451
|
Duflocq A, Chareyre F, Giovannini M, Couraud F, Davenne M. Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B. BMC Biol 2011; 9:66. [PMID: 21958379 PMCID: PMC3198992 DOI: 10.1186/1741-7007-9-66] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
Background The axon initial segment (AIS) plays a crucial role: it is the site where neurons initiate their electrical outputs. Its composition in terms of voltage-gated sodium (Nav) and voltage-gated potassium (Kv) channels, as well as its length and localization determine the neuron's spiking properties. Some neurons are able to modulate their AIS length or distance from the soma in order to adapt their excitability properties to their activity level. It is therefore crucial to characterize all these parameters and determine where the myelin sheath begins in order to assess a neuron's excitability properties and ability to display such plasticity mechanisms. If the myelin sheath starts immediately after the AIS, another question then arises as to how would the axon be organized at its first myelin attachment site; since AISs are different from nodes of Ranvier, would this particular axonal region resemble a hemi-node of Ranvier? Results We have characterized the AIS of mouse somatic motor neurons. In addition to constant determinants of excitability properties, we found heterogeneities, in terms of AIS localization and Nav composition. We also identified in all α motor neurons a hemi-node-type organization, with a contactin-associated protein (Caspr)+ paranode-type, as well as a Caspr2+ and Kv1+ juxtaparanode-type compartment, referred to as a para-AIS and a juxtapara (JXP)-AIS, adjacent to the AIS, where the myelin sheath begins. We found that Kv1 channels appear in the AIS, para-AIS and JXP-AIS concomitantly with myelination and are progressively excluded from the para-AIS. Their expression in the AIS and JXP-AIS is independent from transient axonal glycoprotein-1 (TAG-1)/Caspr2, in contrast to juxtaparanodes, and independent from PSD-93. Data from mice lacking the cytoskeletal linker protein 4.1B show that this protein is necessary to form the Caspr+ para-AIS barrier, ensuring the compartmentalization of Kv1 channels and the segregation of the AIS, para-AIS and JXP-AIS. Conclusions α Motor neurons have heterogeneous AISs, which underlie different spiking properties. However, they all have a para-AIS and a JXP-AIS contiguous to their AIS, where the myelin sheath begins, which might limit some AIS plasticity. Protein 4.1B plays a key role in ensuring the proper molecular compartmentalization of this hemi-node-type region.
Collapse
|
452
|
Differential state-dependent modification of rat Na(v)1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin. Toxicol Appl Pharmacol 2011; 257:377-87. [PMID: 21983428 DOI: 10.1016/j.taap.2011.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/23/2022]
Abstract
We expressed rat Na(v)1.6 sodium channels in combination with the rat β1 and β2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na(v)1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent "late" currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were ~25mV for tefluthrin and ~20mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of ~5-10mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na(v)1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by ~2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na(v)1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na(v)1.6 channels in HEK293 cells differ from the effects of these compounds on Na(v)1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment.
Collapse
|
453
|
Higgs MH, Spain WJ. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. J Physiol 2011; 589:5125-42. [PMID: 21911608 DOI: 10.1113/jphysiol.2011.216721] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na(+) channel inactivation is the primary mechanism of threshold accommodation, the possible role of K(+) channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2-3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs.
Collapse
Affiliation(s)
- Matthew H Higgs
- Neurology Section, Department of Veterans Affairs Medical Centre, Seattle, WA 98108, USA.
| | | |
Collapse
|
454
|
Abstract
Neurons are highly polarized cells with distinct domains responsible for receiving, transmitting, and propagating electrical signals. Central to these functions is the axon initial segment (AIS), a short region of the axon adjacent to the cell body that is enriched in voltage-gated ion channels, cell adhesion molecules, and cytoskeletal scaffolding proteins. Traditionally, the function of the AIS has been limited to its role in action potential initiation and modulation. However, recent experiments indicate that it also plays essential roles in neuronal polarity. Here, we review how initial segments are assembled, and discuss proposed mechanisms for how the AIS contributes to maintenance of neuronal polarity.
Collapse
Affiliation(s)
- Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
455
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
456
|
Ding S, Wei W, Zhou FM. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra. J Neurophysiol 2011; 106:3019-34. [PMID: 21880943 DOI: 10.1152/jn.00305.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | |
Collapse
|
457
|
Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings. Nat Commun 2011; 2:242. [PMID: 21407208 PMCID: PMC3072097 DOI: 10.1038/ncomms1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/02/2011] [Indexed: 01/20/2023] Open
Abstract
Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error–correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons. Voltage-activated ion channels can be measured in neurons using the cell-attached patch-clamp technique. Williams and Wozny show that this technique is prone to errors that are caused by the flow of current through the ion channels; a method to correct for these discrepancies is described.
Collapse
|
458
|
Hay E, Hill S, Schürmann F, Markram H, Segev I. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 2011; 7:e1002107. [PMID: 21829333 PMCID: PMC3145650 DOI: 10.1371/journal.pcbi.1002107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+)-spiking behavior as well as key dendritic active properties, including Ca(2+) spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.
