451
|
Zhu T, Lobie PE. Janus kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone. Resultant transcriptional activation of ATF-2 and CHOP, cytoskeletal re-organization and mitogenesis. J Biol Chem 2000; 275:2103-14. [PMID: 10636915 DOI: 10.1074/jbc.275.3.2103] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate here that p38 mitogen-activated protein (MAP) kinase is activated in response to cellular stimulation by human GH (hGH) in Chinese hamster ovary cells stably transfected with GH receptor cDNA. This activation requires the proline-rich box 1 region of the GH receptor required for JAK2 association and is prevented by pretreatment of cells with the JAK2-specific inhibitor AG490. ATF-2 is both phosphorylated and transcriptionally activated by hGH, and its transcriptional activation also requires the proline-rich box 1 region of the GH receptor. Expression of wild type JAK2 can further enhance hGH-induced ATF-2-, CHOP-, and Elk-1-mediated transcriptional activation, whereas pretreatment with AG490 is inhibitory. Use of either specific pharmacological inhibitors or transient transfection of cells with p38alpha MAP kinase cDNA or a dominant negative variant demonstrated that hGH-stimulated transcriptional activation of ATF-2 and CHOP, but not Elk-1, is regulated by p38 MAP kinase. Both the p38 MAP kinase and p44/42 MAP kinase are critical for hGH-stimulated mitogenesis, whereas only p38 MAP kinase is required for hGH-induced actin cytoskeletal re-organization. p38 MAP kinase is therefore an important regulator in coordinating the pleiotropic effects of GH.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | |
Collapse
|
452
|
Chevalier D, Thorin E, Allen BG. Simultaneous measurement of ERK, p38, and JNK MAP kinase cascades in vascular smooth muscle cells. J Pharmacol Toxicol Methods 2000; 44:429-39. [PMID: 11325585 PMCID: PMC5291723 DOI: 10.1016/s1056-8719(00)00118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Activation of the mitogen-activated protein kinase (MAP kinase) pathways in cultured porcine aortic vascular smooth muscle cells (VSMCs) was determined following a 5-min stimulation with endothelin-1 (ET-1), phorbol 12-myristate 13-acetate (PMA), H2O2, or sodium arsenite. Extracellular signal-related kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK1/2) MAP kinase activation was assessed using anti-phospho-MAPK kinase antibodies. The activation of these kinase cascades was also determined by resolving lysates on Mono Q using a fast protein liquid chromatography (FPLC) system and measuring the phosphorylation of specific substrates ERK1, c-Jun, and hsp27. The substrates were subsequently resolved from each other and the [gamma-32P]ATP in the reaction mixture by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the incorporation of 32P was quantified by phosphor imaging. This technique revealed the presence of multiple peaks of activity phosphorylating ERK1 (5), c-Jun (7), and hsp27 (9). Differences in activation revealed by the chromatographic technique suggest that, although equivalent levels of activation may be detected by immunoblotting, the actual nature of the response differed depending upon the stimulus. Each stimulus that activated the MAP kinase cascades did not result in equivalent 'profile' of activation of kinase activities. These results suggest the presence of a mechanism of structural organization of the MAP kinase signaling molecules themselves resulting in the compartmentalization of responses with respect to the various cellular stimuli.
Collapse
Affiliation(s)
- Dominique Chevalier
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
| | - Eric Thorin
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
- Departments of Surgery and Physiology, Université de Montréal, Montréal, PQ, Canada H3C 3J7
| | - Bruce G. Allen
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
- Departments of Medicine and Biochemistry, Université de Montréal, Montréal, PQ, Canada H3C 3J7
- Corresponding author. Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8. Tel.: +1-514-376-3330 ext. 3591; fax: +1-514-376-1355. (B.G. Allen)
| |
Collapse
|
453
|
Abstract
The p38 signalling transduction pathway, a Mitogen-activated protein (MAP) kinase pathway, plays an essential role in regulating many cellular processes including inflammation, cell differentiation, cell growth and death. Activation of p38 often through extracellular stimuli such as bacterial pathogens and cytokines, mediates signal transduction into the nucleus to turn on the responsive genes. p38 also transduces signals to other cellular components to execute different cellular responses. In this review, we summarize the characteristics of the major components of the p38 signalling transduction pathway and highlight the targets of this pathway and the physiological function of the p38 activation.
Collapse
Affiliation(s)
- K Ono
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
454
|
Gum RJ, Young PR. Identification of two distinct regions of p38 MAPK required for substrate binding and phosphorylation. Biochem Biophys Res Commun 1999; 266:284-9. [PMID: 10581204 DOI: 10.1006/bbrc.1999.1787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mechanism by which different mitogen activated protein kinases (MAPKs) distinguish between different substrates is poorly understood. For example, p38 and SAPK4 are two closely related p38 MAPKs that both phosphorylate ATF2 and MBP. However, p38 phosphorylates MAPKAPK-2 and -3, whereas SAPK4 does not. In this study, we have used mutagenesis to determine the regions of p38 required for substrate selection. Alanine scanning mutagenesis identified one region of p38 that was required for its ability to phosphorylate MAPKAPK-2 and -3, but that did not significantly affect its binding to these substrates. Chimeras of p38 and SAPK4 identified a second region of p38 that affected the ability of p38 to both bind and phosphorylate MAPKAPK-2 and -3. Hence, we show for the first time that MAPKs contain two distinct regions for recognizing and phosphorylating protein substrates.
Collapse
Affiliation(s)
- R J Gum
- Department of Molecular Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA19406, USA
| | | |
Collapse
|
455
|
Tchou WW, Yie TA, Tan TH, Rom WN, Tchou-Wong KM. Role of c-Jun N-terminal kinase 1 (JNK1) in cell cycle checkpoint activated by the protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal. Oncogene 1999; 18:6974-80. [PMID: 10597296 DOI: 10.1038/sj.onc.1203195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cysteine protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal (LLnL) inhibited the growth of the Calu-1 lung carcinoma cells and induced a prolonged cell cycle arrest in the S phase. c-Jun N-terminal kinases (JNKs) participate in cellular responses to mitogenic stimuli, environmental stresses, and apoptotic signals but its role in cell cycle checkpoint control has not been elucidated. In this report, we examined the role of JNK in LLnL-induced S phase checkpoint by overexpression of a dominant-negative mutant of JNK1 (JNK1-APF) in Calu-1 cells. Expression of high levels of JNK1-APF blocked the growth-inhibitory effects of LLnL and abrogated S phase arrest induced by LLnL. These results support the role of JNK in the activation of cell cycle checkpoint induced by LLnL.
Collapse
Affiliation(s)
- W W Tchou
- Division of Hematology & Oncology, New York University Medical Center, NY 10016, USA
| | | | | | | | | |
Collapse
|
456
|
Cong F, Goff SP. c-Abl-induced apoptosis, but not cell cycle arrest, requires mitogen-activated protein kinase kinase 6 activation. Proc Natl Acad Sci U S A 1999; 96:13819-24. [PMID: 10570156 PMCID: PMC24148 DOI: 10.1073/pnas.96.24.13819] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G(1)/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.
Collapse
Affiliation(s)
- F Cong
- Department of Biological Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
457
|
Davis MA, Carbott DE. Herbimycin A and geldanamycin inhibit okadaic acid-induced apoptosis and p38 activation in NRK-52E renal epithelial cells. Toxicol Appl Pharmacol 1999; 161:59-74. [PMID: 10558924 DOI: 10.1006/taap.1999.8765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important to understand the mechanisms by which phosphorylation-dependent events play a role in regulation of apoptosis in toxicant-metabolizing organs such as the kidney. Our previous work demonstrated that the toxicant and phosphatase inhibitor okadaic acid induces apoptosis of renal epithelial cells via a mechanism that appears to involve the modulation of c-raf-1, p38 kinase, and extracellular regulatory kinase (ERK) cascades. Using the benzoquinone ansamycins and tyrosine kinase inhibitors geldanamycin and herbimycin A, we examined the contribution of tyrosine phosphorylation and c-raf-1 activities to okadaic acid-induced apoptosis. In this report we show that both geldanamycin and herbimycin A protected NRK-52E cells from okadaic acid-induced apoptosis, abrogated the overall okadaic acid-induced kinase activation, and specifically inhibited activation of p38 kinase by okadaic acid. Herbimycin A and geldanamycin also abrogated okadaic-acid induced morphologic changes such as cell rounding and cell membrane blebbing. Herbimycin A and geldanamycin caused pronounced cell spreading, cell flattening, and a decrease in okadaic acid-induced loss of actin filaments. Interestingly, herbimycin A showed more potent inhibitory effect than geldanamycin, and herbimycin A alone inhibited okadaic acid-induced movement of p38 kinase into the cytosol. These results imply that decreased p38 activity and its cytosolic translocation together with cellular resistance to cytoskeletal disorganization may play a significant role in resistance to phosphorylation-dependent apoptosis. Furthermore, the results imply that changes in cell shape may partially modulate the observed alterations in signal transduction induced by okadaic acid.
