451
|
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481:295-305. [PMID: 22258608 DOI: 10.1038/nature10761] [Citation(s) in RCA: 788] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. While the field is racing ahead, some researchers are pausing to evaluate whether induced pluripotent stem cells are indeed the true equivalents of embryonic stem cells and whether subtle differences between these types of cell might affect their research applications and therapeutic potential.
Collapse
Affiliation(s)
- Daisy A Robinton
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
452
|
Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 2012; 8:239-57. [PMID: 22248265 DOI: 10.1517/17425255.2012.639763] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pluripotent stem cell (PSC) lines offer a unique opportunity to derive various human cell types that can be exploited for human safety assessments in vitro and as such contribute to modern mechanistically oriented toxicity testing. AREAS COVERED This article reviews the two major types of PSC cultures that are currently most promising for toxicological applications: human embryonic stem cell lines and human induced PSC lines. Through the review, the article explains how these cell types will improve the current safety evaluations of chemicals and will allow a more efficient selection of drug candidates. Additionally, the article discusses the important issues of maintaining PSCs as well as their differentiation efficiency. EXPERT OPINION The demonstration of the reliability and relevance of in vitro toxicity tests for a given purpose is mandatory for their use in regulatory toxicity testing. Given the peculiar nature of PSCs, a high level of standardization of undifferentiated cell cultures as well as of the differentiation process is required in order to ensure the establishment of robust test systems. It is, therefore, of pivotal importance to define and internationally agree on crucial parameters to judge the quality of the cellular models before enrolling them for toxicity testing.
Collapse
Affiliation(s)
- Francesca Pistollato
- Institute for Health & Consumer Protection, Systems Toxicology Unit, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | | | | |
Collapse
|
453
|
Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One 2012; 7:e29597. [PMID: 22272239 PMCID: PMC3260177 DOI: 10.1371/journal.pone.0029597] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/30/2011] [Indexed: 01/17/2023] Open
Abstract
Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) provide new prospects for studying human neurodevelopment and modeling neurological disease. In particular, iPSC-derived neural cells permit a direct comparison of disease-relevant molecular pathways in neurons and glia derived from patients and healthy individuals. A prerequisite for such comparative studies are robust protocols that efficiently yield standardized populations of neural cell types. Here we show that long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from 3 hESC and 6 iPSC lines in two independent laboratories exhibit consistent characteristics including i) continuous expandability in the presence of FGF2 and EGF; ii) stable neuronal and glial differentiation competence; iii) characteristic transcription factor profile; iv) hindbrain specification amenable to regional patterning; v) capacity to generate functionally mature human neurons. We further show that lt-NES cells are developmentally distinct from fetal tissue-derived radial glia-like stem cells. We propose that lt-NES cells provide an interesting tool for studying human neurodevelopment and may serve as a standard system to facilitate comparative analyses of hESC and hiPSC-derived neural cells from control and diseased genetic backgrounds.
Collapse
Affiliation(s)
- Anna Falk
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | - Jaideep Kesavan
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | - Yasuhiro Takashima
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Julia Ladewig
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | - Michael Alexander
- Institute of Human Genetics, LIFE & BRAIN Center, University of Bonn, Bonn, Germany
| | - Ole Wiskow
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Jignesh Tailor
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Trotter
- Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Steven Pollard
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- * E-mail:
| |
Collapse
|
454
|
Sohn YD, Han JW, Yoon YS. Generation of induced pluripotent stem cells from somatic cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:1-26. [PMID: 22917224 DOI: 10.1016/b978-0-12-398459-3.00001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The technology for generation of induced pluripotent stem cell (iPSC) from somatic cells emerged to circumvent the ethical and immunological limitations of embryonic stem cell (ESC). The recent progress of iPSC technology offers an unprecedented tool for regenerative medicine; however, integrating viral-driven iPSCs prohibits clinical applications by their genetic alterations and tumorigenicity. Various approaches including nonintegrating, nonviral, and nongenetic methods have been developed for generating clinically compatible iPSCs. In addition, approaches for using more clinically convenient or compatible source cells replacing fibroblasts have been actively pursued. While iPSC and ESC closely resemble in genomic, cell biologic, and phenotypic characteristics, these two pluripotent stem cells are not identical in terms of differentiation capacity and epigenetic features. In this chapter, we deal with the current techniques of generating iPSCs and their various characteristics.
Collapse
Affiliation(s)
- Young-Doug Sohn
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
455
|
Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in rett syndrome human induced pluripotent stem cells. Front Psychiatry 2012; 3:24. [PMID: 22470355 PMCID: PMC3311266 DOI: 10.3389/fpsyt.2012.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2). Random X-chromosome inactivation (XCI) results in cellular mosaicism in which some cells express wild-type (WT) MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced pluripotent stem cells (hiPSCs) facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI) of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the WT or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of WT or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI) upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to WT and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.
Collapse
Affiliation(s)
- Aaron Y L Cheung
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | | | | | | |
Collapse
|
456
|
Abstract
Psychiatric disorders, including autism spectrum disorders and schizophrenia, are extremely heritable complex genetic neurodevelopmental disorders. It is now possible to directly reprogram fibroblasts from psychiatric patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiate these disorder-specific hiPSCs into neurons. This means that researchers can generate nearly limitless quantities of live human neurons with genetic backgrounds that are known to result in psychiatric disorders, without knowing which genes are interacting to produce the disease state in each patient. With these new human-cell-based models, scientists can investigate the precise cell types that are affected in these disorders and elucidate the cellular and molecular defects that contribute to disease initiation and progression. Here, we present a short review of experiments using hiPSCs and other sophisticated in vitro approaches to study the pathways underlying psychiatric disorders.
