451
|
Speciale A, Anwar S, Ricciardi E, Chirafisi J, Saija A, Cimino F. Cellular adaptive response to glutathione depletion modulates endothelial dysfunction triggered by TNF-α. Toxicol Lett 2011; 207:291-7. [PMID: 21971136 DOI: 10.1016/j.toxlet.2011.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Several interrelated cellular signaling molecules are involved in modulating adaptive compensatory changes elicited by low exposures to toxins and other stressors. The most prominent example of signaling pathway typically involved in this adaptive stress response, is represented by the activation of a redox-sensitive gene regulatory network mediated by the NF-E2-related factor-2 (Nrf2) which is intimately involved in mediating the Antioxidant Responsive Element (ARE)-driven response to oxidative stress and xenobiotics. We investigated if Nrf2 pathway activation following intracellular glutathione depletion through buthionine sulfoximine (BSO) exposure, might be able to alter the response to TNF-α, a proinflammatory cytokine, in cultured human umbilical vein endothelial cells. Herein, we revealed that such a change in the cellular redox status is able to reduce TNF-α induced endothelial activation (as shown by a decreased gene expression of adhesion molecules) by activating an adaptive response mediated by an increased Nrf2 nuclear translocation and overexpression of the ARE genes HO-1 and NQO-1. Furthermore, we have demonstrated the involvement of ERK1/2 kinases in Nrf2 nuclear translocation activated by BSO-induced glutathione depletion. The coordinate induction of endogenous cytoprotective proteins through adaptive activation of Nrf2 pathway is a field of great interest for potential application in prevention and therapy of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Antonio Speciale
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | | | | | | | | | | |
Collapse
|
452
|
Sun Y, Kojima C, Chignell C, Mason R, Waalkes MP. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response. Toxicol Appl Pharmacol 2011; 255:242-50. [PMID: 21820459 PMCID: PMC3169845 DOI: 10.1016/j.taap.2011.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023]
Abstract
Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100nM, 30weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100nM) did not induce ODD during the 30weeks required for malignant transformation. Although acute UV-treatment (UVA, 25J/cm(2)) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (>50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD.
Collapse
Affiliation(s)
- Yang Sun
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, and National Toxicology Laboratories, National Toxicology Program, the National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Chikara Kojima
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, and National Toxicology Laboratories, National Toxicology Program, the National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Colin Chignell
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Ronald Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, and National Toxicology Laboratories, National Toxicology Program, the National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
453
|
Tan AC, Konczak I, Sze DMY, Ramzan I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 2011; 63:495-505. [PMID: 21500099 DOI: 10.1080/01635581.2011.538953] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interest in dietary phytochemicals for potential cancer chemoprevention has increased substantially. Screening dietary compounds for chemopreventive activity however, requires a systematic and wide-ranging approach to encompass the complexity of carcinogenesis. We present some of the molecular pathways that underpin the broad biological processes involved in carcinogenesis. Oxidative stress, inflammation, and the evasion of apoptosis are important biological mechanisms by which carcinogenesis occurs. Subsequently, antioxidant, anti-inflammatory, and pro-apoptotic activity represent important activities for preventing, suppressing, or reversing the development of carcinogenesis. Ultimately, these mechanisms of action may provide a useful basis for screening novel phytochemicals for chemopreventive activity. In this review, we identify the important molecular processes that may be targeted in routine screenings of dietary phytochemicals to ultimately select the most effective potential candidates for cancer chemoprevention.
Collapse
Affiliation(s)
- Aaron C Tan
- Food Futures Flagship, CSIRO Food and Nutritional Sciences, North Ryde, NSW, Australia.
| | | | | | | |
Collapse
|
454
|
Kim YS, Lee HL, Lee KB, Park JH, Chung WY, Lee KS, Sheen SS, Park KJ, Hwang SC. Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer. Korean J Intern Med 2011; 26:304-13. [PMID: 22016591 PMCID: PMC3192203 DOI: 10.3904/kjim.2011.26.3.304] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/12/2011] [Accepted: 05/02/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Oxidative stress results in protein oxidation and is implicated in carcinogenesis. Sulfiredoxin (Srx) is responsible for the enzymatic reversal of inactivated peroxiredoxin (Prx). Nuclear factor E2-related factor 2 (Nrf2) binds to antioxidant responsive elements and upregulates the expression of Srx and Prx during oxidative stress. We aimed to elucidate the biological functions and potential roles of Srx in lung cancer. METHODS To study the roles of Srx and Prx III in lung cancer, we compared the protein levels of Nrf2, Prxs, thioredoxin, and Srx in 40 surgically resected human lung cancer tissues using immunoblot and immunohistochemical analyses. Transforming growth factor-β(1), tumor necrosis factor-α, and camptothecin treatment were used to examine Prx III inactivation in Mv1Lu mink lung epithelial cells and A549 lung cancer cells. RESULTS Prx I and Prx III proteins were markedly overexpressed in lung cancer tissues. A significant increase in the oxidized form of a cysteine sulfhydryl at the catalytic site of Prxs was found in carcinogenic lung tissue compared to normal lung tissue. Densitometric analyses of immunoblot data revealed significant Srx expression, which was higher in squamous cell carcinoma tissue (60%, 12/20) than in adenocarcinoma (20%, 4/20). Also, Nrf2 was present in the nuclear compartment of cancer cells. CONCLUSIONS Srx and Prx III proteins were markedly overexpressed in human squamous cell carcinoma, suggesting that these proteins may play a protective role against oxidative injury and compensate for the high rate of mitochondrial metabolism in lung cancer.
Collapse
Affiliation(s)
- Young Sun Kim
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Hye Lim Lee
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Ki Bum Lee
- Department of Anatomical Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Wou Young Chung
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Keu Sung Lee
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Seung Soo Sheen
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Joo Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Sung Chul Hwang
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
455
|
Han EH, Hwang YP, Choi JH, Yang JH, Seo JK, Chung YC, Jeong HG. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:136-145. [PMID: 21843792 DOI: 10.1016/j.etap.2011.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 05/31/2023]
Abstract
Psidium guajava (P. guajava) is a food and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities that support its traditional uses. The aim of this study was to determine the effects of P. guajava ethyl acetate extract (PGEA) on atopic dermatitis and to investigate the possible mechanisms by which PGEA inhibits cytokine-induced Th2 chemokine expression in HaCaT human keratinocyte cells. We found that PGEA suppressed the IFN-γ/TNF-α-co-induced production of thymus and activation-regulated chemokine (TARC) protein and mRNA in HaCaT cells. Additionally, PGEA inhibited the TNF-α/IFN-γ-co-induced activation of NF-κB and STAT1 and increased the expression of heme oxygenase-1 (HO-1) protein and mRNA. HO-1 inhibitor enhanced the suppressive effects of PGEA on TNF-α/IFN-γ-co-induced TARC production and gene expression. Collectively, these data demonstrate that PGEA inhibits chemokine expression in keratinocytes by inducing HO-1 expression and it suggests a possible therapeutic application in atopic dermatitis and other inflammatory skin diseases.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
456
|
Weniger MA, Rizzatti EG, Perez-Galan P, Liu D, Wang Q, Munson PJ, Raghavachari N, White T, Tweito MM, Dunleavy K, Ye Y, Wilson WH, Wiestner A. Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res 2011; 17:5101-12. [PMID: 21712452 PMCID: PMC3149767 DOI: 10.1158/1078-0432.ccr-10-3367] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Proteasome inhibition disrupts protein homeostasis and induces apoptosis. Up to 50% of patients with relapsed mantle cell lymphoma (MCL) respond to bortezomib. We used gene expression profiling to investigate the connection between proteasome inhibition, cellular response, and clinical efficacy. EXPERIMENTAL DESIGN We assessed transcriptional changes in primary tumor cells from five patients during treatment with bortezomib in vivo, and in 10 MCL cell lines exposed to bortezomib in vitro, on Affymetrix microarrays. Key findings were confirmed by western blotting. RESULTS MCL cell lines exposed to bortezomib in vitro showed upregulation of endoplasmic reticulum and oxidative stress response pathways. Gene expression changes were strongest in bortezomib-sensitive cells and these cells were also more sensitive to oxidative stress induced by H2O2. Purified tumor cells obtained at several timepoints during bortezomib treatment in 5 previously untreated patients with leukemic MCL showed strong activation of the antioxidant response controlled by NRF2. Unexpectedly, activation of this homeostatic program was significantly stronger in tumors with the best clinical response. Consistent with its proapoptotic function, we found upregulation of NOXA in circulating tumor cells of responding patients. In resistant cells, gene expression changes in response to bortezomib were limited and upregulation of NOXA was absent. Interestingly, at baseline, bortezomib-resistant cells displayed a relatively higher expression of the NRF2 gene-expression signature than sensitive cells (P < 0.001). CONCLUSION Bortezomib triggers an oxidative stress response in vitro and in vivo. High cellular antioxidant capacity contributes to bortezomib resistance.
