Biol Lett 2023; 19:20230321. [PMID: 38053365 PMCID: PMC10698476 DOI: 10.1098/rsbl.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses infect numerous non-human species. Spillover of SARS-CoV-2 into novel animal reservoirs may present a danger to host individuals of these species, particularly worrisome in populations already endangered or threatened by extinction. In addition, emergence in new reservoirs could pose spillback threats to humans, especially in the form of virus variants that further mutate when infecting other animal hosts. Previous work suggests beluga whales (Delphinapterus leucas) and bottlenose dolphins (Tursiops truncatus) may be at risk owing to their formation of social groups, contact with humans, exposure to contaminated wastewater, and structure of their angiotensin-converting enzyme 2 (ACE2) proteins, which SARS-CoV-2 uses as a cellular receptor. We examined marine-mammal susceptibility to virus infection by challenging 293T cells expressing beluga or dolphin ACE2 with pseudovirions bearing the SARS-CoV-2 spike protein. Beluga and dolphin ACE2 were sufficient to allow cell entry by an early pandemic isolate (Wuhan-Hu-1) and two evolved variants (Delta B.1.617.2 and Omicron BA.1 strains). We conclude that SARS-CoV-2 poses a potential threat to marine mammal reservoirs that should be considered in surveillance efforts.
Collapse
Affiliation(s)
- H. M. Stone
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - E. Unal
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - T. A. Romano
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - P. E. Turner
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|