451
|
Fürstner A, Reinecke K, Prinz H, Waldmann H. The core structures of roseophilin and the prodigiosin alkaloids define a new class of protein tyrosine phosphatase inhibitors. Chembiochem 2005; 5:1575-9. [PMID: 15515092 DOI: 10.1002/cbic.200400135] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
| | | | | | | |
Collapse
|
452
|
Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 2005; 25:819-29. [PMID: 15632081 PMCID: PMC543412 DOI: 10.1128/mcb.25.2.819-829.2005] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.
Collapse
Affiliation(s)
- Sandra Galic
- Department of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
453
|
Koul A, Herget T, Klebl B, Ullrich A. Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2005; 2:189-202. [PMID: 15083155 DOI: 10.1038/nrmicro840] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anil Koul
- Axxima Pharmaceuticals AG, Max-Lebsche-Platz 32, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
454
|
Abstract
Type 2 diabetes and obesity are characterised by insulin and leptin resistance. Studies suggest that these may be due to defects in the insulin and leptin signalling pathways. Over the last decade, a considerable body of evidence has been amassed indicating that protein tyrosine phosphatase 1B (PTP1B) is involved in the downregulation of insulin and leptin signalling. Consequently, compounds that inhibit PTP1B have potential as therapeutics for treating Type 2 diabetes and obesity. This review covers recent advances in PTP1B inhibitors with an emphasis on recent attempts to create potent, selective and cell-permeable small-molecule inhibitors.
Collapse
Affiliation(s)
- Scott D Taylor
- Department of Chemistry, University of Waterloo, Ontario, Canada.
| | | |
Collapse
|
455
|
Gouni-Berthold I, Giannakidou E, Müller-Wieland D, Faust M, Kotzka J, Berthold HK, Krone W. The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population. J Intern Med 2005; 257:272-80. [PMID: 15715684 DOI: 10.1111/j.1365-2796.2004.01446.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Diabetes mellitus type 2 (DM-2) is a complex disorder with a strong genetic background. Protein tyrosine phosphatase-1B (PTP-1B) dephosphorylates various receptor protein kinases in vitro, including the beta subunit of the insulin receptor, therefore representing a potential candidate to be involved in the polygenic pathogenesis of DM-2. Recently a Pro387Leu variant of the PTP-1B gene has been associated with an increased risk of DM-2 in a Danish population. Reports from China and Finland failed to confirm this association. DESIGN, SETTING AND SUBJECTS The purpose of the present study was to examine the possible association between the presence of DM-2 and the Pro387Leu polymorphism in a German Caucasian population. A total of 836 subjects (age 20-92 years) participated in the study. The presence of the Pro387Leu variant of the PTP-1B gene was investigated using polymerase chain reaction (PCR) restriction fragment-length polymorphism in 402 subjects with DM-2 (231 men, 171 women, age 63.1 +/- 10.8 years, BMI 28.7 +/- 5.1 kg m(-2)) and in 434 normoglycemic age- and sex-matched control subjects (248 men, 186 women, age 64.4 +/- 6.5 years, BMI 26.5 +/- 3.7 kg m(-2)). RESULTS Nine subjects in the control group and nine in the diabetic group (allelic frequency 0.99% in both groups) carried the Pro387Leu polymorphism. A meta-analysis on published data of >3000 subjects including our own data did not find an association between the polymorphism and DM-2. In addition, the polymorphism had no significant influence on the presence of atherosclerotic disease, whilst the influence of other known cardiovascular risk factors was confirmed. Furthermore, the impact of the mutation on metabolic and anthropometric parameters in both groups was examined. Amongst the controls there were no significant differences in BMI, HDL and LDL cholesterol or blood pressure between the two groups with or without the Pro387Leu polymorphism. The same was true for the diabetic group. Interestingly, in both diabetics and controls, Pro387Leu carriers had significantly higher triglycerides. In a logistic regression model only BMI and family history but not polymorphism were predictors of DM-2. CONCLUSIONS In conclusion, the present data suggest that in a German Caucasian population the Pro387Leu polymorphism of the PTP-1B gene is not associated with DM-2 but may play a role in other metabolic phenotypes.
Collapse
Affiliation(s)
- I Gouni-Berthold
- Department of Internal Medicine II, University of Cologne and Center of Molecular Medicine Cologne (CMMC), Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
456
|
Levin N, Ghosh SS. Antiobesity therapeutics targeting energy expenditure. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.12.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
457
|
Hong SB, Lubben TH, Dolliver CM, Petrolonis AJ, Roy RA, Li Z, Parsons TF, Li P, Xu H, Reilly RM, Trevillyan JM, Nichols AJ, Tummino PJ, Gant TG. Expression, purification, and enzymatic characterization of the dual specificity mitogen-activated protein kinase phosphatase, MKP-4. Bioorg Chem 2005; 33:34-44. [PMID: 15668181 DOI: 10.1016/j.bioorg.2004.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase phosphatase-4 (MKP-4) is a dual specificity phosphatase, which acts as a negative regulator of insulin-stimulated pathways. Here, we describe expression, purification, and biochemical characterization of MKP-4. We used the Baculovirus expression system and purification with a combination of affinity and gel filtration chromatography to generate pure MKP-4 and MKP-4/p38 complex. Both MKP-4 and the MKP-4/p38 complex exhibited moderate activity toward the surrogate substrates p-nitrophenyl phosphate, 6, 8-difluoro-4-methylumbelliferyl phosphate, and 3-O-methylfluorescein phosphate. The phosphatase activity could be inhibited by peroxovanate, a potent inhibitor of protein tyrosine phosphatases. We further determined kinetic parameters for the MKP-4 and the MKP-4/p38 by using spectrophotometric and fluorescence intensity methods. The MKP-4/p38 complex was found to provide substantially higher phosphatase activity than MKP-4 alone, similar to what has been shown for MKP-3. Our data allow the configuration of screens for modulators of MKP-4 activity.