Collapse
Affiliation(s)
- Marc A. Weniger
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health Bethesda, MD
| | - Edgar G. Rizzatti
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health Bethesda, MD
- Fleury Medicina e Saude, Sao Paulo, Brazil
| | - Patricia Perez-Galan
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health Bethesda, MD
| | - Delong Liu
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health Bethesda, MD
| | - Qiuyan Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Peter J. Munson
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health Bethesda, MD
| | - Nalini Raghavachari
- Gene Expression Core Facility, Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health Bethesda, MD
| | - Therese White
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Megan M. Tweito
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kieron Dunleavy
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Wyndham H. Wilson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health Bethesda, MD
| |
Collapse
|
457
|
Ufer C, Wang CC. The Roles of Glutathione Peroxidases during Embryo Development. Front Mol Neurosci 2011; 4:12. [PMID: 21847368 PMCID: PMC3148772 DOI: 10.3389/fnmol.2011.00012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023] Open
Abstract
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin Berlin, Germany
| | | |
Collapse
|
458
|
Abstract
BACKGROUND The nuclear transcription factor NF-κB has gained considerable importance due to its major involvement in inflammation and constitutive activity in malignant cells. It is induced by a variety of stimuli and controls the expression of several proteins involved in biological processes. Numerous natural products and synthesized organic molecules have been reported to inhibit NF-κB and have played an integral role in identifying implicated pathways. Prominent among them are the sesquiterpene lactones, polyphenolic enones and other α,β-unsaturated carbonyl-containing molecules, particularly α-methylene-γ-butyrolactones. DISCUSSION This mini-review provides an introductory overview of some of the associated pathways involving NF-κB in cancer and discusses the structures and mode of action of natural α,β-unsaturated carbonyl-containing inhibitors and their synthetic counterparts. A review of the recent methods for the synthesis of α-alkylidene-γ-butyrolactones is also provided, with the aim of arousing the interest of synthetic chemists for the design and development of novel NF-κB inhibitors. CONCLUSIONS Modulating damaging effects without harming the inflammatory and immune responses are crucial parameters for developing NF-κB inhibitors. Examination of novel α,β-unsaturated carbonyls and the further discovery of simple methods to prepare such molecules should lead to the identification of site-specific inhibitors.
Collapse
|
459
|
Valdameri G, Trombetta-Lima M, Worfel PR, Pires ARA, Martinez GR, Noleto GR, Cadena SMSC, Sogayar MC, Winnischofer SMB, Rocha MEM. Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem Biol Interact 2011; 193:180-9. [PMID: 21756884 DOI: 10.1016/j.cbi.2011.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023]
Abstract
Apigenin has been reported to inhibit proliferation of cancer cells; however, the mechanism underlying its action is not completely understood. Here, we evaluated the effects of apigenin on the levels of expression and activity of antioxidant enzymes, and the involvement of ROS in the mechanism of cell death induced by apigenin in HepG2 human hepatoma cells. Upon treatment with apigenin, HepG2 cells displayed a reduction in cell viability in a dose- and time-dependent manner, and some morphological changes. In addition, apigenin treatment induced ROS generation and significantly decreased the mRNA levels and activity of catalase and levels of intracellular GSH. On the other hand, apigenin treatment did not alter the expression or activity levels of other antioxidant enzymes. Addition of exogenous catalase significantly reduced the effects of apigenin on HepG2 cell death. We also demonstrated that HepG2 cells are more sensitive to apigenin-mediated cell death than are primary cultures of mouse hepatocytes, suggesting a differential toxic effect of this agent in tumor cells. Our results suggest that apigenin-induced apoptosis in HepG2 cells may be mediated by a H(2)O(2)-dependent pathway via reduction of the antioxidant defenses.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Karihtala P, Kauppila S, Soini Y, Arja-Jukkola-Vuorinen. Oxidative stress and counteracting mechanisms in hormone receptor positive, triple-negative and basal-like breast carcinomas. BMC Cancer 2011; 11:262. [PMID: 21693047 PMCID: PMC3141776 DOI: 10.1186/1471-2407-11-262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/21/2011] [Indexed: 12/21/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) and basal-like breast cancer (BLBC) are breast cancer subtypes with an especially poor prognosis. 8-Hydroxydeoxyguanosine (8-OHdG) is a widely used marker of oxidative stress and the redox-state-regulating enzymes peroxiredoxins (PRDXs) are efficient at depressing excessive reactive oxygen species. NF-E2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) are redox-sensitive transcription factors that regulate PRDX expression. This is the first study to assess oxidative stress and or cell redox state-regulating enzymes in TNBC and BLBC. Methods We assessed immunohistochemical expression of 8-OHdG, Nrf2, Keap1, PRDX III and PRDX IV in 79 women with invasive ductal breast carcinomas. Of these tumors, 37 represented TNBC (grade II-III tumors with total lack of ER, PR and human epidermal growth factor receptor 2 [HER2] expression). Control cases (n = 42) were ER-positive, PR-positive and HER2-negative. Of the 37 TNBCs, 31 had BLBC phenotype (TNBC with expression of cytokeratin 5/6 or epidermal growth factor receptor 1). Results Patients with TNBC had worse breast cancer-specific survival (BCSS) than the control group (p = 0.015). Expression of 8-OHdG was significantly lower in TNBC than in the non-TNBC group (p < 0.005). 8-OHdG immunostaining was associated with better BCSS (p = 0.01), small tumor size (p < 0.0001) and low grade (p < 0.0005). Keap1 overexpression was observed in the TNBC cohort (p = 0.001) and Keap1-positive patients had worse BCSS than Keap1-negative women (p = 0.014). PRDX IV was overexpressed in the TNBC vs. the non-TNBC group (p = 0.022). Conclusions Cellular redox state markers may be promising targets when elucidating the pathogenesis of TNBC.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | | | | | | |
Collapse
|
461
|
Romanque P, Cornejo P, Valdés S, Videla LA. Thyroid hormone administration induces rat liver Nrf2 activation: suppression by N-acetylcysteine pretreatment. Thyroid 2011; 21:655-62. [PMID: 21563917 DOI: 10.1089/thy.2010.0322] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Oxidative stress associated with 3,3',5-triiodo-l-thyronine (T(3))-induced calorigenesis upregulates the hepatic expression of mediators of cytoprotective mechanisms. The aim of this study was to evaluate the hypothesis that in vivo T(3) administration triggers a redox-mediated translocation of the cytoprotective nuclear transcription factor erythroid 2-related factor 2 (Nrf2) from the cytosol to the nucleus in rat liver. Such translocation of transcription factors is considered to be an activating step. MATERIALS AND METHODS The effect of T(3) administration in the presence and absence of N-acetylcysteine (NAC) on cytosol-to-nuclear translocation of Nrf2 was evaluated, with inhibition of this process by NAC taken as evidence that the process was redox mediated. Male Sprague-Dawley rats weighing 180-200 g were given a single intraperitoneal dose of 0.1 mg T(3)/kg. Another group of rats were given the same dose of T(3) and were also pretreated with NAC (0.5 g/kg) at 0.5 hour before T(3) administration. Two other groups of rats received vehicle treatment and NAC, respectively. Following these treatments, rectal temperature of the animals, liver O(2) consumption, serum and hepatic levels of 8-isoprostanes, and liver protein levels of Nrf2, Akt, p38, and thioredoxin (Western blot) were determined at different times up to 48 hours. RESULTS T(3) administration induced a significant increase in the hepatic nuclear levels of Nrf2 at 1 and 2 hours after treatment and a concomitant decrease in cytosolic Nrf2. It also increased hepatic thioredoxin, a protein whose gene transcription is induced by nuclear Nrf2. Levels of nuclear Nrf2 were at a plateau from 4 to 6 hours after T(3). Rectal temperature of the animals rose from 36.6°C to 37.5°C as did liver O(2) consumption. Serum and liver 8-isoprostanes levels increased (p < 0.05) from 38.4 ± 4.0 pg/mL (n = 4) to 69.2 ± 2.0 pg/mL (n = 3) and from 0.75 ± 0.09 ng/g liver (n = 3) to 1.53 ± 0.10 ng/g liver (n = 5), respectively. In the group of rats pretreated with NAC, the increase in cytosol-to-nuclear translocation of Nrf2 was only 28% that induced by T(3). In addition, T(3) induced liver Akt and p38 activation during the period of 1-4 hours after T(3) administration. p38 activation at 2 hours after T(3) administration was abolished in NAC-pretreated animals. CONCLUSIONS In vivo T(3) administration leads to a rapid and transient cytosol-to-nuclear translocation of liver Nrf2. This appears to be promoted by a redox-dependent mechanism as it is blocked by NAC. It may also be contributed by concomitant p38 activation, which in turn promoted Nrf2 phosphorylation. Nrf2 cytosol-to-nuclear translocation may represent a novel cytoprotective mechanism of T(3) to limit free radical or electrophile toxicity, as this would likely entail promoting thioredoxin production.