Collapse
Affiliation(s)
- Kristen J. Brennand
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H. Gage
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
457
|
Hinson JT, Nakamura K, Wu SM. Induced pluripotent stem cell modeling of complex genetic diseases. ACTA ACUST UNITED AC 2012; 9:e147-e152. [PMID: 23690830 DOI: 10.1016/j.ddmod.2012.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The study of complex disease genetics by genome-wide association studies (GWAS) has led to hundreds of genomic loci associated with disease traits in humans. However, the functional consequences of most loci are largely undefined. We discuss here the potential for human induced pluripotent stem (iPS) cells to bridge the gap between genetic variant and mechanisms of complex disease. We also highlight specific diseases and the roadblocks that must be overcome before iPS cell technology can be widely adopted for complex disease modeling.
Collapse
Affiliation(s)
- J Travis Hinson
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | | | | |
Collapse
|
458
|
Faradonbeh MZ, Gharechahi J, Mollamohammadi S, Pakzad M, Taei A, Rassouli H, Baharvand H, Salekdeh GH. An orthogonal comparison of the proteome of human embryonic stem cells with that of human induced pluripotent stem cells of different genetic background. MOLECULAR BIOSYSTEMS 2012; 8:1833-40. [DOI: 10.1039/c2mb25018g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
459
|
Bilic J, Belmonte JCI. Concise Review: Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart? Stem Cells 2011; 30:33-41. [DOI: 10.1002/stem.700] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
460
|
Puri MC, Nagy A. Concise Review: Embryonic Stem Cells Versus Induced Pluripotent Stem Cells: The Game Is On. Stem Cells 2011; 30:10-4. [PMID: 22102565 DOI: 10.1002/stem.788] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mira C Puri
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
461
|
Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnáiz-Cot JJ, Rosa AO, Nguemo F, Matzkies M, Dittmann S, Stone SL, Linke M, Zechner U, Beyer V, Hennies HC, Rosenkranz S, Klauke B, Parwani AS, Haverkamp W, Pfitzer G, Farr M, Cleemann L, Morad M, Milting H, Hescheler J, Saric T. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem 2011; 28:579-92. [PMID: 22178870 DOI: 10.1159/000335753] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. METHODS iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. RESULTS Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca(2+) release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca(2+)-induced Ca(2+)-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. CONCLUSION This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.
Collapse
Affiliation(s)
- Azra Fatima
- Institute for Neurophysiology, University of Cologne, Robert Koch Strasse 39, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Song B, Sun G, Herszfeld D, Sylvain A, Campanale NV, Hirst CE, Caine S, Parkington HC, Tonta MA, Coleman HA, Short M, Ricardo SD, Reubinoff B, Bernard CCA. Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Res 2011; 8:259-73. [PMID: 22265745 DOI: 10.1016/j.scr.2011.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022] Open
Abstract
The recent introduction of technologies capable of reprogramming human somatic cells into induced pluripotent stem (iPS) cells offers a unique opportunity to study many aspects of neurodegenerative diseases in vitro that could ultimately lead to novel drug development and testing. Here, we report for the first time that human dermal fibroblasts from a patient with relapsing-remitting Multiple Sclerosis (MS) were reprogrammed to pluripotency by retroviral transduction using defined factors (OCT4, SOX2, KLF4, and c-MYC). The MSiPS cell lines resembled human embryonic stem (hES) cell-like colonies in morphology and gene expression and exhibited silencing of the retroviral transgenes after four passages. MSiPS cells formed embryoid bodies that expressed markers of all three germ layers by immunostaining and Reverse Transcriptase (RT)-PCR. The injection of undifferentiated iPS cell colonies into immunodeficient mice formed teratomas, thereby demonstrating pluripotency. The MSiPS cells were successfully differentiated into mature astrocytes, oligodendrocytes and neurons with normal karyotypes. Although MSiPS-derived neurons displayed some differences in their electrophysiological characteristics as compared to the control cell line, they exhibit properties of functional neurons, with robust resting membrane potentials, large fast tetrodotoxin-sensitive action potentials and voltage-gated sodium currents. This study provides for the first time proof of concept that disease cell lines derived from skin cells obtained from an MS patient can be generated and successfully differentiated into mature neural lineages. This represents an important step in a novel approach for the study of MS pathophysiology and potential drug discovery.
Collapse
Affiliation(s)
- Bi Song
- Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
The use of pluripotent stem cell for personalized cell therapies against neurological disorders. J Biomed Biotechnol 2011; 2011:520816. [PMID: 22203784 PMCID: PMC3238807 DOI: 10.1155/2011/520816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
Although there are a number of weaknesses for clinical use, pluripotent stem cells are valuable sources for patient-specific cell therapies against various diseases. Backed-up by a huge number of basic researches, neuronal differentiation mechanism is well established and pluripotent stem cell therapies against neurological disorders are getting closer to clinical application. However, there are increasing needs for standardization of the sourcing pluripotent stem cells by establishing stem cell registries and banking. Global harmonization will accelerate practical use of personalized therapies using pluripotent stem cells.
Collapse
|
464
|
Cellular reprogramming: a new technology frontier in pharmaceutical research. Pharm Res 2011; 29:35-52. [PMID: 22068279 DOI: 10.1007/s11095-011-0618-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/25/2011] [Indexed: 01/14/2023]
Abstract
Induced pluripotent stem cells via cellular reprogramming are now finding multiple applications in the pharmaceutical research and drug development pipeline. In the pre-clinical stages, they serve as model systems for basic research on specific diseases and then as key experimental tools for testing and developing therapeutics. Here we examine the current state of cellular reprogramming technology, with a special emphasis on approaches that recapitulate previously intractable human diseases in vitro. We discuss the technical and operational challenges that must be tackled as reprogrammed cells become incorporated into routine pharmaceutical research and drug discovery.