Collapse
Affiliation(s)
- M A Davis
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
458
|
Reddy S, Yang W, Taylor DG, Shen XQ, Oxender D, Kust G, Leff T. Mitogen-activated protein kinase regulates transcription of the ApoCIII gene. Involvement of the orphan nuclear receptor HNF4. J Biol Chem 1999; 274:33050-6. [PMID: 10551874 DOI: 10.1074/jbc.274.46.33050] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional regulation of the apoCIII gene by hormonal and metabolic signals plays a significant role in determining plasma triglyceride levels. In the current work we demonstrate that the apoCIII gene is regulated by the mitogen-activated protein (MAP) kinase signaling pathway. In HepG2 cells, repression of MAP kinase activity by treatment with the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 caused a 5-8-fold increase in apoCIII transcriptional activity. Activation of MAP kinase by phorbol ester treatment caused a 3-5-fold reduction in apoCIII transcription. The region of the apoCIII promoter responsible for this regulation was mapped in transiently transfected HepG2 cells to a 6-base pair element located at -740. The major protein binding to this site was identified as the nuclear hormone receptor HNF4. An increase in HNF4 mRNA and protein levels was observed in HepG2 cells after treatment with PD98059, indicating that the MAP kinase pathway regulates the expression of the HNF4 gene. These findings demonstrate that the apoCIII gene can be regulated by signals acting through the MAP kinase pathway and that this regulation is mediated, at least in part, by changes in the amount of HNF4.
Collapse
Affiliation(s)
- S Reddy
- Department of Cell Biology, Parke-Davis Research, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
459
|
Kreideweiss S, Ahlers C, Nordheim A, Rühlmann A. Ca2+-induced p38/SAPK signalling inhibited by the immunosuppressant cyclosporin A in human peripheral blood mononuclear cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1075-84. [PMID: 10518804 DOI: 10.1046/j.1432-1327.1999.00830.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the effects of the immunosuppressant cyclosporin A (CsA) on Ca2+-mediated intracellular signalling pathways in human peripheral blood mononuclear cells (PBMCs), we investigated its effects on the activity profiles of mitogen-activated protein kinase (MAPK) cascades. PBMCs, or subpopulations thereof, were simultaneously stimulated with a phorbol ester and the calcium ionophore ionomycin, in the presence or absence of therapeutic concentrations of CsA. In these primary human cells, CsA significantly inhibited PMA/ionomycin-mediated and ionomycin-mediated activation of the MAPK kinase MKK6, as well as its downstream kinases SAPK2a (p38alpha) and MAPKAP-K2. PMA/ionomycin treatment also mediated activation of SAPK1 (JNKs) which was inhibited by CsA. Treatment with ionomycin alone also resulted in CsA-sensitive activation of SAPK1. With regard to transcription factors targeted by the Ca2+-induced MAPK signalling network, we found CsA to inhibit the ionomycin-mediated phosphorylation of ATF2 at Thr71. We identified the heterodimeric transcription factor ATF2/CREB as constitutively binding to the essential cAMP response element (CRE) site within the Ca2+-regulated DNA polymerase beta promoter and contributing to the activation of this promoter. Our data implicate ATF2 phosphorylation status as a nuclear sensor within PBMCs that monitors converging intracellular Ca2+-signalling pathways.
Collapse
Affiliation(s)
- S Kreideweiss
- Medizinische Hochschule Hannover, Institut für Molekularbiologie, Hannover, Germany
| | | | | | | |
Collapse
|
460
|
Daniels I, Fletcher J, Haynes AP. Role of p38 in the priming of human neutrophils by peritoneal dialysis effluent. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:878-84. [PMID: 10548580 PMCID: PMC95792 DOI: 10.1128/cdli.6.6.878-884.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peritoneal dialysis effluent (PDE) contains a low-molecular-weight substance that is able to prime human neutrophils for the release of arachidonic acid and superoxide anion. Conventional priming agents, such as tumor necrosis factor alpha (TNF-alpha), are known to signal via mitogen-activated protein (MAP) kinases; at least one possible substrate for MAP kinases is cytosolic phospholipase A(2) (cPLA(2)). Phosphorylation of this enzyme results in arachidonic acid release, and this fatty acid is a potent primer and activator of the human neutrophil NADPH oxidase. Because of the striking similarities between the priming of neutrophils with agents such as TNF-alpha and PDE, we have investigated the signalling pathways evoked by PDE and explored the possibility that cPLA(2) is a target for activated MAP kinases. Our results show that PDE treatment of human neutrophils results in the phosphorylation of the p38 kinase rather than the p42 and p44 kinases. Phosphorylation of p38 is transient with maximal activity being observed 1 min after exposure to PDE. We were unable to demonstrate that activation of p38 resulted in phosphorylation of cPLA(2); furthermore, translocation of this enzyme to a membrane-containing fraction was not enhanced in PDE-treated neutrophils. Taken together, these data suggest that, in a manner similar to that of TNF-alpha, PDE primes human neutrophils by the activation of the p38 kinase. However, unlike the cytokine, the activation of this protein does not result in phosphorylation or activation of cPLA(2).
Collapse
Affiliation(s)
- I Daniels
- Medical Research Centre, City Hospital, Nottingham, United Kingdom.
| | | | | |
Collapse
|
461
|
Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, Hibi M, Nakabeppu Y, Shiba T, Yamamoto KI. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 1999; 19:7539-48. [PMID: 10523642 PMCID: PMC84763 DOI: 10.1128/mcb.19.11.7539] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.
Collapse
Affiliation(s)
- M Ito
- Department of Biosciences, School of Science, Kitasato University, Kanagawa 228, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kähäri VM, Heino J. Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 1999; 147:401-16. [PMID: 10525544 PMCID: PMC2174225 DOI: 10.1083/jcb.147.2.401] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two collagen receptors, integrins alpha1beta1 and alpha2beta1, can regulate distinct functions in cells. Ligation of alpha1beta1, unlike alpha2beta1, has been shown to result in recruitment of Shc and activation of the Ras/ERK pathway. To identify the downstream signaling molecules activated by alpha2beta1 integrin, we have overexpressed wild-type alpha2, or chimeric alpha2 subunit with alpha1 integrin cytoplasmic domain in human osteosarcoma cells (Saos-2) lacking endogenous alpha2beta1. The chimeric alpha2/alpha1 chain formed a functional heterodimer with beta1. In contrast to alpha2/alpha1 chimera, forced expression of alpha2 integrin resulted in upregulation of alpha1 (I) collagen gene transcription in response to three-dimensional collagen, indicating that the cytoplasmic domain of alpha2 integrin was required for signaling. Furthermore, signals mediated by alpha2beta1 integrin specifically activated the p38alpha isoform, and selective p38 inhibitors blocked upregulation of collagen gene transcription. Dominant negative mutants of Cdc42, MKK3, and MKK4 prevented alpha2beta1 integrin-mediated activation of p38alpha. RhoA had also some inhibitory effect, whereas dominant negative Rac was not effective. Our findings show the isoform-specific activation of p38 by alpha2beta1 integrin ligation and identify Cdc42, MKK3, and MKK4 as possible downstream effectors. These observations reveal a novel signaling mechanism of alpha2beta1 integrin that is distinct from ones previously described for other integrins.
Collapse
Affiliation(s)
- Johanna Ivaska
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Hilkka Reunanen
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| | - Jukka Westermarck
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Leeni Koivisto
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
| | - Veli-Matti Kähäri
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
- Department of Dermatology, Turku University Central Hospital, FIN 20520 Turku
| | - Jyrki Heino
- MediCity Research Laboratory, Department of Medical Biochemistry, University of Turku, FIN-20520 Turku
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| |
Collapse
|
463
|
Abstract
Inflammatory mediators released during acute and chronic diseases activate multiple intracellular signalling cascades including the mitogen-activated protein kinase (MAPK) signal transduction pathway, which plays a significant role in the recruitment of leukocytes to sites of inflammation. Stimulation of leukocytes by pro-inflammatory cytokines is known to result in the activation of the MAPK isoform p38. However, the functional consequences of p38 MAPK activation during leukocyte recruitment, including adhesion, migration and effector functions such as oxidative burst and degranulation, are only just beginning to be elucidated. Specific p38 inhibitors aimed at reducing the production of inflammatory mediators are now being developed, and might in the future provide more effective treatment for inflammatory diseases.