Collapse
Affiliation(s)
- Pamela Romanque
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
462
|
|
463
|
Jian Z, Li K, Liu L, Zhang Y, Zhou Z, Li C, Gao T. Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol 2011; 131:1420-7. [PMID: 21412259 DOI: 10.1038/jid.2011.56] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress caused by hydrogen peroxide (H(2)O(2)) leads to cell death and has been implicated in the pathogenesis of vitiligo. The nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE), a major antioxidant pathway, regulates oxidative stress-related cytoprotective genes. We hypothesized that the Nrf2-ARE pathway protects human melanocytes from H(2)O(2)-induced oxidative damage through the induction of downstream antioxidative genes. Thus, we used Nrf2 short interfering RNA (siRNA) and pCMV6-XL5-Nrf2 to downregulate or upregulate Nrf2 expression in immortalized human melanocyte cell line PIG1. The melanocytes were then analyzed under different oxidative stress conditions for cell viability and apoptosis. Our study demonstrated that heme oxygenase-1 (HO-1) was the most induced antioxidant gene in PIG1 cells after treatment with H(2)O(2). Knockdown of Nrf2 or zinc protoporphyrin IX (ZnPP) treatment increased cell death caused by H(2)O(2) in melanocytes, but upregulation of Nrf2 or hemin treatment reduced cell death caused by H(2)O(2) in melanocytes. In addition, the H(2)O(2)-induced Nrf2-ARE/HO-1 pathway was confirmed in primary cultured human melanocytes by examining the expression and translocation of Nrf2 and HO-1. These data suggested that regulation of the Nrf2/HO-1 pathway can reduce H(2)O(2)-induced oxidative damage in human melanocytes. Our data demonstrate that HO-1 protects human melanocytes from oxidative damage via the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
464
|
Soini Y, Haapasaari KM, Vaarala MH, Turpeenniemi-Hujanen T, Kärjä V, Karihtala P. 8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinary bladder carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:267-275. [PMID: 21487522 PMCID: PMC3071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
Oxidative stress markers and peroxiredoxins are connected to cancer. A large set of urinary bladder carcinomas were studied for the expression of nitrotyrosine and 8-hydroxydeguanosine (8OHdG), two markers indicating oxidative damage. Serum and urine 8-OHdG were assessed in a subset of patients. We also analysed immunohisto-chemically the expression of nrf2, keap1, all six peroxiredoxins (prx) and thioredoxin (trx) in these tumors. 15 % of the cases showed 8OHdG and 36 % nitrotyrosine positivity. Expression of nitrotyrosine and 8OHdG associated with a poor prognosis (p=0.050, p=0.011, respectively). Peroxiredoxin positivity ranged from 39 % to 84 % lowest expression being for prx 4 and highest for prx 3. Prx 4 expression associated with a poor prognosis (p=0.025) with high grade (p=0.044) and larger tumors (p=0.023). Cytoplasmic trx positivity was seen in 91 % and nuclear in 59 % of tumors. Nuclear and cytoplasmic trx associated with each other (p<0.001), and nuclear trx associated with prx 6 (p=0.001), prx 2 (p<0.001), and prx 5 (p<0.001). 8OHdG associated with nuclear trx positivity (p=0.002), inversely with prx 1 (p=0.025) and with keap1 (p=0.020). Nuclear nrf2 was associated with nitrotyrosine (p=0.042). The results show that the amount of oxidative stress in urinary bladder tumors affects the prognosis of the patients. Of antioxidative enzymes, prx4 associated with an unfavourable prognosis. Selective inhibition of prx4 expression might then be one additional option of treatment of bladder cancer.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Clinical Pathology and Forensic Medicine, Institute of Clinical Medicine, School of Medicine, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
465
|
Muscarella LA, Barbano R, D'Angelo V, Copetti M, Coco M, Balsamo T, la Torre A, Notarangelo A, Troiano M, Parisi S, Icolaro N, Catapano D, Valori VM, Pellegrini F, Merla G, Carella M, Fazio VM, Parrella P. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 2011; 6:317-25. [PMID: 21173573 DOI: 10.4161/epi.6.3.14408] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In light with the view that KEAP1 loss of function may impact tumour behavior and modify response to chemotherapeutical agents, we sought to determine whether KEAP1 gene is epigenetically regulated in malignant gliomas. We developed a Quantitative Methylation Specific PCR (QMSP) assay to analyze 86 malignant gliomas and 20 normal brain tissues. The discriminatory power of the assay was assessed by Receiving Operating Characteristics (ROC) curve analysis. The AUC value of the curve was 0.823 (95%CI: 0.764-0.883) with an optimal cut off value of 0.133 yielding a 74% sensitivity (95%CI: 63%-82%) and an 85% specificity (95%CI: 64%-95%). Bisulfite sequencing analysis confirmed QMSP results and demonstrated a direct correlation between percentage of methylated CpGs and methylation levels (Spearman's Rho 0.929, P=0.003). Remarkably, a strong inverse correlation was observed between methylation levels and KEAP1 mRNA transcript in tumour tissue (Spearman's Rho -0.656 P=0.0001) and in a cell line before and after treatment with 5-azacytidine (P=0.003). RECPAM multivariate statistical analysis studying the interaction between MGMT and KEAP1 methylation in subjects treated with radiotherapy and temozolomide (n=70), identified three prognostic classes of glioma patients at different risk to progress. While simultaneous methylation of MGMT and KEAP1 promoters was associated with the lowest risk to progress, patients showing only MGMT methylation were the subgroup at the higher risk (HR 5.54, 95% CI 1.35-22.74). Our results further suggest that KEAP1 expression is epigenetically regulated. In addition we demonstrated that KEAP1 is frequently methylated in malignant gliomas and a predictor of patient's outcome.
Collapse
Affiliation(s)
- Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT. Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med (Berl) 2011; 89:303-15. [PMID: 21340685 DOI: 10.1007/s00109-010-0707-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 12/18/2022]
Abstract
Temozolomide (TMZ) is an oral alkylating agent that has been widely used in the treatment of refractory glioma, although inherent and acquired resistance to this drug is common. The clinical use of valproic acid (VPA) as an anticonvulsant and mood-stabilizing drug has been reported primarily for the treatment of epilepsy and bipolar disorder and less commonly for major depression. VPA is also used in the treatment of glioma-associated seizures with or without intracranial operation. In this study, we evaluated the potential synergistic effect of TMZ and VPA in human glioma cell lines. Compared with the use of TMZ or VPA alone, concurrent treatment with both drugs synergistically induced apoptosis in U87MG cells as evidenced by p53 and Bax expression, mitochondrial transmembrane potential loss, reactive oxygen species production, and glutathione depletion. This synergistic effect correlated with a decrease in nuclear translocation of the nuclear factor-erythroid 2 p45-related factor and corresponded with reduced heme oxygenase-1 and γ-glutamylcysteine synthetase expression. Pretreatment with N-acetylcysteine partially recovered the apoptotic effect of the TMZ/VPA combination treatment. The same degree of synergism is also seen in p53-mutant Hs683 cells, which indicates that p53 may not play a major role in the increased proapoptotic effect of the TMZ/VPA combination. In conclusion, VPA enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism. The TMZ/VPA combination may be effective for treating glioma cancer and may be a powerful agent against malignant glioma. This drug combination should be further explored in the clinical setting.