Collapse
Affiliation(s)
- Etay Hay
- Interdisciplinary Center for Neural Computation and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
459
|
Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 2011; 108:E607-16. [PMID: 21768381 DOI: 10.1073/pnas.1103546108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons form transiently stable assemblies that may underlie cognitive functions, including memory formation. In most brain regions, coherent activity is organized by network oscillations that involve sparse firing within a well-defined minority of cells. Despite extensive work on the underlying cellular mechanisms, a fundamental question remains unsolved: how are participating neurons distinguished from the majority of nonparticipators? We used physiological and modeling techniques to analyze neuronal activity in mouse hippocampal slices during spontaneously occurring high-frequency network oscillations. Network-entrained action potentials were exclusively observed in a defined subset of pyramidal cells, yielding a strict distinction between participating and nonparticipating neurons. These spikes had unique properties, because they were generated in the axon without prior depolarization of the soma. GABA(A) receptors had a dual role in pyramidal cell recruitment. First, the sparse occurrence of entrained spikes was accomplished by intense perisomatic inhibition. Second, antidromic spike generation was facilitated by tonic effects of GABA in remote axonal compartments. Ectopic spike generation together with strong somatodendritic inhibition may provide a cellular mechanism for the definition of oscillating assemblies.
Collapse
|
460
|
Cai C, Ren Q, Desai NJ, Rizzo JF, Fried SI. Response variability to high rates of electric stimulation in retinal ganglion cells. J Neurophysiol 2011; 106:153-62. [PMID: 21490287 PMCID: PMC3295376 DOI: 10.1152/jn.00956.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/05/2011] [Indexed: 11/22/2022] Open
Abstract
To improve the quality of prosthetic vision, it is important to understand how retinal neurons respond to electric stimulation. Previous studies present conflicting reports as to the maximum rate at which retinal ganglion cells can "follow" pulse trains, i.e., generate one spike for each pulse of the train. In the present study, we measured the response of 5 different types of rabbit retinal ganglion cells to pulse trains of 100-700 Hz. Surprisingly, we found significant heterogeneity in the ability of different types to follow pulse trains. For example, brisk transient (BT) ganglion cells could reliably follow pulse rates up to 600 pulses per second (PPS). In contrast, other types could not even follow rates of 200 PPS. There was additional heterogeneity in the response patterns across those types that could not follow high-rate trains. For example, some types generated action potentials in response to approximately every other pulse, whereas other types generated one spike per pulse for a few consecutive pulses and then did not generate any spikes in response to the next few pulses. Interestingly, in the types that could not follow high-rate trains, we found a second type of response: many pulses of the train elicited a biphasic waveform with an amplitude much smaller than that of standard action potentials. This small waveform was often observed following every pulse for which a standard spike was not elicited. A possible origin of the small waveform and its implication for effective retinal stimulation are discussed.
Collapse
Affiliation(s)
- Changsi Cai
- Institute for Laser Medicine and Bio-Photonics, Department of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
461
|
Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 2011; 86:165-81. [PMID: 21710279 DOI: 10.1007/s00204-011-0726-x] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/09/2011] [Indexed: 12/19/2022]
Abstract
Synthetic pyrethroid insecticides were introduced into widespread use for the control of insect pests and disease vectors more than three decades ago. In addition to their value in controlling agricultural pests, pyrethroids are at the forefront of efforts to combat malaria and other mosquito-borne diseases and are also common ingredients of household insecticide and companion animal ectoparasite control products. The abundance and variety of pyrethroid uses contribute to the risk of exposure and adverse effects in the general population. The insecticidal actions of pyrethroids depend on their ability to bind to and disrupt voltage-gated sodium channels of insect nerves. Sodium channels are also important targets for the neurotoxic effects of pyrethroids in mammals but other targets, particularly voltage-gated calcium and chloride channels, have been implicated as alternative or secondary sites of action for a subset of pyrethroids. This review summarizes information published during the past decade on the action of pyrethroids on voltage-gated sodium channels as well as on voltage-gated calcium and chloride channels and provides a critical re-evaluation of the role of these three targets in pyrethroid neurotoxicity based on this information.
Collapse
|
462
|
Popovic MA, Foust AJ, McCormick DA, Zecevic D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J Physiol 2011; 589:4167-87. [PMID: 21669974 DOI: 10.1113/jphysiol.2011.209015] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.
Collapse
Affiliation(s)
- Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, Department C/M Physiology, 333 Cedar Street, New Haven, CT, USA
| | | | | | | |
Collapse
|
463
|
Zonta B, Desmazieres A, Rinaldi A, Tait S, Sherman DL, Nolan MF, Brophy PJ. A critical role for Neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 2011; 69:945-56. [PMID: 21382554 PMCID: PMC3057015 DOI: 10.1016/j.neuron.2011.02.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/22/2022]
Abstract
The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.
Collapse
Affiliation(s)
- Barbara Zonta
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
464
|
Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain 2011; 4:19. [PMID: 21549002 PMCID: PMC3113741 DOI: 10.1186/1756-6606-4-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/08/2011] [Indexed: 11/10/2022] Open
Abstract
The neurons in the brain produce sequential spikes as the digital codes whose various patterns manage well-organized cognitions and behaviors. A source for the physiologically integrated synaptic signals to initiate digital spikes remains unknown, which we studied at pyramidal neurons of cortical slices. In dual recordings from the soma vs. axon, the signals recorded in vivo induce somatic spikes with higher capacity, which is associated with lower somatic thresholds and shorter refractory periods mediated by voltage-gated sodium channels. The introduction of these parameters from the soma and axon into NEURON model simulates sequential spikes being somatic in origin. Physiological signals integrated from synaptic inputs primarily trigger the soma to encode neuronal digital spikes.
