451
|
Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 2019; 14:e0222405. [PMID: 31513643 PMCID: PMC6742461 DOI: 10.1371/journal.pone.0222405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is achieved through symbiotic association. Nitrogen deficiency is one of the major constrains for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for interactions with plants. In this study, characteristics that promote plant growth were explored for their ability to enhance the growth of peanut plants under N2 deficit condition. In the presence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influenced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen deficient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants, co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+) or stress (nitrogen deficient N+) conditions compared to the corresponding control plants (i.e. not co-cultivated with PGPR; C-or N-). The growth hormone auxin, osmoprotectants (proline, total soluble sugars and total amino acids), total phenolic-compounds and total flavonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants that were treated with PGPR under both normal and N2 deficit condition. Overall, these results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth, antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The beneficial use of bacterium S. maltophilia could be explored further as an efficient PGPR for growing agricultural crops under N2 deficit conditions. However, a detail agronomic study would be prerequisite to confirm its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay Kumar Singh
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Bhavanath Jha
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
452
|
Wei C, Wu T, Ao H, Qian X, Wang Z, Sun J. Increased torulene production by the red yeast, Sporidiobolus pararoseus, using citrus juice. Prep Biochem Biotechnol 2019; 50:66-73. [PMID: 31502910 DOI: 10.1080/10826068.2019.1663533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Response surface methodology was applied to maximize the yield and production of carotenoids by Sporidiobolus pararoseus WZ012 using citrus juice. A high concentration of yeast extract and citrus juice favored carotenoid production and biomass concentration, respectively. Under optimal conditions, a more than 51 percent (from 860 to 1300 µg/g) and 62 percent (from 17.05 to 27.66 mg/L) respective enhancement in intracellular and total carotenoid production was achieved. Finally, this process was successfully upscaled in a 5-L fermentor. A comparison of the carotenoid distributions revealed that torulene (61.3%) was the dominant carotenoid when using the citrus based medium, while the main carotenoid was β-carotene (62.5%) when using the glucose medium. The present work provides an alternative method to produce high-value products derived from waste and low-grade citrus.
Collapse
Affiliation(s)
- Chun Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tao Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haiying Ao
- Department of Food Science and Technology, School of Beijing Commerce and Trade, Beijing, China
| | - Xiaofen Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
453
|
Xiang N, Li C, Li G, Yu Y, Hu J, Guo X. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn ( Zea mays L.) Seedlings under Temperature Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9772-9781. [PMID: 31398019 DOI: 10.1021/acs.jafc.9b04452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the response profiles of vitamin E and carotenoids on transcription and metabolic levels of sweet corn seedlings under temperature stress. The treated temperatures were set as 10 °C (low temperature, LT), 25 °C (control, CK), and 40 °C (high temperature, HT) for sweet corn seedlings. The gene expression profiles of vitamin E and carotenoids biosynthesis pathways were analyzed by real time quantitative polymerase chain reaction (RT-qPCR), and the composition profiles were analyzed by high performance liquid chromatography (HPLC). Results showed that vitamin E gradually accumulated in response to LT stress but was limited by HT stress. The increase of carotenoids was suppressed by LT stress whereas HT stress promoted it. The existing results elaborated the interactive and competitive relationships of vitamin E and carotenoids in sweet corn seedlings to respond to extreme temperature stress at transcriptional and metabolic levels. The present study would improve sweet corn temperature resilience with integrative knowledge in the future.
Collapse
Affiliation(s)
- Nan Xiang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| | - Chunyan Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Gaoke Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Yongtao Yu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Xinbo Guo
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
454
|
Lu C, Pu Y, Liu Y, Li Y, Qu J, Huang H, Dai S. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:415-428. [PMID: 31416008 DOI: 10.1016/j.plaphy.2019.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
The variation of flower color of chrysanthemum (Chrysanthemum×morifolium) is extremely rich, and carotenoids, which are mainly stored in the plastid, are important pigments that determine the color of chrysanthemum. However, the genetic regulation of the carotenoid metabolism pathway in this species still remains unclear. In this study, a pink chrysanthemum cultivar, 'Jianliuxiang Pink', and its three bud sport mutants (including white, yellow and red color mutants, 'Jianliuxiang White', 'Jianliuxiang Yellow' and 'Jianliuxiang Red', respectively) were used as experimental materials to analyze the dynamic changes of carotenoid components and plastid ultrastructure at different developmental stages of ray florets. We found that the carotenoid components and plastid ultrastructure of the four color cultivars in the early developmental stage of the chrysanthemum capitulum (S1) were almost identical, and the carotenoids mainly included violaxanthin, lutein and β-carotene, which exist in proplastids and immature chloroplasts. With the development of capitulum, the chloroplasts in 'Jianliuxiang White' and 'Jianliuxiang Pink' were degraded, and the protoplasts did not transform but rather formed vesicles that accumulated trace amounts of carotenoids. The proplastids and chloroplasts in 'Jianliuxiang Yellow' and 'Jianliuxiang Red' were all transformed into chromoplasts and consist of lutein as well as lutein's isomer and derivatives. Using comparative transcriptomics combined with gene expression analysis, we found that CmPg-1, CmPAP10, and CmPAP13, which were involved in chromoplast transformation, CmLCYE, which was involved in carotenoid biosynthesis, and CmCCD4a-2, which was involved in carotenoid degradation, were differentially expressed between four cultivars, and these key genes therefore should affect the accumulation of carotenoids in chrysanthemum. In addition, six transcription factors, CmMYB305, CmMYB29, CmRAD3, CmbZIP61, CmAGL24, CmNAC1, were screened using weighted gene co-expression correlation network analysis (WGCNA) combined with correlative analysis to determine whether they play an important role in carotenoid accumulation by regulating structural genes related to the carotenoid metabolism pathway and plastid development. This study analyzed dynamic changes of carotenoid components and plastid ultrastructure of the four bud mutation cultivars of chrysanthemum and identified structural genes and transcription factors that may be involved in carotenoid accumulation. The above results laid a solid foundation for further analysis of the regulatory mechanism of the carotenoid biosynthesis pathway in chrysanthemum.
Collapse
Affiliation(s)
- Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ya Pu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yajun Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiaping Qu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
455
|
Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado ( Persea americana). Int J Mol Sci 2019; 20:ijms20174117. [PMID: 31450745 PMCID: PMC6747375 DOI: 10.3390/ijms20174117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads as well as 109.13 and 104.10 Gb of sequencing data for avocado mesocarp and seed, respectively, during five developmental stages. High-quality reads were assembled into 100,837 unigenes with an average length of 847.40 bp (N50 = 1725 bp). Additionally, 16,903 differentially expressed genes (DEGs) were detected, 17 of which were related to carotenoid biosynthesis. The expression levels of most of these 17 DEGs were higher in the mesocarp than in the seed during five developmental stages. In this study, the avocado mesocarp and seed transcriptome were also sequenced using single-molecule long-read sequencing to acquired 25.79 and 17.67 Gb clean data, respectively. We identified 233,014 and 238,219 consensus isoforms in avocado mesocarp and seed, respectively. Furthermore, 104 and 59 isoforms were found to correspond to the putative 11 carotenoid biosynthetic-related genes in the avocado mesocarp and seed, respectively. The isoform numbers of 10 out of the putative 11 genes involved in the carotenoid biosynthetic pathway were higher in the mesocarp than those in the seed. Besides, alpha- and beta-carotene contents in the avocado mesocarp and seed during five developmental stages were also measured, and they were higher in the mesocarp than in the seed, which validated the results of transcriptome profiling. Gene expression changes and the associated variations in gene dosage could influence carotenoid biosynthesis. These results will help to further elucidate carotenoid biosynthesis in avocado.
Collapse
|
456
|
Stanley L, Yuan YW. Transcriptional Regulation of Carotenoid Biosynthesis in Plants: So Many Regulators, So Little Consensus. FRONTIERS IN PLANT SCIENCE 2019; 10:1017. [PMID: 31447877 PMCID: PMC6695471 DOI: 10.3389/fpls.2019.01017] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/22/2019] [Indexed: 05/19/2023]
Abstract
In plants, the carotenoid biosynthesis pathway (CBP) is essential for the production of photosynthetic and protective pigments, plant hormones, and visual/olfactory attractants for animal pollinators and seed dispersers. The regulation of carotenoid biosynthesis at the transcriptional level is vitally important for all of these functions and has been the subject of intensive research. Many putative transcriptional regulators, both direct and indirect, have been identified through conventional mutant analysis, transcriptome profiling, yeast one-hybrid screening, and candidate gene approaches. Despite this progress, our understanding of the transcriptional regulation of carotenoid biosynthesis remains fragmented and incomplete. Frequently, a stimulus or regulator is known, but the mechanism by which it affects transcription has not been elucidated. In other cases, mechanisms have been proposed (such as direct binding of a CBP gene promoter by a transcription factor), but function was tested only in vitro or in heterologous systems, making it unclear whether these proteins actually play a role in carotenoid regulation in their endogenous environments. Even in cases where the mechanism is relatively well understood, regulators are often studied in isolation, either in a single plant species or outside the context of other known regulators. This presents a conundrum: why so many candidate regulators but so little consensus? Here we summarize current knowledge on transcriptional regulation of the CBP, lay out the challenges contributing to this conundrum, identify remaining knowledge gaps, and suggest future research directions to address these challenges and knowledge gaps.
