451
|
Spangenburg EE, Abraha T, Childs TE, Pattison JS, Booth FW. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load dependent. Am J Physiol Endocrinol Metab 2003; 284:E340-50. [PMID: 12397024 DOI: 10.1152/ajpendo.00253.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the current study was to examine IGFBP-3, -4, and -5 mRNA and protein expression levels as a function of muscle type, age, and regrowth from an immobilization-induced atrophy in Fischer 344 x Brown Norway rats. IGFBP-3 mRNA expression in the 4-mo-old animals was significantly higher in the red and white portions of the gastrocnemius muscle compared with the soleus muscle. However, there were no significant differences in IGFBP-3 mRNA expression among any of the muscle groups in the 30-mo-old animals. There were no significant differences in IGFBP-5 mRNA expression in any of the muscle groups, whereas in the 30-mo-old animals there was significantly less IGFBP-5 mRNA expression in the white gastrocnemius compared with the red gastrocnemius muscles. Although IGFBP-3 and -5 proteins were detected in the type I soleus muscle with Western blot analyses, no detection was observed in the type II red and white portions of the gastrocnemius muscle. Aging from adult (18 mo) to old animals (30 mo) was associated with decreases in IGFBP-3 mRNA and protein and IGFBP-5 protein only in the soleus muscle. After 10 days of recovery from 10 days of hindlimb immobilization, IGFBP-3 mRNA and protein increased in soleus muscles from young (4-mo) rats; however, only IGFBP-3 protein increased in the old (30-mo) rats. Whereas there were no changes in IGFBP-5 mRNA expression during recovery, IGFBP-5 protein in the 10-day-recovery soleus muscle did increase in the young, but not in the old, rats. Because one of the functions of IGFBPs is to modulate IGF-I action on muscle size and phenotype, it is hypothesized that IGFBP-3 and -5 proteins may have potential modulatory roles in type I fiber-dominated muscles, aging, and regrowth from atrophy.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211,USA
| | | | | | | | | |
Collapse
|
452
|
Nakatani T, Nakashima T, Kita T, Ishihara A. Cell Size and Oxidative Enzyme Activity of Type-Identified Fibers in Rat Hindlimb Muscles: a Review. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Toshiaki Nakatani
- Department of Pharmacology, Nara Medical University
- Human Performance and Exercise Prescription Laboratory, Tenri University
| | | | - Taizo Kita
- Department of Pharmacology, Nara Medical University
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences
| | - Akihiko Ishihara
- Laboratory of Neurochemistry, Faculty of Integrated Human Studies, Kyoto University
| |
Collapse
|
453
|
Mattson JP, Miller TA, Poole DC, Delp MD. Fiber composition and oxidative capacity of hamster skeletal muscle. J Histochem Cytochem 2002; 50:1685-92. [PMID: 12486092 DOI: 10.1177/002215540205001214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144-147 g bw) male Syrian golden hamsters (n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 +/- 328 microm(2) for type I fibers, 1900 +/- 417 microm(2) for type IIA fibers, 3230 +/- 784 microm(2) for type IIX fibers, and 4171 +/- 864 microm(2) for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers (r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.
Collapse
Affiliation(s)
- John P Mattson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City 84112, USA.
| | | | | | | |
Collapse
|
454
|
Behnke BJ, Barstow TJ, Kindig CA, McDonough P, Musch TI, Poole DC. Dynamics of oxygen uptake following exercise onset in rat skeletal muscle. Respir Physiol Neurobiol 2002; 133:229-39. [PMID: 12425970 DOI: 10.1016/s1569-9048(02)00183-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Technical limitations have precluded measurement of the V(O(2)) profile within contracting muscle (mV(O(2))) and hence it is not known to what extent V(O(2)) dynamics measured across limbs in humans or muscles in the dog are influenced by transit delays between the muscle microvasculature and venous effluent. Measurements of capillary red blood cell flux and microvascular P(O(2)) (P(O(2)m)) were combined to resolve the time course of mV(O(2)) across the rest-stimulation transient (1 Hz, twitch contractions). mV(O(2)) began to rise at the onset of contractions in a close to monoexponential fashion (time constant, J = 23.2 +/- 1.0 sec) and reached it's steady-state value at 4.5-fold above baseline. Using computer simulation in healthy and disease conditions (diabetes and chronic heart failure), our findings suggest that: (1) mV(O(2)) increases essentially immediately (< 2 sec) following exercise onset; (2) within healthy muscle the J blood flow (thus O(2) delivery, J Q(O(2)m)) is faster than JmV(O(2)) such that oxygen delivery is not limiting, and 3) a faster P(O(2)m) fall to a P(O(2)m) value below steady-state values within muscle from diseased animals is consistent with a relatively sluggish Q(O(2)m) response compared to that of mV(O(2)).
Collapse
Affiliation(s)
- Brad J Behnke
- Department of Anatomy, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
455
|
Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002; 51:2886-94. [PMID: 12351423 DOI: 10.2337/diabetes.51.10.2886] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exercise improves insulin sensitivity. As AMP-activated protein kinase (AMPK) plays an important role in muscle metabolism during exercise, we investigated the effects of the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) on insulin action in insulin-resistant high-fat-fed (HF) rats. Rats received a subcutaneous injection of 250 mg/kg AICAR (HF-AIC) or saline (HF-Con). The next day, euglycemic-hyperinsulinemic clamp studies were performed. Glucose infusion rate during the clamp was enhanced (50%) in HF-AIC compared with HF-Con rats. Insulin-stimulated glucose uptake was improved in white but not in red quadriceps, whereas glycogen synthesis was improved in both red and white quadriceps of HF-AIC rats. HF-AIC rats also showed increased insulin suppressibility of hepatic glucose output (HGO). AICAR-induced responses in both liver and muscle were accompanied by reduced malonyl-CoA content. Clamp HGO correlated closely with hepatic triglyceride content (r = 0.67, P < 0.01). Thus, a single dose of AICAR leads to an apparent enhancement in whole-body, muscle, and liver insulin action in HF rats that extends beyond the expected time of AMPK activation. Whether altered tissue lipid metabolism mediates AICAR effects on insulin action remains to be determined. Follow-up studies suggest that at least some of the post-AICAR insulin-enhancing effects also occur in normal rats. Independent of this, the results suggest that pharmacological activation of AMPK may have potential in treating insulin-resistant states and type 2 diabetes.
Collapse
Affiliation(s)
- Miguel A Iglesias
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
456
|
Muller-Delp JM, Spier SA, Ramsey MW, Delp MD. Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol 2002; 283:H1662-72. [PMID: 12234821 DOI: 10.1152/ajpheart.00004.2002] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90-220 microm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10(-9) to 10(-4) M), adenosine (ADO, 10(-10) to 10(-4) M), and sodium nitroprusside (SNP, 10(-10) to 10(-4) M) were evaluated at a constant intraluminal pressure of 60 cmH(2)O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.
Collapse
Affiliation(s)
- Judy M Muller-Delp
- Department of Health and Kinesiology, Texas A&M University, College Station 77843, USA.
| | | | | | | |
Collapse
|
457
|
Aaker A, Laughlin MH. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles. J Appl Physiol (1985) 2002; 93:848-56. [PMID: 12183477 DOI: 10.1152/japplphysiol.00032.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.