Collapse
|
465
|
Platkiewicz J, Brette R. Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 2011; 7:e1001129. [PMID: 21573200 PMCID: PMC3088652 DOI: 10.1371/journal.pcbi.1001129] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 03/31/2011] [Indexed: 12/19/2022] Open
Abstract
Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. Neurons spike when their combined inputs exceed a threshold value, but recent experimental findings have shown that this value also depends on the inputs. Thus, to understand how neurons respond to input spikes, it is important to know how inputs modify the spike threshold. Spikes are generated by sodium channels, which inactivate when the neuron is depolarized, raising the threshold for spike initiation. We found that inactivation properties of sodium channels could indeed cause substantial threshold variability in central neurons. We then analyzed in models the implications of this form of threshold modulation on neuronal function. We found that this mechanism makes neurons more sensitive to coincident spikes and provides them with an energetically efficient form of gain control.
Collapse
Affiliation(s)
- Jonathan Platkiewicz
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Romain Brette
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
466
|
Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011; 94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Precise localization of various ion channels into proper subcellular compartments is crucial for neuronal excitability and synaptic transmission. Axonal K(+) channels that are activated by depolarization of the membrane potential participate in the repolarizing phase of the action potential, and hence regulate action potential firing patterns, which encode output signals. Moreover, some of these channels can directly control neurotransmitter release at axonal terminals by constraining local membrane excitability and limiting Ca(2+) influx. K(+) channels differ not only in biophysical and pharmacological properties, but in expression and subcellular distribution as well. Importantly, proper targeting of channel proteins is a prerequisite for electrical and chemical functions of axons. In this review, we first highlight recent studies that demonstrate different roles of axonal K(+) channels in the local regulation of axonal excitability. Next, we focus on research progress in identifying axonal targeting motifs and machinery of several different types of K(+) channels present in axons. Regulation of K(+) channel targeting and activity may underlie a novel form of neuronal plasticity. This research field can contribute to generating novel therapeutic strategies through manipulating neuronal excitability in treating neurological diseases, such as multiple sclerosis, neuropathic pain, and Alzheimer's disease.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, USA.
| | | |
Collapse
|
467
|
Abstract
Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.
Collapse
Affiliation(s)
- Dominique Debanne
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Emilie Campanac
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Andrzej Bialowas
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Edmond Carlier
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Gisèle Alcaraz
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
468
|
Tan J, Soderlund DM. Independent and joint modulation of rat Nav1.6 voltage-gated sodium channels by coexpression with the auxiliary β1 and β2 subunits. Biochem Biophys Res Commun 2011; 407:788-92. [PMID: 21439942 DOI: 10.1016/j.bbrc.2011.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/19/2011] [Indexed: 10/18/2022]
Abstract
The Na(v)1.6 voltage-gated sodium channel α subunit isoform is the most abundant isoform in the brain and is implicated in the transmission of high frequency action potentials. Purification and immunocytochemical studies imply that Na(v)1.6 exist predominantly as Na(v)1.6+β1+β2 heterotrimeric complexes. We assessed the independent and joint effects of the rat β1 and β2 subunits on the gating and kinetic properties of rat Na(v)1.6 channels by recording whole-cell currents in the two-electrode voltage clamp configuration following transient expression in Xenopus oocytes. The β1 subunit accelerated fast inactivation of sodium currents but had no effect on the voltage dependence of their activation and steady-state inactivation and also prevented the decline of currents following trains of high-frequency depolarizing prepulses. The β2 subunit selectively retarded the fast phase of fast inactivation and shifted the voltage dependence of activation towards depolarization without affecting other gating properties and had no effect on the decline of currents following repeated depolarization. The β1 and β2 subunits expressed together accelerated both kinetic phases of fast inactivation, shifted the voltage dependence of activation towards hyperpolarization, and gave currents with a persistent component typical of those recorded from neurons expressing Na(v)1.6 sodium channels. These results identify unique effects of the β1 and β2 subunits and demonstrate that joint modulation by both auxiliary subunits gives channel properties that are not predicted by the effects of individual subunits.
Collapse
Affiliation(s)
- Jianguo Tan
- Cornell University, Department of Entomology, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | |
Collapse
|
469
|
Wenger C, Paredes L, Rattay F. Current-Distance Relations for Microelectrode Stimulation of Pyramidal Cells. Artif Organs 2011; 35:263-6. [DOI: 10.1111/j.1525-1594.2011.01224.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
470
|
Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R. Fitting neuron models to spike trains. Front Neurosci 2011; 5:9. [PMID: 21415925 PMCID: PMC3051271 DOI: 10.3389/fnins.2011.00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/13/2011] [Indexed: 11/30/2022] Open
Abstract
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.