Collapse
Affiliation(s)
- E Herlaar
- Respiratory Diseases Therapeutic Area, Department of Molecular and Cell Biology, Novartis Horsham Research Centre, Wimblehurst Road, Horsham, UK RH12 5AB.
| | | |
Collapse
|
464
|
Börsch-Haubold AG, Ghomashchi F, Pasquet S, Goedert M, Cohen P, Gelb MH, Watson SP. Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:195-203. [PMID: 10491174 DOI: 10.1046/j.1432-1327.1999.00722.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress-activated protein kinases (SAPKs) are stimulated by cell damaging agents as well as by physiological receptor agonists. In this study we show that human platelets contain the isoforms SAPK2a, SAPK2b, SAPK3 and SAPK4 as determined by immunoblotting with specific antibodies. All four kinases were activated in thrombin-stimulated platelets whereas only SAPK2a and SAPK2b were significantly stimulated by collagen. All four isoforms were able to phosphorylate wild-type human cPLA2 in vitro, although to different extents, but not cPLA2 mutants that had Ser505 replaced by alanine. Phosphorylation at Ser505 was confirmed by phosphopeptide mapping using microbore HPLC. SAPK2a and 42-kDa mitogen-activated protein kinase incorporated similar levels of phosphate into cPLA2 relative to the ability of each kinase to stimulate phosphorylation of myelin basic protein. SAPK2b and SAPK4 incorporated less phosphate, and cPLA2 was a poor substrate for SAPK3. The inhibitor of SAPK2a and SAPK2b, SB 202190, completely blocked collagen-induced phosphorylation of cPLA2 at its two phosphorylation sites in vivo, Ser505 and Ser727. We have also reported previously that SB 202190 partially ( approximately 50%) blocks phosphorylation at both sites and to a similar extent in thrombin-stimulated platelets. Inhibition of phosphorylation resulted in a two- to threefold shift to the right in the concentration response curves for arachidonic acid release from thrombin- and collagen-stimulated platelets. Our data suggest that cPLA2 is a substrate for several SAPK cascades and that phosphorylation of cPLA2 augments arachidonic acid release.
Collapse
|
465
|
Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JE. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem 1999; 274:27529-35. [PMID: 10488088 DOI: 10.1074/jbc.274.39.27529] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is known to prevent apoptosis induced by diverse stimuli. The present study examined the effect of IGF-I on the promoter activity of bcl-2, a gene with antiapoptotic function. A luciferase reporter driven by the promoter region of bcl-2 from -1640 to -1287 base pairs upstream of the translation start site containing a cAMP-response element was used in transient transfection assays. Treatment of PC12 cells with IGF-I enhanced the bcl-2 promoter activity by 2.3-fold, which was inhibited significantly (p < 0.01) by SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Cotransfection of the bcl-2 promoter with MAPK kinase 6 and the beta isozyme of p38 MAPK resulted in 2-3-fold increase in the reporter activity. The dominant negative form of MAPKAP-K3, a downstream kinase activated by p38 MAPK, and the dominant negative form of cAMP-response element-binding protein, inhibited the reporter gene activation by IGF-I and p38beta MAPK significantly (p < 0.01). IGF-I increased the activity of p38beta MAPK introduced into the cells by adenoviral infection. Thus, we have characterized a novel signaling pathway (MAPK kinase 6/p38beta MAPK/MAPKAP-K3) that defines a transcriptional mechanism for the induction of the antiapoptotic protein Bcl-2 by IGF-I through the nuclear transcription factor cAMP-response element-binding protein in PC12 cells.
Collapse
Affiliation(s)
- S Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | | | |
Collapse
|
466
|
Hsu SC, Gavrilin MA, Tsai MH, Han J, Lai MZ. p38 mitogen-activated protein kinase is involved in Fas ligand expression. J Biol Chem 1999; 274:25769-76. [PMID: 10464315 DOI: 10.1074/jbc.274.36.25769] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) is activated by T cell receptor engagement. Here we showed that T cell receptor activated p38alpha but not p38delta. Inhibition of p38alpha by the specific inhibitor SB 203580 prevented activation-induced cell death in T cells. SB 203580 had no effect on Fas-initiated apoptosis. Instead, SB 203580 preferentially inhibited activation-induced Fas ligand (FasL) expression. The inhibition on FasL expression by SB 203580 was correlated with the suppression on the FasL promoter activation. Overexpression of active MAPK kinase 3b, the activator of p38 MAPK, led to activation of FasL promoter and induction of FasL transcripts in T cells. Stress stimulation of T cells by anisomycin also induced FasL expression in a p38 MAPK-dependent manner. The induction of FasL expression in nonlymphoid cells such as 293T also required activation of p38 MAPK. Our results suggest that p38 MAPK is essential for FasL expression.
Collapse
Affiliation(s)
- S C Hsu
- Graduate Institute of Microbiology, National Taiwan University School of Medicine, Taipei 10018, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
467
|
Matthews JS, O'Neill LA. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine 1999; 11:643-55. [PMID: 10479400 DOI: 10.1006/cyto.1998.0478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1 (IL-1) activates p42/p44 and p38 mitogen-activated protein kinases (MAP kinases) in target cells. Here we have used two specific inhibitors, PD98059 which inhibits MAP kinase kinase (MEK), and SB203580 which inhibits p38 MAP kinase to explore the involvement of these kinases in the induction of IL-2 by IL-1 in the murine thymoma cell line EL4.NOB-1. Both kinase inhibitors suppressed IL-1-stimulated IL-2 production. PD98059 blocked IL-2 mRNA accumulation and the induction of a reporter gene linked to the IL-2 promoter. In contrast, SB203580 only marginally inhibited IL-2 promoter-linked reporter gene expression and had no inhibitory effect on IL-2 mRNA levels. Neither PD98059 nor SB203580 had an inhibitory effect on NFkappaB-driven reporter gene expression in response to IL-1. Surprisingly, higher concentrations of SB203580 (30 microM) potentiated the IL-1 responses. PD98059 also inhibited induction of IL-2 by phorbol 12-myristate 13-acetate (PMA), and AP1-linked reporter gene expression in response to PMA but not IL-1. These results indicate that p42/p44 MAP kinase is involved in the regulation of IL-2 gene transcription by IL-1, whilst p38 MAP kinase has a post-transcriptional target. Additional IL-1 signalling pathways can clearly compensate for the lack of p38 MAP kinase which result in potentiation of the IL-1 responses observed at high-dose SB203580.
Collapse
Affiliation(s)
- J S Matthews
- Department of Biochemistry, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
468
|
Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 1999; 274:24211-9. [PMID: 10446196 DOI: 10.1074/jbc.274.34.24211] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cells are exposed to growth factors and cytokines that contribute to pathological states including airway hyperresponsiveness, atherosclerosis, angiogenesis, smooth muscle hypertrophy, and hyperplasia. A common feature of several of these conditions is migration of smooth muscle beyond the initial boundary of the organ. Signal transduction pathways activated by extracellular signals that instigate migration are mostly undefined in smooth muscles. We measured migration of cultured tracheal myocytes in response to platelet-derived growth factor, interleukin-1beta, and transforming growth factor-beta. Cellular migration was blocked by SB203580, an inhibitor of p38(MAPK). Time course experiments demonstrated increased phosphorylation of p38(MAPK). Activation of p38(MAPK) resulted in the phosphorylation of HSP27 (heat shock protein 27), which may modulate F-actin polymerization. Inhibition of p38(MAPK) activity inhibited phosphorylation of HSP27. Adenovirus-mediated expression of activated mutant MAPK kinase 6b(E), an upstream activator for p38(MAPK), increased cell migration, whereas overexpression of p38alpha MAPK dominant negative mutant and an HSP27 phosphorylation mutant blocked cell migration completely. The results indicate that activation of the p38(MAPK) pathway by growth factors and proinflammatory cytokines regulates smooth muscle cell migration and may contribute to pathological states involving smooth muscle dysfunction.
Collapse
Affiliation(s)
- J C Hedges
- Cell and Molecular Biology Program, University of Nevada at Reno, Reno, Nevada 89557-0046, USA
| | | | | | | | | | | | | |
Collapse
|
469
|
Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem 1999; 274:23570-6. [PMID: 10438538 DOI: 10.1074/jbc.274.33.23570] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways.