Collapse
Affiliation(s)
- Suk-Bong Hong
- Metabolic Disease Biology, Millennium Pharmaceuticals, Inc., 75 Sidney Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. Antidiabetic effects of extracts from Psidium guajava. JOURNAL OF ETHNOPHARMACOLOGY 2005; 96:411-415. [PMID: 15619559 DOI: 10.1016/j.jep.2004.09.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 08/18/2004] [Accepted: 09/02/2004] [Indexed: 05/24/2023]
Abstract
During a screening of medicinal plants for inhibition of protein tyrosine phosphatase1B (PTP1B), an extract from Psidium guajava (Myrtaceae) leaves exhibited significant inhibitory effect on PTP1B. Thus, its antidiabetic effect on Lepr(db)/Lepr(db) mice was evaluated. Significant blood glucose lowering effects of the extract were observed after intraperitoneal injection of the extract at a dose of 10mg/kg in both 1- and 3-month-old Lepr(db)/Lepr(db) mice. In addition, histological analysis of the liver from the butanol-soluble fraction treated Lepr(db)/Lepr(db) mice revealed a significant decrease in the number of lipid droplets compared to the control mice. Taken together, it was suggested that the extract from Psidium guajava leaves possesses antidiabetic effect in type 2 diabetic mice model and these effect is, at least in part, mediated via the inhibition of PTP1B.
Collapse
Affiliation(s)
- Won Keun Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), P.O. Box 115, Yusong, Daejeon 305-600, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
459
|
Han YM, Oh H, Na M, Kim BS, Oh WK, Kim BY, Jeong DG, Ryu SE, Sok DE, Ahn JS. PTP1B Inhibitory Effect of Abietane Diterpenes Isolated from Salvia miltiorrhiza. Biol Pharm Bull 2005; 28:1795-7. [PMID: 16141564 DOI: 10.1248/bpb.28.1795] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) acts as a negative regulator of insulin signaling, and selective inhibition of PTP1B has served as a potential drug target for the treatment of type 2 diabetes. In the course of screening for PTP1B inhibitory natural products, the MeOH extract of the dried root of Salvia miltiorrhiza BUNGE (Labiatae) was found to exhibit significant inhibitory effect. Bioassay-guided fractionation and purification afforded three related abietane-type diterpene metabolites 1-3. Compounds 1-3 were identified as isotanshinone IIA (1), dihydroisotanshinone I (2), and isocryptotanshinone (3) mainly by analysis of NMR and MS data. Compounds 1-3 non-competitively inhibited PTP1B activity with 50% inhibitory concentration values of 11.4+/-0.6 microM, 22.4+/-0.6 microM and 56.1+/-6.3 microM, respectively.
Collapse
Affiliation(s)
- Yu Mi Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Rahmouni K, Correia MLG, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension 2004; 45:9-14. [PMID: 15583075 DOI: 10.1161/01.hyp.0000151325.83008.b4] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is strongly associated with hypertension and cardiovascular disease. Several central and peripheral abnormalities that can explain the development or maintenance of high arterial pressure in obesity have been identified. These include activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Obesity is also associated with endothelial dysfunction and renal functional abnormalities that may play a role in the development of hypertension. The continuing discovery of mechanisms regulating appetite and metabolism is likely to lead to new therapies for obesity-induced hypertension. Better understanding of leptin signaling in the hypothalamus and the mechanisms of leptin resistance should facilitate therapeutic approaches to reverse the phenomenon of selective leptin resistance. Other hunger and satiety signals such as ghrelin and peptide YY are potentially attractive therapeutic strategies for treatment of obesity and its complications. These recent discoveries should lead to novel strategies for treatment of obesity and hypertension.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Specialized Center of Research in Hypertension Genetics, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
461
|
Zhao H, Liu G, Xin Z, Serby MD, Pei Z, Szczepankiewicz BG, Hajduk PJ, Abad-Zapatero C, Hutchins CW, Lubben TH, Ballaron SJ, Haasch DL, Kaszubska W, Rondinone CM, Trevillyan JM, Jirousek MR. Isoxazole carboxylic acids as protein tyrosine phosphatase 1B (PTP1B) inhibitors. Bioorg Med Chem Lett 2004; 14:5543-6. [PMID: 15482920 DOI: 10.1016/j.bmcl.2004.08.063] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 08/31/2004] [Indexed: 11/17/2022]
Abstract
Guided by X-ray crystallography, we have extended the structure-activity relationship (SAR) study on an isoxazole carboxylic acid-based PTP1B inhibitor (1) and more potent and equally selective (>20-fold selectivity over the highly homologous T-cell PTPase, TCPTP) PTP1B inhibitors were identified. Inhibitor 7 demonstrated good cellular activity against PTP1B in COS 7 cells.
Collapse
Affiliation(s)
- Hongyu Zhao
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Erbe DV, Wang S, Zhang YL, Harding K, Kung L, Tam M, Stolz L, Xing Y, Furey S, Qadri A, Klaman LD, Tobin JF. Ertiprotafib Improves Glycemic Control and Lowers Lipids via Multiple Mechanisms. Mol Pharmacol 2004; 67:69-77. [PMID: 15475571 DOI: 10.1124/mol.104.005553] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ertiprotafib belongs to a novel class of insulin sensitizers developed for treatment of type 2 diabetes. In insulin-resistant rodent models, ertiprotafib and a close analog lowered both fasting blood glucose and insulin levels and improved glycemic excursion during an oral glucose tolerance test. In addition, treatment of rodents improved lipid profiles, with significantly lowered triglyceride and free fatty acid levels. These results suggested that this therapeutic activity might involve mechanisms in addition to PTP1b inhibition. In this study, we demonstrate that ertiprotafib activates peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma at concentrations comparable with those of known agonists of these regulators. Furthermore, it is able to drive adipocyte differentiation of C3H10T(1/2) cells, a hallmark of PPARgamma activation. Livers from ertiprotafib-treated animals showed significant induction of acyl-CoA oxidase activity, probably caused by PPARalpha engagement in these animals. We also show that ertiprotafib inhibits PTP1b in vitro with nonclassic kinetics at concentrations above its EC(50) for PPAR agonism. Thus, the complete mechanism of action for ertiprotafib and related compounds in vivo may involve multiple independent mechanisms, including (but not necessarily limited to) PTP1b inhibition and dual PPARalpha/PPARgamma agonism. Ertiprotafib pharmacology and interpretation of clinical results must be seen in light of this complexity.