Collapse
Affiliation(s)
- Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | |
Collapse
|
467
|
Tufekci KU, Civi Bayin E, Genc S, Genc K. The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson's Disease. PARKINSONS DISEASE 2011; 2011:314082. [PMID: 21403858 PMCID: PMC3049335 DOI: 10.4061/2011/314082] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/25/2010] [Accepted: 01/03/2011] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases as strict regulation of integrated mitochondrial functions is essential for neuronal signaling, plasticity, and transmitter release. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD). Several PD-associated genes interface with mitochondrial dynamics regulating the structure and function of the mitochondrial network. Mitochondrial dysfunction can induce neuron death through a plethora of mechanisms. Both mitochondrial dysfunction and neuroinflammation, a common denominator of PD, lead to an increased production of reactive oxygen species, which are detrimental to neurons. The transcription factor nuclear factor E2-related factor 2 (Nrf2, NFE2L2) is an emerging target to counteract mitochondrial dysfunction and its consequences in PD. Nrf2 activates the antioxidant response element (ARE) pathway, including a battery of cytoprotective genes such as antioxidants and anti-inflammatory genes and several transcription factors involved in mitochondrial biogenesis. Here, the current knowledge about the role of mitochondrial dysfunction in PD, Nrf2/ARE stress-response mechanisms, and the evidence for specific links between this pathway and PD are summarized. The neuroprotection of nigral dopaminergic neurons by the activation of Nrf2 through several inducers in PD is also emphasized as a promising therapeutic approach.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | | | | | | |
Collapse
|
468
|
Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011; 254:86-99. [PMID: 21296097 DOI: 10.1016/j.taap.2009.11.028] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.
Collapse
|
469
|
Haack M, Löwinger M, Lippmann D, Kipp A, Pagnotta E, Iori R, Monien BH, Glatt H, Brauer MN, Wessjohann LA, Brigelius-Flohé R. Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products. Biol Chem 2011; 391:1281-93. [PMID: 20868228 DOI: 10.1515/bc.2010.134] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucosinolates (GLSs) present in Brassica vegetables serve as precursors for biologically active metabolites, which are released by myrosinase and induce phase 2 enzymes via the activation of Nrf2. Thus, GLSs are generally considered beneficial. The pattern of GLSs in plants is various, and contents of individual GLSs change with growth phase and culture conditions. Whereas some GLSs, for example, glucoraphanin (GRA), the precursor of sulforaphane (SFN), are intensively studied, functions of others such as the indole GLS neoglucobrassicin (nGBS) are rather unknown as are functions of combinations thereof. We therefore investigated myrosinase-treated GRA, nGBS and synthetic SFN for their ability to induce NAD(P)H:quinone oxidoreductase 1 (NQO1) as typical phase 2 enzyme, and glutathione peroxidase 2 (GPx2) as novel Nrf2 target in HepG2 cells. Breakdown products of nGBS potently inhibit both GRA-mediated stimulation of NQO1 enzyme and Gpx2 promoter activity. Inhibition of promoter activity depends on the presence of an intact xenobiotic responsive element (XRE) and is also observed with benzo[a]pyrene, a typical ligand of the aryl hydrocarbon receptor (AhR), suggesting that suppressive effects of nGBS are mediated via AhR/XRE pathway. Thus, the AhR/XRE pathway can negatively interfere with the Nrf2/ARE pathway which has consequences for dietary recommendations and, therefore, needs further investigation.
Collapse
Affiliation(s)
- Michael Haack
- German Institute of Human Nutrition Potsdam-Rehbrücke, Department Biochemistry of Micronutrients, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee YM, Ku SK, Jung Y, Kwak MK. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res 2011; 71:2260-75. [PMID: 21278237 DOI: 10.1158/0008-5472.can-10-3007] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcription factor NRF2 is an important modifier of cellular responses to oxidative stress. Although its cytoprotective effects are firmly established, recent evidence suggesting important roles in cancer pathobiology has yet to be mechanistically developed. In the current study, we investigated the role of NRF2 in colon tumor angiogenesis. Stable RNAi-mediated knockdown of NRF2 in human colon cancer cells suppressed tumor growth in mouse xenograft settings with a concomitant reduction in blood vessel formation and VEGF expression. Similar antiangiogenic effects of NRF2 knockdown were documented in chick chorioallantoic membrane assays and endothelial tube formation assays. Notably, NRF2-inhibited cancer cells failed to accumulate HIF-1α protein under hypoxic conditions, limiting expression of VEGF and other HIF-1α target genes. In these cells, HIF-1α was hydroxylated but pharmacological inhibition of PHD domain-containing prolyl hydroxylases was sufficient to restore hypoxia-induced accumulation of HIF-1α. Mechanistic investigations demonstrated that reduced mitochondrial O(2) consumption in NRF2-inhibited cells was probably responsible for HIF-1α degradation during hypoxia; cellular O(2) consumption and ATP production were lower in NRF2 knockdown cells than in control cells. Our findings offer novel insights into how cellular responses to O(2) and oxidative stress are integrated in cancer cells, and they highlight NRF2 as a candidate molecular target to control tumor angiogenesis by imposing a blockade to HIF-1α signaling.
Collapse
Affiliation(s)
- Tae-Hyoung Kim
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res 2011; 44:1267-88. [PMID: 20815789 DOI: 10.3109/10715762.2010.507670] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nrf2, a redox sensitive transcription factor, plays a pivotal role in redox homeostasis during oxidative stress. Nrf2 is sequestered in cytosol by an inhibitory protein Keap1 which causes its proteasomal degradation. In response to electrophilic and oxidative stress, Nrf2 is activated, translocates to nucleus, binds to antioxidant response element (ARE), thus upregulates a battery of antioxidant and detoxifying genes. This function of Nrf2 can be significant in the treatment of diseases, such as cancer, neurodegenerative, cardiovascular and pulmonary complications, where oxidative stress causes Nrf2 derangement. Nrf2 upregulating potential of phytochemicals has been explored, in facilitating cure for various ailments while, in cancer cells, Nrf2 upregulation causes chemoresistance. Therefore, Nrf2 emerges as a key regulator in oxidative stress-mediated diseases and Nrf2 silencing can open avenues in cancer treatment. This review summarizes Nrf2-ARE stress response mechanism and its role as a control point in oxidative stress-induced cellular dysfunctions including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shruti Singh
- Herbal Research Section, Indian Institute of Toxicology Research, CSIR, PO Box-80, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
472
|
Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 2011; 108:1433-8. [PMID: 21205897 DOI: 10.1073/pnas.1014275108] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The major obstacle in cancer treatment is the resistance of cancer cells to therapies. Nrf2 is a transcription factor that regulates a cellular defense response and is ubiquitously expressed at low basal levels in normal tissues due to Keap1-dependent ubiquitination and proteasomal degradation. Recently, Nrf2 has emerged as an important contributor to chemoresistance. High constitutive expression of Nrf2 was found in many types of cancers, creating an environment conducive for cancer cell survival. Here, we report the identification of brusatol as a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells and A549 xenografts to cisplatin and other chemotherapeutic drugs. Mechanistically, brusatol selectively reduces the protein level of Nrf2 through enhanced ubiquitination and degradation of Nrf2. Consequently, expression of Nrf2-downstream genes is reduced and the Nrf2-dependent protective response is suppressed. In A549 xenografts, brusatol and cisplatin cotreatment induced apoptosis, reduced cell proliferation, and inhibited tumor growth more substantially when compared with cisplatin treatment alone. Additionally, A549-K xenografts, in which Nrf2 is expressed at very low levels due to ectopic expression of Keap1, do not respond to brusatol treatment, demonstrating that brusatol-mediated sensitization to cisplatin is Nrf2 dependent. Moreover, a decrease in drug detoxification and impairment in drug removal may be the primary mechanisms by which brusatol enhances the efficacy of chemotherapeutic drugs. Taken together, these results clearly demonstrate the effectiveness of using brusatol to combat chemoresistance and suggest that brusatol can be developed into an adjuvant chemotherapeutic drug.