Collapse
Affiliation(s)
- P W Conrad
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | |
Collapse
|
470
|
Nadkarni V, Gabbay KH, Bohren KM, Sheikh-Hamad D. Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase. J Biol Chem 1999; 274:20185-90. [PMID: 10400634 DOI: 10.1074/jbc.274.29.20185] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hypertonicity induces a group of genes that are responsible for the intracellular accumulation of protective organic osmolytes such as sorbitol and betaine. Two representative genes are the aldose reductase enzyme (AR, EC 1.1.1.21), which is responsible for the conversion of glucose to sorbitol, and the betaine transporter (BGT1), which mediates Na+-coupled betaine uptake in response to osmotic stress. We recently reported that the induction of BGT1 mRNA in the renal epithelial Madin-Darby canine kidney cell line is inhibited by SB203580, a specific p38 kinase inhibitor. In these studies we report that the hypertonic induction of aldose reductase mRNA in HepG2 cells as well as the osmotic response element (ORE)-driven reporter gene expression in transfected HepG2 cells are both inhibited by SB203580, suggesting that p38 kinase mediates the activation and/or binding of the transcription factor(s) to the ORE. Electrophoretic gel mobility shift assays with cell extracts prepared from SB203580-treated, hypertonically stressed HepG2 cells further show that the binding of trans-acting factors to the ORE is prevented and is thus also dependent on the activity of p38 kinase. Similarly, treatment of hypertonically stressed cells with PD098059, a mitogen-activated extracellular regulated kinase kinase (MEK1) inhibitor, results in inhibition of the hypertonic induction of aldose reductase mRNA, ORE-driven reporter gene expression, and the binding of trans-acting factors to the ORE. ORE-driven reporter gene expression was not affected by p38 kinase inhibition or MEK1 inhibition in cells incubated in iso-osmotic media. These data indicate that p38 kinase and MEK1 are involved in the regulation of the hyperosmotic stress response.
Collapse
Affiliation(s)
- V Nadkarni
- Harry B. and Aileen Gordon Diabetes Research Laboratory, Molecular Diabetes and Metabolism Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
471
|
Zhu X, Li H, Liu JP, Funder JW. Androgen stimulates mitogen-activated protein kinase in human breast cancer cells. Mol Cell Endocrinol 1999; 152:199-206. [PMID: 10432237 DOI: 10.1016/s0303-7207(99)00031-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which androgens modulate breast cancer cell growth are largely unknown. Using cultured human PMC42 breast cancer cells, we have determined effects of the androgen R1881 on the activity of the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase. R1881 did not alter JNK and p38 kinase activity, but activated ERK in a dose-dependent manner. Activation was rapid, peaking at 5 min followed by a decline to baseline after 30-60 min, and was accompanied by tyrosine phosphorylation of ERK. The androgen antagonist flutamide elevated ERK to similar levels and DNA synthesis to levels half those seen with R1881; in addition, excess flutamide lowered R1881-stimulated DNA synthesis to levels seen with flutamide alone. These findings suggest (i) that in human PMC42 breast cancer cells R1881 activates ERK through a non-genomic mechanism, (ii) that this non-genomic mechanism is equivalently activated by the androgen antagonist flutamide, and (iii) that androgen/antiandrogen effect on DNA synthesis may involve both genomic and non-genomic mechanisms. These findings may have important implications for the clinical use of such agents in breast cancer.
Collapse
Affiliation(s)
- X Zhu
- Baker Medical Research Institute, Prahran, Vic., Australia
| | | | | | | |
Collapse
|
472
|
Arbabi S, Garcia I, Bauer GJ, Maier RV. Alcohol (Ethanol) Inhibits IL-8 and TNF: Role of the p38 Pathway. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Acute ethanol (EtOH) intoxication has been identified as a risk factor for infectious complications in trauma and burn victims. However, the mechanism of this immune dysfunction has yet to be elucidated. The monocyte/macrophage production of cytokines, in particular IL-8 and TNF-α, is critical in the regulation of the acute inflammatory response to infectious challenge. IL-8 is a potent chemoattractant and activator of neutrophils. TNF-α, a proinflammatory cytokine, initiates expression of endothelial cell surface adhesion molecules and neutrophil migration. p38, a member of the mitogen-activated protein kinases, plays an important role in mediating intracellular signal transduction in endotoxin-induced inflammatory responses. We examined the effects of LPS and ethanol on p38 activation and the corresponding IL-8 and TNF-α production in human mononuclear cells. LPS-induced IL-8 and TNF-α production was inhibited in a similar pattern by pretreatment with either EtOH or SB202190 (1 μM), a specific inhibitor of p38 kinase. Western blot analysis, using a dual phospho-specific p38 mitogen-activated protein kinase Ab, demonstrated that EtOH pretreatment inhibited LPS-induced p38 activation. These results demonstrate that alcohol suppresses the normal host immune inflammatory response to LPS. This dysregulation appears to be mediated in part via inhibition of p38 activation. Inhibition of IL-8 and TNF-α production by acute EtOH intoxication may inhibit inflammatory focused neutrophil migration and activation and may be a mechanism explaining the increased risk of trauma- and burn-related infections.
Collapse
Affiliation(s)
- Saman Arbabi
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98195
| | - Iris Garcia
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98195
| | - Gregory J. Bauer
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98195
| | - Ronald V. Maier
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
473
|
Schafer PH, Wadsworth SA, Wang L, Siekierka JJ. p38α Mitogen-Activated Protein Kinase Is Activated by CD28-Mediated Signaling and Is Required for IL-4 Production by Human CD4+CD45RO+ T Cells and Th2 Effector Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38α mitogen-activated protein kinase (p38α). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10–80 nM) and RWJ 67657 (IC50 = 0.5–4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20–100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-α, and IFN-γ production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10–80 nM), but only partially inhibited IFN-γ and IL-2 production by Th1 cells (<50% inhibition at 1 μM). In both Th1 and Th2 cells, CD28 signaling activated p38α and was required for cytokine production. These results show that p38α plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38α may be important in the generation of Th2-type responses in humans.
Collapse
Affiliation(s)
- Peter H. Schafer
- R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, NJ 08869
| | - Scott A. Wadsworth
- R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, NJ 08869
| | - Liwen Wang
- R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, NJ 08869
| | - John J. Siekierka
- R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, NJ 08869
| |
Collapse
|
474
|
Abstract
MAP kinases help to mediate diverse processes ranging from transcription of protooncogenes to programmed cell death. More than a dozen mammalian MAP kinase family members have been discovered and include, among others, the well studied ERKs and several stress-sensitive enzymes. MAP kinases lie within protein kinase cascades. Each cascade consists of no fewer than three enzymes that are activated in series. Cascades convey information to effectors, coordinates incoming information from other signaling pathways, amplify signals, and allow for a variety of response patterns. Subcellular localization of enzymes in the cascades is an important aspect of their mechanisms of action and contributes to cell-type and ligand-specific responses. Recent findings on these properties of MAP kinase cascades are the major focus of this review.
Collapse
Affiliation(s)
- M H Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX 75235-9041, USA
| |
Collapse
|
475
|
Deacon K, Blank JL. MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J Biol Chem 1999; 274:16604-10. [PMID: 10347227 DOI: 10.1074/jbc.274.23.16604] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.
Collapse
Affiliation(s)
- K Deacon
- Department of Cell Physiology and Pharmacology, University of Leicester School of Medicine, P. O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
476
|
Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1999; 1:94-7. [PMID: 10559880 DOI: 10.1038/10061] [Citation(s) in RCA: 647] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MAPKAP kinase 2 (MK2) is one of several kinases that are regulated through direct phosphorylation by p38 MAP kinase. By introducing a targeted mutation into the mouse MK2 gene, we have determined the physiological function of MK2 in vivo. Mice that lack MK2 show increased stress resistance and survive LPS-induced endotoxic shock. This is due to a reduction of approximately 90% in the production of tumor necrosis factor-alpha (TNF-alpha) and not to a change in signalling from the TNF receptor. The level and stability of TNF-alpha mRNA is not reduced and TNF-alpha secretion is not affected. We conclude that MK2 is an essential component in the inflammatory response which regulates biosynthesis of TNF-alpha at a post-transcriptional level.
Collapse
Affiliation(s)
- A Kotlyarov
- Martin-Luther-University Halle-Wittenberg, Germany
| | | | | | | | | | | | | |
Collapse
|
477
|
Tanaka K, Abe M, Sato Y. Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 1999; 90:647-54. [PMID: 10429657 PMCID: PMC5926115 DOI: 10.1111/j.1349-7006.1999.tb00796.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We examined the role of mitogen-activated protein (MAP) kinases in the signal transduction of basic fibroblast growth factor (bFGF)-mediated effects in endothelial cells (ECs). When MSS31 murine endothelial cells were stimulated with bFGF, three MAP kinase homologs, extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK) 1, and p38 MAP kinase were activated. The inhibition of the ERK1/2 pathway with PD98059, a specific inhibitor of MEK1, or of the p38 MAP kinase pathway with SB203580, a specific inhibitor of p38 MAP kinase, abrogated bFGF-mediated tube formation by MSS31 cells in type I collagen gel. Tube formation in type I collagen gel requires proliferation and migration of these cells, and degradation of the extracellular matrix by these cells. Both PD98059 and SB203580 inhibited bFGF-stimulated DNA synthesis as well as migration of MSS31 cells. Cell migration requires cytoskeleton reorganization and cell adhesion. bFGF induced actin reorganization and vinculin assembly in the focal adhesion plaque, both of which were inhibited by SB203580 but not by PD98059. bFGF induced the expression of the transcription factor ETS-1 in MSS31 cells. ETS-1 is responsible for the expression of proteases as well as integrin beta 3 subunit in ECs, and converts ECs to invasive phenotype. PD98059 inhibited this induction of ETS-1, whereas SB203580 did not. These results indicate that ERK1/2 and p38 MAP kinase are requisite for the signal transduction of bFGF in ECs. The roles of these two MAP kinase homologs are not identical, but these kinases work in a coordinated fashion.