Collapse
Affiliation(s)
- Aaron Aaker
- Departments of Veterinary Biomedical Sciences and Medical Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
458
|
Poole DC, Petrisko RN, Anderson L, Fedde MR, Erickson HH. Structural and oxidative enzyme characteristics of the diaphragm. Equine Vet J 2002:459-63. [PMID: 12405734 DOI: 10.1111/j.2042-3306.2002.tb05466.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During exercise, the horse can achieve oxygen uptakes and ventilations in excess of 200 ml/kg/min and 1800 l/min, respectively. Whether the diaphragm has the capacity to contribute substantially to inspiratory effort in the exercising horse is not known. To investigate the potential for the horse diaphragm to generate tension, lung displacement and sustain ventilatory function, we measured diaphragm thickness, muscle length and oxidative enzyme activity (citrate synthase) within the ventral, medial and dorsal costal and crural diaphragm. In the diaphragms of 6 mature horses (5 Thoroughbreds, one Quarter Horse; body mass (mean +/- s.e.) 475 +/- 14 kg, age 4 +/- 1 years), the mass of the freshly-excised diaphragm was 4.54 +/- 0.19 kg of which 79% was the costal diaphragm, 17% the crural diaphragm and 4% the central tendon. The medial costal region (2.1 +/- 0.1 cm) was significantly thicker (P<0.05) than either the ventral (1.4 +/- 0.1 cm) or dorsal (1.2 +/- 0.2 cm) costal regions and the crural diaphragm was significantly thicker (>3.2 +/- 0.3 cm, P<0.05) than any costal diaphragm region. With respect to the costal diaphragm, excised muscle length was greatest (P<0.05) in the medial costal (17.2 +/- 1.0 cm) than either the ventral costal (<12.6 +/- 1.5 cm) or dorsal costal (<13.9 +/- 1.8 cm) regions and therefore the medial region would be expected to exhibit the greatest absolute length change on inspiration. Citrate synthase activity was high throughout the diaphragm (40.8 +/- 113 to 55.3 +/- 9.7 micromol/g/min), but was not significantly different among regions. These structural characteristics and the oxidative potential of the horse diaphragm are consistent with the diaphragm providing a significant and substantial contribution to the inspiratory effort during exercise in the horse. Consequently, clinical and physiological investigations of exercise performance should not ignore the potentially crucial importance of the diaphragm.
Collapse
Affiliation(s)
- D C Poole
- Department of Kinesiology, Kansas State University, Manhattan 66506-5802, USA
| | | | | | | | | |
Collapse
|
459
|
Geer CM, Behnke BJ, McDonough P, Poole DC. Dynamics of microvascular oxygen pressure in the rat diaphragm. J Appl Physiol (1985) 2002; 93:227-32. [PMID: 12070209 DOI: 10.1152/japplphysiol.00735.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative amplitudes and rates of increase of muscle blood flow (and O(2) delivery) and O(2) uptake responses determine the O(2) pressure within the muscle microvasculature (Pm(O(2))) across the rest-to-contraction transition. Skeletal muscle function is a primary determinant of pulmonary O(2) uptake kinetics; however, it has never been determined whether the dynamics of muscle Pm(O(2)) are faster in a highly oxidative muscle [e.g., diaphragm (Dia), citrate synthase activity of 39 micromol. min(-1). g(-1)] compared with less oxidative muscles [e.g., spinotrapezius (Spino), citrate synthase activity of 14 micromol. min(-1). g(-1), male Sprague-Dawley rats; Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996]. Phosphorescence quenching techniques (porphyrin dendrimer, R2) were used to determine Pm(O(2)) across the transition to electrically stimulated contractions (1 Hz) within the rat Dia. After a delay of 10.4 +/- 1.3 (SE) s at the beginning of Dia contractions, Pm(O(2)) decreased close to monoexponentially from 42 +/- 2 to 27 +/- 3 Torr (P < 0.05) with an extremely fast time constant of 7.1 +/- 1.1 s. Thus Dia Pm(O(2)) decreased with significantly (P < 0.05) faster kinetics than reported previously for the Spino muscle (delay, 19.2 +/- 2.8 s; time constant Pm(O(2)), 21.7 +/- 2.1 s; Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC, Respir Physiol 126: 53-63, 2001). With the use of two specialized muscles with similar fiber-type composition but widely disparate oxidative capacities (Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996), these data demonstrate that Pm(O(2)) kinetics are significantly faster in the highly oxidative Dia compared with the low-oxidative Spino muscle and that this effect is not dependent on muscle fiber-type composition.
Collapse
Affiliation(s)
- Crystal M Geer
- Department of Kinesiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506-5802, USA
| | | | | | | |
Collapse
|
460
|
Burelle Y, Hochachka PW. Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers. J Appl Physiol (1985) 2002; 92:2429-38. [PMID: 12015357 DOI: 10.1152/japplphysiol.01024.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to investigate the potential role of changes in the apparent K(m) for ADP and in the functional coupling of the creatine (Cr) kinase (CK) system (CK efficiency) in explaining the tighter integration of ATP supply and demand after exercise training. Mitochondrial function was assessed in saponin-skinned fibers from the soleus and the deep red portion of the medial gastrocnemius isolated from trained (T; treadmill running, 5 days/wk, 4 wk) and control (C) female Sprague-Dawley rats. In the soleus, V(max) in the presence of 1 mM ADP was increased by 21% after training (5.9 +/- 0.2 vs. 4.7 +/- 0.4 nmol O(2). min(-1). mg dry wt(-1), P < 0.05). This was accompanied by no change in the K(m) for ADP measured in the absence of Cr (146 +/- 9 vs. 149 +/- 13 microM in T and C, respectively) and in its presence (50 +/- 4 vs. 48 +/- 6 microM in T and C, respectively) and in CK efficiency [K(m) (+Cr)/K(m) (-Cr)]. In contrast, in the red gastrocnemius, training decreased, by 35%, the apparent K(m) for ADP in the absence (83 +/- 5 vs. 129 +/- 9 microM, P < 0.01) of Cr, without affecting V(max) (6.2 +/- 0.4 vs. 6.7 +/- 0.3 nmol O(2). min(-1). mg dry wt(-1) in T and C, respectively) and CK efficiency. These results thus suggest that training induces muscle-specific adaptations of mitochondrial function and that a change in the intrinsic sensitivity of mitochondria to ADP could at least partly explain the tighter integration of ATP and demand commonly observed after training.
Collapse
Affiliation(s)
- Yan Burelle
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
461
|
Suwa M, Kumagai S, Higaki Y, Nakamura T, Katsuta S. Dietary obesity-resistance and muscle oxidative enzyme activities of the fast-twitch fibre dominant rat. Int J Obes (Lond) 2002; 26:830-7. [PMID: 12037654 DOI: 10.1038/sj.ijo.0802007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 12/12/2001] [Accepted: 01/09/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To clarify whether the muscle fibre composition and/or muscle oxidative enzyme activity are related to dietary body weight gain and abdominal fat accumulation. METHODS Genetically fast-twitch fibre dominant rats (FFDR) and control rats (CR) were divided into low-fat (20% of energy from fat) or high-fat (60% of energy from fat) diet groups: CR with a low-fat diet (CL); CR with a high-fat diet (CH); FFDR with a low-fat diet (FL); and FFDR with a high-fat diet (FH). After 6 weeks of following such diets, the body weight gain, abdominal fat content, food intake, muscle fibre composition and oxidative enzyme activities were estimated. RESULTS The total body weight gain in CH was from 18 to 62% higher than in the other groups (P<0.05) and percentage abdominal fat in CH was also from 26 to 61% higher than in the other groups (P<0.05), while the energy intake did not differ among the groups. The percentage of type IIX fibres of M. gastrocnemius in FL (33.4%) and FH (36.3%) were higher than in CL (16.8%) and CH (19.8%; P<0.05), and the type IIA fibres of M. soleus in FL (14.1%) and FH (11.8%) were higher than in CL (2.0%) and CH (3.5%; P<0.05). The citrate synthase (CS) activity of of M. plantaris in FL and FH were higher than CL (46 and 54%, respectively, P<0.05). beta-Hydroxyacyl CoA dehydrogenase (HAD) activity in FL and FH were higher than in CL (21 and 31%, respectively, P<0.05) and that in FH was higher than CH (23%, P<0.05). On the other hand, the enzyme activities of M. gastrocnemius and soleus were identical among the groups. CONCLUSION The FFDR was more obesity-resistant than the CR after a high-fat diet. These results suggest that the muscle oxidative capacity rather than muscle fibre composition is a possible determinant of obesity.