Collapse
Affiliation(s)
- Cyrille Rossant
- Laboratoire Psychologie de la Perception, CNRS, Université Paris DescartesParis, France
- Equipe Audition, Département d'Etudes Cognitives, Ecole Normale SupérieureParis, France
| | - Dan F. M. Goodman
- Laboratoire Psychologie de la Perception, CNRS, Université Paris DescartesParis, France
- Equipe Audition, Département d'Etudes Cognitives, Ecole Normale SupérieureParis, France
| | - Bertrand Fontaine
- Laboratoire Psychologie de la Perception, CNRS, Université Paris DescartesParis, France
- Equipe Audition, Département d'Etudes Cognitives, Ecole Normale SupérieureParis, France
| | - Jonathan Platkiewicz
- Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie-Paris 06Paris, France
| | - Anna K. Magnusson
- Center for Hearing and Communication Research, Karolinska InstitutetStockholm, Sweden
- Department of Clinical Neuroscience, Karolinska University HospitalStockholm, Sweden
| | - Romain Brette
- Laboratoire Psychologie de la Perception, CNRS, Université Paris DescartesParis, France
- Equipe Audition, Département d'Etudes Cognitives, Ecole Normale SupérieureParis, France
| |
Collapse
|
471
|
Mao Q, Jia F, Zhang XH, Qiu YM, Ge JW, Bao WJ, Luo QZ, Jiang JY. The up-regulation of voltage-gated sodium channel Nav1.6 expression following fluid percussion traumatic brain injury in rats. Neurosurgery 2010; 66:1134-9; discussion 1139. [PMID: 20421839 DOI: 10.1227/01.neu.0000369612.31946.a2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The influx of Na and the depolarization mediated by voltage-gated sodium channels (VGSCs) is an early event in traumatic brain injury (TBI) induced cellular abnormalities and is therefore well positioned as an upstream target for pharmacologic modulation of the pathological responses to TBI. Alteration in the expression of the VGSC alpha-subunit has occurred in a variety of neuropathological states including focal cerebral ischemia, spinal injury, and epilepsy. OBJECTIVE In this study, changes in Nav1.6 mRNA and protein expression were investigated in rat hippocampus after TBI. METHODS Forty-eight adult male Sprague Dawley rats were randomly assigned to control or TBI groups. TBI was induced with a lateral fluid percussion device. Expression of mRNA and protein for Nav1.6 in the bilateral hippocampus was examined at 2, 12, 24, and 72 hours after injury by real-time quantitative polymerase chain reaction and Western blot. Immunofluorescence was performed to localize the expression of Nav1.6 protein in the hippocampus. RESULTS Expression of >Nav1.6 mRNA was significantly up-regulated in the bilateral hippocampus at 2 and 12 hours post-TBI. Significant up-regulation of Nav1.6 protein was identified in the ipsilateral hippocampus from 2 to 72 hours post-TBI and in the contralateral hippocampus from 2 to 24 hours post-TBI. Expression of Nav1.6 occurred predominantly in neurons in the hippocampus. CONCLUSION Results of the study showed significant up-regulation of mRNA and protein for Nav1.6 in rat hippocampal neurons after TBI.
Collapse
Affiliation(s)
- Qing Mao
- Department of Neurosurgery, Shanghai RenJi hospital, Shanghai Jiaotong University, School of Medicine, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
472
|
Zakon HH, Jost MC, Lu Y. Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity. Mol Biol Evol 2010; 28:1415-24. [PMID: 21148285 DOI: 10.1093/molbev/msq325] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input.
Collapse
|
473
|
Woodruff AR, Anderson SA, Yuste R. The enigmatic function of chandelier cells. Front Neurosci 2010; 4:201. [PMID: 21151823 PMCID: PMC2999891 DOI: 10.3389/fnins.2010.00201] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/19/2010] [Indexed: 11/13/2022] Open
Abstract
Chandelier (or axo-axonic) cells are one of the most distinctive GABAergic interneurons in the brain. Their exquisite target specificity for the axon initial segment of pyramidal neurons, together with their GABAergic nature, long suggested the possibility that they provide the ultimate inhibitory control of pyramidal neuron output. Recent findings indicate that their function may be more complicated, and perhaps more interesting, than initially believed. Here we review these recent developments and their implications. We focus in particular on whether chandelier cells may provide a depolarizing, excitatory effect on pyramidal neuron output, in addition to a powerful inhibition.
Collapse
Affiliation(s)
- Alan R Woodruff
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University New York, NY, USA
| | | | | |
Collapse
|
474
|
Bender KJ, Ford CP, Trussell LO. Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron 2010; 68:500-11. [PMID: 21040850 DOI: 10.1016/j.neuron.2010.09.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
Action potentials initiate in the axon initial segment (AIS), a specialized compartment enriched with Na(+) and K(+) channels. Recently, we found that T- and R-type Ca(2+) channels are concentrated in the AIS, where they contribute to local subthreshold membrane depolarization and thereby influence action potential initiation. While periods of high-frequency activity can alter availability of AIS voltage-gated channels, mechanisms for long-term modulation of AIS channel function remain unknown. Here, we examined the regulatory pathways that control AIS Ca(2+) channel activity in brainstem interneurons. T-type Ca(2+) channels were downregulated by dopamine receptor activation acting via protein kinase C, which in turn reduced neuronal output. These effects occurred without altering AIS Na(+) or somatodendritic T-type channel activity and could be mediated by endogenous dopamine sources present in the auditory brainstem. This pathway represents a new mechanism to inhibit neurons by specifically regulating Ca(2+) channels directly involved in action potential initiation.
Collapse
Affiliation(s)
- Kevin J Bender
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
475
|
Leterrier C, Brachet A, Fache MP, Dargent B. Voltage-gated sodium channel organization in neurons: Protein interactions and trafficking pathways. Neurosci Lett 2010; 486:92-100. [DOI: 10.1016/j.neulet.2010.08.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
476
|
Grubb MS, Burrone J. Channelrhodopsin-2 localised to the axon initial segment. PLoS One 2010; 5:e13761. [PMID: 21048938 PMCID: PMC2966437 DOI: 10.1371/journal.pone.0013761] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
The light-gated cation channel Channelrhodopsin-2 (ChR2) is a powerful and versatile tool for controlling neuronal activity. Currently available versions of ChR2 either distribute uniformly throughout the plasma membrane or are localised specifically to somatodendritic or synaptic domains. Localising ChR2 instead to the axon initial segment (AIS) could prove an extremely useful addition to the optogenetic repertoire, targeting the channel directly to the site of action potential initiation, and limiting depolarisation and associated calcium entry elsewhere in the neuron. Here, we describe a ChR2 construct that we localised specifically to the AIS by adding the ankyrinG-binding loop of voltage-gated sodium channels (NavII-III) to its intracellular terminus. Expression of ChR2-YFP-NavII-III did not significantly affect the passive or active electrical properties of cultured rat hippocampal neurons. However, the tiny ChR2 currents and small membrane depolarisations resulting from AIS targeting meant that optogenetic control of action potential firing with ChR2-YFP-NavII-III was unsuccessful in baseline conditions. We did succeed in stimulating action potentials with light in some ChR2-YFP-NavII-III-expressing neurons, but only when blocking KCNQ voltage-gated potassium channels. We discuss possible alternative approaches to obtaining precise control of neuronal spiking with AIS-targeted optogenetic constructs and propose potential uses for our ChR2-YFP-NavII-III probe where subthreshold modulation of action potential initiation is desirable.