Collapse
|
473
|
Tsujita T, Li L, Nakajima H, Iwamoto N, Nakajima-Takagi Y, Ohashi K, Kawakami K, Kumagai Y, Freeman BA, Yamamoto M, Kobayashi M. Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: a study using green fluorescent protein transgenic zebrafish. Genes Cells 2011; 16:46-57. [PMID: 21143560 PMCID: PMC4124525 DOI: 10.1111/j.1365-2443.2010.01466.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitro-fatty acids are electrophilic fatty acids produced in vivo from nitrogen peroxide that have many physiological activities. We recently demonstrated that nitro-fatty acids activate the Keap1-Nrf2 system, which protects cells from damage owing to electrophilic or oxidative stresses via transactivating an array of cytoprotective genes, although the molecular mechanism how they activate Nrf2 is unclear. A number of chemical compounds with different structures have been reported to activate the Keap1-Nrf2 system, which can be categorized into at least six classes based on their sensing pathways. In this study, we showed that nitro-oleic acid (OA-NO₂), one of major nitro-fatty acids, activates Nrf2 in the same manner that of a cyclopentenone prostaglandin 15-deoxy-Δ(12,14) -prostaglandin J₂ (15d-PGJ₂) using transgenic zebrafish that expresses green fluorescent protein (GFP) in response to Nrf2 activators. In transgenic embryos, GFP was induced in the whole body by treatment with OA-NO₂, 15d-PGJ₂ or diethylmaleate (DEM), but not with hydrogen peroxide (H₂O₂), when exogenous Nrf2 and Keap1 were co-overexpressed. Induction by OA-NO₂ or 15d-PGJ₂ but not DEM was observed, even when a C151S mutation was introduced in Keap1. Our results support the contention that OA-NO₂ and 15d-PGJ₂ share an analogous cysteine code as electrophiles and also have similar anti-inflammatory roles.
Collapse
Affiliation(s)
- Tadayuki Tsujita
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- ERATO Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Li Li
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Hitomi Nakajima
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Noriko Iwamoto
- Institute of Community Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yaeko Nakajima-Takagi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ken Ohashi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima 411-8570, Japan
| | - Yoshito Kumagai
- Institute of Community Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Masayuki Yamamoto
- ERATO Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Makoto Kobayashi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, Center for TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- ERATO Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Correspondence:
| |
Collapse
|
474
|
Liu Y, Chan F, Sun H, Yan J, Fan D, Zhao D, An J, Zhou D. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 2011; 650:130-7. [DOI: 10.1016/j.ejphar.2010.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/21/2010] [Accepted: 10/04/2010] [Indexed: 02/02/2023]
|
475
|
D’Aguanno S, D’Alessandro A, Pieroni L, Roveri A, Zaccarin M, Marzano V, Canio MD, Bernardini S, Federici G, Urbani A. New Insights into Neuroblastoma Cisplatin Resistance: A Comparative Proteomic and Meta-Mining Investigation. J Proteome Res 2010; 10:416-28. [DOI: 10.1021/pr100457n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona D’Aguanno
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Annamaria D’Alessandro
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Luisa Pieroni
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Antonella Roveri
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Mattia Zaccarin
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Valeria Marzano
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Michele De Canio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Giorgio Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| |
Collapse
|
476
|
Chen N, Yi X, Abushahin N, Pang S, Zhang D, Kong B, Zheng W. Nrf2 expression in endometrial serous carcinomas and its precancers. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2010; 4:85-96. [PMID: 21228930 PMCID: PMC3016106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Endometrial serous carcinoma (ESC) is the most aggressive subtype of endometrial cancer. Its aggressive behavior and poor clinical outcome may be partially attributed to lack of early diagnostic markers and unclear patho-genesis. The transcription factor Erythroid-E2-related factor 2 (Nrf2) is a recently identified protein marker, which plays a role in carcinogenesis as well as responsible for poor prognosis of many human cancers. The aim of this study is to determine the Nrf2 expression in benign endometrium (n=28), endometrial cancers (n=122) as well as their precursor lesions (n=81) trying to see whether Nrf2 has any diagnostic usage and is potentially involved in endometrial carcinogenesis. The level of Nrf2 was evaluated by immunohistochemical (IHC) and verified by using Western blots. Among the malignant cases, Nrf2 was positive in 28 (68%) of 50 ESCs, which was significantly more than in 3 (6%) of 50 endometrioid carcinomas (p < 0.001) and 2 (13%) of 15 clear cell carcinomas (p = 0.001) and other histologic types of endometrial cancers. Among endometrial precursor lesions, both serous endometrial glandular dysplasia (EmGD, 40%) and serous endometrial intraepithelial carcinoma (EIC, 44%) showed a significantly higher Nrf2 expression than that in atypical endometrial hyperplasia or endometrial intraepithelial neoplasia (0%), clear cell EmGD (10%), and clear cell EIC (25%), respectively. We conclude that Nrf2 overexpression is closely associated with endometrial neoplasms with serous differentiation. Alteration of Nrf2 expression may represent one of the early molecular events in ESC carcinogenesis and overexpression of Nrf2 may used as a diagnostic marker in surgical pathology.
Collapse
Affiliation(s)
- Ning Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong UniversityChina
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
| | - Xiaofang Yi
- Hospital of Obstetrics and Gynecology, Shanghai Medical College Fudan UniversityChina
| | - Nisreen Abushahin
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
| | - Shujie Pang
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Pathology, Tianjin Central Hospital of Obstetrics and GynecologyChina
| | - Donna Zhang
- Department of Pharmacology & Toxicology, University of ArizonaTucson, AZ, USA
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong UniversityChina
| | - Wenxin Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong UniversityChina
- Department of Pathology, University of Arizona College of MedicineTucson, AZ, USA
- Department of Obstetrics and Gynecology, University of ArizonaTucson, AZ, USA
- Arizona Cancer Center, University of ArizonaTucson, AZ, USA
| |
Collapse
|
477
|
Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. ACTA ACUST UNITED AC 2010; 64:503-8. [PMID: 21129940 DOI: 10.1016/j.etp.2010.11.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/19/2010] [Accepted: 11/01/2010] [Indexed: 12/14/2022]
Abstract
Sulforaphane [1-isothiocyanate-(4R)-(methylsulfinyl)butane] is a natural dietary isothiocyanate produced by the enzymatic action of the myrosinase on glucopharanin, a 4-methylsulfinylbutyl glucosinolate contained in cruciferous vegetables of the genus Brassica such as broccoli, brussel sprouts, and cabbage. Studies on this compound is increasing because its anticarcinogenic and cytoprotective properties in several in vivo experimental paradigms associated with oxidative stress such as focal cerebral ischemia, brain inflammation, intracerebral hemorrhage, ischemia and reperfusion induced acute renal failure, cisplatin induced-nephrotoxicity, streptozotocin-induced diabetes, carbon tetrachloride-induced hepatotoxicity and cardiac ischemia and reperfusion. This protective effect also has been observed in in vitro studies in different cell lines such as human neuroblastoma SH-SY5Y, renal epithelial proximal tubule LLC-PK1 cells and aortic smooth muscle A10 cells. Sulforaphane is considered an indirect antioxidant; this compound is able to induce many cytoprotective proteins, including antioxidant enzymes, through the Nrf2-antioxidant response element pathway. Heme oxygenase-1, NAD(P)H: quinone oxidoreductase, glutathione-S-transferase, gamma-glutamyl cysteine ligase, and glutathione reductase are among the cytoprotective proteins induced by sulforaphane. In conclusion, sulforaphane is a promising antioxidant agent that is effective to attenuate oxidative stress and tissue/cell damage in different in vivo and in vitro experimental paradigms.
Collapse
|
478
|
Lee HG, Li MH, Joung EJ, Na HK, Cha YN, Surh YJ. Nrf2-Mediated heme oxygenase-1 upregulation as adaptive survival response to glucose deprivation-induced apoptosis in HepG2 cells. Antioxid Redox Signal 2010; 13:1639-48. [PMID: 20446774 DOI: 10.1089/ars.2010.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Induction of heme oxygenase-1 (HO-1) represents an important cellular adaptive survival response to oxidative stress and other toxic insults. In the present study, HepG2 cells grown in glucose-free media underwent apoptotic cell death, but they exhibited elevated expression of HO-1 before apoptosis manifested. Treatment of HepG2 cells with SnCl₂, a HO-1 inducer, rescued these cells from glucose deprivation-induced apoptosis, while inhibition of the HO activity with zinc protoporphyrin IX exacerbated apoptosis under the same condition. HepG2 cells transfected with a dominant negative Nrf2 were more vulnerable to glucose deprivation-induced apoptosis compared to cells transfected with empty vector alone. To confirm the involvement of Nrf2 in the induction of HO-1 caused by glucose deprivation, we used embryonic fibroblasts prepared from nrf2⁻(/)⁻, nrf2(+/)⁻, and nrf2(+/+) embryos. Compared to the wild-type and the nrf2(+/)⁻ embryonic fibroblasts, nrf2⁻(/)⁻ cells were less prone to induce HO-1 expression upon glucose deprivation. Exposure of HepG2 cells to glucose-deprived media resulted in an elevated accumulation of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine prevented the glucose deprivation-induced ROS accumulation and also the HO-1 expression. In conclusion, the Nrf2-mediated HO-1 upregulation upon glucose deprivation is mediated by ROS in HepG2 cells, and responsible for the adaptive survival response.