Collapse
|
465
|
Unternaehrer JJ, Daley GQ. Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci 2011; 366:2274-85. [PMID: 21727133 DOI: 10.1098/rstb.2011.0017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation.
Collapse
Affiliation(s)
- Juli J Unternaehrer
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | | |
Collapse
|
466
|
Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 2011; 366:2198-207. [PMID: 21727125 DOI: 10.1098/rstb.2011.0016] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Somatic cells have been reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors, such as Oct3/4, Sox2, Klf4 and c-Myc. Induced pluripotent stem (iPS) cells from a patient's somatic cells could be a useful source for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into the host genomes and may increase the risk of tumour formation. Several non-integration methods have been reported to overcome the safety concern associated with the generation of iPS cells, such as transient expression of the reprogramming factors using adenovirus vectors or plasmids, and direct delivery of reprogramming proteins. Although these transient expression methods could avoid genomic alteration of iPS cells, they are inefficient. Several studies of gene expression, epigenetic modification and differentiation revealed the insufficient reprogramming of iPS cells, thus suggesting the need for improvement of the reprogramming procedure not only in quantity but also in quality. This report will summarize the current knowledge of iPS generation and discuss future reprogramming methods for medical application.
Collapse
Affiliation(s)
- Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
467
|
Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:666-80. [PMID: 21197666 PMCID: PMC3282989 DOI: 10.1002/wsbm.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death in the Western world and myocardial infarction is one of the primary facets of this disease. The limited natural self-renewal of cardiac muscle following injury and restricted supply of heart transplants has encouraged researchers to investigate other means to stimulate regeneration of damaged myocardium. The plasticity of stem cells toward multiple lineages offers the potential to repair the heart following injury. Embryonic stem cells have been extensively studied for their ability to differentiate into early cardiomyocytes, however, the pathway has only been partially defined and inadequate efficiency limits their clinical applicability. Some studies have shown cardiomyogenesis from adult mesenchymal stem cells, from both bone marrow and adipose tissue, but their differentiation pathway remains poorly detailed and these results remain controversial. Despite promising results using stem cells in animal models of cardiac injury, the driving mechanisms behind their differentiation down a cardiomyogenic pathway have yet to be determined. Currently, there is a paucity of information regarding cardiomyogenesis on the systemic level. Stem cell differentiation results from multiple signaling parameters operating in a tightly regulated spatiotemporal pattern. Investigating this phenomenon from a systems biology perspective could unveil the abstruse mechanisms controlling cardiomyogenesis that would otherwise require extensive in vitro testing.
Collapse
Affiliation(s)
- D Adam Young
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
468
|
Loh YH, Yang L, Yang JC, Li H, Collins JJ, Daley GQ. Genomic approaches to deconstruct pluripotency. Annu Rev Genomics Hum Genet 2011; 12:165-85. [PMID: 21801025 DOI: 10.1146/annurev-genom-082410-101506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) first derived from the inner cell mass of blastocyst-stage embryos have the unique capacity of indefinite self-renewal and potential to differentiate into all somatic cell types. Similar developmental potency can be achieved by reprogramming differentiated somatic cells into induced pluripotent stem cells (iPSCs). Both types of pluripotent stem cells provide great potential for fundamental studies of tissue differentiation, and hold promise for disease modeling, drug development, and regenerative medicine. Although much has been learned about the molecular mechanisms that underlie pluripotency in such cells, our understanding remains incomplete. A comprehensive understanding of ESCs and iPSCs requires the deconstruction of complex transcription regulatory networks, epigenetic mechanisms, and biochemical interactions critical for the maintenance of self-renewal and pluripotency. In this review, we will discuss recent advances gleaned from application of global "omics" techniques to dissect the molecular mechanisms that define the pluripotent state.
Collapse
Affiliation(s)
- Yuin-Han Loh
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
469
|
Giritharan G, Ilic D, Gormley M, Krtolica A. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One 2011; 6:e26570. [PMID: 22039509 PMCID: PMC3198782 DOI: 10.1371/journal.pone.0026570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/29/2011] [Indexed: 11/18/2022] Open
Abstract
We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.
Collapse
Affiliation(s)
| | - Dusko Ilic
- SLL Sciences, StemLifeLine, Inc., San Carlos, California, United States of America
| | - Matthew Gormley
- University of California San Francisco, San Francisco, California, United States of America
| | - Ana Krtolica
- SLL Sciences, StemLifeLine, Inc., San Carlos, California, United States of America
- * E-mail:
| |
Collapse
|
470
|
Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays? Arch Toxicol 2011; 85:1361-72. [DOI: 10.1007/s00204-011-0767-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 01/31/2023]
|
471
|
Han JW, Yoon YS. Induced pluripotent stem cells: emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011; 15:1799-820. [PMID: 21194386 PMCID: PMC3159104 DOI: 10.1089/ars.2010.3814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
472
|
Transgene excision has no impact on in vivo integration of human iPS derived neural precursors. PLoS One 2011; 6:e24687. [PMID: 21961042 PMCID: PMC3178523 DOI: 10.1371/journal.pone.0024687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/17/2011] [Indexed: 12/13/2022] Open
Abstract
The derivation of induced human pluripotent stem cells (hiPS) has generated significant enthusiasm particularly for the prospects of cell-based therapy. But there are concerns about the suitability of iPS cells for in vivo applications due in part to the introduction of potentially oncogenic transcription factors via viral vectors. Recently developed lentiviral vectors allow the excision of viral reprogramming factors and the development of transgene-free iPS lines. However it is unclear if reprogramming strategy has an impact on the differentiation potential and the in vivo behavior of hiPS progeny. Here we subject viral factor-free, c-myc-free and conventionally reprogrammed four-factor human iPS lines to a further challenge, by analyzing their differentiation potential along the 3 neural lineages and over extended periods of time in vitro, as well as by interrogating their ability to respond to local environmental cues by grafting into the striatum. We demonstrate similar and efficient differentiation into neurons, astrocytes and oligodendrocytes among all hiPS and human ES line controls. Upon intracranial grafting in the normal rat (Sprague Dawley), precursors derived from all hiPS lines exhibited good survival and response to environmental cues by integrating into the subventricular zone, acquiring phenotypes typical of type A, B or C cells and migrating along the rostral migratory stream into the olfactory bulb. There was no teratoma or other tumor formation 12 weeks after grafting in any of the 26 animals used in the study. Thus neither factor excision nor persistence of c-myc impact the behavior of hiPS lines in vivo.