Collapse
Affiliation(s)
- M Suwa
- Institute of Health Science, Kyushu University, Kasuga, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
462
|
Lee JS, Bruce CR, Tunstall RJ, Cameron-Smith D, Hugel H, Hawley JA. Interaction of exercise and diet on GLUT-4 protein and gene expression in Type I and Type II rat skeletal muscle. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:37-44. [PMID: 11982503 DOI: 10.1046/j.1365-201x.2002.00963.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We determined the interaction of exercise and diet on glucose transporter (GLUT-4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty-eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high-fat (FAT, n=24) or high-carbohydrate (CHO, n=24). Animals in each dietary condition were allocated to one of two groups: control (NT, n=8) or a group that performed 8 weeks of treadmill running (4 sessions week-1 of 1000 m @ 28 m min-1, RUN, n=16). Eight trained rats were killed after their final exercise bout for determination of GLUT-4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT-4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT-4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet-training interaction on GLUT-4 mRNA, such that expression was increased in both the soleus (100% upward arrowP < 0.05) and EDL (142% upward arrowP < 0.01) in CHO-fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL ( downward arrow 45%, P < 0.05) but not the soleus ( downward arrow 14%, NS). We conclude that exercise training in CHO-fed rats increased both GLUT-4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT-4 mRNA in muscles from fat-fed animals, exercise-induced increases in GLUT-4 protein were largely preserved, suggesting that control of GLUT-4 protein and gene expression are modified independently by exercise and diet.
Collapse
Affiliation(s)
- J S Lee
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
463
|
Tucker MZ, Turcotte LP. Impaired fatty acid oxidation in muscle of aging rats perfused under basal conditions. Am J Physiol Endocrinol Metab 2002; 282:E1102-9. [PMID: 11934676 DOI: 10.1152/ajpendo.00175.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the utilization of fatty acids (FA) and muscle substrates by skeletal muscle in young, middle-aged, and old adult rats under conditions of euglycemia with low insulin levels. Male Fischer 344 x Brown Norway rats aged 5, 15, or 24 mo underwent hindlimb perfusion with a medium of 8 mM glucose, 1 mM palmitate, 25 microU/ml insulin, [1-(14)C]palmitate, and [3-(3)H]glucose. Glucose and palmitate uptake were similar among age groups. The percent and total palmitate oxidized (nmol.min(-1).g(-1)) were 30-36 and 41-49% lower (P < 0.05) in 15-mo- and 24-mo-old than in 5-mo-old animals. Compared with 5-mo- and 15-mo-old animals, pre- and postperfusion muscle triglyceride (TG) levels were significantly (P < 0.05) elevated 91-305% in red and 118-219% in white muscles of 24-mo-old animals. Fatty acid-binding protein content was 40-64% higher (P < 0.05) in 24-mo- than in 5-mo- or 15-mo-old animals. In red muscle, hormone-sensitive lipase (HSL) content was 28% lower (P < 0.05) in 24-mo- than in 5-mo-old animals. These results indicate that, under euglycemic conditions in the presence of low insulin levels, the reduction in FA disposal to oxidation and the decrease in HSL content may contribute to the accumulation of TG in muscle of old animals.
Collapse
Affiliation(s)
- Michelle Z Tucker
- Department of Kinesiology and Diabetes Research Center, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
464
|
Muller-Delp J, Spier SA, Ramsey MW, Lesniewski LA, Papadopoulos A, Humphrey JD, Delp MD. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles. Am J Physiol Heart Circ Physiol 2002; 282:H1843-54. [PMID: 11959651 DOI: 10.1152/ajpheart.00666.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.
Collapse
Affiliation(s)
- Judy Muller-Delp
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
465
|
Aaker A, Laughlin MH. Diaphragm arterioles are less responsive to alpha1- adrenergic constriction than gastrocnemius arterioles. J Appl Physiol (1985) 2002; 92:1808-16. [PMID: 11960928 DOI: 10.1152/japplphysiol.01152.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sympathetic nervous system has greater influence on vascular resistance in low-oxidative, fast-twitch skeletal muscle than in high-oxidative skeletal muscle (17). The purpose of this study was to test the hypothesis that arterioles isolated from low-oxidative, fast-twitch skeletal muscle [the white portion of gastrocnemius (WG)] possess greater responsiveness to adrenergic constriction than arterioles isolated from high-oxidative skeletal muscle [red portion of the gastrocnemius muscle (RG) and diaphragm (Dia)]. Second-order arterioles (2As) were isolated from WG, RG, and Dia of rats and reactivity examined in vitro. Results reveal that Dia 2As constrict less to norepinephrine (NE) (10(-9) to 10 (-4) M) than 2As from RG and WG, which exhibited similar NE-induced constrictions. This difference was not endothelium dependent, because responses of denuded 2As were similar to those of intact arterioles. The blunted NE-induced constrictor response of Dia 2As appears to be the result of differences in alpha1-receptor effects because 1) arterioles from Dia also responded less to selective alpha1-receptor stimulation with phenylephrine than RG and WG arterioles; 2) arterioles from Dia, RG, and WG dilated similarly to isoproterenol (10(-9) to 10(-4) M) and did not respond to selective alpha2-receptor stimulation with UK-14304; and 3) endothelin-1 produced similar constriction in 2As from Dia, RG, and WG. We conclude that differences in oxidative capacity and/or fiber type composition of muscle tissue do not explain different NE responsiveness of Dia 2As compared with 2As from gastrocnemius muscle. Differences in alpha1-adrenergic constrictor responsiveness among arterioles in skeletal muscle may contribute to nonuniform muscle blood flow responses observed during exercise and serve to maintain blood flow to Dia during exercise-induced increases in sympathetic nerve activity.