Collapse
Affiliation(s)
- Lauren Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
457
|
Bari VK, Nassar JA, Kheredin SM, Gal-On A, Ron M, Britt A, Steele D, Yoder J, Aly R. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci Rep 2019; 9:11438. [PMID: 31391538 PMCID: PMC6685993 DOI: 10.1038/s41598-019-47893-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
Broomrapes (Phelipanche aegyptiaca and Orobanche spp.) are obligate plant parasites that cause extreme damage to crop plants. The parasite seeds have strict requirements for germination, involving preconditioning and exposure to specific chemicals strigolactones [SLs] exuded by the host roots. SLs are plant hormones derived from plant carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase 8 (CCD8). Having no effective means to control parasitic weeds in most crops, and with CRISPR/Cas9 being an effective gene-editing tool, here we demonstrate that CRISPR/Cas9-mediated mutagenesis of the CCD8 gene can be used to develop host resistance to the parasitic weed P. aegyptiaca. Cas9/single guide (sg) RNA constructs were targeted to the second exon of CCD8 in tomato (Solanum lycopersicum L.) plants. Several CCD8Cas9 mutated tomato lines with variable insertions or deletions in CCD8 were obtained with no identified off-targets. Genotype analysis of T1 plants showed that the introduced CCD8 mutations are inherited. Compared to control tomato plants, the CCD8Cas9 mutant had morphological changes that included dwarfing, excessive shoot branching and adventitious root formation. In addition, SL-deficient CCD8Cas9 mutants showed a significant reduction in parasite infestation compared to non-mutated tomato plants. In the CCD8Cas9 mutated lines, orobanchol (SL) content was significantly reduced but total carotenoids level and expression of genes related to carotenoid biosynthesis were increased, as compared to control plants. Taking into account, the impact of plant parasitic weeds on agriculture and difficulty to constitute efficient control methods, the current study offers insights into the development of a new, efficient method that could be combined with various collections of resistant tomato rootstocks.
Collapse
Affiliation(s)
- Vinay Kumar Bari
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Volcani Center, Ramat Yishay, Israel
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Volcani Center, Ramat Yishay, Israel
| | - Sally Marzouk Kheredin
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Volcani Center, Ramat Yishay, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Bet-Dagan, Israel
| | - Mily Ron
- Department of Plant Biology and Genome Center, University of California, Davis, USA
| | - Anne Britt
- Department of Plant Biology and Genome Center, University of California, Davis, USA
| | - Daniel Steele
- Department of Plant Sciences, University of California, Davis, USA
| | - John Yoder
- Department of Plant Sciences, University of California, Davis, USA
| | - Radi Aly
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Volcani Center, Ramat Yishay, Israel.
| |
Collapse
|
458
|
Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 2019; 35:1140-1155. [PMID: 30324199 PMCID: PMC6254060 DOI: 10.1039/c8np00037a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand dynamic biosynthesis and storage of a plethora of phytochemicals.
Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a specific pathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offers distinct storage sites for molar concentrations of specific phytochemicals. Liquid–liquid phase separation may lead to formation of dense biomolecular condensates within the cytoplasm or vacuole allowing swift activation of the stored phytochemicals as required upon pest or herbivore attack. The molecular grid behind plant plasticity offers an endless reservoir of functional modules, which may be utilized as a synthetic biology tool-box for engineering of novel biological systems based on rational design principles. In this review, we highlight some of the concepts used by plants to coordinate biosynthesis and storage of phytochemicals.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
459
|
Sun B, Jiang M, Liang S, Zheng H, Chen Q, Wang Y, Lin YX, Liu ZJ, Wang XR, Zhang F, Tang HR. Functional differences of BaPDS1 and BaPDS2 genes in Chinese kale. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190260. [PMID: 31417731 PMCID: PMC6689629 DOI: 10.1098/rsos.190260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 05/19/2023]
Abstract
This study presents a systematic analysis of the functional differences between two genes that encode phytoene desaturase (PDS) in Chinese kale. The promoter sequences of both BaPDS1 and BaPDS2 were amplified and cloned, and their lengths were 2005 bp and 2000 bp, respectively. The mining of cis-acting elements in the promoters showed that the two BaPDS genes are mainly associated with light and phytohormone responsiveness. Light quality, light intensity and plant hormone treatments were conducted in seedlings of Chinese kale, and the results indicated that the response of the two genes to different factors differed. Among them, BaPDSs collectively respond to the treatment with salicylic acid and abscisic acid. With regard to response differences, BaPDS1 is sensitive to red and blue light, blue light, and strong light, while BaPDS2 responds to blue light, weak light, darkness, gibberellin and methyl jasmonate. In addition, both BaPDS1 and BaPDS2 are likely targeted to the chloroplast. Furthermore, single and double mutants of BaPDSs were generated via CRISPR/Cas9 technology. Phenotypic analysis showed that the double mutant with edited PDS1 and PDS2 was a pure albino, while the single mutants with edited PDS1 or PDS2 were partly whitened. In summary, BaPDS1 and BaPDS2 genes played different and indispensable roles in Chinese kale, and their functions were partially complementary.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Min Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Sha Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Hao Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yuan-xiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ze-Jing Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xiao-Rong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Fen Zhang e-mail:
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Hao-Ru Tang e-mail:
| |
Collapse
|
460
|
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr 2019; 38:69-96. [PMID: 30130464 DOI: 10.1146/annurev-nutr-082117-051628] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRA, INSERM, Aix Marseille Université, 13005 Marseille, France; ,
| | | |
Collapse
|
461
|
Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:835. [PMID: 31316537 PMCID: PMC6609884 DOI: 10.3389/fpls.2019.00835] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Fruit flavor and nutritional characteristics are key quality traits and ones of the main factors influencing consumer preference. Central carbon metabolism, also known as primary metabolism, contributes to the synthesis of intermediate compounds that act as precursors for plant secondary metabolism. Specific and specialized metabolic pathways that evolved from primary metabolism play a key role in the plant's interaction with its environment. In particular, secondary metabolites present in the fruit serve to increase its attractiveness to seed dispersers and to protect it against biotic and abiotic stresses. As a consequence, several important organoleptic characteristics, such as aroma, color, and fruit nutritional value, rely upon secondary metabolite content. Phenolic and terpenoid compounds are large and diverse classes of secondary metabolites that contribute to fruit quality and have their origin in primary metabolic pathways, while the delicate aroma of ripe fruits is formed by a unique combination of hundreds of volatiles that are derived from primary metabolites. In this review, we show that the manipulation of primary metabolism is a powerful tool to engineer quality traits in fruits, such as the phenolic, terpenoid, and volatile content. The enzymatic reactions responsible for the accumulation of primary precursors are bottlenecks in the transfer of metabolic flux from central to specialized metabolism and should be taken into account to increase the yield of the final products of the biosynthetic pathways. In addition, understanding the connection and regulation of the carbon flow between primary and secondary metabolism is a key factor for the development of fruit cultivars with enhanced organoleptic and nutritional traits.
Collapse
Affiliation(s)
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
462
|
Tandem 13-Lipoxygenase Genes in a Cluster Confers Yellow-Green Leaf in Cucumber. Int J Mol Sci 2019; 20:ijms20123102. [PMID: 31242619 PMCID: PMC6628033 DOI: 10.3390/ijms20123102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022] Open
Abstract
Some lipoxygenase (LOX) isoenzymes can co-oxidize carotenoids. Carotenoids are collectors of light energy for photosynthesis and can protect plants from reactive oxygen species and coloration. This study isolated the cucumber (Cucumis sativus L.) yellow-green leaf mutant (ygl1), which had yellow-green leaves with decreased chlorophyll synthesis, increased relative carotenoid content, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The bulked segregants were resequenced, and the candidate ygl1 locus identified was mapped to the 9.2 kb region of the chromosome 4. Sequence analysis revealed that ygl1 encodes the tandem 13-LOX genes in a cluster. Four missense mutations were found in four tandem 13-LOX genes (Csa4M286960, Csa4M287550, Csa4M288070, and Csa4M288080) in the ygl1 mutant, and the four 13-LOX genes showed high similarity with one another. The transient RNA interference and virus-induced gene silencing of these genes simultaneously resulted in yellow-green leaves with a reduced amount of chloroplasts and increased relative carotenoid content, which were observed in the ygl1 mutant. This evidence supported the non-synonymous SNPs (Single Nucleotide Polymorphism) in the four tandem 13-LOX genes as being the causative mutation for the yellow-green leaves. Furthermore, this study provides a new allele for breeding cucumbers with yellow-green leaves and serves as an additional resource for studying carotenoid biosynthesis.