Collapse
|
473
|
|
474
|
Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 2011; 11:3947-61. [PMID: 21834136 DOI: 10.1002/pmic.201100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
475
|
Zhu FF, Zhang PB, Zhang DH, Sui X, Yin M, Xiang TT, Shi Y, Ding MX, Deng H. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 2011; 54:2325-36. [PMID: 21755313 DOI: 10.1007/s00125-011-2246-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/16/2011] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS The generation of induced pluripotent stem cells (iPSCs) provides a promising possibility for type 1 diabetes therapy. However, the generation of insulin-producing cells from iPSCs and evaluation of their efficacy and safety should be achieved in large animals before clinically applying iPSC-derived cells in humans. Here we try to generate insulin-producing cells from rhesus monkey (RM) iPSCs. METHODS Based on the knowledge of embryonic pancreatic development, we developed a four-stage protocol to generate insulin-producing cells from RM iPSCs. We established a quantitative method using flow cytometry to analyse the differentiation efficiency. In addition, to evaluate the differentiation competence and function of RM iPSC-derived cells, transplantation of stage 3 and 4 cells into immunodeficient mice was performed. RESULTS RM iPSCs were sequentially induced to definitive endoderm (DE), pancreatic progenitors (PP), endocrine precursors (EP) and insulin-producing cells. PDX1(+) PP cells were obtained efficiently from RM iPSCs (over 85% efficiency). The TGF-β inhibitor SB431542 promoted the generation of NGN3(+) EP cells, which can generate insulin-producing cells in vivo upon transplantation. Finally, after this four-stage differentiation in vitro, insulin-producing cells that could secrete insulin in response to glucose stimulation were obtained. When transplanted into mouse models for diabetes, these insulin-producing cells could decrease blood glucose levels in approximately 50% of the mice. CONCLUSIONS/INTERPRETATION We demonstrate for the first time that RM iPSCs can be differentiated into functional insulin-producing cells, which will provide the basis for investigating the efficacy and safety of autologous iPSC-derived insulin-producing cells in a rhesus monkey model for type 1 diabetes therapy.
Collapse
Affiliation(s)
- F F Zhu
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
476
|
Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011; 6:e23657. [PMID: 21876760 PMCID: PMC3158088 DOI: 10.1371/journal.pone.0023657] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Rationale Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. Method and Result We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. Conclusion We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.
Collapse
|
477
|
Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. Cell Res 2011; 22:178-93. [PMID: 21844894 DOI: 10.1038/cr.2011.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
478
|
Insulin-producing surrogate β-cells from embryonic stem cells: are we there yet? Mol Ther 2011; 19:1759-68. [PMID: 21829172 DOI: 10.1038/mt.2011.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem cells (ESCs) harbor the potential to generate every cell type of the body by differentiation. The use of hESCs holds great promise for potential cell replacement therapies for degenerative diseases including diabetes mellitus. The recently discovered induced pluripotent stem cells (iPSCs) exhibit immense potential for regenerative medicine as they allow the generation of autologous cells tailored to the patients' immune system. Research for insulin-producing surrogate cells from ESCs has yielded highly controversial results, because many steps and factors in the differentiation process are currently still unknown. Thus, there is no consensus on common standard protocols. The protocols presently used established the differentiation from pluripotent cells toward pancreatic progenitor cells. However, none of the differentiation protocols reported to date have generated by exclusive in vitro differentiation sufficient numbers of insulin-producing cells meeting all essential criteria of a β-cell. The cells often lack the crucial function of regulated insulin secretion upon glucose stimulation. This review focuses on past and current approaches to the generation of insulin-producing cells from pluripotent sources, such as ESCs and iPSCs, and critically discusses the hurdles to be taken before insulin-secreting surrogate cells derived from these stem cells will be of clinical use in humans.
Collapse
|
479
|
Wright A, Andrews N, Bardsley K, Nielsen JE, Avery K, Pewsey E, Jones M, Harley D, Nielsen AR, Moore H, Gokhale P, Rajpert-De Meyts E, Andrews PW, Walsh J, Harrison NJ. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies. INTERNATIONAL JOURNAL OF ANDROLOGY 2011; 34:e175-87; discussion e187-8. [PMID: 21651578 DOI: 10.1111/j.1365-2605.2011.01185.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state', yet it appears that this categorization may be an oversimplification, because a number of sub-states appear to exist within this state. To increase the resolution of the undifferentiated state, we have generated eight novel monoclonal antibodies, all capable of recognizing undifferentiated human ES and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment.