Collapse
Affiliation(s)
- Aaron Aaker
- Department of Veterinary Biomedical Sciences, University of Missouri, Columbia 65211, USA
| | | |
Collapse
|
466
|
Widrick JJ. Effect of P(i) on unloaded shortening velocity of slow and fast mammalian muscle fibers. Am J Physiol Cell Physiol 2002; 282:C647-53. [PMID: 11880253 DOI: 10.1152/ajpcell.00186.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemically skinned muscle fibers, prepared from the rat medial gastrocnemius and soleus, were subjected to four sequential slack tests in Ca(2+)-activating solutions containing 0, 15, 30, and 0 mM added P(i). P(i) (15 and 30 mM) had no effect on the unloaded shortening velocity (V(o)) of fibers expressing type IIb myosin heavy chain (MHC). For fibers expressing type I MHC, 15 mM P(i) did not alter V(o), whereas 30 mM P(i) reduced V(o) to 81 plus minus 1% of the original 0 mM P(i) value. This effect was readily reversible when P(i) was lowered back to 0 mM. These results are not compatible with current cross-bridge models, developed exclusively from data obtained from fast fibers, in which V(o) is independent of P(i). The response of the type I fibers at 30 mM P(i) is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects of P(i) on cross bridges, the thin filament, or the rate-limiting step of the cross-bridge cycle.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Department of Exercise and Sport Science, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
467
|
Gregorevic P, Williams DA, Lynch GS. Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Med Sci Sports Exerc 2002; 34:630-6. [PMID: 11932571 DOI: 10.1097/00005768-200204000-00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Human trials of hyperbaric oxygen (HBO) treatment of sports-related muscle injuries are equivocal. Although most human skeletal muscles are composed of mixed muscle fiber types, it is unclear whether HBO affects fiber types differently. PURPOSE We tested the hypothesis that HBO can enhance the functional properties of regenerating rat soleus muscles that are composed predominantly of slow fibers. METHODS After intramuscular injection of bupivacaine hydrochloride to induce the degeneration of all fibers within the soleus muscle, treated rats received daily HBO treatment at 3 atmospheres absolute. RESULTS In untreated rats, injured muscles demonstrated a reduced force-producing capacity (control soleus vs injured soleus, 220.3 +/- 2.5 vs 157.6 +/- 3.3 kN.m(-2) at 25 d postinjury, respectively, P < 0.05) and contained smaller regenerating muscle fibers than uninjured soleus muscles (fiber cross sectional area in control soleus vs injured soleus, 2289 +/- 164 vs 1154 +/- 92 microm 2 at 25 d postinjury, respectively, P < 0.05). The regenerating soleus muscles of HBO-treated rats demonstrated a greater force-producing capacity as a percentage of contralateral control muscles than the regenerating muscles from untreated rats at 14 d postinjury (regenerating HBO-soleus peak tension and untreated soleus peak tension, 42.9 +/- 1.9 and 35.8 +/- 3.9% of contralateral control muscles, respectively, P < 0.05), but no effect of treatment was observed at 25 d postinjury. CONCLUSION HBO enhanced the contractile properties of regenerating rat soleus muscles after myotoxic injury, but this improvement was not sustained for the duration of the regenerative process. The data indicate that the outcome of HBO treatment of a muscle injury may be influenced by the fiber type composition of the injured muscle.
Collapse
Affiliation(s)
- Paul Gregorevic
- Department of Physiology, The University of Melbourne, Victoria, Australia 3010
| | | | | |
Collapse
|
468
|
GREGOREVIC PAUL, WILLIAMS DAVIDA, LYNCH GORDONS. Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Med Sci Sports Exerc 2002. [DOI: 10.1249/00005768-200204000-00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
469
|
Tucker MZ, Turcotte LP. Brief food restriction increases FA oxidation and glycogen synthesis under insulin-stimulated conditions. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1210-8. [PMID: 11893627 DOI: 10.1152/ajpregu.00248.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effects of brief food restriction on fatty acid (FA) metabolism, hindlimbs of F344/BN rats fed either ad libitum (AL) or food restricted (FR) to 60% of baseline food intake for 28 days were perfused under hyperglycemic-hyperinsulinemic conditions (20 mM glucose, 1 mM palmitate, 1,000 microU/ml insulin, [3-(3)H]glucose, and [1-(14)C]palmitate). Basal glucose and insulin levels were significantly lower (P < 0.05) in FR vs. AL rats. Palmitate uptake (34.3 +/- 2.7 vs. 24.5 +/- 3.1 nmol/g/min) and oxidation (3.8 +/- 0.2 vs. 2.7 +/- 0.3 nmol.g(-1).min(-1)) were significantly higher (P < 0.05) in FR vs. AL rats, respectively. Glucose uptake was increased in FR rats and was accompanied by significant increases in red and white gastrocnemius glycogen synthesis, indicating an improvement in insulin sensitivity. Although muscle triglyceride (TG) levels were not significantly different between groups, glucose uptake and total preperfusion TG concentration were negatively correlated (r(2) = 0.27, P < 0.05). In conclusion, our results show that under hyperglycemic-hyperinsulinemic conditions, brief FR resulted in an increase in FA oxidative disposal that may contribute to the improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Michelle Z Tucker
- Department of Kinesiology and University of Southern California Diabetes Research Center, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
470
|
Sapru MK, McCormick KM, Thimmapaya B. High-efficiency adenovirus-mediated in vivo gene transfer into neonatal and adult rodent skeletal muscle. J Neurosci Methods 2002; 114:99-106. [PMID: 11850044 DOI: 10.1016/s0165-0270(01)00518-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several methodological limitations have emerged in the use of viral gene transfer into skeletal muscle. First, because the nuclei of mature muscle fibers do not undergo division, the use of strategies involving replicative integration of exogenous DNA is greatly limited. Another important limitation concerns the maturation-dependent loss in muscle fiber infectivity with adenoviral vectors. In this study, we investigated the possibility that high-titer infections with recombinant adenovirus, expressing a foreign marker gene under the control of a strong viral promoter, can significantly improve the efficiency of gene transfer in vivo into neonatal and adult rat skeletal muscle. High-titer (2 x 10(10) plaque forming units) intramuscular injection of replication-defective adenovirus vector, expressing green fluorescent protein (GFP) under the control of cytomegalovirus promoter, resulted in GFP expression in 99 +/- 0.34% of fibers in the adult soleus muscle and in approximately 85 +/- 1.44% of fibers in the adult tibialis anterior muscle. Interestingly, reduction in injected adenoviral dose significantly reduced the number of GFP-positive fibers in the adult tibialis anterior muscle, but not in the soleus muscle. However, in neonates, adenoviral infection resulted in GFP expression in 96-99% of the fibers in the tibialis anterior and the gastrocnemius muscles regardless of administered adenoviral dose.
Collapse
Affiliation(s)
- Mohan K Sapru
- Molecular Neuroscience Laboratory, Departments of Kinesiology and Psychiatry, University of Illinois at Chicago, MC 194, 901 West Roosevelt Road, Chicago, IL 60608, USA.
| | | | | |
Collapse
|
471
|
Py G, Lambert K, Perez-Martin A, Raynaud E, Préfaut C, Mercier J. Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats. Am J Physiol Endocrinol Metab 2001; 281:E1308-15. [PMID: 11701447 DOI: 10.1152/ajpendo.2001.281.6.e1308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present experiments were undertaken to characterize 1) the hindlimb muscle mass lactate uptake and 2) the expression of monocarboxylate transporter isoforms MCT1 and MCT4, as well as lactate dehydrogenase (LDH) isozyme distribution, in various skeletal muscles of Zucker fa/fa rats taken as a model of insulin resistance-related obesity. Initial lactate uptake at six different concentrations was measured in sarcolemmal vesicles (SV) by use of L-[U-(14)C]lactate. Compared with controls, the maximal rate of lactate uptake and affinity were decreased in SV of Zucker rats (approximately 30%) in which MCT4 content was significantly decreased (P < 0.05). MCT4 expression was decreased in soleus, extensor digitorum longus, and red tibialis anterior (RTA; P < 0.05), but not in white tibialis anterior, whereas MCT1 expression was decreased only in RTA of Zucker rats (P < 0.05). Obesity led to a shift toward type M-LDH isozyme in mixed muscles. We conclude that obesity leads to changes in muscular MCT1 and MCT4 expression, which, when associated with LDH isozyme redistribution, may contribute to the hyperlactatemia noted in insulin resistance.