Collapse
|
463
|
Rogacz D, Lewkowski J, Siedlarek M, Karpowicz R, Kowalczyk A, Rychter P. The Effect of New Thiophene-Derived Diphenyl Aminophosphonates on Growth of Terrestrial Plants. MATERIALS 2019; 12:ma12122018. [PMID: 31238500 PMCID: PMC6630915 DOI: 10.3390/ma12122018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
The aim of this work was to evaluate the impact of the thiophene-derived aminophosphonates 1–6 on seedling emergence and growth of monocotyledonous oat (Avena sativa) and dicotyledonous radish (Raphanus sativus L.), and phytotoxicity against three persistent and resistant weeds (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album). Aminophosphonates 1–6 have never been described in the literature. The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD (Organization for Economic and Cooperation Development Publishing) 208 Guideline. In addition, their ecotoxicological impact on crustaceans Heterocypris incongruens and bacteria Aliivibrio fischeri was measured using the OSTRACODTOXKITTM and Microtox® tests. Obtained results showed that none of the tested compounds were found sufficiently phytotoxic and none of them have any herbicidal potential. None of the tested compounds showed important toxicity against Aliivibrio fischeri but they should be considered as slightly harmful. Harmful impacts of compounds 1–6 on Heterocypris incongruens were found to be significant.
Collapse
Affiliation(s)
- Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Marta Siedlarek
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Rafał Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Anna Kowalczyk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| |
Collapse
|
464
|
Zuo J, Wang Y, Zhu B, Luo Y, Wang Q, Gao L. Network analysis of noncoding RNAs in pepper provides insights into fruit ripening control. Sci Rep 2019; 9:8734. [PMID: 31217463 PMCID: PMC6584694 DOI: 10.1038/s41598-019-45427-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2019] [Indexed: 01/21/2023] Open
Abstract
Pepper is an important vegetable worldwide and is a model plant for nonclimacteric fleshy fruit ripening. Drastic visual changes and internal biochemical alterations are involved in fruit coloration, flavor, texture, aroma, and palatability to animals during the pepper fruit ripening process. To explore the regulation of bell pepper fruit ripening by noncoding RNAs (ncRNAs), we examined their expression profiles; 43 microRNAs (miRNAs), 125 circular RNAs (circRNAs), 366 long noncoding RNAs (lncRNAs), and 3266 messenger RNAs (mRNAs) were differentially expressed (DE) in mature green and red ripe fruit. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the targets of the DE ncRNAs and DE mRNAs included several kinds of transcription factors (TFs) (ERF, bHLH, WRKY, MYB, NAC, bZIP, and ARF), enzymes involved in cell wall metabolism (beta-galactosidase, beta-glucosidase, beta-amylase, chitinase, pectate lyase (PL), pectinesterase (PE) and polygalacturonase (PG)), enzymes involved in fruit color accumulation (bifunctional 15-cis-phytoene synthase, 9-cis-epoxycarotenoid dioxygenase, beta-carotene hydroxylase and carotene epsilon-monooxygenase), enzymes associated with fruit flavor and aroma (glutamate-1-semialdehyde 2,1-aminomutase, anthocyanin 5-aromatic acyltransferase, and eugenol synthase 1) and enzymes involved in the production of ethylene (ET) (ACO1/ACO4) as well as other plant hormones such as abscisic acid (ABA), auxin (IAA), and gibberellic acid (GA). Based on accumulation profiles, a network of ncRNAs and mRNAs associated with bell pepper fruit ripening was developed that provides a foundation for further developing a more refined understanding of the molecular biology of fruit ripening.
Collapse
Affiliation(s)
- Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA.
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
465
|
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:769. [PMID: 31263475 PMCID: PMC6585571 DOI: 10.3389/fpls.2019.00769] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 05/15/2023]
Abstract
The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
466
|
Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing. Food Chem 2019; 297:124964. [PMID: 31253313 DOI: 10.1016/j.foodchem.2019.124964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022]
Abstract
Broccoli undergoes yellowing in unfavorable conditions, thereby diminishing the sensory quality and commodity value. This study aimed to investigate systematically cellular and/or biomolecular changes involved in broccoli yellowing by analyzing changes in microstructural integrity, pigment content, and gene expression. On day-5 of storage at 20 °C, the buds turned yellow without blooming and showed structural damage; ultrastructural analysis revealed plastid transformation and abnormal chloroplast development. Genes regulating pigment content and chloroplast structure directly were identified. More specifically, BoCAO and BoNYC1 regulated chlorophyll turnover, affecting chlorophyll a and b contents. Changes in the β-cryptoxanthin content were influenced by the combined action of up- (BoHYD) and downstream (BoZEP) genes. BoZEP and BoVDE were activated after cold-temperature induction. High BoHO1 expression delayed yellowing at low temperature, inducing BoZEP expression. Color intensity correlated significantly with the chlorophyll b, β-cryptoxanthin, and β-carotene contents, which were associated with increased yellowing of plant tissues.
Collapse
|
467
|
Nguyen KO, Al-Rashid S, Clarke Miller M, Tom Diggs J, Lampert EC. Trichoplusia ni (Lepidoptera: Noctuidae) Qualitative and Quantitative Sequestration of Host Plant Carotenoids. ENVIRONMENTAL ENTOMOLOGY 2019; 48:540-545. [PMID: 30951592 DOI: 10.1093/ee/nvz029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carotenoids are fundamental precursors for hormones and antioxidants, and insects must acquire carotenoids from their diet. Previous research has shown that insects can selectively absorb dietary carotenoids, often modifying them qualitatively or quantitatively, and quantities may be proportional to those found in the diet. Trichoplusia ni Hübner is a generalist herbivore with host plants varying greatly in carotenoid profiles and concentrations. Larvae sequester carotenoids in their hemolymph, and carotenoid sequestration contributes to their cryptic green coloration. Our objectives were to compare the types of carotenoids found in T. ni and their host plants to determine whether qualitative changes occurred, and compare the amounts of sequestered carotenoids in T. ni reared upon different host plants to determine whether quantitative variation influences sequestration. To fulfill these objectives, larvae were fed romaine lettuce (Lactuca sativa L. [Asterales: Asteraceae] var. longifolia) or kale (Brassica oleracea L. [Brassicales: Brassicaceae] var. sabellica) for a period of 5 d, and sequestered carotenoids from the entire insect were resolved with thin-layer chromatography and measured with spectrophotometer. All carotenoids resolved from plants were also resolved from larvae, and although the carotenoids of plants differed quantitatively, the sequestered carotenoids did not differ between host plants. Regardless of host plant species, T. ni sequestered carotenoids at concentrations up to 20 times higher than the concentrations found in the plants. Future research may be able to explicitly identify enzyme systems involved in the transport and modification of carotenoids in T. ni and other animals.
Collapse
Affiliation(s)
| | - Sayma Al-Rashid
- Department of Biology, University of North Georgia, Oakwood, GA
| | - M Clarke Miller
- Department of Chemistry and Biochemistry, University of North Georgia, Oakwood, GA
| | - J Tom Diggs
- Department of Biology, University of North Georgia, Oakwood, GA
| | - Evan C Lampert
- Department of Biology, University of North Georgia, Oakwood, GA
| |
Collapse
|
468
|
Chen Z, Lu X, Xuan Y, Tang F, Wang J, Shi D, Fu S, Ren J. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum. BMC PLANT BIOLOGY 2019; 19:240. [PMID: 31170934 PMCID: PMC6555730 DOI: 10.1186/s12870-019-1850-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Red maple (Acer rubrum L.) is one of the most common and widespread trees with colorful leaves. We found a mutant with red, yellow, and green leaf phenotypes in different branches, which provided ideal materials with the same genetic relationship, and little interference from the environment, for the study of complex metabolic networks that underly variations in the coloration of leaves. We applied a combination of NGS and SMRT sequencing to various red maple tissues. RESULTS A total of 125,448 unigenes were obtained, of which 46 and 69 were thought to be related to the synthesis of anthocyanins and carotenoids, respectively. In addition, 88 unigenes were presumed to be involved in the chlorophyll metabolic pathway. Based on a comprehensive analysis of the pigment gene expression network, the mechanisms of leaf color were investigated. The massive accumulation of Cy led to its higher content and proportion than other pigments, which caused the redness of leaves. Yellow coloration was the result of the complete decomposition of chlorophyll pigments, the unmasking of carotenoid pigments, and a slight accumulation of Cy. CONCLUSIONS This study provides a systematic analysis of color variations in the red maple. Moreover, mass sequence data obtained by deep sequencing will provide references for the controlled breeding of red maple.