Collapse
Affiliation(s)
- David V Erbe
- Wyeth Research, Cardiovascular and Metabolic Diseases, 200 Cambridge Park Drive, Cambridge MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Cheon HG, Kim SM, Yang SD, Ha JD, Choi JK. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemic agent. Eur J Pharmacol 2004; 485:333-9. [PMID: 14757158 DOI: 10.1016/j.ejphar.2003.11.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein tyrosine phosphatase-1B (PTP-1B), a negative regulator of insulin signaling, may be an attractive therapeutic target for type 2 diabetes mellitus. High throughput screening (HTS) for PTP-1B inhibitors using compounds from the Korea Chemical Bank identified several hits (active compounds). Among them, a hit with 1,2-naphthoquinone scaffold was chosen for lead development. KR61639, [4-[1-(1H-indol-3-yl)-3,4-dioxo-3,4-dihydro-naphthalen-2-ylmethyl]-phenoxy]-acetic acid tert-butyl ester, inhibited human recombinant PTP-1B with an IC(50) value of 0.65 microM in a noncompetitive manner. KR61639 showed modest selectivity over several phosphatases and increased insulin-stimulated glycogen synthesis in HepG2 cells and stimulated 2-deoxyglucose uptake in 3T3/L1 adipocytes. In addition, in vivo study using ob/ob mouse demonstrated that KR61639 exerted a hypoglycemic action when given orally. Thus, KR61639 may be a good starting point for lead optimization in developing a novel antidiabetic agent.
Collapse
Affiliation(s)
- Hyae Gyeong Cheon
- Medicinal Science Division, Pharmaceutical Screening Center, Korea Research Institute of Chemical Technology, Jang-Dong 100, Yusung-Gu, TaeJon 305-343, South Korea.
| | | | | | | | | |
Collapse
|
464
|
Hu X, Vujanac M, Stebbins CE. Computational analysis of tyrosine phosphatase inhibitor selectivity for the virulence factors YopH and SptP. J Mol Graph Model 2004; 23:175-87. [PMID: 15363459 DOI: 10.1016/j.jmgm.2004.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/20/2004] [Accepted: 05/26/2004] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens such as Yersinia and Salmonella represent an important medical concern, causing human diseases ranging from gastrointestinal disease to the plague. The development of novel treatments of these bacterial infections has gained high priority recently due to the emergence of antibiotic resistance in these pathogens and the threat of the use of microbial agents as biological weapons. YopH of Yersinia and SptP of Salmonella are virulence factors that belong to the family of protein tyrosine phosphatases (PTPs). A great challenge remains in the design of selective PTPs inhibitors due to their highly conserved active site. In this paper, we present a comparative docking study to probe the selective inhibition of YopH and SptP with PTP1B in order to better understand their binding interactions with the bacterial tyrosine phosphates. Characterized binding sites in PTP1B were compared with YopH and SptP. Molecular dynamics simulations were used to incorporate ligand-induced conformational changes in the binding sites. These results, together with those binding modes and binding affinities distinguished in individual PTPs, provide insight into the structure-based design of inhibitors for YopH and SptP.
Collapse
Affiliation(s)
- Xin Hu
- Laboratory of Structural Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
465
|
Fürstner A, Feyen F, Prinz H, Waldmann H. Synthesis and evaluation of the antitumor agent TMC-69-6H and a focused library of analogs. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.06.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
466
|
Xie J, Comeau AB, Seto CT. Squaric acids: a new motif for designing inhibitors of protein tyrosine phosphatases. Org Lett 2004; 6:83-6. [PMID: 14703356 DOI: 10.1021/ol036121w] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Protein tyrosine phosphatases (PTPases) are important targets in medicinal chemistry. These enzymes play a role in a number of human diseases, including type II diabetes and infection by Yersinia pestis, the causative agent of bubonic plague. Derivatives of squaric acids such as 2-aryl-1-hydroxycyclobut-1-ene-3,4-diones represent a new class of monoanionic inhibitors for PTPases.
Collapse
Affiliation(s)
- Jian Xie
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
467
|
Outside the site: a lateral approach to phosphatase inhibition. Nat Rev Drug Discov 2004. [DOI: 10.1038/nrd1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
468
|
Erlanson DA, Hansen SK. Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Curr Opin Chem Biol 2004; 8:399-406. [PMID: 15288250 DOI: 10.1016/j.cbpa.2004.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rapid progress in genomics and proteomics has provided a wealth of new targets for the pharmaceutical industry, even as many older targets still remain challenging for small-molecule drug discovery. Fragment-based lead discovery, in which leads are built progressively by expanding or combining small fragments, is a rapidly growing field that offers potential advantages over traditional lead-discovery processes. However, identifying and assembling the fragments themselves can be challenging. Here, we review the concept of site-directed ligand discovery, in which a covalent bond is used to stabilize the interaction between a low-affinity fragment and a target protein. We also describe how this technique can facilitate fragment-based lead discovery and help overcome some of the limitations of traditional screening methods.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, California 94080, USA.