Collapse
Affiliation(s)
- G Py
- Département de Biochimie Métabolique et Clinique, Faculté de Pharmacie, 34060 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
472
|
Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281:E1340-6. [PMID: 11701451 DOI: 10.1152/ajpendo.2001.281.6.e1340] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The underlying mechanism by which skeletal muscle adapts to exercise training or chronic energy deprivation is largely unknown. To examine this question, rats were fed for 9 wk either with or without beta-guanadinopropionic acid (beta-GPA; 1% enriched diet), a creatine analog that is known to induce muscle adaptations similar to those induced by exercise training. Muscle phosphocreatine, ATP, and ATP/AMP ratios were all markedly decreased and led to the activation of AMP-activated protein kinase (AMPK) in the beta-GPA-fed rats compared with control rats. Under these conditions, nuclear respiratory factor-1 (NRF-1) binding activity, measured using a cDNA probe containing a sequence encoding for the promoter of delta-aminolevulinate (ALA) synthase, was increased by about eightfold in the muscle of beta-GPA-fed rats compared with the control group. Concomitantly, muscle ALA synthase mRNA and cytochrome c content were also increased. Mitochondrial density in both extensor digitorum longus and epitrochlearis from beta-GPA-fed rats was also increased by more than twofold compared with the control group. In conclusion, chronic phosphocreatine depletion during beta-GPA supplementation led to the activation of muscle AMPK that was associated with increased NRF-1 binding activity, increased cytochrome c content, and increased muscle mitochondrial density. Our data suggest that AMPK may play an important role in muscle adaptations to chronic energy stress and that it promotes mitochondrial biogenesis and expression of respiratory proteins through activation of NRF-1.
Collapse
Affiliation(s)
- R Bergeron
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Minamoto VB, Bunho SR, Salvini TF. Regenerated rat skeletal muscle after periodic contusions. Braz J Med Biol Res 2001; 34:1447-52. [PMID: 11668355 DOI: 10.1590/s0100-879x2001001100012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA) muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8) and four (N = 9) months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 +/- 0.15 vs 0.91 +/- 0.09 g, P = 0.03; four months: 0.79 +/- 0.14 vs 1.02 +/- 0.07 g, P = 0.0007, respectively) and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 +/- 2.1 vs 0.5 +/- 0.3%, P = 0.006; four months: 2.3 +/- 1.6 vs 0.3 +/- 0.3%, P = 0.007, respectively). Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003). Thus, we conclude that: a) muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b) periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c) periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.
Collapse
Affiliation(s)
- V B Minamoto
- Laboratório de Neurociências, Unidade de Plasticidade Muscular, Departamento de Fisioterapia, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | | |
Collapse
|
474
|
Miller TA, Lesniewski LA, Muller-Delp JM, Majors AK, Scalise D, Delp MD. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1710-7. [PMID: 11641144 DOI: 10.1152/ajpregu.2001.281.5.r1710] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.
Collapse
Affiliation(s)
- T A Miller
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
475
|
Deschenes MR, Britt AA, Chandler WC. A comparison of the effects of unloading in young adult and aged skeletal muscle. Med Sci Sports Exerc 2001; 33:1477-83. [PMID: 11528335 DOI: 10.1097/00005768-200109000-00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The objective of this investigation was to determine whether morphological adaptations to unloading are different in young adult and aged skeletal muscle. METHODS Sixteen young adult (8-month) Fischer 344 rats were randomly assigned to either a control or hindlimb suspension (HS) group. Sixteen aged (22-month) rats were similarly assigned to either control or HS conditions. After 4 wk, animals were euthanized and soleus and EDL muscles were histochemically analyzed. RESULTS In controls, neither the soleus nor EDL displayed age-related differences in fiber size or composition. Unloading elicited fiber atrophy of the soleus in both age groups but to a greater extent (P < 0.05) in aged rats. Only in aged solei were HS-induced fiber type conversions (Type I --> II) detected. In the EDL, unloading caused atrophy only among the aged. CONCLUSION These data suggest that aged muscle experiences greater detriment as a result of unloading. This may have important consequences in the aged because they are more likely to be restricted to bed rest or limb immobilization due to falls and other afflictions.
Collapse
Affiliation(s)
- M R Deschenes
- Department of Kinesiology, The College of William & Mary, Williamsburg, VA 23187-8795, USA.
| | | | | |
Collapse
|
476
|
Abstract
The cellular role of creatine (Cr) and Cr phosphate (CrP) has been studied extensively in neural, cardiac and skeletal muscle. Several studies have demonstrated that alterations in the cellular total Cr (Cr + CrP) concentration in these tissues can produce marked functional and/or structural change. The primary aim of this review was to critically evaluate the literature that has examined the regulation of cellular total Cr content. In particular, the review focuses on the regulation of the activity and gene expression of the Cr transporter (CreaT), which is primarily responsible for cellular Cr uptake. Two CreaT genes (CreaT1 and CreaT2) have been identified and their chromosomal location and DNA sequencing have been completed. From these data, putative structures of the CreaT proteins have been formulated. Transcription products of the CreaT2 gene are expressed exclusively in the testes, whereas CreaT1 transcripts are found in a variety of tissues. Recent research has measured the expression of the CreaT1 protein in several tissues including neural, cardiac and skeletal muscle. There is very little information available about the factors regulating CreaT gene expression. There is some evidence that suggests the intracellular Cr concentration may be involved in the regulatory process but there is much more to learn before this process is understood. The activity of the CreaT protein is controlled by many factors. These include substrate concentration, transmembrane Na+ gradients, cellular location, and various hormones. It is also likely that transporter activity is influenced by its phosphorylation state and by its interaction with other plasma membrane proteins. The extent of CreaT protein glycosylation may vary within cells, the functional significance of which remains unclear.
Collapse
Affiliation(s)
- R J Snow
- School of Health Sciences, Deakin University, Burwood, Australia
| | | |
Collapse
|
477
|
Salvini TF, Amaral AC, Miyabara EH, Turri JA, Danella PM, Selistre de Araújo HS. Systemic skeletal muscle necrosis induced by crotoxin. Toxicon 2001; 39:1141-9. [PMID: 11306124 DOI: 10.1016/s0041-0101(00)00245-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic skeletal muscle necrosis induced by crotoxin, the major component of the venom of Crotalus durissus terrificus, was investigated. Mice received an intramuscular injection of crotoxin (0.35mg/kg body weight) into the right tibialis anterior (TA) muscles, which were evaluated 3h, 24h and 3 days later. Control mice were injected with saline. Right and left TAs, gastrocnemius, soleus and right masseter and longissimus dorsi were removed and frozen. Histological sections were stained with Toluidine Blue or incubated for acidic phosphatase reaction. Three and 24h after the injection, signals of muscle fiber injury were found: (a) in the injected TA muscles; (b) in both right and contralateral soleus and red gastrocnemius; and (c) in the masseter muscles. Contralateral TA, longissimus dorsi and white gastrocnemius muscles were not injured. In conclusion, crotoxin induced a systemic and selective muscle injury in muscles or muscle regions composed by oxidative muscle fibers.