Collapse
Affiliation(s)
- Matthew S Grubb
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom.
| | | |
Collapse
|
477
|
Abstract
Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.
Collapse
Affiliation(s)
- Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
478
|
Rasband MN. Composition, assembly, and maintenance of excitable membrane domains in myelinated axons. Semin Cell Dev Biol 2010; 22:178-84. [PMID: 20932927 DOI: 10.1016/j.semcdb.2010.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022]
Abstract
Neurons have many specialized membrane domains with diverse functions responsible for receiving, integrating, and transmitting electrical signals between cells in a circuit. Both the locations and protein compositions of these domains defines their functions. In axons, two of the most important membrane domains are the axon initial segment and the nodes of Ranvier. Proper assembly and maintenance of these domains is necessary for action potential generation and propagation, and the overall function of the neuron.
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
479
|
Leterrier C, Brachet A, Dargent B, Vacher H. Determinants of voltage-gated sodium channel clustering in neurons. Semin Cell Dev Biol 2010; 22:171-7. [PMID: 20934527 DOI: 10.1016/j.semcdb.2010.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022]
Abstract
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.
Collapse
|
480
|
Zuliani V, Fantini M, Nigam A, Stables JP, Patel MK, Rivara M. Anticonvulsant activity of 2,4(1H)-diarylimidazoles in mice and rats acute seizure models. Bioorg Med Chem 2010; 18:7957-65. [PMID: 20943396 DOI: 10.1016/j.bmc.2010.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022]
Abstract
2,4(1H)-Diarylimidazoles have been previously shown to inhibit hNa(V)1.2 sodium (Na) channel currents. Since many of the clinically used anticonvulsants are known to inhibit Na channels as an important mechanism of their action, these compounds were tested in two acute rodent seizure models for anticonvulsant activity (MES and scMet) and for sedative and ataxic side effects. Compounds exhibiting antiepileptic activity were further tested to establish a dose response curve (ED(50)). The experimental data identified four compounds with anticonvulsant activity in the MES acute seizure rodent model (compound 10, ED(50)=61.7mg/kg; compound 13, ED(50)=46.8mg/kg, compound 17, ED(50)=129.5mg/kg and compound 20, ED(50)=136.7mg/kg). Protective indexes (PI=TD(50)/ED(50)) ranged from 2.1 (compound 10) to greater than 3.6 (compounds 13, 17 and 20). All four compounds were shown to inhibit hNa(V)1.2 in a dose dependant manner. Even if a correlation between sodium channel inhibition and anticonvulsant activity was unclear, these studies identify four Na channel antagonists with anticonvulsant activity, providing evidence that these derivatives could be potential drug candidates for development as safe, new and effective antiepileptic drugs (AEDs).
Collapse
Affiliation(s)
- Valentina Zuliani
- Dipartimento Farmaceutico, Università degli Studi di Parma, V.le G.P. Usberti, 27/A, I-43124 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
481
|
P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J Neurosci 2010; 30:11858-69. [PMID: 20810905 DOI: 10.1523/jneurosci.2651-10.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical axons contain a diverse range of voltage-activated ion channels, including Ca(2+) currents. Interestingly, Ca(2+) channels are not only located at presynaptic terminals, but also in the axon initial segment (AIS), suggesting a potentially important role in the regulation of action potential generation and neuronal excitability. Here, using two-photon microscopy and whole-cell patch-clamp recording, we examined the properties and role of calcium channels located in the AIS and presynaptic terminals of ferret layer 5 prefrontal cortical pyramidal cells in vitro. Subthreshold depolarization of the soma resulted in an increase in baseline and spike-triggered calcium concentration in both the AIS and nearby synaptic terminals. The increase in baseline calcium concentration rose with depolarization and fell with hyperpolarization with a time constant of approximately 1 s and was blocked by removal of Ca(2+) from the bathing medium. The increases in calcium concentration at the AIS evoked by subthreshold or suprathreshold depolarization of the soma were blocked by the P/Q-channel antagonist omega-agatoxin IVA or the N-channel antagonist omega-conotoxin GVIA or both. The presence of these channels in the AIS pyramidal cells was confirmed with immunochemistry. Block of these channels slowed axonal action potential repolarization, apparently from reduction of the activation of a Ca(2+)-activated K(+) current, and increased neuronal excitability. These results demonstrate novel mechanisms by which calcium currents may control the electrophysiological properties of axonal spike generation and neurotransmitter release in the neocortex.
Collapse
|
482
|
Rasband MN. Clustered K+ channel complexes in axons. Neurosci Lett 2010; 486:101-6. [PMID: 20816921 DOI: 10.1016/j.neulet.2010.08.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/25/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Voltage-gated K+ (Kv) channels regulate diverse neuronal properties including action potential threshold, amplitude, and duration, frequency of firing, neurotransmitter release, and resting membrane potential. In axons, Kv channels are clustered at a variety of functionally important sites including axon initial segments, juxtaparanodes of myelinated axons, nodes of Ranvier, and cerebellar basket cell terminals. These channels are part of larger protein complexes that include cell adhesion molecules and scaffolding proteins. These interacting proteins play important roles in recruiting K+ channels to distinct axonal domains. Here, I review the composition, functions, and mechanism of localization of these K+ channel complexes in axons.