Collapse
Affiliation(s)
- Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Xiaoyu Lu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yun Xuan
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Fei Tang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Jingjing Wang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Dan Shi
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Songling Fu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|
469
|
Alrifai O, Hao X, Marcone MF, Tsao R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6075-6090. [PMID: 31021630 DOI: 10.1021/acs.jafc.9b00819] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light-emitting diode (LED) lights have recently been applied in controlled environment agriculture toward growing vegetables of various assortments, including microgreens. Spectral qualities of LED light on photosynthesis in microgreens are currently being studied for their ease of spectral optimization and high photosynthetic efficiency. This review aims to summarize the most recent discoveries and advances in specific phytochemical biosyntheses modulated by LED and other conventional lighting, to identify research gaps, and to provide future perspectives in this emerging multidisciplinary field of research and development. Specific emphasis was made on the effect of light spectral qualities on the biosynthesis of phenolics, carotenoids, and glucosinolates, as these phytochemicals are known for their antioxidant, anti-inflammatory effects, and many health benefits. Future perspectives on enhancing biosynthesis of these bioactives using the rapidly progressing LED light technology are further discussed.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Xiuming Hao
- Harrow Research & Development Center , Agriculture and Agri-Food Canada , 2585 County Road 20 , Harrow , Ontario N0R 1G0 , Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
470
|
Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS. Advances in research on the carrot, an important root vegetable in the Apiaceae family. HORTICULTURE RESEARCH 2019; 6:69. [PMID: 31231527 PMCID: PMC6544626 DOI: 10.1038/s41438-019-0150-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 223003 Huaian, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| |
Collapse
|
471
|
Mi J, Jia KP, Balakrishna A, Feng Q, Al-Babili S. A Highly Sensitive SPE Derivatization-UHPLC-MS Approach for Quantitative Profiling of Carotenoid-Derived Dialdehydes from Vegetables. AIDS Behav 2019; 67:5899-5907. [PMID: 31055928 PMCID: PMC7722347 DOI: 10.1021/acs.jafc.9b01749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 04/12/2023]
Abstract
Oxidative cleavage of carotenoids leads to dialdehydes (diapocarotenoids, DIALs) in addition to the widely known apocarotenoids. DIALs are biologically active compounds that presumably impact human health and play different roles in plant development and carotenoid metabolism. However, detection of DIALs in plants is challenging due to their instability, low abundance, and poor ionization efficiency in mass spectrometry. Here, we developed a solid-phase extraction and derivatization protocol coupled with ultrahigh performance liquid chromatography-mass spectrometry for quantitative profiling of DIALs. Our method significantly enhances the sensitivity of DIAL detection with a detection limit of 0.05 pg/mg of dried food materials, allowing unambiguous profiling of 30 endogenous DIALs with C5 to C24 from vegetables. Our work provides a new and efficient approach for determining the content of DIALs from various complex matrices, paving the way for uncovering the functions of DIALs in human health and plant growth and development.
Collapse
Affiliation(s)
- Jianing Mi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Kun-Peng Jia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Qitong Feng
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
472
|
Pinheiro-Sant'Ana HM, Anunciação PC, Souza CSE, de Paula Filho GX, Salvo A, Dugo G, Giuffrida D. Quali-Quantitative Profile of Native Carotenoids in Kumquat from Brazil by HPLC-DAD-APCI/MS. Foods 2019; 8:foods8050166. [PMID: 31100882 PMCID: PMC6560404 DOI: 10.3390/foods8050166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/27/2023] Open
Abstract
In this study the native carotenoids composition in kumquat (Fortunella margarita) (peel + pulp) from Brazil was determined for the first time by a HPLC-DAD-APCI/MS (high performance liquid chromatography-diode array detector-atmospheric pressure chemical ionization/mass spectrometry), methodology. Eleven carotenoids were successfully identified and quantified in kumquat: four carotenoids in the free form and seven carotenoids in the esterified form. β-citraurin-laurate was the carotenoid found in the highest content (607.33 µg/100 g fresh matter), followed by β-cryptoxanthin-laurate (552.59 µg/100 g). The different esterified forms of β-citraurin and β-cryptoxanthin represented 84.34% of the carotenoids found, which demonstrates the importance of esterification in natural fruits. β-carotene and free xanthophylls (β-cryptoxanthin, lutein and zeaxanthin) represented 5.50% and 14.96%, respectively, of total carotenoids in kumquat. The total carotenoid content of kumquat from Brazil was very high (2185.16 µg/100 g), suggesting that this fruit could contribute significantly to the intake of important bioactive compounds by the population.
Collapse
Affiliation(s)
| | - Pamella Cristine Anunciação
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Viçosa 36571-000, Brazil.
| | - Clarice Silva E Souza
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/n, Viçosa 36571-000, Brazil.
| | - Galdino Xavier de Paula Filho
- Departamento de Educação, Universidade Federal do Amapá, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá 68903-419, Brazil.
| | - Andrea Salvo
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| | - Giacomo Dugo
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| | - Daniele Giuffrida
- Department, of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina (Italy), V.le Annunziata, 98168 Messina, Italy.
| |
Collapse
|
473
|
Nikolov LA. Brassicaceae flowers: diversity amid uniformity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2623-2635. [PMID: 30824938 DOI: 10.1093/jxb/erz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The mustard family Brassicaceae, which includes the model plant Arabidopsis thaliana, exhibits morphological stasis and significant uniformity of floral plan. Nonetheless, there is untapped diversity in almost every aspect of floral morphology in the family that lends itself to comparative study, including organ number, shape, form, and color. Studies on the genetic basis of morphological diversity, enabled by extensive genetic tools and genomic resources and the close phylogenetic distance among mustards, have revealed a mosaic of conservation and divergence in numerous floral traits. Here I review the morphological diversity of the flowers of Brassicaceae and discuss studies addressing the underlying genetic and developmental mechanisms shaping floral diversity. To put flowers in the context of the floral display, I describe diversity in inflorescence morphology and the variation that exists in the structures preceding the floral organs. Reconstructing the floral morphospace in Brassicaceae coupled with next-generation sequencing data and unbiased approaches to interrogate gene function in species throughout the mustard phylogeny offers promising ways to understand how developmental mechanisms originate and diversify.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
474
|
Jiang CC, Zhang YF, Lin YJ, Chen Y, Lu XK. Illumina ® Sequencing Reveals Candidate Genes of Carotenoid Metabolism in Three Pummelo Cultivars ( Citrus Maxima) with Different Pulp Color. Int J Mol Sci 2019; 20:ijms20092246. [PMID: 31067703 PMCID: PMC6539737 DOI: 10.3390/ijms20092246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 01/15/2023] Open
Abstract
Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that ‘Huangjinmiyou’ (HJMY) has the highest content of β-carotene, followed by ‘Hongroumiyou’ (HRMY) and ‘Guanximiyou’ (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase (PSY2), lycopene β-cyclase (LYCB2), lycopene Ɛ-cyclase (LYCE), carotenoid cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3 (AAO3), and ABA 8′-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Fang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Jin Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yuan Chen
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
| | - Xin-Kun Lu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
475
|
Pinheiro TT, Peres LEP, Purgatto E, Latado RR, Maniero RA, Martins MM, Figueira A. Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant. PLANT CELL REPORTS 2019; 38:623-636. [PMID: 30737538 DOI: 10.1007/s00299-019-02393-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 05/22/2023]
Abstract
Complementation of the "Micro-Tom" tomato tangerine mutant with a Citrus CRTISO allele restores the wild-type fruit carotenoid profile, indicating that the Citrus allele encodes an authentic functional carotenoid isomerase. Citrus fruits are rich in carotenoids; the genus offers a large diversity in composition, yet to be fully explored to improve fruit nutritional quality. As perennial tree species, Citrus lack the resources for functional genetic studies, requiring the use of model plant systems. Here, we used the "Micro-Tom" (MT) tomato carrying the tangerine mutation (t), deficient for the carotenoid isomerase (CRTISO) gene, to functionally characterize the homologous C. sinensis genes. We identified four putative loci in the C. sinensis genome, named CsCRTISO, CsCRTISO-Like 1, CsCRTISO-Like 2, and CsCRTISO-Like 2B, with the latter as a presumed duplication of CRTISO-Like 2. In general, all the Citrus paralogs showed less expression specialization than the tomato ones, with CsCRTISO being the most expressed gene in all tissues analyzed. MT-t plants were successfully complemented with the CsCRTISO, and fruits showed a carotenoid profile similar to the control, indicating that the Citrus allele indeed encodes an authentic functional carotenoid isomerase and that the signal peptide is functional in tomato. MT was silenced using an inverted repeat of a fragment from the Citrus CRTISO resulting in a stronger phenotype than MT-t. MT-t and MT silenced for CRTISO presented an overall decrease in transcript accumulation of all genes from the biosynthesis pathway. The expression of the Citrus CRTISO gene is able to restore the biosynthesis of carotenoids with the appropriate regulation in MT-t. The decrease in transcript accumulation in MT-t and MT-CRTISO-suppressed lines reinforces previous suggestions that transcriptional regulation of the carotenoid biosynthesis involves regulatory loops by intermediate products.
Collapse
Affiliation(s)
- Thaísa T Pinheiro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Lázaro E P Peres
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Biológicas, Universidade de São Paulo, Av. Pádua Dias 11, CP 09, Piracicaba, SP, 13418-900, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo R Latado
- Centro APTA Citros "Sylvio Moreira", Instituto Agronômico, Rodovia Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Rodolfo A Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Mônica M Martins
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
476
|
Lewkowski J, Rogacz D, Rychter P. Hazardous ecotoxicological impact of two commonly used nitrofuran-derived antibacterial drugs: Furazolidone and nitrofurantoin. CHEMOSPHERE 2019; 222:381-390. [PMID: 30711727 DOI: 10.1016/j.chemosphere.2019.01.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
This paper discusses the impact of two nitrofuran-derived drugs, namely furazolidone and nitrofurantoin on growth of oat and common radish as well as their impact on bacteria Allivibrio fischeri and crustaceans Heterocypris incongruens. Results indicated that both compounds were highly phytotoxic for radish (R. sativus) being simultaneously nearly not harmful for oat (A. sativa). Growing inhibition of shoots, roots, fresh matter and photosynthetic pigments is correlated with growing concentration of drugs in soil. Ecotoxicological impact of both compounds on model luminescence bacteria Aliivibrio fischeri and freshwater crustaceans Heterocypris incongruens as a representative organisms of two different level of food chain, is also reported herein, and the obtained data show significant toxicity against these two organisms. Basing on obtained results, it was concluded that both nitrofuran drugs in case of distribution through environment, by improper utilisation after use or unplanned environmental intoxication with unused drugs may cause serious environmental problems and therefore both should be handled with a reasonable care at any step of their production or utilisation.