Collapse
Affiliation(s)
- A Wright
- Centre for Stem Cell Biology and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A 2011; 108:14169-74. [PMID: 21807996 DOI: 10.1073/pnas.1018979108] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rett syndrome (RTT) is one of the most prevalent female neurodevelopmental disorders that cause severe mental retardation. Mutations in methyl CpG binding protein 2 (MeCP2) are mainly responsible for RTT. Patients with classical RTT exhibit normal development until age 6-18 mo, at which point they become symptomatic and display loss of language and motor skills, purposeful hand movements, and normal head growth. Murine genetic models and postmortem human brains have been used to study the disease and enable the molecular dissection of RTT. In this work, we applied a recently developed reprogramming approach to generate a novel in vitro human RTT model. Induced pluripotent stem cells (iPSCs) were derived from RTT fibroblasts by overexpressing the reprogramming factors OCT4, SOX2, KLF4, and MYC. Intriguingly, whereas some iPSCs maintained X chromosome inactivation, in others the X chromosome was reactivated. Thus, iPSCs were isolated that retained a single active X chromosome expressing either mutant or WT MeCP2, as well as iPSCs with reactivated X chromosomes expressing both mutant and WT MeCP2. When these cells underwent neuronal differentiation, the mutant monoallelic or biallelelic RTT-iPSCs displayed a defect in neuronal maturation consistent with RTT phenotypes. Our in vitro model of RTT is an important tool allowing the further investigation of the pathophysiology of RTT and the development of the curative therapeutics.
Collapse
|
481
|
Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, Suemori H, Nakahata T, Saito MK. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 2011; 6:e22261. [PMID: 21818303 PMCID: PMC3144871 DOI: 10.1371/journal.pone.0022261] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/18/2011] [Indexed: 12/16/2022] Open
Abstract
Elucidating the in vitro differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.
Collapse
Affiliation(s)
- Akira Niwa
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Koichi Oshima
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Sakai
- Waseda Bioscience Research Institute in Helios, Singapore
| | - Hirofumi Suemori
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumu K. Saito
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
482
|
Israel MA, Goldstein LS. Capturing Alzheimer's disease genomes with induced pluripotent stem cells: prospects and challenges. Genome Med 2011; 3:49. [PMID: 21867573 PMCID: PMC3221547 DOI: 10.1186/gm265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A crucial limitation to our understanding of Alzheimer's disease (AD) is the inability to test hypotheses on live, patient-specific neurons. Patient autopsies are limited in supply and only reveal endpoints of disease. Rodent models harboring familial AD mutations lack important pathologies, and animal models have not been useful in modeling the sporadic form of AD because of complex genetics. The recent development of induced pluripotent stem cells (iPSCs) provides a method to create live, patient-specific models of disease and to investigate disease phenotypes in vitro. In this review, we discuss the genetics of AD patients and the potential for iPSCs to capture the genomes of these individuals and generate relevant cell types. Specifically, we examine recent insights into the genetic fidelity of iPSCs, advances in the area of neuronal differentiation, and the ability of iPSCs to model neurodegenerative diseases.
Collapse
Affiliation(s)
- Mason A Israel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
483
|
Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 2011; 13:497-505. [PMID: 21540845 DOI: 10.1038/ncb0511-497] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of methods to convert somatic cells into induced pluripotent stem cells (iPSCs) through expression of a small combination of transcription factors has raised the possibility of producing custom-tailored cells for the study and treatment of numerous diseases. Indeed, iPSCs have already been derived from patients suffering from a large variety of disorders. Here we review recent progress that has been made in establishing iPSC-based disease models, discuss associated technical and biological challenges, and highlight possible solutions to overcome these barriers. We believe that a better understanding of the molecular basis of pluripotency, cellular reprogramming and lineage-specific differentiation of iPSCs is necessary for progress in regenerative medicine.
Collapse
Affiliation(s)
- Sean M Wu
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Boston 02114, Massachusetts, USA.
| | | |
Collapse
|
484
|
Chen PY, Feng S, Joo JWJ, Jacobsen SE, Pellegrini M. A comparative analysis of DNA methylation across human embryonic stem cell lines. Genome Biol 2011; 12:R62. [PMID: 21733148 PMCID: PMC3218824 DOI: 10.1186/gb-2011-12-7-r62] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/10/2011] [Accepted: 07/06/2011] [Indexed: 01/05/2023] Open
Abstract
Background We performed a comparative analysis of the genome-wide DNA methylation profiles from three human embryonic stem cell (HESC) lines. It had previously been shown that HESC lines had significantly higher non-CG methylation than differentiated cells, and we therefore asked whether these sites were conserved across cell lines. Results We find that heavily methylated non-CG sites are strongly conserved, especially when found within the motif TACAG. They are enriched in splice sites and are more methylated than other non-CG sites in genes. We next studied the relationship between allele-specific expression and allele-specific methylation. By combining bisulfite sequencing and whole transcriptome shotgun sequencing (RNA-seq) data we identified 1,020 genes that show allele-specific expression, and 14% of CG sites genome-wide have allele-specific methylation. Finally, we asked whether the methylation state of transcription factor binding sites affects the binding of transcription factors. We identified variations in methylation levels at binding sites and found that for several transcription factors the correlation between the methylation at binding sites and gene expression is generally stronger than in the neighboring sequences. Conclusions These results suggest a possible but as yet unknown functional role for the highly methylated conserved non-CG sites in the regulation of HESCs. We also identified a novel set of genes that are likely transcriptionally regulated by methylation in an allele-specific manner. The analysis of transcription factor binding sites suggests that the methylation state of cis-regulatory elements impacts the ability of factors to bind and regulate transcription.