Collapse
|
479
|
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49:1603-16. [PMID: 20840865 PMCID: PMC2990475 DOI: 10.1016/j.freeradbiomed.2010.09.006] [Citation(s) in RCA: 3479] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 02/06/2023]
Abstract
Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
Affiliation(s)
- Simone Reuter
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
480
|
Hu R, Saw CLL, Yu R, Kong ANT. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 2010; 13:1679-98. [PMID: 20486765 PMCID: PMC2966483 DOI: 10.1089/ars.2010.3276] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer chemoprevention is a process of using either natural or synthetic compounds to reduce the risk of developing cancer. Observations that NF-E2-related factor 2 (Nrf2)-deficient mice lack response to some chemopreventive agents point to the important role of Nrf2 in chemoprevention. Nrf2 is a member of basic-leucine zipper transcription factor family and has been shown to regulate gene expression by binding to a response element, antioxidant responsive element. It is generally believed that activation of Nrf2 signaling is an adaptive response to the environmental and endogenous stresses. Under homeostatic conditions, Nrf2 is suppressed by association with Kelch-like ECH-associated protein 1 (Keap1), but is stimulated upon exposure to oxidative or electrophilic stress. Once activated, Nrf2 translocates into nuclei and upregulates a group of genes that act in concert to combat oxidative stress. Nrf2 is also shown to have protective function against inflammation, a pathological process that could contribute to carcinogenesis. In this review, we will discuss the current progress in the study of Nrf2 signaling, in particular, the mechanisms of Nrf2 activation by chemopreventive agents. We will also discuss some of the potential caveats of Nrf2 in cancer treatment and future opportunity and challenges on regulation of Nrf2-mediated antioxidant and antiinflammatory signaling in the context of cancer prevention.
Collapse
Affiliation(s)
- Rong Hu
- Department of Physiology, China Pharmaceutical University, Nanjing, China.
| | | | | | | |
Collapse
|
481
|
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 2010; 13:1699-712. [PMID: 20486766 PMCID: PMC2966484 DOI: 10.1089/ars.2010.3211] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nrf2 is a transcription factor that has emerged as the cell's main defense mechanism against many harmful environmental toxicants and carcinogens. Nrf2 is negatively regulated by Keap1, a substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex, which targets Nrf2 for ubiquitination and degradation by the ubiquitin proteasome system (UPS). Recent evidence suggests that constitutive activation of Nrf2, due to mutations in Keap1 or Nrf2, is prominent in many cancer types and contributes to chemoresistance. Regulation of Nrf2 by the Cul3-Keap1-E3 ligase provides strong evidence that tight regulation of Cullin-ring ligases (CRLs) is imperative to maintain cellular homeostasis. There are seven known Cullin proteins that form various CRL complexes. They are regulated by neddylation/deneddylation, ubiquitination/deubiquitination, CAND1-assisted complex assembly/disassembly, and subunit dimerization. In this review, we will discuss the regulation of each CRL using the Cul3-Keap1-E3 ligase complex as the primary focus. The substrates of CRLs are involved in many signaling pathways. Therefore, deregulation of CRLs affects several cellular processes, including cell cycle arrest, DNA repair, cell proliferation, senescence, and death, which may lead to many human diseases, including cancer. This makes CRLs a promising target for novel cancer drug therapies.
Collapse
Affiliation(s)
- Nicole F Villeneuve
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, 85721, USA
| | | | | |
Collapse
|
482
|
Kim YH, Coon A, Baker AF, Powis G. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol 2010; 68:405-13. [PMID: 21069338 DOI: 10.1007/s00280-010-1500-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/26/2010] [Indexed: 02/03/2023]
Abstract
PURPOSE Thioredoxin-1 (Trx-1) redox signaling regulates multiple aspects of cell growth and survival, and elevated tumor levels of Trx-1 have been associated with decreased patient survival. PX-12, an inhibitor of Trx-1 currently in clinical development, has been found to decrease tumor levels of the HIF-1α transcription factor. SSAT1 has been reported to bind to HIF-1α and RACK1, resulting in oxygen-independent HIF-1 ubiquitination and degradation. SSAT2, a related protein, stabilizes the interaction of the VHL protein and elongin C with HIF-1 leading to oxygen-dependent HIF-1α ubiquitination and degradation. We investigated the effects of PX-12 and Trx-1 on SSAT1, SSAT2, and inhibition of HIF-1α. METHODS A panel of cell lines was treated with PX-12 to investigate its effects on SSAT1 and SSAT2 expression, and on HIF-1α protein levels. We also evaluated the regulation of SSAT1 through the Nrf2 and PMF-1, two trans-acting transcription factors. RESULTS We found that PX-12 increased nuclear Nrf2 activity and antioxidant response element binding. PX-12 also increased the expression of SSAT1 but not SSAT2 in a PMF-1-dependent manner that was independent of Trx-1. Inhibition of Nrf2 or PMF-1 prevented the increase in SSAT1 caused by PX-12. CONCLUSIONS The results show that PX-12, acting independently of Trx-1, increases nuclear Nrf2, which interacts with PMF-1 to increase the expression of SSAT1. The degradation of HIF-1α that results from binding with SSAT1 may explain the decrease in HIF-1α caused by PX-12 and could contribute to the antitumor activity of PX-12.
Collapse
Affiliation(s)
- Yon Hui Kim
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
483
|
Queisser N, Fazeli G, Schupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biol Chem 2010; 391:1265-79. [DOI: 10.1515/bc.2010.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe formation of reactive oxygen species (ROS) can be induced by xenobiotic substances, such as redox cycling molecules, but also by endogenous substances such as hormones and cytokines. Recent research shows the importance of ROS in cellular signaling. Here, the signaling pathways of the two blood pressure-regulating hormones angiotensin II and aldosterone are presented, focusing on both their physiological effects and the change of signaling owing to the action of increased concentrations or prolonged exposure. When present in high concentrations, both angiotensin II and aldosterone, as various other endogenous substances, activate NADPH oxidase, which produces superoxide. In this review the generation of superoxide anions and hydrogen peroxide in cells stimulated with angiotensin II or aldosterone, as well as the subsequently induced signaling processes and DNA damage is discussed.
Collapse
|
484
|
Shlomai J. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxid Redox Signal 2010; 13:1429-76. [PMID: 20446770 DOI: 10.1089/ars.2009.3029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.
Collapse
Affiliation(s)
- Joseph Shlomai
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Tropical and Infectious Diseases, Institute for Medical Research Canada-Israel, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
485
|
Schaedler S, Krause J, Himmelsbach K, Carvajal-Yepes M, Lieder F, Klingel K, Nassal M, Weiss TS, Werner S, Hildt E. Hepatitis B virus induces expression of antioxidant response element-regulated genes by activation of Nrf2. J Biol Chem 2010; 285:41074-86. [PMID: 20956535 DOI: 10.1074/jbc.m110.145862] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Human hepatitis B virus (HBV) induces a strong activation of Nrf2/ARE-regulated genes in vitro and in vivo. This is triggered by the HBV-regulatory proteins (HBx and LHBs) via c-Raf and MEK. The Nrf2/ARE-mediated induction of cytoprotective genes by HBV results in a better protection of HBV-positive cells against oxidative damage as compared with control cells. Furthermore, there is a significantly increased expression of the Nrf2/ARE-regulated proteasomal subunit PSMB5 in HBV-positive cells that is associated with a decreased level of the immunoproteasome subunit PSMB5i. In accordance with this finding, HBV-positive cells display a higher constitutive proteasome activity and a decreased activity of the immunoproteasome as compared with control cells even after interferon α/γ treatment. The HBV-dependent induction of Nrf2/ARE-regulated genes might ensure survival of the infected cell, shape the immune response to HBV, and thereby promote establishment of the infection.