| | | |
Collapse
|
469
|
Abstract
The genomics revolution has provided a deluge of new targets for drug discovery. To facilitate the drug discovery process, many researchers are turning to fragment-based approaches to find lead molecules more efficiently. One such method, Tethering1, allows for the identification of small-molecule fragments that bind to specific regions of a protein target. These fragments can then be elaborated, combined with other molecules, or combined with one another to provide high-affinity drug leads. In this review we describe the background and theory behind Tethering and discuss its use in identifying novel inhibitors for protein targets including interleukin-2 (IL-2), thymidylate synthase (TS), protein tyrosine phosphatase 1B (PTP-1B), and caspases.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
470
|
Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004; 11:730-7. [PMID: 15258570 DOI: 10.1038/nsmb803] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/04/2004] [Indexed: 12/19/2022]
Abstract
Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.
Collapse
Affiliation(s)
- Christian Wiesmann
- Sunesis Pharmaceuticals, 341 Oyster Point Boulevard, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Olivier M, Hsiung CA, Chuang LM, Ho LT, Ting CT, Bustos VI, Lee TM, De Witte A, Chen YDI, Olshen R, Rodriguez B, Wen CC, Cox DR. Single nucleotide polymorphisms in protein tyrosine phosphatase 1beta (PTPN1) are associated with essential hypertension and obesity. Hum Mol Genet 2004; 13:1885-92. [PMID: 15229188 PMCID: PMC2773501 DOI: 10.1093/hmg/ddh196] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine phosphatase 1beta (PTP-1beta) is involved in the regulation of several important physiological pathways. It regulates both insulin and leptin signaling, and interacts with the epidermal- and platelet-derived growth factor receptors. The gene is located on human chromosome 20q13, and several rare single nucleotide polymorphisms (SNPs) have been shown to be associated with insulin resistance and diabetes in different populations. As part of our ongoing investigations into the genetic basis of hypertension, we examined common sequence variants in the gene for association with hypertension, obesity and altered lipid profile in two populations of Japanese and Chinese descent. We re-sequenced all exons, selected intronic sequences and the promoter region in 24 individuals from our cohort. Fourteen SNPs were discovered, and six of these spanning 78 kb were genotyped in 1553 individuals from 672 families. All six SNPs were in linkage disequilibrium, and we found strong association of common risk haplotypes with hypertension in Chinese and Japanese (P<0.0001). In addition, individual SNPs showed association to total plasma cholesterol, LDL-cholesterol and VLDL-cholesterol levels, as well as obesity measures (body mass index). This analysis supports that PTP-1beta affects plasma lipid levels, and may lead to obesity and hypertension in Japanese and Chinese. Given similar associations found in other populations to insulin resistance and diabetes, this gene may play a crucial role in the development of the characteristic metabolic changes seen in patients with the metabolic syndrome.
Collapse
Affiliation(s)
- Michael Olivier
- Stanford Human Genome Center, Stanford University School of Medicine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Peters GH, Iversen LF, Andersen HS, Møller NPH, Olsen OH. Residue 259 in Protein-Tyrosine Phosphatase PTP1B and PTPα Determines the Flexibility of Glutamine 262. Biochemistry 2004; 43:8418-28. [PMID: 15222753 DOI: 10.1021/bi0498757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the flexibility of the substrate-binding site and in particular of Gln262, we have performed adiabatic conformational search and molecular dynamics simulations on the crystal structure of the catalytic domain of wild-type protein-tyrosine phosphatase (PTP) 1B, a mutant PTP1B(R47V,D48N,M258C,G259Q), and a model of the catalytically active form of PTPalpha. For each molecule two cases were modeled: the Michaelis-Menten complex with the substrate analogue p-nitrophenyl phosphate (p-PNPP) bound to the active site and the cysteine-phosphor complex, each corresponding to the first and second step of the phosphate hydrolysis. Analyses of the trajectories revealed that in the cysteine-phosphor complex of PTP1B, Gln262 oscillates freely between the bound phosphate group and Gly259 frequently forming, as observed in the crystal structure, a hydrogen bond with the backbone oxygen of Gly259. In contrast, the movement of Gln262 is restricted in PTPalpha and the mutant due to interactions with Gln259 reducing the frequency of the oscillation of Gln262 and thereby delaying the positioning of this residue for the second step in the catalysis, as reflected experimentally by a reduction in k(cat). Additionally, in the simulation with the Michaelis-Menten complexes, we found that a glutamine in position 259 induces steric hindrance by pushing the Gln262 side chain further toward the substrate and thereby negatively affecting K(m) as indicated by kinetic studies. Detailed analysis of the water structure around Gln262 and the active site Cys215 reveals that the probability of finding a water molecule correctly positioned for catalysis is much larger in PTP1B than in PTP1B(R47V,D48N,M258C,G259Q) and PTPalpha, in accordance with experiments.
Collapse
Affiliation(s)
- Günther H Peters
- Department of Chemistry, MEMPHYS - Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
473
|
Lund IK, Andersen HS, Iversen LF, Olsen OH, Møller KB, Pedersen AK, Ge Y, Holsworth DD, Newman MJ, Axe FU, Møller NPH. Structure-based Design of Selective and Potent Inhibitors of Protein-tyrosine Phosphatase β. J Biol Chem 2004; 279:24226-35. [PMID: 15024017 DOI: 10.1074/jbc.m313027200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are considered important therapeutic targets because of their pivotal role as regulators of signal transduction and thus their implication in several human diseases such as diabetes, cancer, and autoimmunity. In particular, PTP1B has been the focus of many academic and industrial laboratories because it was found to be an important negative regulator of insulin and leptin signaling, and hence a potential therapeutic target in diabetes and obesity. As a result, significant progress has been achieved in the design of highly selective and potent PTP1B inhibitors. In contrast, little attention has been given to other potential drug targets within the PTP family. Guided by x-ray crystallography, molecular modeling, and enzyme kinetic analyses with wild type and mutant PTPs, we describe the development of a general, low molecular weight, non-peptide, non-phosphorus PTP inhibitor into an inhibitor that displays more than 100-fold selectivity for PTPbeta over PTP1B. Of note, our structure-based design principles, which are based on extensive bioinformatics analyses of the PTP family, are general in nature. Therefore, we anticipate that this strategy, here applied to PTPbeta, in principle can be used in the design and development of selective inhibitors of many, if not most PTPs.