Collapse
Affiliation(s)
- Pao-Yang Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
485
|
Kitazawa A, Shimizu N. Differentiation of mouse induced pluripotent stem cells into neurons using conditioned medium of dorsal root ganglia. N Biotechnol 2011; 28:326-33. [DOI: 10.1016/j.nbt.2011.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/27/2022]
|
486
|
Gokoh M, Nishio M, Nakamura N, Matsuyama S, Nakahara M, Suzuki S, Mitsumoto M, Akutsu H, Umezawa A, Yasuda K, Yuo A, Saeki K. Early senescence is not an inevitable fate of human-induced pluripotent stem-derived cells. Cell Reprogram 2011; 13:361-70. [PMID: 21718107 DOI: 10.1089/cell.2011.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are expected to become a powerful tool for regenerative medicine. Their efficacy in the use of clinical purposes is currently under intensive verification. It was reported that hiPSC-derived hemangioblasts had severely limited expansion capability due to an induction of early senescence: hiPSC-derived vascular endothelial cells (VECs) senesced after one passage and hiPSC-derived hematopoietic progenitor cells (HPCs) showed substantially decreased colony-forming activities. Here we show that early senescence is not an inevitable fate of hiPSC-derived cells. Applying our unique feeder-free culture methods for the differentiations of human embryonic stem cells (hESCs), we successfully generated VECs and HPCs from three lines of hiPSCs that were established by using a retrovirus vector system. All hiPS-derived VECs could be subcultured by 2:1∼3:1 dilutions up to 10∼20 passages, after which the cells underwent senescence. Among the three lines of hiPSCs, two lines generated HPCs that bore comparable granulocyte colony-forming units to those of hESCs. Moreover, one line effectively reproduced HPCs within the sac-like structures, the fields of in vitro hematopoiesis, as in the case of hESCs. Surprisingly, release of neutrophils into culture supernatant persisted even longer (∼60 days) than the case of hESCs (∼40 days). Thus, the problem of early senescence can be overcome by selecting appropriate lines of hiPSCs and applying proper differentiation methods to them.
Collapse
Affiliation(s)
- Maiko Gokoh
- Department of Disease Control, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Rubin LL, Haston KM. Stem cell biology and drug discovery. BMC Biol 2011; 9:42. [PMID: 21649940 PMCID: PMC3110139 DOI: 10.1186/1741-7007-9-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.
Collapse
Affiliation(s)
- Lee L Rubin
- Dept of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
488
|
Nagvenkar P, Pethe P, Pawani H, Telang J, Kumar N, Hinduja I, Zaveri K, Bhartiya D. Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cell Dev Biol Anim 2011; 47:406-419. [PMID: 21614653 DOI: 10.1007/s11626-011-9420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Human embryonic stem (hES) cells possess the ability to self-renew indefinitely and provide a potential source of differentiated progeny representing all three embryonic germ layers. Although hES cell lines share the expression of typical pluripotency markers, limited data is available regarding their differentiation capabilities. We have earlier reported the in-house derivation of two hES cell lines, KIND-1 and KIND-2 on human feeders. Here, we describe a comparative study carried out on both these cell lines to better understand the differentiation potential of KIND-1 and KIND-2 by gene expression analysis of representative gene transcripts reflecting pluripotency and the three germ layers viz. ectoderm, mesoderm, and endoderm. Gene expression analysis and immunolocalization studies were undertaken on (a) 7- and 14-d old embryoid bodies (EBs) (b) spontaneously differentiated cells from EBs, (c) cells derived from EBs under the influence of various growth factor treatments and (d) KIND-1 and KIND-2 cells co-cultured on mouse embryonic visceral endoderm-like feeder (END-2). Despite both the cell lines being XX, derived, passaged, and cultured similarly, KIND-1 exhibits preferential differentiation towards endodermal lineage whereas KIND-2 spontaneously forms beating cardiomyocytes. Perhaps the occurrence of discrete epigenetic profile in both the cell lines predisposes them to encompass different developmental potential in vitro. Our data provide evidence for existence of distinct differentiation propensity among hES cell lines and emphasizes the need to derive more hES cell lines for future regenerative medicine.
Collapse
Affiliation(s)
- Punam Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Parel, Mumbai, 400 012, India
| | | | | | | | | | | | | | | |
Collapse
|
489
|
Vaccarino FM, Stevens HE, Kocabas A, Palejev D, Szekely A, Grigorenko EL, Weissman S. Induced pluripotent stem cells: a new tool to confront the challenge of neuropsychiatric disorders. Neuropharmacology 2011; 60:1355-63. [PMID: 21371482 PMCID: PMC3087494 DOI: 10.1016/j.neuropharm.2011.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 12/22/2022]
Abstract
Studies in the area of human brain development are critical as research on neurological and psychiatric disorders has advanced, revealing the origins of pathophysiology to be in the earliest developmental stages. Only with a more precise understanding of the genes and environments that influence the brain in these early stages can we address questions about the pathology, diagnosis, prevention and treatment of neuropsychiatric disorders of developmental origin, like autism, schizophrenia, and Tourette syndrome. A new approach for studying early developmental events is the use of induced pluripotent stem cells (iPSCs). These are cells with wide potential, similar to that of embryonic stem cells, derived from mature somatic cells. We review the protocols used to create iPSCs, including the most efficient and reliable reprogramming strategies available to date for generating iPSCs. In addition, we discuss how this new tool can be applied to neuropsychiatric research. The use of iPSCs can advance our understanding of how genes and gene products are dynamically involved in the formation of unique features of the human brain, and how aberrant genetic variation may interfere with its typical formation. The iPSC technology, if properly applied, can also address basic questions about neural differentiation such as how stem cells can be guided into general and specific neurodevelopmental pathways. Current work in neuropsychiatry with iPSCs derived from patients has focused on disorders with specific genetics deficits and those with less-defined origins; it has revealed previously unknown aspects of pathology and potential pharmacological interventions. These exciting advances based on the use of iPSCs hold promise for improving early diagnosis and, possibly, treatment of psychiatric disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
490
|
Skibinski G, Finkbeiner S. Drug discovery in Parkinson's disease-Update and developments in the use of cellular models. ACTA ACUST UNITED AC 2011; 2011:15-25. [PMID: 23505333 DOI: 10.2147/ijhts.s8681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic (DA) neurons within the substantia nigra. Dopamine replacement drugs remain the most effective PD treatment but only provide temporary symptomatic relief. New therapies are urgently needed, but the search for a disease-modifying treatment and a definitive understanding of the underlying mechanisms of PD has been limited by the lack of physiologically relevant models that recapitulate the disease phenotype. The use of immortalized cell lines as in vitro model systems for drug discovery has met with limited success, since efficacy and safety too often fail to translate successfully in human clinical trials. Drug discoverers are shifting their focus to more physiologically relevant cellular models, including primary neurons and stem cells. The recent discovery of induced pluripotent stem (iPS) cell technology presents an exciting opportunity to derive human DA neurons from patients with sporadic and familial forms of PD. We anticipate that these human DA models will recapitulate key features of the PD phenotype. In parallel, high-content screening platforms, which extract information on multiple cellular features within individual neurons, provide a network-based approach that can resolve temporal and spatial relationships underlying mechanisms of neurodegeneration and drug perturbations. These emerging technologies have the potential to establish highly predictive cellular models that could bring about a desperately needed revolution in PD drug discovery.