Collapse
Affiliation(s)
- Stephanie Schaedler
- Institute of Infection Medicine, Molecular Medical Virology, University of Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
486
|
Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood 2010; 116:2732-41. [PMID: 20566897 PMCID: PMC3324257 DOI: 10.1182/blood-2009-11-256354] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mechanisms of action and resistance of histone deacetylase inhibitors (HDACIs) are not well understood. A gene expression analysis performed in a phase 1 trial of vorinostat in leukemia indicated that overexpression of genes involved in antioxidant defense was associated with clinical resistance. We hypothesized that nonepigenetic mechanisms may be involved in resistance to HDACI therapy in leukemia. Here we confirmed up-regulation of a series of antioxidants in a pan-HDACI-resistant leukemia cell line HL60/LR. Vorinostat induced reactive oxygen species (ROS) through nicotinamide adenine dinucleotide phosphate oxidase in leukemia cells. An increase in ROS resulted in translocation of nuclear factor E2-related factor 2 from cytosol to nucleus, leading to up-regulation of antioxidant genes, including a majority of glutathione-associated enzymes as a cellular protective mechanism. Addition of β-phenylethyl isothiocyanate, a natural compound capable of depleting cellular glutathione, significantly enhanced the cytotoxicity of vorinostat in leukemia cell lines and primary leukemia cells by inhibiting the cytoprotective antioxidant response. These results suggest that ROS plays an important role in action of vorinostat and that combination with a redox-modulating compound increases sensitivity to HDACIs and also overcomes vorinostat resistance. Such a combination strategy may be an effective therapeutic regimen and have potential clinical application in leukemia.
Collapse
|
487
|
Raghunand N, Guntle GP, Gokhale V, Nichol GS, Mash EA, Jagadish B. Design, synthesis, and evaluation of 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging. J Med Chem 2010; 53:6747-57. [PMID: 20722424 DOI: 10.1021/jm100592u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and synthesis of three 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) derivatives bearing linkers with terminal thiol groups and a preliminary evaluation of their potential for use in assembling redox-sensitive magnetic resonance imaging contrast agents are reported. The linkers were selected on the basis of computational docking with a crystal structure of human serum albumin (HSA). Gd(III)-DO3A and Eu(III)-DO3A complexes were synthesized, and the structure of one complex was established by X-ray crystallographic analysis. The binding to HSA of a Gd(III)-DO3A complex bearing a thiol-terminated 3,6-dioxanonyl chain was competitively inhibited by homocysteine and by the corresponding Eu chelate. Binding to HSA was abolished when the terminal thiol group of this complex was absent. The longitudinal water-proton relaxivities (r(1)) of the three Gd(III)-DO3A complexes and of two Gd(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complexes were measured in saline at 7 T. The DO3A complexes exhibited smaller r(1) values, in both bound and free states, than the DOTA complexes.
Collapse
Affiliation(s)
- Natarajan Raghunand
- Department of Radiology, University of Arizona, Tucson, Arizona 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
488
|
Afonyushkin T, Oskolkova OV, Binder BR, Bochkov VN. Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids. J Lipid Res 2010; 52:98-103. [PMID: 20934988 DOI: 10.1194/jlr.m009480] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as pleiotropic lipid mediators demonstrating a variety of biological activities. In particular, OxPLs induce electrophilic stress response and stimulate expression of NF-E2-related factor 2 (NRF2)-dependent genes. The mechanisms of NRF2 upregulation in response to OxPLs, however, are incompletely understood. Here we show that upregulation of NRF2 by OxPLs depends on the activity of the CK2 protein kinase. Inactivation of CK2 by chemical inhibitors or gene silencing resulted in diminished accumulation of NRF2 and its target genes, GCLM, HMOX1, and NQO1, downstream in response to OxPLs. Furthermore, inhibition of CK2 suppressed NRF2-dependent induction of ATF4 and its downstream gene VEGF. Thus, inactivation of CK2 in OxPL-treated endothelial cells results in inhibition of the NRF2-ATF4-VEGF axis and is likely to produce antiangiogenic effects. This work characterizes novel cross-talk between CK2 and cellular stress pathways, which may provide additional insights into the mechanisms of beneficial action and side-effects of CK2 inhibitors.
Collapse
Affiliation(s)
- Taras Afonyushkin
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
489
|
Becks L, Prince M, Burson H, Christophe C, Broadway M, Itoh K, Yamamoto M, Mathis M, Orchard E, Shi R, McLarty J, Pruitt K, Zhang S, Kleiner-Hancock HE. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer 2010; 10:540. [PMID: 20932318 PMCID: PMC2964634 DOI: 10.1186/1471-2407-10-540] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/08/2010] [Indexed: 12/21/2022] Open
Abstract
Background Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis. Methods Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. Results All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. Conclusions We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression.
Collapse
Affiliation(s)
- Lisa Becks
- Department of Pharmacology, LSUHSC-S, Shreveport, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Lämsä V, Levonen AL, Leinonen H, Ylä-Herttuala S, Yamamoto M, Hakkola J. Cytochrome P450 2A5 constitutive expression and induction by heavy metals is dependent on redox-sensitive transcription factor Nrf2 in liver. Chem Res Toxicol 2010; 23:977-85. [PMID: 20402460 DOI: 10.1021/tx100084c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various pathophysiological liver diseases and induced by structurally variable hepatotoxic chemicals. A putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of numerous protective target genes. In the present study, we have extensively characterized the regulation of Cyp2a5 by Nrf2 and compared it to a well-characterized target gene Hmox1. The treatment of mouse primary hepatocytes with lead chloride, methylmercury chloride, or phenethyl isothiocyanate all leads to nuclear accumulation of Nrf2. Both CYP2A5 and HMOX1 were induced by all three compounds; however, HMOX1 responded more rapidly and transiently as compared to CYP2A5. Experiments in Nrf2(-/-) primary hepatocytes showed that Nrf2 is crucial for CYP2A5 induction but not for elevation of HMOX1. Both CYP2A5 and HMOX1 were upregulated by Nrf2 overexpression and downregulated by Keap1 or Bach1 overexpression. However, in all cases, CYP2A5 responded much more potently. Results in Nrf2-deficient animals showed that CYP2A5 expression is significantly attenuated in the absence of Nrf2, while expression of HMOX1 was unaffected. Therefore, Cyp2a5 joins the group of genes constitutively regulated by Nrf2. Our current results unequivocally show that expression of CYP2A5 is tightly controlled by Nrf2 in liver. Nrf2 is needed for constitutive expression of CYP2A5, and CYP2A5 is also sensitively upregulated by an increased level of Nrf2 protein. Therefore, CYP2A5 upregulation could be a useful indicator for hepatic activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Virpi Lämsä
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
491
|
Gan N, Sun X, Song L. Activation of Nrf2 by Microcystin-LR Provides Advantages for Liver Cancer Cell Growth. Chem Res Toxicol 2010; 23:1477-84. [DOI: 10.1021/tx1001628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| | - Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, People’s Republic of China
| |
Collapse
|
492
|
Liu Q, Zhang H, Smeester L, Zou F, Kesic M, Jaspers I, Pi J, Fry RC. The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics 2010; 3:37. [PMID: 20707922 PMCID: PMC2939609 DOI: 10.1186/1755-8794-3-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/13/2010] [Indexed: 01/28/2023] Open
Abstract
Background Drinking water contaminated with inorganic arsenic is associated with increased risk for different types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not been carried out. Methods Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human genes were associated with the GI50 data of the NCI-60 tumor cell line panel from the developmental therapeutics program (DTP) database. Selected biomarkers were tested in vitro for the ability to influence tumor susceptibility to arsenic trioxide. Results A significant association was found between the baseline expression levels of 209 human genes and the sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using shRNA-mediated knock-down. Conclusions In this study, we show that the expression level of genes in the NRF2 pathway serve as potential gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in understanding the mechanism of arsenic-induced cytotoxicity in cells, as well as the increased applicability of arsenic trioxide as a chemotherapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
493
|
|
494
|
Fer ND, Shoemaker RH, Monks A. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:91. [PMID: 20618971 PMCID: PMC2909968 DOI: 10.1186/1756-9966-29-91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/09/2010] [Indexed: 02/08/2023]
Abstract
Background Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. Methods The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2), in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process. Results Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522. Conclusions Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.