Collapse
Affiliation(s)
- Ida Katrine Lund
- Signal Transduction, Protein Science, Novo Nordisk A/S, DK-2880 Bagsvaerd, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Klon AE, Glick M, Thoma M, Acklin P, Davies JW. Finding More Needles in the Haystack: A Simple and Efficient Method for Improving High-Throughput Docking Results. J Med Chem 2004; 47:2743-9. [PMID: 15139752 DOI: 10.1021/jm030363k] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The technology underpinning high-throughput docking (HTD) has developed over the past few years to where it has become a vital tool in modern drug discovery. Although the performance of various docking algorithms is adequate, the ability to accurately and consistently rank compounds using a scoring function remains problematic. We show that by employing a simple machine learning method (naïve Bayes) it is possible to significantly overcome this deficiency. Compounds from the Available Chemical Directory (ACD), along with known active compounds, were docked into two protein targets using three software packages. In cases where HTD alone was able to show some enrichment, the application of naïve Bayes was able to improve upon the enrichment. The application of this methodology to enrich HTD results can be carried out without a priori knowledge of the activity of compounds and results in superior enrichment of known actives compared to the use of scoring methods alone.
Collapse
Affiliation(s)
- Anthony E Klon
- Novartis Institute for Biomedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
475
|
Fürstner A, Ruiz-Caro J, Prinz H, Waldmann H. Structure assignment, total synthesis, and evaluation of the phosphatase modulating activity of glucolipsin A. J Org Chem 2004; 69:459-67. [PMID: 14725460 DOI: 10.1021/jo035079f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The previously unknown stereostructure of glucolipsin A (1), a complex glycolipid endowed with glucokinase-activating properties, was unambiguously elucidated as (2R,2'R,3S,3'S) by comparison of its spectroscopic and analytical data with those of all conceivable C(2)-symmetric stereoisomers. This set of macrodiolides was prepared by a sequence comprising auxiliary guided aldol reactions, glycosidation of the resulting beta-hydroxy acid derivatives with trichloroacetimidate 7, followed by hydrolytic cleavage of the auxiliaries used. The hydroxy acids thus formed were subjected to a macrodilactonization reaction mediated by 2-chloro-1,3-dimethylimidazolinium chloride (22) as the activating agent; this transformation is highly productive only in the presence of admixed potassium cations which likely serve as templates to preorganize two substrate molecules in a favorable head-to-tail arrangement. Glucolipsin and analogues were subjected to enzymatic assays that revealed that glycoconjugates of this type effectively inhibit the activity of the dual specific phosphatase Cdc25A with IC(50) values in the low micromolar range, while being hardly active against the tyrosine phosphatase PTP1B in vitro. This activity profile was compared to that of other glycolipids previously prepared in this laboratory, including cycloviracin B(1) (2), caloporoside (38), woodrosin I (39), sophorolipid lactone (40), and tricolorin G (41).
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany.
| | | | | | | |
Collapse
|
476
|
Peterson RL, Casciotti L, Block L, Goad MEP, Tong Z, Meehan JT, Jordan RA, Vinlove MP, Markiewicz VR, Weed CA, Dorner AJ. Mechanistic toxicogenomic analysis of WAY-144122 administration in Sprague–Dawley rats. Toxicol Appl Pharmacol 2004; 196:80-94. [PMID: 15050410 DOI: 10.1016/j.taap.2003.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 11/06/2003] [Indexed: 11/23/2022]
Abstract
Application of global gene expression analysis in the study of mechanisms of toxicity could provide a more comprehensive interpretation of the molecular basis of drug action. WAY-144122 has pharmacological activity against several targets improving insulin responsiveness and favorably altering lipid profiles. Normal rats treated with suprapharmacological doses of WAY-144122 for 28 days exhibited drug-related effects in the liver and ovary. To determine the molecular mechanism underlying these effects, we employed global gene expression profiling to measure RNA levels in these target organs obtained from WAY-144122-treated rats administered test article for 1, 3, 7, and 14 days. Genes altered in expression by WAY-144122 were functionally categorized and related to their biological activity. In the liver, WAY-144122 caused a widespread up-regulation of genes involved in lipid mobilization, peroxisomal proliferation, and fatty acid beta-oxidation. In the ovary, we observed reduced expression of genes encoding luteinizing hormone receptor, follistatin, and enzymes in the estradiol synthesis pathway. Transcriptional changes in both organs precede histopathological effects. Profiling analysis allowed us to formulate hypotheses for molecular mechanisms underlying the physiological observations. In the liver, transcriptional changes suggest that WAY-144122 induced increased metabolic activity and peroxisomal proliferation resulting in increased liver weight and hepatocellular hypertrophy. We propose decreased estradiol synthesis as the underlying mechanism for the observed follicular atrophy in the ovary. Importantly, in this study, we have identified potential molecular mechanisms of drug effect in expression profiles before observation of physiological changes.