Collapse
Affiliation(s)
- Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| | - Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| |
Collapse
|
477
|
Goldenberg L, Zohar M, Kirshinbaum L, Yaniv Y, Doron-Faigenboim A, Porat R, Carmi N, Isaacson T. Biochemical and Molecular Factors Governing Peel-Color Development in 'Ora' and 'Shani' Mandarins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4800-4807. [PMID: 30973717 DOI: 10.1021/acs.jafc.9b00669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To identify factors governing peel-color development in mandarins, we examined carotenoid content and composition and the expression of carotenoid-related genes during four stages of ripening (i.e., green, breaker, yellow, and orange) in two varieties: 'Ora', which has orange fruit, and 'Shani', which has orange-reddish fruit. The two varieties had different carotenoid compositions, and 'Shani' had a significantly higher level of total carotenoid pigments. 'Shani' was rich in the deep orange β-cryptoxanthin and the orange-reddish β-citraurin, whereas 'Ora' was rich in the orange violaxanthin. RNA-Seq analysis revealed significantly greater expression of the carotenoid-biosynthesis genes PSY, βLCY, βCHX, and CCD4b, as well as MEP-pathway genes and several ethylene-biosynthesis and -signaling genes in 'Shani' fruit. In contrast, the expression levels of genes involved in the synthesis of α-branch carotenoids (i.e., εLCY and εCHX) and ZEP, which is involved in the formation of violaxanthin, were significantly higher in the 'Ora' fruit.
Collapse
Affiliation(s)
- Livnat Goldenberg
- Department of Postharvest Science of Fresh Produce , ARO, The Volcani Center , P.O. Box 15159, Rishon LeZion 7505101 , Israel
- Faculty of Agricultural, Food and Environmental Quality Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Matat Zohar
- Newe Ya'ar Research Center , ARO , Ramat Yishay 30095 , Israel
| | - Lina Kirshinbaum
- Biology and DNA Laboratory, Division of Identification and Forensic Science , Israel Police , Jerusalem , Israel
| | - Yossi Yaniv
- Department of Fruit Tree Crops , ARO, The Volcani Center , P.O. Box 15159, Rishon LeZion 7505101 , Israel
| | - Adi Doron-Faigenboim
- Department of Genomics and Bioinformatics , ARO, the Volcani Center , P.O. Box 15159, Rishon LeZion 7505101 , Israel
| | - Ron Porat
- Department of Postharvest Science of Fresh Produce , ARO, The Volcani Center , P.O. Box 15159, Rishon LeZion 7505101 , Israel
| | - Nir Carmi
- Department of Fruit Tree Crops , ARO, The Volcani Center , P.O. Box 15159, Rishon LeZion 7505101 , Israel
| | - Tal Isaacson
- Newe Ya'ar Research Center , ARO , Ramat Yishay 30095 , Israel
| |
Collapse
|
478
|
Micropropagation and Quantification of Bioactive Compounds in Mertensia maritima (L.) Gray. Int J Mol Sci 2019; 20:ijms20092141. [PMID: 31052234 PMCID: PMC6540335 DOI: 10.3390/ijms20092141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to establish an efficient protocol for the large-scale propagation of Mertensia maritima (L.) Gray, and evaluate the carotenoid, fatty acid, and tocopherol contents in the leaves of in vitro regenerated shoots. Surface-disinfected node and shoot tip explants were placed on semisolid Murashige and Skoog (MS) medium with 0-16 µM N6-benzyladenine (BA), kinetin, (KN), and thidiazuron (TDZ) alone, or in combination with, 1 or 2 µM α-naphthaleneacetic acid (NAA). Of the three different cytokinins employed, TDZ elicited the best results for axillary shoot proliferation. A maximum frequency of shoot initiation above 84%, with a mean of 8.9 and 4.8 shoots per node and shoot tip, respectively, was achieved on the culture medium supplemented with 4 µM TDZ. A combination of TDZ + NAA significantly increased the percentage of multiple shoot formation and number of shoots per explant. The best shoot induction response occurred on MS medium with 4 µM TDZ and 1 µM NAA. On this medium, the node (93.8%) and shoot tip (95.9%) explants produced an average of 17.7 and 8.6 shoots, respectively. The highest root induction frequency (97.4%) and number of roots per shoot (25.4), as well as the greatest root length (4.2 cm), were obtained on half-strength MS medium supplemented with 4 µM indole-3-butyric acid (IBA). The presence of six carotenoids and α-tocopherol in the leaf tissues of M. maritima was confirmed by HPLC. Gas chromatography-mass spectrometry analysis confirmed the presence of 10 fatty acids, including γ-linolenic acid and stearidonic acid in the leaf tissues of M. maritima. All-E-lutein (18.49 μg g-1 fresh weight, FW), α-tocopherol (3.82 μg g-1 FW) and α-linolenic acid (30.37%) were found to be the significant compounds in M. maritima. For the first time, a successful protocol has been established for the mass propagation of M. maritima with promising prospects for harnessing its bioactive reserves.
Collapse
|
479
|
Ahrazem O, Argandoña J, Fiore A, Rujas A, Rubio-Moraga Á, Castillo R, Gómez-Gómez L. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. BMC Genomics 2019; 20:320. [PMID: 31029081 PMCID: PMC6486981 DOI: 10.1186/s12864-019-5666-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Crocins are soluble apocarotenoids that mainly accumulate in the stigma tissue of Crocus sativus and provide the characteristic red color to saffron spice, in addition to being responsible for many of the medicinal properties of saffron. Crocin biosynthesis and accumulation in saffron is developmentally controlled, and the concentration of crocins increases as the stigma develops. Until now, little has been known about the molecular mechanisms governing crocin biosynthesis and accumulation. This study aimed to identify the first set of gene regulatory processes implicated in apocarotenoid biosynthesis and accumulation. RESULTS A large-scale crocin-mediated RNA-seq analysis was performed on saffron and two other Crocus species at two early developmental stages coincident with the initiation of crocin biosynthesis and accumulation. Pairwise comparison of unigene abundance among the samples identified potential regulatory transcription factors (TFs) involved in crocin biosynthesis and accumulation. We found a total of 131 (up- and downregulated) TFs representing a broad range of TF families in the analyzed transcriptomes; by comparison with the transcriptomes from the same developmental stages from other Crocus species, a total of 11 TF were selected as candidate regulators controlling crocin biosynthesis and accumulation. CONCLUSIONS Our study generated gene expression profiles of stigmas at two key developmental stages for apocarotenoid accumulation in three different Crocus species. Differential gene expression analyses allowed the identification of transcription factors that provide evidence of environmental and developmental control of the apocarotenoid biosynthetic pathway at the molecular level.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Javier Argandoña
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123, Rome, Italy
| | - Andrea Rujas
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Raquel Castillo
- VITAB Laboratorios. Polígono Industrial Garysol C/ Pino, parcela 53, 02110 La Gineta, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
480
|
Fabi JP, do Prado SBR. Fast and Furious: Ethylene-Triggered Changes in the Metabolism of Papaya Fruit During Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:535. [PMID: 31105730 PMCID: PMC6497978 DOI: 10.3389/fpls.2019.00535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Papaya is a climacteric fleshy fruit characterized by fast ripening after harvest. During the relatively short postharvest period, papaya fruit undergoes several changes in metabolism that result in pulp softening and sweetening, as well as the development of a characteristic aroma. Since papaya is one of the most cultivated and appreciated tropical fruit crops worldwide, extensive research has been conducted to not only understand the formation of the quality and nutritional attributes of ripe fruit but also to develop methods for controlling the ripening process. However, most strategies to postpone papaya ripening, and therefore to increase shelf life, have failed to maintain fruit quality. Ethylene blockage precludes carotenoid biosynthesis, while cold storage can induce chilling injury and negatively affect the volatile profile of papaya. As a climacteric fruit, the fast ripening of papaya is triggered by ethylene biosynthesis. The generation of the climacteric ethylene positive feedback loop is elicited by the expression of a specific transcription factor that leads to an up-regulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC-oxidase (ACO) expression, triggering the system II ethylene biosynthesis. The ethylene burst occurs about 3 to 4 days after harvest and induces pectinase expression. The disassembling of the papaya cell wall appears to help in fruit sweetness, while glucose and fructose are also produced by acidic invertases. The increase in ethylene production also results in carotenoid accumulation due to the induction of cyclases and hydroxylases, leading to yellow and red/orange-colored pulp phenotypes. Moreover, the production of volatile terpene linalool, an important biological marker for papaya's sensorial quality, is also induced by ethylene. All these mentioned processes are related to papaya's sensorial and nutritional quality. We describe the understanding of ethylene-triggered events that influence papaya quality and nutritional traits, as these characteristics are a consequence of an accelerated metabolism during fruit ripening.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| |
Collapse
|
481
|
Gómez R, Vicino P, Carrillo N, Lodeyro AF. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit Rev Biotechnol 2019; 39:693-708. [PMID: 30991845 DOI: 10.1080/07388551.2019.1597829] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plants exposed to hostile environmental conditions such as drought or extreme temperatures usually undergo oxidative stress, which has long been assumed to significantly contribute to the damage suffered by the organism. Reactive oxygen species (ROS) overproduced under stress conditions were proposed to destroy membrane lipids and to inactivate proteins and photosystems, ultimately leading to cell death. Accordingly, considerable effort has been devoted, over the years, to improve stress tolerance by strengthening antioxidant and dissipative mechanisms. Although the notion that ROS cause indiscriminate damage in vivo has been progressively replaced by the alternate concept that they act as signaling molecules directing critical plant developmental and environmental responses including cell death, the induction of genes encoding antioxidant activities is commonplace under many environmental stresses, suggesting that their manipulation still offers promise. The features and consequences of ROS effects depend on the balance between various interacting pathways including ROS synthesis and scavenging, energy dissipation, conjugative reactions, and eventually reductive repair. They represent many possibilities for genetic manipulation. We report, herein, a comprehensive survey of transgenic plants in which components of the ROS-associated pathways were overexpressed, and of the stress phenotypes displayed by the corresponding transformants. Genetic engineering of different stages of ROS metabolism such as synthesis, scavenging, and reductive repair revealed a strong correlation between down-regulation of ROS levels and increased stress tolerance in plants grown under controlled conditions. Field assays are scarce, and are eagerly required to assess the possible application of this strategy to agriculture.