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
483
|
Li CL, Yang BF, Zhang JH, Jiao JD, Li BX, Wu CF. Effect of ANEPIII, a novel recombinant neurotoxic polypeptide, on sodium channels in primary cultured rat hippocampal and cortical neurons. ACTA ACUST UNITED AC 2010; 164:105-12. [DOI: 10.1016/j.regpep.2010.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/23/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
484
|
Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 2010; 30:10233-42. [PMID: 20668206 DOI: 10.1523/jneurosci.6335-09.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Action potentials (APs) are initiated in the proximal axon of most neurons. In myelinated axons, a 50-times higher sodium channel density in the initial segment compared to the soma may account for this phenomenon. However, little is known about sodium channel density and gating in proximal unmyelinated axons. To study the mechanisms underlying AP initiation in unmyelinated hippocampal mossy fibers of adult mice, we recorded sodium currents in axonal and somatic membrane patches. We demonstrate that sodium channel density in the proximal axon is approximately 5 times higher than in the soma. Furthermore, sodium channel activation and inactivation are approximately 2 times faster. Modeling revealed that the fast activation localized the initiation site to the proximal axon even upon strong synaptic stimulation, while fast inactivation contributed to energy-efficient membrane charging during APs. Thus, sodium channel gating and density in unmyelinated mossy fiber axons appear to be specialized for robust AP initiation and propagation with minimal current flow.
Collapse
|
485
|
Schachter MJ, Oesch N, Smith RG, Taylor WR. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell. PLoS Comput Biol 2010; 6. [PMID: 20808894 PMCID: PMC2924322 DOI: 10.1371/journal.pcbi.1000899] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/21/2010] [Indexed: 11/18/2022] Open
Abstract
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry. The On-Off direction-selective ganglion cell (DSGC) found in mammalian retinas generates a directional signal, responding most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree which are thought to propagate to the soma and brain with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas postsynaptic potentials (PSPs) recorded in the soma are only weakly directional, indicating that postsynaptic spike generation markedly enhances the directional signal. We constructed a realistic computational model to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate computational regions. Within each region, the local spike threshold produces nonlinear amplification of the preferred response over the null response on the basis of PSP amplitude. The simulation results showed that inhibition acts locally within the dendritic arbor and will not stop dendritic spikes from propagating. We identified the role of three mechanisms that generate direction selectivity in the local dendritic regions, which suggests the origin of the previously described “non-direction-selective region,” and also suggests that the known DS in the synaptic inputs is apparently necessary for robust DS across the dendritic tree.
Collapse
Affiliation(s)
- Michael J. Schachter
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas Oesch
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - W. Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
486
|
Abstract
Concerted actions of various ion channels that are precisely targeted along axons are crucial for action potential initiation and propagation, and neurotransmitter release. However, the dynamics of channel protein transport in axons remain unknown. Here, using time-lapse imaging, we found fluorescently tagged Kv1.2 voltage-gated K(+) channels (YFP-Kv1.2) moved bi-directionally in discrete puncta along hippocampal axons. Expressing Kvbeta2, a Kv1 accessory subunit, markedly increased the velocity, the travel distance, and the percentage of moving time of these puncta in both anterograde and retrograde directions. Suppressing the Kvbeta2-associated protein, plus-end binding protein EB1 or kinesin II/KIF3A, by siRNA, significantly decreased the velocity of YFP-Kv1.2 moving puncta in both directions. Kvbeta2 mutants with disrupted either Kv1.2-Kvbeta2 binding or Kvbeta2-EB1 binding failed to increase the velocity of YFP-Kv1.2 puncta, confirming a central role of Kvbeta2. Furthermore, fluorescently tagged Kv1.2 and Kvbeta2 co-moved along axons. Surprisingly, when co-moving with Kv1.2 and Kvbeta2, EB1 appeared to travel markedly faster than its plus-end tracking. Finally, using fission yeast S. pombe expressing YFP-fusion proteins as reference standards to calibrate our microscope, we estimated the numbers of YFP-Kv1.2 tetramers in axonal puncta. Taken together, our results suggest that proper amounts of Kv1 channels and their associated proteins are required for efficient transport of Kv1 channel proteins along axons.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
487
|
Grubb MS, Burrone J. Building and maintaining the axon initial segment. Curr Opin Neurobiol 2010; 20:481-8. [PMID: 20537529 PMCID: PMC3191460 DOI: 10.1016/j.conb.2010.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 04/17/2010] [Indexed: 11/17/2022]
Abstract
The axon initial segment is a unique neuronal subregion involved in the initiation of action potentials and in the control of axonal identity. Recent work has helped our understanding of how this specialised structure develops, not least in identifying possible mechanisms leading to the localisation of the AIS's master organiser protein, ankyrin-G. The most exciting current work, however, focuses on later aspects of AIS function and plasticity. Recent studies have shown that the AIS is subdivided into distinct structural and functional domains, have demonstrated how the AIS acts as a cytoplasmic barrier for axonal transport, and have discovered that the AIS can be surprisingly plastic in its responses to alterations in neuronal activity.