Collapse
Affiliation(s)
- K Tanaka
- Department of Vascular Biology, Tohoku University, Sendai
| | | | | |
Collapse
|
478
|
Tsuji F, Oki K, Senda T, Horiuchi M, Mita S. Effects of mitogen-activated protein kinase inhibitors or phosphodiesterase inhibitors on interleukin-1-induced cytokines production in synovium-derived cells. Immunol Lett 1999; 68:275-9. [PMID: 10424432 DOI: 10.1016/s0165-2478(99)00051-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of mitogen-activated protein (MAP) kinase inhibitors or phosphodiesterase (PDE) inhibitors on interleukin (IL)-1-induced cytokines production in synovium-derived cells were investigated. Human synoviocyte (HS) or synovial sarcoma (SW982) stimulated by IL-1beta (100 ng/ml) produced various cytokines including IL-6, IL-8, GROalpha, VEGF, basic FGF and tumor necrosis factor alpha (TNFalpha) in vitro. SB202190 or SB203580, an inhibitor of p38 MAP kinase, inhibited all cytokines production in both cells. PD98059, an inhibitor of MAP kinase kinase (MEK), inhibited IL-6, IL-8 and basic FGF production in HS and all cytokines production except basic FGF in SW982. However, many of its effects were weaker than those of SB202190 or SB203580. Quazinone, an inhibitor of cyclic GMP-inhibited PDE, scarcely affected cytokines production in both cells. Rolipram or R0201724, an inhibitor of cyclic AMP-specific PDE, inhibited IL-8 and basic FGF production in HS and TNFalpha production in SW982, however, it enhanced the other cytokines production in SW982. These results suggest that the activation of MAP kinase cascade may be important for IL-1-induced cytokines production in synovium-derived cells. On the other hand, the role of cyclic AMP may be dependent on cell and cytokine types.
Collapse
Affiliation(s)
- F Tsuji
- Discovery Research Division, Santen Pharmaceutical, Osaka, Japan
| | | | | | | | | |
Collapse
|
479
|
Khaleghpour K, Pyronnet S, Gingras AC, Sonenberg N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 1999; 19:4302-10. [PMID: 10330171 PMCID: PMC104390 DOI: 10.1128/mcb.19.6.4302] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA 5' cap binding protein, which plays an important role in the control of translation. The activity of eIF4E is regulated by a family of repressor proteins, the 4E-binding proteins (4E-BPs), whose binding to eIF4E is determined by their phosphorylation state. When hyperphosphorylated, 4E-BPs do not bind to eIF4E. Phosphorylation of the 4E-BPs is effected by the phosphatidylinositol (PI) 3-kinase signal transduction pathway and is inhibited by rapamycin through its binding to FRAP/mTOR (FK506 binding protein-rapamycin-associated protein or mammalian target of rapamycin). Phosphorylation of 4E-BPs can also be induced by protein synthesis inhibitors. These observations led to the proposal that FRAP/mTOR functions as a "sensor" of the translational apparatus (E. J. Brown and S. L. Schreiber, Cell 86:517-520, 1996). To test this model, we have employed the tetracycline-inducible system to increase eIF4E expression. Removal of tetracycline induced eIF4E expression up to fivefold over endogenous levels. Strikingly, upon induction of eIF4E, 4E-BP1 became dephosphorylated and the extent of dephosphorylation was proportional to the expression level of eIF4E. Dephosphorylation of p70(S6k) also occurred upon eIF4E induction. In contrast, the phosphorylation of Akt, an upstream effector of both p70(S6k) and 4E-BP phosphorylation, was not affected by eIF4E induction. We conclude that eIF4E engenders a negative feedback loop that targets a component of the PI 3-kinase signalling pathway which lies downstream of PI 3-kinase.
Collapse
Affiliation(s)
- K Khaleghpour
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
480
|
Arnould T, Sellin L, Benzing T, Tsiokas L, Cohen HT, Kim E, Walz G. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol Cell Biol 1999; 19:3423-34. [PMID: 10207066 PMCID: PMC84135 DOI: 10.1128/mcb.19.5.3423] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germ line mutations in at least three ADPKD genes. Two recently isolated ADPKD genes, PKD1 and PKD2, encode integral membrane proteins of unknown function. We found that PKD2 upregulated AP-1-dependent transcription in human embryonic kidney 293T cells. The PKD2-mediated AP-1 activity was dependent upon activation of the mitogen-activated protein kinases p38 and JNK1 and protein kinase C (PKC) epsilon, a calcium-independent PKC isozyme. Staurosporine, but not the calcium chelator BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N', N'-tetraacetate], inhibited PKD2-mediated signaling, consistent with the involvement of a calcium-independent PKC isozyme. Coexpression of PKD2 with the interacting C terminus of PKD1 dramatically augmented PKD2-mediated AP-1 activation. The synergistic signaling between PKD1 and PKD2 involved the activation of two distinct PKC isozymes, PKC alpha and PKC epsilon, respectively. Our findings are consistent with others that support a functional connection between PKD1 and PKD2 involving multiple signaling pathways that converge to induce AP-1 activity, a transcription factor that regulates different cellular programs such as proliferation, differentiation, and apoptosis. Activation of these signaling cascades may promote the full maturation of developing tubular epithelial cells, while inactivation of these signaling cascades may impair terminal differentiation and facilitate the development of renal tubular cysts.
Collapse
Affiliation(s)
- T Arnould
- Department of Medicine, Renal Division Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
481
|
Abstract
It is now generally accepted that protein phosphorylation-dephosphorylation has a role in the regulation of essentially all cellular functions. Thus, it is of interest that this process is involved in signal transduction. Nonetheless, the extent to which protein phosphorylation participates in signaling is truly remarkable. Almost every known signaling pathway eventually impinges on a protein kinase, or in some instances, a protein phosphatase. The diversity of these enzymes is noteworthy, and it is of interest that many biotechnology companies are eyeing them as potentially important targets for drugs. Such drugs may have important therapeutic applications, and in any event, they certainly will be useful to investigators who study signal transduction. Indeed, this already has been proven to be true.
Collapse
Affiliation(s)
- J D Graves
- Department of Immunology, University of Washington Medical Center, Seattle 98195, USA
| | | |
Collapse
|
482
|
Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, Stork PJ. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 1999; 274:12890-7. [PMID: 10212278 DOI: 10.1074/jbc.274.18.12890] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathophysiological hypoxia is an important modulator of gene expression in solid tumors and other pathologic conditions. We observed that transcriptional activation of the c-jun proto-oncogene in hypoxic tumor cells correlates with phosphorylation of the ATF2 transcription factor. This finding suggested that hypoxic signals transmitted to c-jun involve protein kinases that target AP-1 complexes (c-Jun and ATF2) that bind to its promoter region. Stress-inducible protein kinases capable of activating c-jun expression include stress-activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK) and p38 members of the mitogen-activated protein kinase (MAPK) superfamily of signaling molecules. To investigate the potential role of MAPKs in the regulation of c-jun by tumor hypoxia, we focused on the activation SAPK/JNKs in SiHa human squamous carcinoma cells. Here, we describe the transient activation of SAPK/JNKs by tumor-like hypoxia, and the concurrent transcriptional activation of MKP-1, a stress-inducible member of the MAPK phosphatase (MKP) family of dual specificity protein-tyrosine phosphatases. MKP-1 antagonizes SAPK/JNK activation in response to diverse environmental stresses. Together, these findings identify MKP-1 as a hypoxia-responsive gene and suggest a critical role in the regulation of SAPK/JNK activity in the tumor microenvironment.