Collapse
Affiliation(s)
- Rodrigo Gómez
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Paula Vicino
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Néstor Carrillo
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Anabella F Lodeyro
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| |
Collapse
|
482
|
Livigni S, Lucini L, Sega D, Navacchi O, Pandolfini T, Zamboni A, Varanini Z. The different tolerance to magnesium deficiency of two grapevine rootstocks relies on the ability to cope with oxidative stress. BMC PLANT BIOLOGY 2019; 19:148. [PMID: 30991946 PMCID: PMC6469136 DOI: 10.1186/s12870-019-1726-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Magnesium (Mg) deficiency causes physiological and molecular responses, already dissected in several plant species. The study of these responses among genotypes showing a different tolerance to the Mg shortage can allow identifying the mechanisms underlying the resistance to this nutritional disorder. To this aim, we compared the physiological and molecular responses (e.g. changes in root metabolome and transcriptome) of two grapevine rootstocks exhibiting, in field, different behaviors with respect to Mg shortage (1103P, tolerant and SO4 susceptible). RESULTS The two grapevine rootstocks confirmed, in a controlled growing system, their behavior in relation to the tolerance to Mg deficiency. Differences in metabolite and transcriptional profiles between the roots of the two genotypes were mainly linked to antioxidative compounds and the cell wall constituents. In addition, differences in secondary metabolism, in term of both metabolites (e.g. alkaloids, terpenoids and phenylpropanoids) and transcripts, assessed between 1103P and SO4 suggest a different behavior in relation to stress responses particularly at early stages of Mg deficiency. CONCLUSIONS Our results suggested that the higher ability of 1103P to tolerate Mg shortage is mainly linked to its capability of coping, faster and more efficiently, with the oxidative stress condition caused by the nutritional disorder.
Collapse
Affiliation(s)
- Sonia Livigni
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, Piacenza, Italy
| | - Davide Sega
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | - Tiziana Pandolfini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Anita Zamboni
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Zeno Varanini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
483
|
González-Villagra J, Cohen JD, Reyes-Díaz MM. Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress. PHYSIOLOGIA PLANTARUM 2019; 165:855-866. [PMID: 29923199 DOI: 10.1111/ppl.12789] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) regulates the physiological and biochemical mechanisms required to tolerate drought stress, which is considered as an important abiotic stress. It has been postulated that ABA might be involved in regulation of plant phenolic compounds biosynthesis, especially anthocyanins that accumulate in plants subjected to drought stress; however, the evidence for this postulate remains elusive. Therefore, we studied whether ABA is involved in phenolic compounds accumulation, especially anthocyanin biosynthesis, using drought stressed Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully-expanded leaves of drought stressed A. chilensis plants during 24, 48 and 72 h of the experiment. Plants were harvested and leaves were collected separately to determine the biochemical status. We observed that fluridone treatments significantly decreased ABA concentrations and total anthocyanin (TA) concentrations in stressed plants, including both young and fully-expanded leaves. TA concentrations following fluridone treatment were reduced around fivefold, reaching control plant levels. ABA application restored ABA levels as well as TA concentrations in stressed plant at 48 h of the experiment. We also observed that TA concentrations followed the same pattern as ABA concentrations in the ABA treated plants. Quantitative real-time PCR revealed that AcUFGT gene expression decreased in fully-expanded leaves of stressed plants treated with fluridone, while a subsequent ABA application increased AcUFGT expression. Taken together, our results suggest that ABA is involved in the regulation of anthocyanin biosynthesis under drought stress.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjorie M Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| |
Collapse
|
484
|
Ke Q, Kang L, Kim HS, Xie T, Liu C, Ji CY, Kim SH, Park WS, Ahn MJ, Wang S, Li H, Deng X, Kwak SS. Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:52-60. [PMID: 30824061 DOI: 10.1016/j.plantsci.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
Carotenoids are required for many biological processes in plants and humans. Lycopene ε-cyclase (LCY-ε) catalyzes the conversion of lycopene into lutein via the α-branch carotenoid biosynthesis pathway. Down-regulation of IbLCY-ε by RNAi increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato calli. As the role of IbLCY-ε in carotenoid biosynthesis and environmental stress responses in whole plants is poorly understood, transgenic sweetpotato (RLE plants) with reduced expression of IbLCY-ε were developed. RLE plants contained higher levels of total carotenoid and β-carotene, due to an elevated β-carotene/lutein ratio rather than increased de novo biosynthesis. RLE plants showed high reactive oxygen species/radical-scavenging activity. They also exhibited an enhanced tolerance of both salt and drought stress, which was associated with lower membrane permeability and a higher photosynthetic rate, respectively. Elevated carotenoid accumulation in RLE plants mitigated the reductions in leaf photosystem II efficiency and chlorophyll induced by abiotic stress. Expression of the carotenoid cleavage genes 9-cis-epoxycarotenoid dioxygenase, carotenoid cleavage dioxygenase 1 (CCD1) and CCD4 was higher in RLE plants, as was abscisic acid accumulation. IbLCY-ε silencing thus offers an effective approach for developing sweetpotato plants with increased tolerance to abiotic stress that will grow on global marginal lands with no reduction in nutritional value.
Collapse
Affiliation(s)
- Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Le Kang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637002, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Tian Xie
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chunjuan Liu
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Shiwen Wang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongbing Li
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Deng
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
485
|
Wang Y, He YN, He L, He F, Chen W, Duan CQ, Wang J. Changes in global aroma profiles of Cabernet Sauvignon in response to cluster thinning. Food Res Int 2019; 122:56-65. [PMID: 31229111 DOI: 10.1016/j.foodres.2019.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Cluster thinning (CT) is a common practice to prevent overcropping in viticulture. CT affects vine balance between vegetative and productive growth and further modifies grape composition. This study investigated the effects of cluster thinning treatments applied at pea-size stage (CT-AF) and the onset of veraison (CT-V), respectively, on volatile compounds of Cabernet Sauvignon in two seasons (2013-2014). The experimental vineyard was located in the north-west of China with semi-arid and monsoon climate. CT exhibited limited effects on the evolutions of volatile compounds. CT-AF exhibited an inhibition on 6-methyl-5-heptene-2-one accumulation. There were no differences in terpene concentrations between CT-treated and control grapes regardless of CT time. Regarding C6/C9 compounds and their derivatives, CT-AF decreased nonanal concentration whilst CT-V increased (Z)-3-hexen-1-ol concentration. Additionally, there were increases in nonanal, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol and (Z)-3-hexen-1-ol concentrations in grapes with delayed CT. Among benzene derivatives, earlier CT resulted in lower phenol concentrations.
Collapse
Affiliation(s)
- Yu Wang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan-Nan He
- College of Enology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Manas 832200 Xinjiang, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
486
|
D'Amelia V, Raiola A, Carputo D, Filippone E, Barone A, Rigano MM. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Sci Rep 2019; 9:3699. [PMID: 30842571 PMCID: PMC6403429 DOI: 10.1038/s41598-019-40142-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022] Open
Abstract
Carotenoid accumulation in tomato (Solanum lycopersicum) fruits is influenced by environmental stimuli and hormonal signals. However, information on the relative regulatory mechanisms are scanty since many molecular players of the carotenoid biosynthetic pathway are still unknown. Here, we reported a basic Helix-Loop-Helix transcription factor, named SlARANCIO (SlAR), whose silencing influences carotenoid accumulation in tomato fruits. The SlAR gene was found in the S. pennellii introgression line (IL) 12-4SL that holds the carotenoid QTL lyc12.1. We observed that the presence of the wild region in a cultivated genetic background led to a decrease in total carotenoid content of IL12-4SL fruits. To get insights into the function of SlAR, a quick reverse genetic approach was carried out. Virus-induced gene silencing of SlAR in S. lycopersicum M82 and MicroTom fruits reproduced the same phenotype observed in IL12-4SL, i.e. decreased content of lycopene and total carotenoids. Vice versa, the overexpression of SlAR in Nicotiana benthamiana leaves increased the content of total carotenoids and chlorophylls. Our results, combined with public transcriptomic data, highly suggest that SlAR acts indirectly on the carotenoid pathway and advances current knowledge on the molecular regulators controlling lyc12.1 and, potentially, precursors of carotenoid biosynthesis.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Edgardo Filippone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy.