Collapse
Affiliation(s)
- Matthew S Grubb
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
488
|
Rattay F, Wenger C. Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes? Neuroscience 2010; 170:399-407. [PMID: 20659531 PMCID: PMC2954315 DOI: 10.1016/j.neuroscience.2010.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/15/2010] [Accepted: 07/17/2010] [Indexed: 11/27/2022]
Abstract
Low current cortex stimulation produces a sparse and distributed set of activated cells often with distances of several hundred micrometers between cell bodies and the microelectrode. A modeling study based on recently measured densities of high threshold sodium channels Nav1.2 in dendrites and soma and low threshold sodium channels Nav1.6 in the axon shall identify spike initiation sites including a discussion on dendritic spikes. Varying excitability along the neural axis has been observed while studying different electrode positions and configurations. Although the axon initial segment (AIS) and nodes of Ranvier are most excitable, many thin axons and dendrites which are likely to be close to the electrode in the densely packed cortical regions are also proper candidates for spike initiation sites. Cathodic threshold ratio for thin axons and dendrites is about 1:3, whereas 0.2 mum diameter axons passing the electrode tip in 10 mum distance can be activated by 100 mus pulses with 2.6 muA. Direct cathodic excitation of dendrites requires a minimum electrode-fiber distance, which increases with dendrite diameter. Therefore thin dendrites can profit from the stronger electrical field close to the electrode but low current stimulation cannot activate large diameter dendrites, contrary to the inverse recruitment order known from peripheral nerve stimulation. When local depolarization fails to generate a dendritic spike, stimulation is possible via intracellular current flow that initiates an action potential, for example 200 mum distant in the low threshold AIS or in certain cases at the distal dendrite ending. Beside these exceptions, spike initiation site for cathodic low current stimulation appears rather close to the electrode.
Collapse
Affiliation(s)
- F Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria.
| | | |
Collapse
|
489
|
Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Na(v)1.6 sodium channels. Toxicol Appl Pharmacol 2010; 247:229-37. [PMID: 20624410 DOI: 10.1016/j.taap.2010.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 12/19/2022]
Abstract
We expressed rat Na(v)1.6 sodium channels in combination with the rat beta(1) and beta(2) auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 microM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were ~9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 microM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 microM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin approximately 15-fold and that tefluthrin was approximately 10-fold more potent than deltamethrin as a use-dependent modifier of Na(v)1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na(v)1.2 sodium channel coexpressed with the rat beta(1) and beta(2) subunits in oocytes showed that the Na(v)1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na(v)1.2 isoform. These results implicate sodium channels containing the Na(v)1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.
Collapse
|
490
|
Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 2010; 11:552-62. [PMID: 20631711 DOI: 10.1038/nrn2852] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ion channel clustering at the axon initial segment (AIS) and nodes of Ranvier has been suggested to be a key evolutionary innovation that enabled the development of the complex vertebrate nervous system. This innovation epitomizes a signature feature of neurons, namely polarity. The mechanisms that establish neuronal polarity, channel clustering and axon-dendrite identity during development are becoming clearer. However, much less is known about how polarity is maintained throughout life. Here, I review the role of the AIS in the development and maintenance of neuronal polarity and discuss how disrupted polarity may be a common component of many diseases and injuries that affect the nervous system.
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
491
|
Wimmer VC, Reid CA, Mitchell S, Richards KL, Scaf BB, Leaw BT, Hill EL, Royeck M, Horstmann MT, Cromer BA, Davies PJ, Xu R, Lerche H, Berkovic SF, Beck H, Petrou S. Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Invest 2010; 120:2661-71. [PMID: 20628201 DOI: 10.1172/jci42219] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/26/2010] [Indexed: 11/17/2022] Open
Abstract
Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the beta1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type beta1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the beta1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with beta1(C121W) subunits. We therefore conclude that Na+ channel beta1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired.
Collapse
Affiliation(s)
- Verena C Wimmer
- Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Platkiewicz J, Brette R. A threshold equation for action potential initiation. PLoS Comput Biol 2010; 6:e1000850. [PMID: 20628619 PMCID: PMC2900290 DOI: 10.1371/journal.pcbi.1000850] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 06/03/2010] [Indexed: 12/19/2022] Open
Abstract
In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold. Neurons communicate primarily with stereotypical electrical impulses, action potentials, which are fired when a threshold level of excitation is reached. This threshold varies between cells and over time as a function of previous stimulations, which has major functional implications on the integrative properties of neurons. Ionic channels are thought to play a central role in this modulation but the precise relationship between their properties and the threshold is unclear. We examined this relationship in biophysical models and derived a formula which quantifies the contribution of various mechanisms. The originality of our approach is that it provides an instantaneous time-varying value for the threshold, which applies to the highly fluctuating regimes characterizing neurons in vivo. In particular, two known ionic mechanisms were found to make the threshold adapt to the membrane potential, thus providing the cell with a form of gain control.
Collapse
Affiliation(s)
- Jonathan Platkiewicz
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Romain Brette
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
493
|
Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 2010; 465:1070-4. [PMID: 20543823 PMCID: PMC3196626 DOI: 10.1038/nature09160] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 05/10/2010] [Indexed: 12/27/2022]
Abstract
In neurons, the axon initial segment (AIS) is a specialized region near the start of the axon that is the site of action potential initiation. The precise location of the AIS varies across and within different neuronal types, and has been linked to cells' information-processing capabilities; however, the factors determining AIS position in individual neurons remain unknown. Here we show that changes in electrical activity can alter the location of the AIS. In dissociated hippocampal cultures, chronic depolarization with high extracellular potassium moves multiple components of the AIS, including voltage-gated sodium channels, up to 17 mum away from the soma of excitatory neurons. This movement reverses when neurons are returned to non-depolarized conditions, and depends on the activation of T- and/or L-type voltage-gated calcium channels. The AIS also moved distally when we combined long-term LED (light-emitting diode) photostimulation with sparse neuronal expression of the light-activated cation channel channelrhodopsin-2; here, burst patterning of activity was successful where regular stimulation at the same frequency failed. Furthermore, changes in AIS position correlate with alterations in current thresholds for action potential spiking. Our results show that neurons can regulate the position of an entire subcellular structure according to their ongoing levels and patterns of electrical activity. This novel form of activity-dependent plasticity may fine-tune neuronal excitability during development.