Collapse
Affiliation(s)
- R L Peterson
- Discovery Medicine, Wyeth Research, Andover, MA 01810, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
Ojida A, Mito-oka Y, Sada K, Hamachi I. Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(II)−dipicolylamine)-Based Artificial Receptors. J Am Chem Soc 2004; 126:2454-63. [PMID: 14982454 DOI: 10.1021/ja038277x] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The phosphorylation of proteins represents a ubiquitous mechanism for the cellular signal control of many different processes, and thus selective recognition and sensing of phosphorylated peptides and proteins in aqueous solution should be regarded as important targets in the research field of molecular recognition. We now describe the design of fluorescent chemosensors bearing two zinc ions coordinated to distinct dipicolylamine (Dpa) sites. Fluorescence titration experiments show the selective and strong binding toward phosphate derivatives in aqueous solution. On the basis of (1)H NMR and (31)P NMR studies, and the single-crystal X-ray structural analysis, it is clear that two Zn(Dpa) units of the binuclear receptors cooperatively act to bind a phosphate site of these derivatives. Good agreement of the binding affinity estimated by isothermal titration calorimetry with fluorescence titration measurements revealed that these two receptors can fluorometrically sense several phosphorylated peptides that have consensus sequences modified with natural kinases. These chemosensors display the following significant features: (i) clear distinction between phosphorylated and nonphosphorylated peptides, (ii) sequence-dependent recognition, and (iii) strong binding to a negatively charged phosphorylated peptide, all of which can be mainly ascribed to coordination chemistry and electrostatic interactions between the receptors and the corresponding peptides. Detailed titration experiments clarified that the phosphate anion-assisted coordination of the second Zn(II) to the binuclear receptors is crucial for the fluorescence intensification upon binding to the phosphorylated derivatives. In addition, it is demonstrated that the binuclear receptors can be useful for the convenient fluorescent detection of a natural phosphatase (PTP1B) catalyzed dephosphorylation.
Collapse
Affiliation(s)
- Akio Ojida
- PRESTO, Organization and Function, JST, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
478
|
Dubé N, Cheng A, Tremblay ML. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc Natl Acad Sci U S A 2004; 101:1834-9. [PMID: 14766979 PMCID: PMC357013 DOI: 10.1073/pnas.0304242101] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphatase (PTP) 1B has been implicated as a negative regulator of multiple signaling pathways downstream of receptor tyrosine kinases. Inhibition of this enzyme was initially thought to potentially lead to increased oncogenic signaling and tumorigenesis. Surprisingly, we show that platelet-derived growth factor-stimulated extracellular-regulated kinase signaling in PTP1B-deficient cells is not significantly hyperactivated. Moreover, these cells exhibit decreased Ras activity and reduced proliferation by way of previously uncharacterized pathways. On immortalization, PTP1B-deficient fibroblasts display increased expression of Ras GTPase-activating protein (p120RasGAP). Furthermore, we demonstrate that p62Dok (downstream of tyrosine kinase) is a putative substrate of PTP1B and that tyrosine phosphorylation of p62Dok is indeed increased in PTP1B-deficient cells. Consistent with the decreased Ras activity in cells lacking PTP1B, introduction of constitutively activated Ras restored extracellular-regulated kinase signaling and their proliferative potential to those of WT cells. These results indicate that loss of PTP1B can lead to decreased Ras signaling, despite enhanced signaling of other pathways. This finding may in part explain the absence of increased tumor incidence in PTP1B-deficient mice. Thus, PTP1B can positively regulate Ras activity by acting on pathways distal to those of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Nadia Dubé
- McGill Cancer Centre and Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Room 715, Montreal, QC, Canada H3G 1Y6
| | | | | |
Collapse
|
479
|
Lau CK, Bayly CI, Gauthier JY, Li CS, Therien M, Asante-Appiah E, Cromlish W, Boie Y, Forghani F, Desmarais S, Wang Q, Skorey K, Waddleton D, Payette P, Ramachandran C, Kennedy BP, Scapin G. Structure based design of a series of potent and selective non peptidic PTP-1B inhibitors. Bioorg Med Chem Lett 2004; 14:1043-8. [PMID: 15013020 DOI: 10.1016/j.bmcl.2003.11.076] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 11/14/2003] [Indexed: 11/27/2022]
Abstract
A series of benzotriazole phenyldifluoromethylphosphonic acids were found to be potent PTP-1B inhibitors. Molecular modeling on the X-ray crystal structure of the lead structure led to the design of potent PTP-1B inhibitors that show moderate selectivity against TC-PTP, a very closely related protein tyrosine phosphatase.
Collapse
Affiliation(s)
- Cheuk K Lau
- Department of Medicinal Chemistry, Merck Frosst Centre for Therapeutic Research, PO Box 1005, Pointe Claire-Dorval, Quebec H9R 4P8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Heinonen KM, Nestel FP, Newell EW, Charette G, Seemayer TA, Tremblay ML, Lapp WS. T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood 2004; 103:3457-64. [PMID: 14726372 DOI: 10.1182/blood-2003-09-3153] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The deregulation of the immune response is a critical component in inflammatory disease. Recent in vitro data show that T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of cytokine signaling. Furthermore, tc-ptp(-/-) mice display immune defects and die within 5 weeks of birth. We report here that tc-ptp(-/-) mice develop progressive systemic inflammatory disease as shown by chronic myocarditis, gastritis, nephritis, and sialadenitis as well as elevated serum interferon-gamma. The widespread mononuclear cellular infiltrates correlate with exaggerated interferon-gamma, tumor necrosis factor-alpha, interleukin-12, and nitric oxide production in vivo. Macrophages grown from tc-ptp(-/-) mice are inherently hypersensitive to lipopolysaccharide, which can also be detected in vivo as an increased susceptibility to endotoxic shock. These results identify T-cell protein tyrosine phosphatase as a key modulator of inflammatory signals and macrophage function.