| |
Collapse
|
487
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
488
|
Badejo AA. Elevated carotenoids in staple crops: The biosynthesis, challenges and measures for target delivery. J Genet Eng Biotechnol 2019; 16:553-562. [PMID: 30733773 PMCID: PMC6353757 DOI: 10.1016/j.jgeb.2018.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/03/2022]
Abstract
Poverty eradication and global food security are among the targets of world leaders, most especially combating the scourge of hidden hunger. Provitamin A carotenoids cannot be synthesized de novo by human and so it must be taken as part of the diet. The deficiency of which is causing almost 6000 sights to be lost daily in most developing countries because of the monotonous starchy diets lacking substantial amount of carotenoid. Conventional breeding as well as genetic engineering have been used to increase the level of carotenoid in many staples including rice, potato, maize and cassava. While products from genetic engineering are still been subjected to strict regulatory measures preventing the delivery of the products to target consumers, some of the products from conventional breeding are already on the table of consumers. Interestingly, both technologies are crucial to tackling micronutrient deficiencies. This review discusses the role of carotenoid in human, the biosynthesis in plant and some of the staple crops that have been modified for increased carotenoid. Some measures expected of the leaders of the countries in need of these products for safe delivery to the target population after two decades is also highlighted.
Collapse
|
489
|
Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct Integr Genomics 2019; 19:565-574. [PMID: 30694406 DOI: 10.1007/s10142-019-00654-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/06/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
The effect of salt stress on pigment synthesis and antioxidant enzyme activity as well as in the genes involved in the biosynthetic pathway of bixin was studied. The 14-day germinated seedlings of Bixa orellana were induced into the various NaCl concentration (0, 25, 50, 75, 100 mM). After 45 days, leaves were taken for pigment analysis, antioxidant assays, and gene expression analysis to study the response of salt stress. The pigment content such as chlorophyll level was increased upon salt stress with a reduction in total carotenoid clearly indicating the adaptability of plants towards the stressed state. The level of β-carotene was increased in the highest concentration of salt stress treatment. The secondary metabolites such as bixin and abscisic acid (ABA) content were also high in elevated concentration of salt-treated seedling than control. The antioxidant enzyme activity was increased with the highest dose of salt stress suggesting the antioxidant enzymes to protect the plant from the deleterious effects. The mRNA transcript gene of the carotenoid biosynthetic pathway such as phytoene synthase (PSY), 1-deoxyxylulose-5-phosphate synthase (DXS), phytoene desaturase (PDS), beta-lycopene cyclase (LCY-β), epsilon lycopene cyclase (LCY-ε), carboxyl methyl transferase (CMT), aldehyde dehydrogenase (ADH), lycopene cleavage dioxygenase (LCD), and carotenoid cleavage dioxygenase (CCD) showed differential expression pattern under salt stress. In addendum, we studied the co-expression network analysis of gene to assess the co-related genes associated in the biosynthesis pathway of carotenoid. From the co-expression analysis result showed, the LCY, PDS, and PSY genes were closely correlated with other genes. These finding may provide insight to the plants to exist in the stress condition and to improve the industrially important pigment production.
Collapse
|
490
|
β-Cryptoxanthin Reduces Body Fat and Increases Oxidative Stress Response in Caenorhabditis elegans Model. Nutrients 2019; 11:nu11020232. [PMID: 30678209 PMCID: PMC6412578 DOI: 10.3390/nu11020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
β-Cryptoxanthin (BCX) is a major dietary pro-vitamin A carotenoid, found mainly in fruits and vegetables. Several studies showed the beneficial effects of BCX on different aspects of human health. In spite of the evidence, the molecular mechanisms of action of BCX need to be further investigated. The Caenorhabditis elegans model was used to analyze in vivo the activity of BCX on fat reduction and protection to oxidative stress. Dose-response assays provided evidence of the efficacy of BCX at very low dose (0.025 µg/mL) (p < 0.001) on these processes. Moreover, a comparative analysis with other carotenoids, such as lycopene and β-carotene, showed a stronger effect of BCX. Furthermore, a transcriptomic analysis of wild-type nematodes supplemented with BCX revealed upregulation of the energy metabolism, response to stress, and protein homeostasis as the main metabolic targets of this xanthophyll. Collectively, this study provides new in vivo evidence of the potential therapeutic use of BCX in the prevention of diseases related to metabolic syndrome and aging.
Collapse
|
491
|
Sharma M, Kaul S, Dhar MK. Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.). PROTOPLASMA 2019; 256:249-260. [PMID: 30078109 DOI: 10.1007/s00709-018-1296-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/29/2018] [Indexed: 05/07/2023]
Abstract
The dried stigmas of saffron constitute the world's costliest spice. Saffron has many therapeutic applications due to the presence of apocarotenoids. The latter are synthesized at different stages of development, and the biosynthetic pathway involves several genes encoding different enzymes. In order to understand the differential expression of various genes of the pathway, eight distinct developmental stages (S1-early to S8-late) were identified. The corms were assorted into three groups (I, II, and III) based on corm weight. Expression profiles of 12 carotenoid/apocarotenoid genes were studied. The expression of all genes was minimum/least in groups I and II corms during bud development. Lowest expression of carotenogenic genes (CsPSY, CsPDS, CsZDS, CsCRTISO, CsLYC-β1, CsLYC-ε, CsBCH2, and CsNCED) was observed during early stages (S1-S3) of corm growth (dormant period). In group III corms, increased expression of apocarotenoid genes (CsZCO, CsCCD2, CsUGT, and CsALDH) was observed during S4 to S8 stages (reproductive period, floral differentiation). Besides, expression profiles of genes in apical and axillary buds were also examined. Of all the genes studied, apocarotenoid biosynthesis genes (CsBCH2, CsZCO, CsCCD2, CsALDH, and CsUGT) were found to be upregulated in apical bud than in the axillary bud. The results indicated that interaction of phytohormones and sugars, mother corm reserves and the influence of internal and external factors may be contributing to the growth of saffron corm/bud. The study has laid a foundation for further research on the molecular mechanisms underlying bud dormancy/growth in saffron.
Collapse
Affiliation(s)
- Munish Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
492
|
Yazdani M, Sun Z, Yuan H, Zeng S, Thannhauser TW, Vrebalov J, Ma Q, Xu Y, Fei Z, Van Eck J, Tian S, Tadmor Y, Giovannoni JJ, Li L. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:33-49. [PMID: 29729208 PMCID: PMC6330546 DOI: 10.1111/pbi.12945] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 04/28/2018] [Indexed: 05/10/2023]
Abstract
Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtORWT ) and a 'golden SNP'-containing OR (AtORHis ). We found that AtORHis initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtORWT and AtORHis lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Zhaoxia Sun
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- College of AgricultureInstitute of Agricultural BioengineeringShanxi Agricultural UniversityTaiguShanxiChina
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Shaohua Zeng
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | | | | | - Qiyue Ma
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Yimin Xu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Joyce Van Eck
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Shiping Tian
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yaakov Tadmor
- Plant Science InstituteIsraeli Agricultural Research OrganizationNewe Yaar Research CenterRamat YishaiIsrael
| | - James J. Giovannoni
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Li Li
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
493
|
Li JW, Ma J, Feng K, Xu ZS, Xiong AS. Transcriptome profiling of β-carotene biosynthesis genes and β-carotene accumulation in leaf blades and petioles of celery cv. Jinnanshiqin. Acta Biochim Biophys Sin (Shanghai) 2019; 51:116-119. [PMID: 30508041 DOI: 10.1093/abbs/gmy141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Wen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
494
|
Lu P, Wang S, Grierson D, Xu C. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. PLANTA 2019; 249:257-270. [PMID: 30083809 DOI: 10.1007/s00425-018-2970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Carotenoid accumulation and chromoplast development in orange were perturbed by carotenoid inhibitors, and candidate genes were identified via transcriptomic analysis. The role of CsPHT4;2 in enhancing carotenoid accumulation was revealed. Carotenoids are important plant pigments and their accumulation can be affected by biosynthesis inhibitors, but the genes involved were largely unknown. Here, application of norflurazon (NFZ), 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) and clomazone for 30 days to in vitro cultured sweet orange juice vesicles caused over-accumulation of phytoene (over 1000-fold), lycopene (2.92 μg g-1 FW, none in control), and deficiency in total carotenoids (reduced to 22%), respectively. Increased carotenoids were associated with bigger chromoplasts with enlarged plastoglobules or a differently crystalline structure in NFZ, and CPTA-treated juice vesicles, respectively. Global transcriptomic changes following inhibitor treatments were profiled. Induced expression of 1-deoxy-D-xylulose 5-phosphate synthase 1 by CPTA, hydroxymethylbutenyl 4-diphosphate reductase by both NFZ and CPTA, and reduced expression of chromoplast-specific lycopene β-cyclase by CPTA, as well as several downstream genes by at least one of the three inhibitors were observed. Expression of fibrillin 11 (CsFBN11) was induced following both NFZ and CPTA treatments. Using weighted correlation network analysis, a plastid-type phosphate transporter 4;2 (CsPHT4;2) was identified as closely correlated with high-lycopene accumulation induced by CPTA. Transient over-expression of CsPHT4;2 significantly enhanced carotenoid accumulation over tenfold in 'Cara Cara' sweet orange juice vesicle-derived callus. The study provides a valuable overview of the underlying mechanisms for altered carotenoid accumulation and chromoplast development following carotenoid inhibitor treatments and sheds light on the relationship between carotenoid accumulation and chromoplast development.