Collapse
Affiliation(s)
- K R Laderoute
- Pharmaceutical Discovery Division, SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | | | |
Collapse
|
483
|
Lu HT, Yang DD, Wysk M, Gatti E, Mellman I, Davis RJ, Flavell RA. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J 1999; 18:1845-57. [PMID: 10202148 PMCID: PMC1171270 DOI: 10.1093/emboj/18.7.1845] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway, like the c-Jun N-terminal kinase (JNK) MAPK pathway, is activated in response to cellular stress and inflammation and is involved in many fundamental biological processes. To study the role of the p38 MAPK pathway in vivo, we have used homologous recombination in mice to inactivate the Mkk3 gene, one of the two specific MAPK kinases (MAPKKs) that activate p38 MAPK. Mkk3(-/-) mice were viable and fertile; however, they were defective in interleukin-12 (IL-12) production by macrophages and dendritic cells. Interferon-gamma production following immunization with protein antigens and in vitro differentiation of naive T cells is greatly reduced, suggesting an impaired type I cytokine immune response. The effect of the p38 MAPK pathway on IL-12 expression is at least partly transcriptional, since inhibition of this pathway blocks IL-12 p40 promoter activity in macrophage cell lines and IL-12 p40 mRNA is reduced in MKK3-deficient mice. We conclude that the p38 MAP kinase, activated through MKK3, is required for the production of inflammatory cytokines by both antigen-presenting cells and CD4(+) T cells.
Collapse
Affiliation(s)
- H T Lu
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
484
|
Zhang J, Salojin KV, Gao JX, Cameron MJ, Bergerot I, Delovitch TL. p38 Mitogen-Activated Protein Kinase Mediates Signal Integration of TCR/CD28 Costimulation in Primary Murine T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Optimal T cell activation requires two signals, one generated by TCR and another by the CD28 costimulatory receptor. In this study, we investigated the regulation of costimulation-induced mitogen-activated protein kinase (MAPK) activation in primary mouse T cells. In contrast to that reported for human Jurkat T cells, we found that p38 MAPK, but not Jun NH2-terminal kinase (JNK), is weakly activated upon stimulation with either anti-CD3 or anti-CD28 in murine thymocytes and splenic T cells. However, p38 MAPK is activated strongly and synergistically by either CD3/CD28 coligation or PMA/Ca2+ ionophore stimulation, which mimics TCR-CD3/CD28-mediated signaling. Activation of p38 MAPK correlates closely with the stimulation of T cell proliferation. In contrast, PMA-induced JNK activation is inhibited by Ca2+ ionophore. T cell proliferation and production of IL-2, IL-4, and IFN-γ induced by both CD3 and CD3/CD28 ligation and the nuclear expression of the c-Jun and ATF-2 proteins are each blocked by the p38 MAPK inhibitor SB203580. Our findings demonstrate that p38 MAPK 1) plays an important role in signal integration during costimulation of primary mouse T cells, 2) may be involved in the induction of c-Jun activation and augmentation of AP-1 transcriptional activity, and 3) regulates whether T cells enter a state of functional unresponsiveness.
Collapse
Affiliation(s)
- Jian Zhang
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
| | - Konstantin V. Salojin
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
| | - Jian-Xin Gao
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
| | - Mark J. Cameron
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
- †Microbiology and Immunology and
| | - Isabelle Bergerot
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
| | - Terry L. Delovitch
- *Autoimmunity/Diabetes Group, John P. Robarts Research Institute, London, Ontario, Canada; and Departments of
- †Microbiology and Immunology and
- ‡Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
485
|
Hale KK, Trollinger D, Rihanek M, Manthey CL. Differential Expression and Activation of p38 Mitogen-Activated Protein Kinase α, β, γ, and δ in Inflammatory Cell Lineages. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Four p38 mitogen-activated protein kinases (p38α, β, γ, δ) have been described. To understand the role of p38 family members in inflammation, we determined their relative expression in cells that participate in the inflammatory process. Expression was measured at the level of mRNA by reverse-transcriptase PCR and protein by Western blot analysis. p38α was the dominant form of p38 in monocytes; expression of p38δ was low and p38β was undetected. In macrophages, p38α and p38δ were abundant, but p38β was undetected. p38α and p38δ were also expressed by neutrophils, CD4+ T cells, and endothelial cells. Again, p38β was not detected in neutrophils, although low amounts were present in CD4+ T cells. In contrast, p38β was abundant in endothelial cells. p38γ protein was not detected in any cell type, although p38γ mRNA was present in endothelial cells. Immunokinase assays showed a strong activation of p38α and a lesser activation of p38δ in LPS-stimulated macrophages. Abs specific for mono- and dual-phophorylated forms of p38 suggested that LPS induces dual phosphorylation of p38α, but primarily mono-phosphorylation of p38δ. IL-1β activated p38α and p38β in endothelial cells. However, p38α was the more activated form based on kinase assays and phosphorylation analysis. Expression and activation patterns of p38α in macrophages and endothelial cells suggest that p38α plays a major role in the inflammatory response. Additional studies will be needed to define the contribution of p38δ to macrophage, neutrophil, and T cell functions, and of p38β to signaling in endothelial cells and T cells.
Collapse
|
486
|
Wysk M, Yang DD, Lu HT, Flavell RA, Davis RJ. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A 1999; 96:3763-8. [PMID: 10097111 PMCID: PMC22368 DOI: 10.1073/pnas.96.7.3763] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p38 mitogen-activated protein kinase is activated by treatment of cells with cytokines and by exposure to environmental stress. The effects of these stimuli on p38 MAP kinase are mediated by the MAP kinase kinases (MKKs) MKK3, MKK4, and MKK6. We have examined the function of the p38 MAP kinase signaling pathway by investigating the effect of targeted disruption of the Mkk3 gene. Here we report that Mkk3 gene disruption caused a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression. These data demonstrate that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines.
Collapse
Affiliation(s)
- M Wysk
- Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
487
|
Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH. Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 1999; 274:7095-102. [PMID: 10066767 DOI: 10.1074/jbc.274.11.7095] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p38 mitogen-activated protein kinases (MAPK) play a crucial role in stress and inflammatory responses and are also involved in activation of the human immunodeficiency virus gene expression. We have isolated the murine cDNA clones encoding p38-delta MAPK, and we have localized the p38-delta gene to mouse chromosome 17A3-B and human chromosome 6p21.3. By using Northern and in situ hybridization, we have examined the expression of p38-delta in the mouse adult tissues and embryos. p38-delta was expressed primarily in the lung, testis, kidney, and gut epithelium in the adult tissues. Although p38-delta was expressed predominantly in the developing gut and the septum transversum in the mouse embryo at 9.5 days, its expression began to be expanded to many specific tissues in the 12.5-day embryo. At 15.5 days, p38-delta was expressed virtually in most developing epithelia in embryos, suggesting that p38-delta is a developmentally regulated MAPK. Interestingly, p38-delta and p38-alpha were similar serine/threonine kinases but differed in substrate specificity. Overall, p38-delta resembles p38-gamma, whereas p38-beta resembles p38-alpha. Moreover, p38-delta is activated by environmental stress, extracellular stimulants, and MAPK kinase-3, -4, -6, and -7, suggesting that p38-delta is a unique stress-responsive protein kinase.
Collapse
Affiliation(s)
- M C Hu
- Department of Cell Biology, Amgen, Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | |
Collapse
|
488
|
Mackay K, Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 1999; 274:6272-9. [PMID: 10037715 DOI: 10.1074/jbc.274.10.6272] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular ischemia results in activation of a number of kinases, including p38 mitogen-activated protein kinase (MAPK); however, it is not yet clear whether p38 MAPK activation plays a role in cellular damage or is part of a protective response against ischemia. We have developed a model to study ischemia in cultured neonatal rat cardiac myocytes. In this model, two distinct phases of p38 MAPK activation were observed during ischemia. The first phase began within 10 min and lasted less than 1 h, and the second began after 2 h and lasted throughout the ischemic period. Similar to previous studies using in vivo models, the nonspecific activator of p38 MAPK and c-Jun NH2-terminal kinase, anisomycin, protected cardiac myocytes from ischemic injury, decreasing the release of cytosolic lactate dehydrogenase by approximately 25%. We demonstrated, however, that a selective inhibitor of p38 MAPK, SB 203580, also protected cardiac myocytes against extended ischemia in a dose-dependent manner. The protective effect was seen even when the inhibitor was present during only the second, sustained phase of p38 MAPK activation. We found that ischemia induced apoptosis in neonatal rat cardiac myocytes and that SB 203580 reduced activation of caspase-3, a key event in apoptosis. These results suggest that p38 MAPK induces apoptosis during ischemia in cardiac myocytes and that selective inhibition of p38 MAPK could be developed as a potential therapy for ischemic heart disease.