Collapse
Affiliation(s)
- Matthew S Grubb
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
494
|
Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN. Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci 2010; 13:852-60. [PMID: 20543843 DOI: 10.1038/nn.2574] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/10/2010] [Indexed: 11/09/2022]
Abstract
In cortical pyramidal neurons, the axon initial segment (AIS) is pivotal in synaptic integration. It has been asserted that this is because there is a high density of Na(+) channels in the AIS. However, we found that action potential-associated Na(+) flux, as measured by high-speed fluorescence Na(+) imaging, was about threefold larger in the rat AIS than in the soma. Spike-evoked Na(+) flux in the AIS and the first node of Ranvier was similar and was eightfold lower in basal dendrites. At near-threshold voltages, persistent Na(+) conductance was almost entirely axonal. On a time scale of seconds, passive diffusion, and not pumping, was responsible for maintaining transmembrane Na(+) gradients in thin axons during high-frequency action potential firing. In computer simulations, these data were consistent with the known features of action potential generation in these neurons.
Collapse
Affiliation(s)
- Ilya A Fleidervish
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | |
Collapse
|
495
|
Kuba H, Oichi Y, Ohmori H. Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 2010; 465:1075-8. [PMID: 20543825 DOI: 10.1038/nature09087] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 04/15/2010] [Indexed: 01/18/2023]
Abstract
Deprivation of afferent inputs in neural circuits leads to diverse plastic changes in both pre- and postsynaptic elements that restore neural activity. The axon initial segment (AIS) is the site at which neural signals arise, and should be the most efficient site to regulate neural activity. However, none of the plasticity currently known involves the AIS. We report here that deprivation of auditory input in an avian brainstem auditory neuron leads to an increase in AIS length, thus augmenting the excitability of the neuron. The length of the AIS, defined by the distribution of voltage-gated Na(+) channels and the AIS anchoring protein, increased by 1.7 times in seven days after auditory input deprivation. This was accompanied by an increase in the whole-cell Na(+) current, membrane excitability and spontaneous firing. Our work demonstrates homeostatic regulation of the AIS, which may contribute to the maintenance of the auditory pathway after hearing loss. Furthermore, plasticity at the spike initiation site suggests a powerful pathway for refining neuronal computation in the face of strong sensory deprivation.
Collapse
Affiliation(s)
- Hiroshi Kuba
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
496
|
Osorio N, Cathala L, Meisler MH, Crest M, Magistretti J, Delmas P. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J Physiol 2010; 588:651-70. [PMID: 20173079 DOI: 10.1113/jphysiol.2010.183798] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice. Nav1.2 accumulated rapidly at early-formed axon initial segments (AISs). In contrast, Nav1.6 was absent at early postnatal stages but accumulated at AISs of CG cells from P21 to P40. By P40-P65, both Nav1.6 and Nav1.2 co-localized at CG cell AISs. By comparing Na(+) currents in mature CG cells (P66-P74) from wild-type and CG-specific Scn8a KO mice, we found that transient and resurgent Na(+) currents were not modified in the absence of Nav1.6 whereas persistent Na(+) current was strongly reduced. Action potentials in conditional Scn8a KO CG cells showed no alteration in threshold and overshoot, but had a faster repolarization phase and larger post-spike hyperpolarization. In addition, although Scn8a KO CG cells kept their ability to fire action potentials at very high frequency, they displayed increased interspike-interval variability and firing irregularity in response to sustained depolarization. We conclude that Nav1.6 channels at axon initial segments contribute to persistent Na(+) current and ensure a high degree of temporal precision in repetitive firing of CG cells.
Collapse
Affiliation(s)
- Nancy Osorio
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, CS80011, Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | | | |
Collapse
|
497
|
Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 2010; 30:6891-902. [PMID: 20484631 DOI: 10.1523/jneurosci.0552-10.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.
Collapse
|
498
|
Abstract
Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.
Collapse
Affiliation(s)
- Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
499
|
Wimmer VC, Reid CA, So EYW, Berkovic SF, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol 2010; 588:1829-40. [PMID: 20375142 DOI: 10.1113/jphysiol.2010.188417] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The axon initial segment (AIS) contains the site of action potential initiation and plays a major role in neuronal excitability. AIS function relies on high concentrations of different ion channels and complex regulatory mechanisms that orchestrate molecular microarchitecture. We review recent evidence that a large number of ion channels associated with epilepsy are enriched at the AIS, making it a 'hotspot' for epileptogenesis. Furthermore, we present novel data on the clustering of GABRgamma2 receptors in the AIS of cortical and hippocampal neurons in a knock in mouse model of a human genetic epilepsy. This article highlights the molecular coincidence of epilepsy mutations at the AIS and reviews pathogenic mechanisms converging at the AIS.
Collapse
Affiliation(s)
- Verena C Wimmer
- Florey Neuroscience Institutes, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | |
Collapse
|
500
|
Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, Jordanova A, Ala-Mello S, Bellan-Koch A, Blazevic D, Schubert S, Thomas EA, Petrou S, Becker AJ, De Jonghe P, Lerche H. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 2010; 133:1403-14. [DOI: 10.1093/brain/awq057] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|