Collapse
Affiliation(s)
- Pengjun Lu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shasha Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| |
Collapse
|
495
|
Feder A, Chayut N, Gur A, Freiman Z, Tzuri G, Meir A, Saar U, Ohali S, Baumkoler F, Gal-On A, Shnaider Y, Wolf D, Katzir N, Schaffer A, Burger J, Li L, Tadmor Y. The Role of Carotenogenic Metabolic Flux in Carotenoid Accumulation and Chromoplast Differentiation: Lessons From the Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1250. [PMID: 31736986 PMCID: PMC6833967 DOI: 10.3389/fpls.2019.01250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/09/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids have various roles in plant physiology. Plant carotenoids are synthesized in plastids and are highly abundant in the chromoplasts of ripening fleshy fruits. Considerable research efforts have been devoted to elucidating mechanisms that regulate carotenoid biosynthesis, yet, little is known about the mechanism that triggers storage capacity, mainly through chromoplast differentiation. The Orange gene (OR) product stabilizes phytoene synthase protein (PSY) and triggers chromoplast differentiation. OR underlies carotenoid accumulation in orange cauliflower and melon. The OR's 'golden SNP', found in melon, alters the highly evolutionary conserved Arginine108 to Histidine and controls β-carotene accumulation in melon fruit, in a mechanism yet to be elucidated. We have recently shown that similar carotenogenic metabolic flux is active in non-orange and orange melon fruit. This flux probably leads to carotenoid turnover but known carotenoid turnover products are not detected in non-orange fruit. Arrest of this metabolic flux, using chemical inhibitors or mutations, induces carotenoid accumulation and biogenesis of chromoplasts, regardless of the allelic state of OR. We suggest that the 'golden SNP' induces β-carotene accumulation probably by negatively affecting the capacity to synthesize downstream compounds. The accumulation of carotenoids induces chromoplast biogenesis through a metabolite-induced mechanism. Carotenogenic turnover flux can occur in non-photosynthetic tissues, which do not accumulate carotenoids. Arrest of this flux by the 'golden SNP' or other flux-arrest mutations is a potential tool for the biofortification of agricultural products with carotenoids.
Collapse
Affiliation(s)
- Ari Feder
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Noam Chayut
- Germplasm Resource Unit, John Innes Center, Norwich, United Kingdom
| | - Amit Gur
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Zohar Freiman
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Galil Tzuri
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Saar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shachar Ohali
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Fabian Baumkoler
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gal-On
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yula Shnaider
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Wolf
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nurit Katzir
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ari Schaffer
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Joseph Burger
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, United States
| | - Yaakov Tadmor
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- *Correspondence: Yaakov Tadmor,
| |
Collapse
|
496
|
Osorio CE. The Role of Orange Gene in Carotenoid Accumulation: Manipulating Chromoplasts Toward a Colored Future. FRONTIERS IN PLANT SCIENCE 2019; 10:1235. [PMID: 31636649 PMCID: PMC6788462 DOI: 10.3389/fpls.2019.01235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/05/2019] [Indexed: 05/11/2023]
Abstract
Carotenoids are isoprenoid pigments synthesized in plants, algae, and photosynthetic bacteria and fungus. Their role is essential in light capture, photoprotection, pollinator attraction, and phytohormone production. Furthermore, they can regulate plant development when they are processed as small signaling molecules. Due to their importance for human health, as promoters of the immune system and antioxidant activity, carotenoids have been used in the pharmaceutical, food, and nutraceutical industries. Regulation of carotenoid synthesis and accumulation has been extensively studied. Excellent work has been done unraveling the mode of action of phytoene synthase (PSY), a rate-limiting enzyme of carotenoid biosynthesis pathway, in model species and staple crops. Lately, interest has been turned to Orange protein and its interaction with PSY during carotenoid biosynthesis. Discovered as a dominant mutation in Brassica oleracea, Orange protein regulates carotenoid accumulation by posttranscriptionally regulating PSY, promoting the formation of carotenoid-sequestering structures, and also preventing carotenoid degradation. Furthermore, Orange protein contributes to homeostasis regulation, improving plant tolerance to abiotic stress. In this mini review, the focus is made on recent evidence that elucidates Orange protein mode of action and expression in different plant species. Additionally, strategies are proposed to modify Orange gene by utilization of genome editing techniques. A better understanding of carotenoid biosynthesis and accumulation will lead to a positive impact on the development of healthy food for a growing population.
Collapse
|
497
|
Ahrazem O, Diretto G, Argandoña Picazo J, Fiore A, Rubio-Moraga Á, Rial C, Varela RM, Macías FA, Castillo R, Romano E, Gómez-Gómez L. The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. FRONTIERS IN PLANT SCIENCE 2019; 10:249. [PMID: 30886624 PMCID: PMC6409354 DOI: 10.3389/fpls.2019.00249] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 05/11/2023]
Abstract
Crocus sativus stigmas are the main source of crocins, which are glucosylated apocarotenoids derived from zeaxanthin cleavage that give saffron its red color. Phytoene synthase (PSY) mediates the first committed step in carotenoid biosynthesis in plants. Four PSY genes encoding functional enzymes were isolated from saffron. All the proteins were localized in plastids, but the expression patterns of each gene, CsPSY1a, CsPSY1b, CsPSY2, and CsPSY3, in different saffron tissues and during the development of the stigma showed different tissue specialization. The CsPSY2 transcript was primarily detected in the stigmas where it activates and stimulates the accumulation of crocins, while its expression was very low in other tissues. In contrast, CsPSY1a and CsPSY1b were mainly expressed in the leaves, but only CsPSY1b showed stress-light regulation. Interestingly, CsPSY1b showed differential expression of two alternative splice variants, which differ in the intron retention at their 5' UTRs, resulting in a reduction in their expression levels. In addition, the CsPSY1a and CsPSY1b transcripts, together with the CsPSY3 transcript, were induced in roots under different stress conditions. The CsPSY3 expression was high in the root tip, and its expression was associated with mycorrhizal colonization and strigolactone production. CsPSY3 formed a separate branch to the stress-specific Poaceae homologs but was closely related to the dicot PSY3 enzymes.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Javier Argandoña Picazo
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Ángela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Rosa M. Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | | | - Elena Romano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
- *Correspondence: Lourdes Gómez-Gómez,
| |
Collapse
|
498
|
Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S. An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in Arabidopsis. Analyst 2019; 144:1197-1204. [DOI: 10.1039/c8an02143k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress.
Collapse
Affiliation(s)
- Jianing Mi
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Kun-Peng Jia
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST)
- Biological and Environmental Sciences and Engineering Division
- The BioActives Lab
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| |
Collapse
|
499
|
Tamaki S, Kato S, Shinomura T, Ishikawa T, Imaishi H. Physiological role of β-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:80-87. [PMID: 30471732 DOI: 10.1016/j.plantsci.2018.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
Some carotenoids are found in the Euglena gracilis, including β-carotene, diadinoxanthin, diatoxanthins, and neoxanthin as the major species; however, the molecular mechanism underlying carotenoid biosynthesis in E. gracilis is not well understood. To clarify the pathway and regulation of carotenoid biosynthesis in this alga, we functionally characterized the cytochrome P450 (CYP)-type carotene hydroxylase gene EgCYP97H1. Heterologous in vivo enzyme assay in E. coli indicated that EgCYP97H1 hydroxylated β-carotene to β-cryptoxanthin. E. gracilis cells suppressing EgCYP97H1 resulted in marked growth inhibition and reductions in total carotenoid and chlorophyll contents. Analysis of carotenoid composition revealed that suppression of EgCYP97H1 resulted in higher level of β-carotene, suggesting that EgCYP97H1 is physiologically essential for carotenoid biosynthesis and thus normal cell growth. To our knowledge, this is the first time EgCYP97H1 has been suggested to be β-carotene monohydroxylase, but not β-carotene dihydroxylase. Moreover, during light adaptation of dark-grown E. gracilis, transcript levels of the carotenoid biosynthetic genes (EgCYP97H1, geranylgeranyl pyrophosphate synthase EgcrtE, and phytoene synthase EgcrtB) remained virtually unchanged. In contrast, carotenoid accumulation in E. gracilis grown under the same conditions was inhibited by treatment with a translational inhibitor but not a transcriptional inhibitor, indicating that photo-responsive carotenoid biosynthesis is regulated post-transcriptionally in this alga.
Collapse
Affiliation(s)
- Shun Tamaki
- Division of Signal Responses, Biosignal Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Shota Kato
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Takahiro Ishikawa
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hiromasa Imaishi
- Division of Signal Responses, Biosignal Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
500
|
Khalid M, Saeed-ur-Rahman, Bilal M, Iqbal HM, Huang D. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019; 17:399-407. [DOI: 10.1016/j.bcab.2018.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|