Collapse
Affiliation(s)
- Krista M Heinonen
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|
481
|
Kellie S, Craggs G, Bird IN, Jones GE. The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation. J Cell Sci 2004; 117:609-18. [PMID: 14709717 DOI: 10.1242/jcs.00879] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.
Collapse
Affiliation(s)
- Stuart Kellie
- School of Molecular and Microbial Sciences, Institute for Molecular Bioscience and CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
482
|
Xin Z, Liu G, Abad-Zapatero C, Pei Z, Szczepankiewicz BG, Li X, Zhang T, Hutchins CW, Hajduk PJ, Ballaron SJ, Stashko MA, Lubben TH, Trevillyan JM, Jirousek MR. Identification of a monoacid-Based, cell permeable, selective inhibitor of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 2003; 13:3947-50. [PMID: 14592481 DOI: 10.1016/j.bmcl.2003.08.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoacid-based PTP1B inhibitors with improved physiochemical properties have been investigated. A (2-hydroxy-phenoxy) acetic acid-based phosphotyrosyl mimetic has been linked with an optimized second arylphosphate binding site ligand to produce compound 20 with low micromolar potency against PTP1B, good selectivity over TCPTP (20-fold) and high cell permeability in the Caco-2 system.
Collapse
Affiliation(s)
- Zhili Xin
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Shimizu S, Ugi S, Maegawa H, Egawa K, Nishio Y, Yoshizaki T, Shi K, Nagai Y, Morino K, Nemoto KI, Nakamura T, Bryer-Ash M, Kashiwagi A. Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem 2003; 278:43095-101. [PMID: 12941932 DOI: 10.1074/jbc.m306880200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like hyperglycemia, postprandial (diet-induced) hypertriglyceridemia is thought to play crucial roles in the pathogenesis of insulin resistant/metabolic syndrome. Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcription factor to induce postprandial hypertriglyceridemia. We found that insulin-resistant rats fed a diet high in fructose showed an increased proteintyrosine phosphatase 1B (PTP1B) content with strong expression of SREBP-1 mRNA in the liver. To clarify the association of PTP1B with SREBP-1 gene expression, we overexpressed PTP1B in rat hepatocytes, which led to increased mRNA content and promoter activity of SREBP-1a and -1c, resulting in the increased mRNA expression of fatty-acid synthase, one of the SREBP-1-responsive lipogenic genes. Because PTP1B overexpression increased phosphatase 2A (PP2A) activity, we inhibited PP2A activity by expression of its selective inhibitor, SV40 small T antigen and found that this normalized the PTP1B-enhanced SREBP-1a and -1c mRNA expressions through activation of the Sp1 site. These results indicate that PTP1B may regulate gene expression of SREBP-1 via enhancement of PP2A activity, thus mediating hepatic lipogenesis and postprandial hypertriglyceridemia. We demonstrate here a unique serial activation of the PTP1B-PP2A axis as a novel mechanism for the regulation of gene expression in the biosynthesis of triglyceride.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Blotting, Northern
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Fructose/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Hepatocytes/metabolism
- Insulin/metabolism
- Insulin Resistance
- Liver/metabolism
- Luciferases/metabolism
- Models, Biological
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Phosphatase 2
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Ribonucleases/metabolism
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Sterol Regulatory Element Binding Protein 1
- Transcription Factors
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Shinya Shimizu
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Liu G, Xin Z, Pei Z, Hajduk PJ, Abad-Zapatero C, Hutchins CW, Zhao H, Lubben TH, Ballaron SJ, Haasch DL, Kaszubska W, Rondinone CM, Trevillyan JM, Jirousek MR. Fragment screening and assembly: a highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J Med Chem 2003; 46:4232-5. [PMID: 13678400 DOI: 10.1021/jm034122o] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using an NMR-based fragment screening and X-ray crystal structure-based assembly, starting with millimolar ligands for both the catalytic site and the second phosphotyrosine binding site, we have identified a small-molecule inhibitor of protein tyrosine phosphatase 1B with low micromolar inhibition constant, high selectivity (30-fold) over the highly homologous T-cell protein tyrosine phosphatase, and good cellular activity in COS-7 cells.
Collapse
Affiliation(s)
- Gang Liu
- Metabolic Disease Research and Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
|
486
|
|
487
|
Dadke S, Chernoff J. Protein-tyrosine phosphatase 1B mediates the effects of insulin on the actin cytoskeleton in immortalized fibroblasts. J Biol Chem 2003; 278:40607-11. [PMID: 12902327 DOI: 10.1074/jbc.m306772200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates diverse cellular responses including actin reorganization. The mechanism by which insulin induces formation of lamellipodia in cultured cells is not known but is likely to involve activation of Src family protein-tyrosine kinases. Here we show that protein-tyrosine phosphatase 1B (PTPIB) activates Src, thereby initiating the activation of a Rac-dependent pathway leading to cytoskeletal remodeling. Conversely, expression of a proline to alanine (P309,310A) PTP1B mutant, which cannot activate Src, fails to activate Rho GTPases or cause changes in actin organization. Rat fibroblasts lacking PTP1B expression do not activate Src or Rac in response to insulin and cannot reorganize actin. These results show that PTP1B, best known as a negative regulator of the metabolic effects of insulin, is required for the effects of insulin on actin organization in immortalized fibroblasts.