Collapse
Affiliation(s)
- T F Salvini
- Laboratório de Neurociências, Departamento de Fisioterapia, Universidade Federal de São Carlos, 13565-905, São Carlos, Brazil.
| | | | | | | | | | | |
Collapse
|
478
|
Abstract
Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge.
Collapse
Affiliation(s)
- R J Monti
- Department of Physiological Science, University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
479
|
Takekura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J Physiol 2001; 533:571-83. [PMID: 11389213 PMCID: PMC2278631 DOI: 10.1111/j.1469-7793.2001.0571a.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Physiological evidence suggests that excitation-contraction (E-C) coupling failure results from eccentric contraction-induced muscle injury because of structural and morphological damage to membrane systems directly associated with the E-C coupling processes within skeletal muscle fibres. In this study using rats, we observed the ultrastructural features of the membrane systems of fast-twitch (FT) and slow-twitch (ST) muscle fibres involved in E-C coupling following level and downhill running exercise. Our aim was to find out whether mechanically mediated events following eccentric exercise caused disorder in the membrane systems involved in E-C coupling, and how soon after exercise such disorder occurred. We also compared the morphological changes of the membrane systems between ST and FT muscle fibres within the same muscles. 2. Single muscle fibres were dissected from triceps brachii muscles of male Fischer 344 rats after level or downhill (16 deg decline) motor-driven treadmill running (18 m min(-1), 5 min running with 2 min rest interval, 18 bouts). All single muscle fibres were histochemically classified into ST or FT fibres. The membrane systems were visualized using Ca(2+)-K(3)Fe(CN)(6)-OsO(4) techniques, and observed by high voltage electron microscopy (120-200 kV). 3. There were four obvious ultrastructural changes in the arrangement of the transverse (t)-tubules and the disposition of triads after the downhill running exercise: (1) an increase in the number of longitudinal segments of the t-tubule network, (2) changes in the direction and disposition of triads, (3) the appearance of caveolar clusters, and (4) the appearance of pentads and heptads (close apposition of two or three t-tubule elements with three or four elements of terminal cisternae of the sarcoplasmic reticulum). The caveolar clusters appeared almost exclusively in the ST fibres immediately after downhill running exercise and again 16 h later. The pentads and heptads appeared almost exclusively in the FT fibres, and their numbers increased dramatically 2-3 days after the downhill running exercise. 4. The eccentric exercise led to the formation of abnormal membrane systems involved in E-C coupling processes. These systems have unique morphological features, which differ between ST and FT fibres, even within the same skeletal muscle, and the damage appears to be concentrated in the FT fibres. These observations also support the idea that eccentric exercise- induced E-C coupling failure is due to physical and chemical disruption of the membrane systems involved in the E-C coupling process in skeletal muscle.
Collapse
Affiliation(s)
- H Takekura
- Department of Physiological Sciences, National Institute of Fitness and Sports, Kanoya, Kagoshima 891-2393, Japan.
| | | | | | | | | |
Collapse
|
480
|
Ahtikoski AM, Koskinen SO, Virtanen P, Kovanen V, Takala TE. Regulation of synthesis of fibrillar collagens in rat skeletal muscle during immobilization in shortened and lengthened positions. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 172:131-40. [PMID: 11442453 DOI: 10.1046/j.1365-201x.2001.00848.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immobilization has been shown to cause muscle atrophy and decreased total collagen synthesis in skeletal muscle. These changes can be counteracted by stretch. The purpose of this study was to find out the early effects of immobilization in shortened and lengthened positions on expression of type I and III collagen at pre- and post-translational level. The mRNA levels of type I and III collagen, prolyl 4-hydroxylase activity, total collagen concentration and the proportions of type I and III collagens were analysed in soleus (SOL), gastrocnemius (GM), extensor digitorum longus and tibialis anterior (TA) muscles during immobilization in shortened and lengthened positions for 1, 3 and 7 days. The mRNA levels for type I and III collagens decreased during 3-7 days in all muscles, except TA. In shortened GM and SOL, the mRNA level of type I collagen was lower than in the corresponding lengthened muscles. Prolyl 4-hydroxylase activity decreased in all muscles during 3-7 days. The activity in shortened GM was 30-37% lower than in the lengthened one during 3-7 days. Total collagen concentration and proportions of type I and III collagen showed no change during the 7-day immobilization period. The present study suggests that immobilization results in rapid down-regulation of total muscular collagen synthesis and that the timing and degree is roughly similar in type I and III collagens. Stretch seems to partially counteract these effects. Immobilization effect and the partially preventive effect of stretch on down-regulation of gene expression of prolyl 4-hydroxylase and fibrillar collagens during immobilization seems to be greater in weight-bearing SOL and GM than ankle joint dorsiflexors.
Collapse
Affiliation(s)
- A M Ahtikoski
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
481
|
Bergeron R, Previs SF, Cline GW, Perret P, Russell RR, Young LH, Shulman GI. Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 2001; 50:1076-82. [PMID: 11334411 DOI: 10.2337/diabetes.50.5.1076] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. The effects of these identical AICAR and insulin infusion rates were then examined in the obese Zucker rats. AICAR infusion increased muscle AMPK activity more than fivefold (P < 0.01 vs. control and insulin) in both lean and obese rats. Plasma triglycerides, fatty acid concentrations, and glycerol turnover, as assessed by [2-13C]glycerol, were all decreased in both lean and obese rats infused with AICAR (P < 0.05 vs. basal), whereas insulin had no effect on these parameters in the obese rats. Endogenous glucose production rates, measured by [U-13C]glucose, were suppressed by >50% during AICAR and insulin infusions in both lean and obese rats (P < 0.05 vs. basal). In lean rats, rates of whole-body glucose disposal increased by more than two-fold (P < 0.05 vs. basal) during both AICAR and insulin infusion; [3H]2-deoxy-D-glucose transport activity increased to a similar extent, by >2.2-fold (both P < 0.05 vs. control), in both soleus and red gastrocnemius muscles of lean rats infused with either AICAR or insulin. In the obese Zucker rats, neither AICAR nor insulin stimulated whole-body glucose disposal or soleus muscle glucose transport activity. However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.
Collapse
Affiliation(s)
- R Bergeron
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
482
|
Salvini TF, Belluzzo SS, Selistre de Araújo HS, Souza DH. Regeneration and change of muscle fiber types after injury induced by a hemorrhagic fraction isolated from Agkistrodon contortrix laticinctus venom. Toxicon 2001; 39:641-9. [PMID: 11072042 DOI: 10.1016/s0041-0101(00)00188-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tibialis anterior (TA) muscles of rats were evaluated 3h, 3 and 30days after intramuscular injection of ACL hemorrhagic toxin I (ACLHT-I, 5mg/kg), partially purified from the venom of Agkistrodon contortrix laticinctus. Contralateral muscles were injected with saline. Three hours after ACLHT-1 injection: presence of hemorrhagic areas and myonecrotic muscle fibers. Three days: injured muscles showed areas in regeneration, some regions with delay of regeneration and bundles of normal fibers. An increased TA muscle weight was found when compared with the contralateral (0.45+/-0.03g versus 0.36+/-0.04g, p=0.04). Thirty days: areas of regenerated muscle fibers presented splits and centralized nuclei. Some regions were replaced by connective tissue. All muscle fiber types were injured but only the incidence of type IIC increased (3.4+/-2.0% versus 0.2+/-0.2%, p=0.0005). Regenerated areas of muscles were exclusively composed by fiber types II and IIC. Regenerated muscles decreased the muscle weight (0.49+/-0.1g versus 0.66+/-0.05g, p=0. 03). In conclusion, ACLHT-I: (a) caused hemorrhage and muscle fiber injury; (b) injured both fiber types I and II; (c) increased the incidence of fiber type IIC and; (d) some muscle regions were replaced by connective tissue.