Collapse
Affiliation(s)
- K Mackay
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
489
|
Giasson BI, Bruening W, Durham HD, Mushynski WE. Activation of stress-activated protein kinases correlates with neurite outgrowth induced by protease inhibition in PC12 cells. J Neurochem 1999; 72:1081-7. [PMID: 10037479 DOI: 10.1046/j.1471-4159.1999.0721081.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PC12 cells are well characterized for their ability to differentiate into neuronal-like cells when challenged with nerve growth factor. It has been reported that the calpain and proteasome inhibitor N-acetyl-Leu-Leu-norleucinal (CI) is also able to induce neurite outgrowth in PC12 cells. In this study, we report that the inhibitor of proteasomal chymotrypsin-like activity, carbobenzoxy-Ile-Glu-(O-tert-butyl)-Ala-Leu-aldehyde (PSI), can also induce differentiation of PC12 cells. Induction of neurite outgrowth with PSI, CI, or its close analogue, carbobenzoxy-Leu-Leu-leucinal (MG132), was associated with stress-activated protein kinase (SAPK) activation. Neurite formation induced by protease inhibition was independent of mitogen-activated protein kinase/extracellular signal-regulated kinase, p38/reactivating kinase, or phosphatidylinositol 3-kinase activities. The exact mechanism by which protease inhibition activates SAPKs remains to be elucidated; however, our results suggest that the SAPK signal transduction cascade may be an alternative and/or parallel pathway in the regulation of neuronal differentiation.
Collapse
Affiliation(s)
- B I Giasson
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
490
|
Abstract
The Merck Gene Index project (MGIP) fills an important niche in the Human Genome Project by directly identifying genes through sequences of their transcripts and placing in the public domain a set of EST sequences and associated clones for the uniquely expressed human genes. The MGIP promotes the unrestricted exchange of human genomic data, and facilitates progress in biomedical research by reducing duplication of efforts, speeding the identification of disease-related genes and furthering our understanding of disease processes. The project is stimulating biological research, which in turn is the driving force in drug discovery today.
Collapse
Affiliation(s)
- AR Williamson
- 8 Wyngrave Place, Knotty Green, Beaconsfield, Buckinghamshire, UK HP9 1XX
| |
Collapse
|
491
|
Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999; 18:1345-56. [PMID: 10064600 PMCID: PMC1171224 DOI: 10.1093/emboj/18.5.1345] [Citation(s) in RCA: 540] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) exerts its effects on cell proliferation, differentiation and migration in part through its modulation of extracellular matrix components, such as fibronectin and plasminogen activator inhibitor-1 (PAI-1). Although the SMAD family of proteins recently has been shown to be a key participant in TGF-beta signaling, other signaling pathways have also been shown to be activated by TGF-beta. We report here that c-Jun N-terminal kinase (JNK), a member of the MAP kinase family, is activated in response to TGF-beta in the human fibrosarcoma HT1080-derived cell line BAHgpt. Stable expression of dominant-negative forms of JNK1 and MKK4, an upstream activator of JNK, results in loss of TGF-beta-stimulated fibronectin mRNA and protein induction, while having little effect on TGF-beta-induced levels of PAI-1. The human fibronectin promoter contains three CRE elements, one of which has been shown to bind a c-Jun-ATF-2 heterodimer. Utilizing a GAL4 fusion trans-reporting system, we demonstrate a decrease in transactivating potential of GAL4-c-Jun and GAL4-ATF-2 in dominant-negative JNK1- and MKK4-expressing cells. Finally, we show that TGF-beta-induced fibronectin synthesis is independent of Smad4. These results demonstrate that TGF-beta-mediated fibronectin induction requires activation of JNK which in turn modulates the activity of c-Jun and ATF-2 in a Smad4independent manner.
Collapse
Affiliation(s)
- B A Hocevar
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
492
|
Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J. Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 1999; 89:429-36. [PMID: 10077325 DOI: 10.1016/s0306-4522(98)00347-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids are toxic to hippocampal neurons. We report here that the steroid dehydroepiandrosterone protects neurons of primary hippocampal cultures against the toxic effects of corticosterone. Corticosterone (20-500 nM) added for 24h to primary cultures of embryonic day 18 rat hippocampus resulted in significant neurotoxicity. Dissociated cells were grown for at least 10 days, initially in serum-containing medium, but serum was removed before adding steroids for 24 h. Neurotoxicity was measured by counting the number of cells stained either for beta-tubulin III or glial fibrillary acidic protein. Corticosterone-induced toxicity was prevented by co-treatment of the cultures with dehydroepiandrosterone (20-500 nM). Dehydroepiandrosterone on its own had little effect, though the highest concentration used (500 nM) was mildly toxic. Immunohistochemical studies on the nuclear translocation of a range of stress-activated protein kinases showed that stress-activated protein kinases 1, 2, 3 and 4 were all translocated by 10 min exposure to corticosterone (100 nM). Dehydroepiandrosterone (100 nM) attenuated the translocation of stress-activated protein kinase 3, but not the others. These experiments show that dehydroepiandrosterone has potent anti-glucocorticoid actions on the brain, and can protect hippocampal neurons from glucocorticoid-induced neurotoxicity. This protective action may involve stress-activated protein kinase 3-related intracellular pathways, though direct evidence for this has still to be obtained.
Collapse
Affiliation(s)
- V G Kimonides
- Department of Anatomy, Physiology and MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
493
|
Harada J, Sugimoto M. An inhibitor of p38 and JNK MAP kinases prevents activation of caspase and apoptosis of cultured cerebellar granule neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:369-78. [PMID: 10230866 DOI: 10.1254/jjp.79.369] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both p38 mitogen-activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) are known to play important roles in neuronal apoptosis. However, the relationship between these kinases and caspases, another key mediator of apoptosis, is unclear. In the present study, we investigated the possible effects of SB203580 [(4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-i mid azole], an inhibitor of p38, on caspase activation and apoptosis of cultured rat cerebellar granule neurons. In granule neurons, SB203580 prevented apoptosis that was induced by lowering the concentration of KCl in the culture medium for 24 hr. SB203580 also prevented augmentation of caspase-3-like protease activity at 8 hr after the low KCl treatment. The IC50 values of SB203580 for both events were between 3 microM and 10 microM. Expression and phosphorylation of c-Jun, potently induced by low KCl treatment, were prevented by SB203580 at 10 microM. Z-Asp-CH2-DCB, a caspase inhibitor with anti-apoptotic activity, did not inhibit the induction and phosphorylation of c-Jun. Granule neurons displayed high levels of p38 and JNK activities. SB203580 inhibited not only p38 but also JNK activities extracted from granule neurons. These results suggest that activation of c-Jun by p38 and/or JNK mediates the activation of caspase in the low KCl-induced apoptosis in cerebellar granule neurons.
Collapse
Affiliation(s)
- J Harada
- Neuroscience Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
494
|
Rausch O, Marshall CJ. Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J Biol Chem 1999; 274:4096-105. [PMID: 9933603 DOI: 10.1074/jbc.274.7.4096] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemopoietic cytokines such as interleukin-3 and granulocyte colony-stimulating factor (G-CSF) are potent activators of hemopoietic cell growth and strongly induce activation of extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 mitogen-activated protein (MAP) kinases. However, the role of these kinases is unclear. Using specific chemical inhibitors for MEK and p38, we demonstrate here that both ERK and p38 pathways are critically involved in the transduction of a proliferative signal and cooperate in G-CSF-induced cell proliferation. We show that, like ERK and JNK activation, activation of p38 and its downstream substrate MAP kinase-activated protein kinase 2 by interleukin-3 or G-CSF requires Ras activation. We demonstrate that two distinct cytoplasmic regions of the G-CSF receptor are involved in activation of the p38 pathway: a region within the 100 membrane-proximal amino acids is sufficient to induce low levels of p38 and MAP kinase-activated protein kinase 2 activation, whereas the membrane-distal phosphorylation site Tyr763 mediates strong activation of these kinases. The levels of p38 activation correlate closely with those of Ras activation by G-CSF, suggesting that the degree of Ras activation is a critical determinant for the extent of p38 activation by hemopoietic cytokines.