Collapse
Affiliation(s)
- Gaia Skibinski
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, United States ; Taube-Koret Center for Huntingon's Disease Research, the Consortium for Frontotemporal Dementia Research, and the Hellman Family Foundation Program for Alzheimer's Disease Research, San Francisco, CA 94158, United States
| | | |
Collapse
|
491
|
Wetsel RA, Wang D, Calame DG. Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluripotent stem cells. Annu Rev Med 2011; 62:95-105. [PMID: 21226612 DOI: 10.1146/annurev-med-052009-172110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonic stem (ES) cells derived from preimplantation blastocysts and induced pluripotent stem (iPS) cells generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide a possible unlimited source of cells that could be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. Because of inherent difficulties in deriving endodermal cells from undifferentiated cell cultures, applications using lung epithelial cells derived from ES and iPS cells have lagged behind similar efforts devoted to other tissues, such as the heart and spinal cord. However, during the past several years, significant advances in culture, differentiation, and purification protocols, as well as in bioengineering methodologies, have fueled enthusiasm for the development of stem cell-based lung therapeutics. This article provides an overview of recent research achievements and discusses future technical challenges that must be met before the promise of stem cell applications for lung disease can be realized.
Collapse
Affiliation(s)
- Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
492
|
Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS, Lee SH. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 2011; 121:2326-35. [PMID: 21576821 DOI: 10.1172/jci45794] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/06/2011] [Indexed: 12/20/2022] Open
Abstract
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
Collapse
Affiliation(s)
- Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Melichar H, Li O, Ross J, Haber H, Cado D, Nolla H, Robey EA, Winoto A. Comparative study of hematopoietic differentiation between human embryonic stem cell lines. PLoS One 2011; 6:e19854. [PMID: 21603627 PMCID: PMC3095633 DOI: 10.1371/journal.pone.0019854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/04/2011] [Indexed: 12/27/2022] Open
Abstract
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34+ or CD34+CD45+ hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34+ precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34+ hematopoietic precursors generated in vitro versus in vivo.
Collapse
Affiliation(s)
- Heather Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Ou Li
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jenny Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Hilary Haber
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dragana Cado
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Hector Nolla
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Astar Winoto
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
494
|
Mehta A, Chung YY, Ng A, Iskandar F, Atan S, Wei H, Dusting G, Sun W, Wong P, Shim W. Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovasc Res 2011; 91:577-86. [DOI: 10.1093/cvr/cvr132] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
495
|
Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 2011; 7:e1002085. [PMID: 21637780 PMCID: PMC3102737 DOI: 10.1371/journal.pgen.1002085] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/01/2011] [Indexed: 01/23/2023] Open
Abstract
Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.
Collapse
Affiliation(s)
- Koichiro Nishino
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Toyoda
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Fukawatase
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Emi Chikazawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hironari Sakaguchi
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
496
|
Mandenius CF, Andersson TB, Alves PM, Batzl-Hartmann C, Björquist P, Carrondo MJ, Chesne C, Coecke S, Edsbagge J, Fredriksson JM, Gerlach JC, Heinzle E, Ingelman-Sundberg M, Johansson I, Küppers-Munther B, Müller-Vieira U, Noor F, Zeilinger K. Toward Preclinical Predictive Drug Testing for Metabolism and Hepatotoxicity by Using In Vitro Models Derived from Human Embryonic Stem Cells and Human Cell Lines — A Report on the Vitrocellomics EU-project. Altern Lab Anim 2011; 39:147-71. [DOI: 10.1177/026119291103900210] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2–3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance.