Collapse
Affiliation(s)
- T F Salvini
- Laboratório de Neurociências, Departamento de Fisioterapia, Universidade Federal de São Carlos, 13565-905, SP, São Carlos, Brazil.
| | | | | | | |
Collapse
|
483
|
Koskinen SO, Wang W, Ahtikoski AM, Kjaer M, Han XY, Komulainen J, Kovanen V, Takala TE. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins regulating type IV collagen content. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1292-300. [PMID: 11294746 DOI: 10.1152/ajpregu.2001.280.5.r1292] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This experiment tested the hypothesis that running-induced damage to rat skeletal muscle causes changes in synthesis and degradation of basement membrane type IV collagen and to proteins regulating its degradation. Samples from soleus muscle and red and white parts of quadriceps femoris muscle (MQF) were collected 6 h or 1, 2, 4, or 7 days after downhill running. Increased muscle beta-glucuronidase activity indicated greater muscle damage in the red part of MQF than in the white part of MQF or soleus. In the red part of MQF, type IV collagen expression was upregulated at the pretranslational level and the protein concentration decreased, whereas matrix metalloproteinase-2 (MMP-2), a protein that degrades type IV collagen, and tissue inhibitor of metalloproteinase-2 (TIMP-2), a protein that inhibits degradation, were increased in parallel both at mRNA and protein levels. Type IV collagen mRNA level increased in the white part of MQF and soleus muscle. The protein concentration increased in the white part of MQF and was unchanged in soleus muscle. MMP-2 and TIMP-2 changed only slightly in the white part of MQF and soleus muscle. The changes seem to depend on the severity of myofiber injury and thus probably reflect reorganization of basement membrane compounds.
Collapse
Affiliation(s)
- S O Koskinen
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, 40351 Jyväskylä, Finland. ..fi
| | | | | | | | | | | | | | | |
Collapse
|
484
|
Murphy R, McConell G, Cameron-Smith D, Watt K, Ackland L, Walzel B, Wallimann T, Snow R. Creatine transporter protein content, localization, and gene expression in rat skeletal muscle. Am J Physiol Cell Physiol 2001; 280:C415-22. [PMID: 11171559 DOI: 10.1152/ajpcell.2001.280.3.c415] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined the gene expression and cellular localization of the creatine transporter (CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) and white gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaT protein, and total creatine (TCr) content. Cellular location of the CreaT protein was visualized with immunohistochemical analysis of muscle cross sections. TCr was higher (P < or = 0.05) in WG than in both RG and SOL, and was higher in RG than in SOL. Total CreaT protein content was greater (P < or = 0.05) in SOL and RG than in WG. Two bands (55 and 70 kDa) of the CreaT protein were found in all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa (CreaT-70) bands were present in greater (P < or = 0.05) amounts in SOL and RG than in WG. SOL and RG had a greater amount (P < or = 0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaT mRNA expression per microgram of total RNA was similar across the three muscle types. These data indicate that rat SOL and RG have an enhanced potential to transport Cr compared with WG, despite a higher TCr in the latter.
Collapse
Affiliation(s)
- R Murphy
- School of Health Sciences, Deakin University, Burwood 3125, Australia
| | | | | | | | | | | | | | | |
Collapse
|
485
|
Degenhardt K, Sassoon DA. A role for Engrailed-2 in determination of skeletal muscle physiologic properties. Dev Biol 2001; 231:175-89. [PMID: 11180961 DOI: 10.1006/dbio.2000.0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular basis underlying the establishment of the myogenic lineage, subsequent differentiation, and the establishment of specific fiber types (i.e., fast versus slow) is becoming well understood. In contrast, the regulation of the general properties of a specific anatomical muscle group (e.g., leg versus jaw muscles) and the regulation of muscle-fiber properties within a particular group are less well characterized. We have investigated the potential role of the homeobox-containing gene, Engrailed-2 (En-2), in the mouse, which is specifically expressed in myoblasts in the first arch and maintained in the muscles of mastication in the adult. We have generated mice that ectopically express En-2 in all muscles during early development and primarily in fast muscles in the adult. Ectopic En-2 in nonjaw muscles leads to a decrease in fiber size, whereas overexpression in the jaw muscles leads to a shift in fiber metabolic properties as well as a decrease in fiber size. In contrast, loss of En-2 in the jaw leads to a shift in fiber metabolic properties in the jaw of female mice only. Jaw muscles are sexually dimorphic, and we propose that the function of En-2 and mechanisms guiding sexual dimorphism of the jaw muscles are integrated. We conclude that the specific expression of En-2 in the jaw therefore plays a role in specifying muscle-fiber characteristics that contribute to the physiologic properties of specific muscle groups.
Collapse
Affiliation(s)
- K Degenhardt
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, 1 G. Levy Place, New York, New York 10029, USA
| | | |
Collapse
|
486
|
Peters SJ, Harris RA, Heigenhauser GJ, Spriet LL. Muscle fiber type comparison of PDH kinase activity and isoform expression in fed and fasted rats. Am J Physiol Regul Integr Comp Physiol 2001; 280:R661-8. [PMID: 11171643 DOI: 10.1152/ajpregu.2001.280.3.r661] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- S J Peters
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1. speters.arnie.pec.brocku.ca
| | | | | | | |
Collapse
|
487
|
|
488
|
Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol (1985) 2000; 89:1365-79. [PMID: 11007571 DOI: 10.1152/jappl.2000.89.4.1365] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the key factors responsible for the age-associated reduction in muscle mass may be that satellite cell proliferation potential (number of doublings contained within each cell) could become rate limiting to old muscle regrowth. No studies have tested whether repeated cycles of atrophy-regrowth in aged animals deplete the remaining capacity of satellite cells to replicate or what measures can be taken to prevent this from happening. We hypothesized that there would be a pronounced loss of satellite cell proliferative potential in gastrocnemius muscles of aged rats (25- to 30-mo-old FBN rats) subjected to three cycles of atrophy by hindlimb immobilization (plaster casts) with intervening recovery periods. Our results indicated that there was a significant loss in gastrocnemius muscle mass and in the proliferative potential of the resident satellite cells after just one bout of immobilization. Neither the muscle mass nor the satellite cell proliferation potential recovered from their atrophied values after either the first 3-wk or later 9-wk recovery period. Remarkably, application of insulin-like growth factor I onto the atrophied gastrocnemius muscle for an additional 2 wk after this 9-wk recovery period rescued approximately 46% of the lost muscle mass and dramatically increased proliferation potential of the satellite cells from this muscle.
Collapse
Affiliation(s)
- M V Chakravarthy
- Department of Integrative Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
489
|
Wunsch SA, Muller-Delp J, Delp MD. Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. Am J Physiol Heart Circ Physiol 2000; 279:H1715-23. [PMID: 11009459 DOI: 10.1152/ajpheart.2000.279.4.h1715] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.