Collapse
Affiliation(s)
- O Rausch
- Cancer Research Campaign Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd., London SW3 6JB, United Kingdom
| | | |
Collapse
|
495
|
Tamaru M, Narumi S. E-selectin gene expression is induced synergistically with the coexistence of activated classic protein kinase C and signals elicited by interleukin-1beta but not tumor necrosis factor-alpha. J Biol Chem 1999; 274:3753-63. [PMID: 9920928 DOI: 10.1074/jbc.274.6.3753] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have examined the effect of protein kinase C (PKC) on the expression of the E-selectin and intercellular adhesion molecule-1 (ICAM-1) mRNAs in human umbilical vein endothelial cells. The lower classic PKC activity on pretreatment with phorbol ester (phorbol 12-myristate 13-acetate (PMA)) for 24 h markedly decreased IL-1beta-induced E-selectin mRNA expression in the presence of fetal calf serum and basic fibroblast growth factor, although the induction of ICAM-1 mRNA expression was only influenced a little by the PKC down-regulation. On the other hand, tumor necrosis factor-alpha (TNFalpha)-induced gene expression of these adhesion molecules was unaffected by such PKC modulation. The intracellular signals generated by interleukin (IL)-1beta and TNFalpha themselves are not mediated through classic PKC activation, because the response to neither stimulant was inhibited by the PKC down-regulation in the absence of fetal calf serum and basic fibroblast growth factor. Simultaneous treatment with IL-1beta and PMA synergistically induced E-selectin gene expression but not when TNFalpha was substituted for IL-1beta. ICAM-1 mRNA expression was only additively induced on the cotreatment. The synergistic effect on E-selectin mRNA induction was independent of de novo protein synthesis and mediated by elevated transcriptional activity. Promoter analysis of E-selectin indicated that the NF-ELAM1/activating transcription factor element is critical for the synergistic effect of the cotreatment with IL-1beta and PMA.
Collapse
Affiliation(s)
- M Tamaru
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco, Inc., Central Pharmaceutical Research Institute, Yokohama, Kanagawa 236-0004, Japan
| | | |
Collapse
|
496
|
Pugazhenthi S, Boras T, O'Connor D, Meintzer MK, Heidenreich KA, Reusch JE. Insulin-like growth factor I-mediated activation of the transcription factor cAMP response element-binding protein in PC12 cells. Involvement of p38 mitogen-activated protein kinase-mediated pathway. J Biol Chem 1999; 274:2829-37. [PMID: 9915817 DOI: 10.1074/jbc.274.5.2829] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IGF-I is known to support growth and to prevent apoptosis in neuronal cells. Activation of the nuclear transcription factor cAMP response element-binding protein (CREB) has emerged as a central determinant in neuronal functions. In the present investigation, we examined the IGF-I-mediated phosphorylation and transcriptional activation of CREB in rat pheochromocytoma (PC12) cells, a cellular model for neuronal differentiation, and defined three distinct postreceptor signaling pathways important for this effect including the p38 mitogen-activated protein kinase (MAPK) pathway. CREB phosphorylation at serine 133 and its transcriptional activation as measured by a CREB-specific Gal4-CREB reporter and the neuroendocrine-specific gene chromogranin A was induced 2-3.3-fold by insulin-like growth factor (IGF)-I. This activation was significantly blocked (p < 0.001) by the dominant negative K-CREB or by mutation of the CRE site. IGF-I stimulated chromogranin A gene expression by Northern blot analysis 3.7-fold. Inhibition of MAPK kinase with PD98059, PI 3-kinase with wortmannin, and p38 MAPK with SB203580 blocked IGF-I-mediated phosphorylation and transcriptional activation of CREB by 30-50% (p < 0.001). Constitutively active and dominant negative regulators of the Ras and PI 3-kinase pathways confirmed the contribution of these pathways for CREB regulation by IGF-I. Cotransfection of PC12 cells with p38beta and constitutively active MAPK kinase 6 resulted in enhanced basal as well as IGF-I-stimulated chromogranin A promoter. IGF-I activated p38 MAPK, which was blocked by the inhibitor SB203580. This is the first description of a p38 MAPK-mediated nuclear signaling pathway for IGF-I leading to CREB-dependent neuronal specific gene expression.
Collapse
Affiliation(s)
- S Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
497
|
Schafer PH, Wang L, Wadsworth SA, Davis JE, Siekierka JJ. T Cell Activation Signals Up-Regulate p38 Mitogen-Activated Protein Kinase Activity and Induce TNF-α Production in a Manner Distinct from LPS Activation of Monocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
p38 mitogen-activated protein kinase (MAPK) (p38) is involved in various cellular responses, including LPS stimulation of monocytes, resulting in production of proinflammatory cytokines such as TNF-α. However, the function of p38 during antigenic stimulation of T cells is largely unknown. Stimulation of the human Th cell clone HA-1.70 with either the superantigen staphylococcal enterotoxin B (SEB) or with a specific antigenic peptide resulted in p38 activation and the release of TNF-α. MAPK-activated protein kinase-2 (MAPKAPK-2), an in vivo substrate for p38, was also activated by T cell signaling. SB 203580, a selective inhibitor of p38, blocked p38 and MAPKAPK-2 activation in the T cell clone but did not completely inhibit TNF-α release. PD 098059, a selective inhibitor of MAPK kinase 1 (MEK1), blocked activation of extracellular signal-regulated kinase (ERK) and partially blocked TNF-α production by the clone. In human peripheral T cells, p38 was not activated by SEB, but rather by CD28 cross-linking, whereas in the human leukemic T cell line Jurkat, p38 was activated by CD3 and CD28 cross-linking in an additive fashion. TNF-α production by peripheral T cells in response to SEB and anti-CD28 mAb correlated more closely with ERK activity than with p38 activity. Therefore, various forms of T cell stimulation can activate the p38 pathway depending on the cells examined. Furthermore, unlike LPS-stimulated monocytes, TNF-α production by T cells is only partially p38-dependent.
Collapse
Affiliation(s)
- Peter H. Schafer
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Liwen Wang
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Scott A. Wadsworth
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - Janet E. Davis
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| | - John J. Siekierka
- Drug Discovery Research, R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ, 08869
| |
Collapse
|
498
|
New L, Zhao M, Li Y, Bassett WW, Feng Y, Ludwig S, Padova FD, Gram H, Han J. Cloning and characterization of RLPK, a novel RSK-related protein kinase. J Biol Chem 1999; 274:1026-32. [PMID: 9873047 DOI: 10.1074/jbc.274.2.1026] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein kinase whose activity can be stimulated by mitogen in vivo was cloned and characterized. The cDNA of this gene encodes an 802-amino acid protein (termed RLPK) with the highest homology (37% identity) to the two protein kinase families, p90(RSK) and p70(RSK). Like p90(RSR), but not p70(RSK), RLPK also contains two complete nonidentical protein kinase domains. RLPK mRNA is widely expressed in all human tissues examined and is enriched in the brain, heart, and placenta. In HeLa cells, transiently expressed epitope-tagged RLPK can be strongly induced by epidermal growth factor, serum, and phorbol 12-myristate 13-acetate, but only moderately up-regulated by tumor necrosis factor-alpha and other stress-related stimuli. The activity of RLPK stimulated by epidermal growth factor was not inhibited by several known protein kinase C inhibitors nor by rapamycin, a known specific inhibitor for p70(RSK), but could be inhibited by herbimycin A, a tyrosine kinase inhibitor, and partially inhibited by PD98059 or SB203580, inhibitors for the mitogen-activated protein kinase pathways. Recombinant RLPK possesses high phosphorylation activity toward histone 2B and the S6 peptide, RRRLSSLRA. Although purified recombinant RLPK can be phosphorylated by ERK2 and p38alpha in vitro, its activity is not affected by this phosphorylation. Moreover, the treatment of RLPK with acid phosphatase did not reduce its in vitro kinase activity. These data suggest that RLPK is structurally similar to previously isolated RSKs, but its regulatory mechanism may be distinct from either p70(RSK) or p90(RSK)s.
Collapse
Affiliation(s)
- L New
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1988] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
500
|
Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis 1999; 142:47-56. [PMID: 9920505 DOI: 10.1016/s0021-9150(98)00185-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Proliferation of vascular smooth muscle cells contributes to initimal hyperplasia during atherogenesis, but the factors regulating their proliferation are not well known. In the present study we report that sublytic C5b-9 assembly induced proliferation of differentiated human aortic smooth muscle cells (ASMC) in culture. Cell cycle re-entry occurred through activation of cdk4, cdk2 kinase and the reduction of p21 cell cycle inhibitor. We also investigated if C5b-9 cell cycle induction is mediated through activation of mitogen activated protein kinase (MAPK) pathways. Extracellular signal regulated kinase (ERK) 1 activity was significantly increased, while c-jun NH2-terminal kinase (JNK) 1 and p38 MAPK activity were only transiently increased. Pretreatment with wortmannin inhibits ERK1 activation by C5b-9, suggesting the involvement of phosphatidylinositol 3-kinase (PI 3-kinase). Both PI 3-kinase and p70 S6 kinase were activated by C5b-9 but not by C5b6. C5b-9 induced DNA synthesis was abolished by pretreatment with inhibitors of ERK1 and PI 3-kinase, but not by p38 MAPK. These data indicated that ERK1 and PI 3-kinase play a major role in C5b-9 induced ASMC proliferation.
Collapse
Affiliation(s)
- F Niculescu
- Department of Pathology, University of Maryland, School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|