Collapse
Affiliation(s)
| | - Tommy B. Andersson
- Karolinska Institute, Department of Physiology and Pharmacology, Stockholm, Sweden
- Development DMPK & Bioanalysis, AstraZeneca R&D, Mölndal, Sweden
| | | | | | | | | | | | - Sandra Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Jörg C. Gerlach
- Experimental Surgery, Charité Universitätsmedizin, Berlin, Germany
| | - Elmar Heinzle
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | | | - Inger Johansson
- Karolinska Institute, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | | | | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | - Katrin Zeilinger
- Experimental Surgery, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
497
|
Juopperi TA, Song H, Ming GL. Modeling neurological diseases using patient-derived induced pluripotent stem cells. FUTURE NEUROLOGY 2011; 6:363-373. [PMID: 21731471 PMCID: PMC3125717 DOI: 10.2217/fnl.11.14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reprogramming of somatic cells to an embryonic-like state has dramatically changed the landscape of stem cell research. Although still in its formative stages, the field of induced pluripotent stem cells (iPSCs) has the potential to advance the study of neurodegenerative and neurodevelopmental disorders at the molecular and cellular levels. The iPSC technology could be employed to establish in vitro experimental model systems for the identification of molecular lesions and to aid in the discovery of therapeutic targets and effective compounds. The derivation of patient-specific iPSCs has also opened up the possibility of generating disease-relevant cells for toxicity screening and for cellular therapy. In this article, we review the recent progress in the use of disease-specific iPSCs for in vitro and in vivo modeling of neurological diseases.
Collapse
Affiliation(s)
- Tarja A Juopperi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
498
|
Nsair A, MacLellan WR. Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery. Adv Drug Deliv Rev 2011; 63:324-30. [PMID: 21371511 PMCID: PMC3109180 DOI: 10.1016/j.addr.2011.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/17/2011] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and offer a supply of genetically identical cells that can be differentiated into all somatic cell types for potential use in regenerative therapies or drug screening and testing. As the techniques for generation of iPSC lines are constantly evolving, new uses for human iPSC are emerging from in-vitro disease modeling to high throughput drug discovery and screening. This technology promises to revolutionize the field of medicine and offers new hope for understanding and treatment of numerous diseases.
Collapse
Affiliation(s)
- Ali Nsair
- Department of Medicine, Cardiovascular Research Laboratories and Eli Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA
| | - W. Robb MacLellan
- Department of Medicine, Cardiovascular Research Laboratories and Eli Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA
| |
Collapse
|
499
|
Kim JM, Moon SH, Lee SG, Cho YJ, Hong KS, Lee JH, Lee HJ, Chung HM. Assessment of differentiation aspects by the morphological classification of embryoid bodies derived from human embryonic stem cells. Stem Cells Dev 2011; 20:1925-35. [PMID: 21388292 DOI: 10.1089/scd.2010.0476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In general, the formation of embryoid bodies (EBs) is a commonly known method for initial induction of human embryonic stem cells (hESCs) into their derivatives in vitro. Despite the ability of EBs to mimic developmental processing, the specification and classifications of EBs are not yet well known. Because EBs show various differentiation potentials depending on the size and morphology of the aggregated cells, specification is difficult to attain. Here, we sought to classify the differentiation potentials of EBs by morphologies to enable one to control the differentiation of specific lineages from hESCs with high efficiency. To induce the differentiation of EB formation, we established floating cultures of undifferentiated hESCs in Petri dishes with hESC medium lacking basic fibroblast growth factor. Cells first aggregated into balls; ∼10 days after suspension culture, some different types of EB morphology were present, which we classified as cystic-, bright cavity-, and dark cavity-type EBs. Next, we analyzed the characteristics of each type of EB for its capacity to differentiate into the 3 germ layers via multiplex polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Our results indicated that most cells within the cystic EBs were composed of endoderm lineage populations, and both of the cavity EB types were well organized with 3 germ-layer cells. However, the differentiation capacity of the bright cavity EBs was faster than that of the dark cavity EBs. Thus, the bright cavity EBs in this study, which showed equal differentiation tendencies compared with other types of EBs, may serve as the standard for in vitro engineering of EBs. These results indicate that the classification of EB morphologies allows the estimation of the differentiation status of the EBs and may allow the delineation of subsets of conditions necessary for EBs to differentiate into specific cell types.
Collapse
Affiliation(s)
- Jung Mo Kim
- Stem Cell Research Lab, CHA Stem Cell Institute, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
500
|
Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 2011; 6:e18293. [PMID: 21494607 PMCID: PMC3072973 DOI: 10.1371/journal.pone.0018293] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/23/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC) holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC) and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC), including hiPSC generated from CD34(+) cord blood using non-viral, non-integrating methods. METHODOLOGY/PRINCIPAL FINDINGS We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB) with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+) cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5%) oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89%) of cardiac troponin I(+) cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs. CONCLUSION/SIGNIFICANCE This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.
Collapse
Affiliation(s)
- Paul W. Burridge
- Johns Hopkins Institute for Cell Engineering, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
- * E-mail: (ETZ); (PWB)
| | - Susan Thompson
- Department of Biomedical Engineering, The Johns Hopkins University School
of Medicine, Baltimore, Maryland, United States of America
| | - Michal A. Millrod
- Johns Hopkins Institute for Cell Engineering, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
| | - Seth Weinberg
- Department of Biomedical Engineering, The Johns Hopkins University School
of Medicine, Baltimore, Maryland, United States of America
| | - Xuan Yuan
- Johns Hopkins Institute for Cell Engineering, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
| | - Ann Peters
- Johns Hopkins Institute for Cell Engineering, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
| | - Vasiliki Mahairaki
- Division of Neuropathology, Department of Pathology, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
| | - Vassilis E. Koliatsos
- Division of Neuropathology, Department of Pathology, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
- Department of Neurology, The Johns Hopkins University School of Medicine,
Baltimore, Maryland, United States of America
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University School
of Medicine, Baltimore, Maryland, United States of America
| | - Elias T. Zambidis
- Johns Hopkins Institute for Cell Engineering, The Johns Hopkins
University School of Medicine, Baltimore, Maryland, United States of
America
- * E-mail: (ETZ); (PWB)
| |
Collapse
|