Collapse
|
488
|
Ragab A, Bodin S, Viala C, Chap H, Payrastre B, Ragab-Thomas J. The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcgammaRIIa cross-linking. J Biol Chem 2003; 278:40923-32. [PMID: 12857726 DOI: 10.1074/jbc.m303602200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human platelets express the receptor for immunoglobulin G, FcgammaRIIa, that triggers cell aggregation upon interaction with immune complexes. Here, we report that the rapid tyrosine phosphorylation of the Linker for Activation of T-cell (LAT) in human platelets stimulated by FcgammaRIIa cross-linking was followed by its complete dephosphorylation in an alphaIIb/beta3 integrin-dependent manner. Concomitant to LAT dephosphorylation, the protein tyrosine phosphatase 1B (PTP1B) was activated through a mechanism involving its proteolysis by calpains downstream of integrins. Both PTP1B and LAT were associated with the actin cytoskeleton complex formed during platelet aggregation. Moreover, phospho-LAT appeared as a good substrate of activated PTP1B in vitro and these two proteins interacted upon platelet activation by FcgammaRIIa cross-linking. The permeant substrate-trapping PTP1B (TAT-PTP1B D181A) partly inhibited LAT dephosphorylation in human platelets, strongly suggesting that this tyrosine phosphatase was involved in this regulatory pathway. Using a pharmacological inhibitor, we provide evidence that PTP1B activation and LAT dephosphorylation processes were required for irreversible platelet aggregation. Altogether, our results demonstrate that PTP1B plays an important role in the integrin-mediated dephosphorylation of LAT in human platelets and is involved in the control of irreversible aggregation upon FcgammaRIIa stimulation.
Collapse
Affiliation(s)
- Ashraf Ragab
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Institut Fédératif de Recherche 30, Universite Paul Sabatier, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
489
|
Pei Z, Li X, Liu G, Abad-Zapatero C, Lubben T, Zhang T, Ballaron SJ, Hutchins CW, Trevillyan JM, Jirousek MR. Discovery and SAR of novel, potent and selective protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2003; 13:3129-32. [PMID: 12951078 DOI: 10.1016/s0960-894x(03)00725-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A salicylate second site binder was linked to three classes of phosphotyrosine mimetics to produce potent protein tyrosine phosphatase 1B (PTP1B) inhibitors which exhibit significant selectivity against other phosphatases including the most homologous member, TCPTP.
Collapse
Affiliation(s)
- Zhonghua Pei
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Kirkpatrick P. Piecing together phosphatase inhibitors. Nat Rev Drug Discov 2003. [DOI: 10.1038/nrd1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
491
|
Erlanson DA, McDowell RS, He MM, Randal M, Simmons RL, Kung J, Waight A, Hansen SK. Discovery of a new phosphotyrosine mimetic for PTP1B using breakaway tethering. J Am Chem Soc 2003; 125:5602-3. [PMID: 12733877 DOI: 10.1021/ja034440c] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine phosphatases play important roles in many signaling cascades involved in human disease. The identification of druglike inhibitors for these targets is a major challenge, and the discovery of suitable phosphotyrosine (pY) mimetics remains one of the key difficulties. Here we describe an extension of tethering technology, "breakaway tethering", which is ideally suited for discovering such new chemical entities. The approach involves first irreversibly modifying a protein with an extender that contains both a masked thiol and a known pY mimetic. The extender is then cleaved to release the pY mimetic, unmasking the thiol. The resulting protein is screened against a library of disulfide-containing small molecule fragments; any molecules with inherent affinity for the pY binding site will preferentially form disulfides with the extender, allowing for their identification by mass spectrometry. The ability to start from a known substrate mimimizes perturbation of protein structure and increases the opportunity to probe the active site using tethering. We applied this approach to the anti-diabetic protein PTP1B to discover a pY mimetic which belongs to a new molecular class and which binds in a novel fashion.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
492
|
|
493
|
Szczepankiewicz BG, Liu G, Hajduk PJ, Abad-Zapatero C, Pei Z, Xin Z, Lubben TH, Trevillyan JM, Stashko MA, Ballaron SJ, Liang H, Huang F, Hutchins CW, Fesik SW, Jirousek MR. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J Am Chem Soc 2003; 125:4087-96. [PMID: 12670229 DOI: 10.1021/ja0296733] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B. A second site ligand was also identified by NMR-based screening and then linked to the catalytic site ligand by rational design. X-ray data confirmed that the inhibitor bound with the catalytic site in the native, "open" conformation. The final compound displayed excellent potency and good selectivity over many other phosphatases. The modular approach to drug design described in this work should be applicable for the design of potent and selective inhibitors of other therapeutically relevant protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Bruce G Szczepankiewicz
- Metabolic Disease Research, Global Pharmaceutical Research and Development Organization, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 2003; 284:E663-70. [PMID: 12626322 DOI: 10.1152/ajpendo.00462.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Ernest Asante-Appiah
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Pointe-Claire - Dorval, Quebec, Canada H9R 4P8
| | | |
Collapse
|
495
|
Larsen SD, Stevens FC, Lindberg TJ, Bodnar PM, O'Sullivan TJ, Schostarez HJ, Palazuk BJ, Bleasdale JE. Modification of the N-terminus of peptidomimetic protein tyrosine phosphatase 1B (PTP1B) inhibitors: identification of analogues with cellular activity. Bioorg Med Chem Lett 2003; 13:971-5. [PMID: 12617932 DOI: 10.1016/s0960-894x(02)01065-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low molecular weight peptidomimetic compounds based on O-malonyl tyrosine and O-carboxymethyl salicylic acid are potent inhibitors of PTP1B. Modifications of the N-terminal Boc-Phe moiety were undertaken in an effort to improve physical chemical properties and to achieve cellular activity. Although Phe ultimately proved to be the optimal N-terminal amino acid, several viable replacements for the Boc group were identified, two of which afforded analogues that were effective at enhancing the insulin-stimulated uptake of 2-deoxyglucose by L6 myocytes.
Collapse
Affiliation(s)
- Scott D Larsen
- Medicinal Chemistry Research, Pharmacia Corporation, 333 Portage Street, Kalamazoo, MI 49007, USA.
| | | | | | | | | | | | | | | |
Collapse
|
496
|
Chapter 24. Obesity therapeutics: Prospects and perspectives. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|