Collapse
Affiliation(s)
- Nicole D Fer
- Laboratory of Functional Genomics, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Frederick, MD 21702, USA
| | | | | |
Collapse
|
495
|
Menshikova EB, Tkachev VO, Zenkov NK. Redox-dependent signaling system Nrf2/ARE in inflammation. Mol Biol 2010. [DOI: 10.1134/s0026893310030015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
496
|
The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells. Cancers (Basel) 2010; 2:1354-78. [PMID: 24281119 PMCID: PMC3835133 DOI: 10.3390/cancers2021354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.
Collapse
|
497
|
Wang J, Zhang M, Zhang L, Cai H, Zhou S, Zhang J, Wang Y. Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J Surg Res 2010; 164:e99-105. [PMID: 20828733 DOI: 10.1016/j.jss.2010.05.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/14/2010] [Accepted: 05/21/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gallbladder cancer (GC) is considered a relatively rare malignancy with extensively poor prognosis. To guide clinicians in selecting treatment options for GC patients, reliable markers predictive of poor clinical outcome are desirable. This study analyzed the correlation of NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and multidrug resistance-related protein 3 (MRP3) in GC and their relationships to clinicopathologic features and survival. MATERIAL AND METHODS We immunohistochemically investigated 59 specimens of gallbladder adenocarcinoma tissues using Nrf2, HO-1, and MRP3 antibodies. RESULTS There were significant correlations between the high level of Nrf2, HO-1, and MRP3 expression and the tumor differentiation, Nevin staging, and metastasis. Significant positive correlations were found between the expression status of Nrf2 and that of HO-1 and MRP3 (r = 0.38, P = 0.008 and r = 0.59, P < 0.001, respectively). High Nrf2 expression was significantly associated with shorter overall survival times in univariate analysis (log-rank test, P < 0.001), being also identified as an independent prognostic factor in multivariate analysis (P = 0.035). CONCLUSIONS Nrf2, HO-1, and MRP3 were associated with certain clinicopathologic parameters in GC. Evaluation of Nrf2 expression may be an important factor in identifying a poor prognostic group of GC.
Collapse
Affiliation(s)
- Jiansheng Wang
- Department of Thoracic Oncosurgery, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Shaanxi, China.
| | | | | | | | | | | | | |
Collapse
|
498
|
Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba II. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 2010; 16:3743-53. [PMID: 20534738 DOI: 10.1158/1078-0432.ccr-09-3352] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To understand the role of nuclear factor erythroid-2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in non-small cell lung cancer (NSCLC), we studied their expression in a large series of tumors with annotated clinicopathologic data, including response to platinum-based adjuvant chemotherapy. EXPERIMENTAL DESIGN We determined the immunohistochemical expression of nuclear Nrf2 and cytoplasmic Keap1 in 304 NSCLCs and its association with patients' clinicopathologic characteristics, and in 89 tumors from patients who received neoadjuvant (n = 26) or adjuvant platinum-based chemotherapy (n = 63). We evaluated NFE2L2 and KEAP1 mutations in 31 tumor specimens. RESULTS We detected nuclear Nrf2 expression in 26% of NSCLCs; it was significantly more common in squamous cell carcinomas (38%) than in adenocarcinomas (18%; P < 0.0001). Low or absent Keap1 expression was detected in 56% of NSCLCs; it was significantly more common in adenocarcinomas (62%) than in squamous cell carcinomas (46%; P = 0.0057). In NSCLC, mutations of NFE2L2 and KEAP1 were very uncommon (2 of 29 and 1 of 31 cases, respectively). In multivariate analysis, Nrf2 expression was associated with worse overall survival [P = 0.0139; hazard ratio (HR), 1.75] in NSCLC patients, and low or absent Keap1 expression was associated with worse overall survival (P = 0.0181; HR, 2.09) in squamous cell carcinoma. In univariate analysis, nuclear Nrf2 expression was associated with worse recurrence-free survival in squamous cell carcinoma patients who received adjuvant treatment (P = 0.0410; HR, 3.37). CONCLUSIONS Increased expression of Nrf2 and decreased expression of Keap1 are common abnormalities in NSCLC and are associated with a poor outcome. Nuclear expression of Nrf2 in malignant lung cancer cells may play a role in resistance to platinum-based treatment in squamous cell carcinoma.
Collapse
Affiliation(s)
- Luisa M Solis
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Jiang T, Chen N, Zhao F, Wang XJ, Kong B, Zheng W, Zhang DD. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res 2010; 70:5486-96. [PMID: 20530669 DOI: 10.1158/0008-5472.can-10-0713] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type II endometrial cancer, which mainly presents as serous and clear cell types, has proved to be the most malignant and recurrent carcinoma among various female genital malignancies. The transcription factor Nrf2 was first described as having chemopreventive activity. Activation of the Nrf2-mediated cellular defense response protects cells against the toxic and carcinogenic effects of environmental insults by upregulating an array of genes that detoxify reactive oxygen species and restore cellular redox homeostasis. However, the cancer-promoting role of Nrf2 has recently been revealed. Nrf2 is constitutively upregulated in several types of human cancer tissues and cancer cell lines. Furthermore, inhibition of Nrf2 expression sensitizes cancer cells to chemotherapeutic drugs. In this study, the constitutive level of Nrf2 was compared in different types of human endometrial tumors. It was found that Nrf2 was highly expressed in endometrial serous carcinoma (ESC), whereas complex hyperplasia and endometrial endometrioid carcinoma (EEC) had no or marginal expression of Nrf2. Likewise, the ESC-derived SPEC-2 cell line had a higher level of Nrf2 expression and was more resistant to the toxic effects of cisplatin and paclitaxel than the Ishikawa cell line, which was generated from EEC. Silencing of Nrf2 rendered SPEC-2 cells more susceptible to chemotherapeutic drugs, whereas it had a limited effect on Ishikawa cells. Inhibition of Nrf2 expression by overexpressing Keap1 sensitized SPEC-2 cells or SPEC-2-derived xenografts to chemotherapeutic treatments using both cell culture and severe combined immunodeficient mouse models. Collectively, we provide a molecular basis for the use of Nrf2 inhibitors to increase the efficacy of chemotherapeutic drugs and to combat chemoresistance, the biggest obstacle in chemotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
500
|
Miyazaki T, Kirino Y, Takeno M, Samukawa S, Hama M, Tanaka M, Yamaji S, Ueda A, Tomita N, Fujita H, Ishigatsubo Y. Expression of heme oxygenase-1 in human leukemic cells and its regulation by transcriptional repressor Bach1. Cancer Sci 2010; 101:1409-16. [PMID: 20345481 PMCID: PMC11159765 DOI: 10.1111/j.1349-7006.2010.01550.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 has anti-oxidative, anti-inflammatory, and anti-apoptotic activities. However, little is known about the regulation of HO-1 in human primary acute myeloid leukemia (AML) cells. Here we investigated the expression of HO-1 in primary and established AML cells as well as other types of leukemic cells and normal monocytes, and its regulatory mechanism by the transcriptional repressor, BTB and CNC homology 1 (Bach1), and the activator, nuclear factor erythroid-derived 2 related factor 2 (Nrf2). Leukemic cell lines such as U937 expressed little HO-1, whereas most freshly isolated AML cells and monocytes expressed substantial amounts of HO-1, along with Bach1 and Nrf2. When U937 cells were treated with phorbol myristate acetate (PHA) or gamma-interferon, they significantly expressed both HO-1 and Bach1, like primary AML cells. Treatment with lipopolysaccharide (LPS) enhanced HO-1 expression in U937 cells but suppressed it in primary monocytes and PMA-treated U937 cells. In HO-1-expressing cells, Bach1 was localized in the cytoplasm, but Nrf2 was localized in the nuclei. Chromatin immunoprecipitation assay of these cells revealed the preferential binding of Nrf2 over Bach1 to Maf-recognition elements, the enhancer regions of the HO-1 gene. The downregulation of the HO-1 gene with siRNA increased a cytotoxic effect of an anticancer drug on primary AML cells, whereas the downregulation of Bach1 increased HO-1 expression, leading to enhanced survival. These and other results show that Bach1 plays a critical role in regulating HO-1 gene expression in AML cells and its expression suppresses their survival by downregulating HO-1 expression. Thus, functional upregulation of Bach1 is a potential strategy for antileukemic therapy.
Collapse
Affiliation(s)
- Takuya Miyazaki
- Department of Internal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|