Collapse
Affiliation(s)
- S A Wunsch
- Department of Health and Kinesiology, Sam Houston State University, Huntsville, Texas 77341, USA
| | | | | |
Collapse
|
490
|
Colleran PN, Wilkerson MK, Bloomfield SA, Suva LJ, Turner RT, Delp MD. Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. J Appl Physiol (1985) 2000; 89:1046-54. [PMID: 10956349 DOI: 10.1152/jappl.2000.89.3.1046] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone loss occurs as a consequence of exposure to microgravity. Using the hindlimb-unloaded rat to model spaceflight, this study had as its purpose to determine whether skeletal unloading and cephalic fluid shifts alter bone blood flow. We hypothesized that perfusion would be diminished in the hindlimb bones and increased in skeletal structures of the forelimbs and head. Using radiolabeled microspheres, we measured skeletal perfusion during control standing and after 10 min, 7 days, and 28 days of hindlimb unloading (HU). Femoral and tibial perfusion were reduced with 10 min of HU, and blood flow to the femoral shaft and marrow were further diminished with 28 days of HU. Correspondingly, the mass of femora (-11%, P < 0. 05) and tibiae (-6%, P < 0.1) was lowered with 28 days of HU. In contrast, blood flow to the skull, mandible, clavicle, and humerus was increased with 10 min HU but returned to control levels with 7 days HU. Mandibular (+10%, P < 0.05), clavicular (+18%, P < 0.05), and humeral (+8%, P < 0.1) mass was increased with chronic HU. The data demonstrate that simulated microgravity alters bone perfusion and that such alterations correspond to unloading-induced changes in bone mass. These results support the hypothesis that alterations in bone blood flow provide a stimulus for bone remodeling during periods of microgravity.
Collapse
Affiliation(s)
- P N Colleran
- Department of Health and Kinesiology, and Cardiovascular Research Institute, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
491
|
Rajab P, Fox J, Riaz S, Tomlinson D, Ball D, Greenhaff PL. Skeletal muscle myosin heavy chain isoforms and energy metabolism after clenbuterol treatment in the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1076-81. [PMID: 10956268 DOI: 10.1152/ajpregu.2000.279.3.r1076] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Clenbuterol/pharmacology
- Energy Metabolism/drug effects
- Energy Metabolism/physiology
- Hypertrophy
- Isomerism
- Male
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/analysis
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/metabolism
- Organ Size
- Rats
- Rats, Inbred F344
Collapse
Affiliation(s)
- P Rajab
- School of Biomedical Sciences, University Medical School, Queen's Medical Center, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
492
|
Juel C. Expression of the Na(+)/H(+) exchanger isoform NHE1 in rat skeletal muscle and effect of training. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:59-63. [PMID: 10971224 DOI: 10.1046/j.1365-201x.2000.00759.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the Na(+)/H(+) exchanger isoform NHE1 was quantified in homogenates of various rat skeletal muscles by means of immunoblotting, and the effect of 3 weeks of treadmill training on NHE1 expression was determined in a red (oxidative) as well as a white (glycolytic)-muscle preparation. The NHE1 antibodies recognized a glycosylated protein at 101-111 kDa. There was a positive correlation between the NHE1 expression in the muscle and percent type IIB fibres and percent type IID/X fibres, whereas the NHE1 expressions were negatively correlated to percent type I fibres and percent type I + IIA fibres. Thus the highest NHE1 expression was evident in the most glycolytic fibres. Treadmill training increased (P < 0.05) the NHE1 content by 29 and 36% in oxidative and glycolytic fibres, respectively, suggesting that training enhanced the NHE1 content of all muscle-fibre types. Therefore training may improve the capacity for pH regulation in skeletal muscle.
Collapse
Affiliation(s)
- C Juel
- Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark
| |
Collapse
|
493
|
McAllister RM, Luther KL, Pfeifer PC. Thyroid status and response to endothelin-1 in rat arterial vessels. Am J Physiol Endocrinol Metab 2000; 279:E252-8. [PMID: 10913023 DOI: 10.1152/ajpendo.2000.279.2.e252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that changes in thyroid status are associated with significant alterations in skeletal muscle blood flow during exercise and that changes in endothelium-dependent vasodilation may contribute to these blood flow abnormalities. The purpose of this study was to test the hypothesis that altered endothelium-dependent vasoconstriction is also associated with changes in thyroid status. To test this hypothesis, rats were rendered hypothyroid with propylthiouracil (Hypo, n = 14) or hyperthyroid with triiodothyronine (Hyper, n = 14) over approximately 3 mo. Treatment efficacy was confirmed by altered (P < 0.05) citrate synthase activity in several hindlimb skeletal muscles from Hypo and Hyper, compared with that in muscles from euthyroid rats (Eut, n = 12). Vascular rings were prepared from abdominal aortae, and responses to several vasoactive agents were determined in vitro. As found previously, maximal acetylcholine-induced vasorelaxation was modulated by thyroid status (Eut, 47 +/- 9; Hypo, 28 +/- 6; Hyper, 68 +/- 5%; P < 0.05). Contractile responses of vascular rings with intact endothelium to the endothelium-derived constrictor endothelin-1 (ET-1), however, were similar among groups across a range of ET-1 concentrations. In addition, maximal responses [Eut, 3.75 +/- 0.47; Hypo, 2.72 +/- 0.25; Hyper, 3.22 +/- 0.42 g; not significant (NS)] and sensitivities (Eut, 8.12 +/- 0.09; Hypo, 8.10 +/- 0.06; Hyper, 8.28 +/- 0.09 -log M; NS) to ET-1 were similar among groups. If these findings from the conduit-type abdominal aorta extend into resistance vasculature, it appears that changes in endothelium-dependent vasoconstriction do not contribute to skeletal muscle blood flow abnormalities associated with thyroid disease states.
Collapse
Affiliation(s)
- R M McAllister
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | |
Collapse
|
494
|
McCurdy MR, Colleran PN, Muller-Delp J, Delp MD. Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles. J Appl Physiol (1985) 2000; 89:398-405. [PMID: 10904077 DOI: 10.1152/jappl.2000.89.1.398] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that microgravity-induced orthostatic hypotension may result from an exaggerated vasodilatory responsiveness of arteries. The purpose of this study was to determine whether skeletal muscle arterioles exhibit enhanced vasodilation in rats after 2 wk of hindlimb unloading (HU). First-order arterioles isolated from soleus and white gastrocnemius muscles were tested in vitro for vasodilatory responses to isoproterenol (Iso), adenosine (Ado), and sodium nitroprusside (SNP). HU had no effect on responses induced by Iso but diminished maximal vasodilation to Ado and SNP in both muscles. In addition, vasodilatory responses in arterioles from control rats varied between muscle types. Maximal dilations induced by Iso (soleus: 42 +/- 6%; white gastrocnemius: 60 +/- 7%) and Ado (soleus: 51 +/- 8%; white gastrocnemius: 81 +/- 6%) were greater in arterioles from white gastrocnemius muscles. These data do not support the hypothesis that microgravity-induced orthostatic hypotension results from an enhanced vasodilatory responsiveness of skeletal muscle arterioles. Furthermore, the data support the concept that dilatory responsiveness of arterioles varies in muscle composed of different fiber types.
Collapse
Affiliation(s)
- M R McCurdy
- Department of Health and Kinesiology, Cardiovascular Research Institute, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
495
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
496
|
Peterson CA, Murphy RJ, Dupont-Versteegden EE, Houlé JD. Cycling Exercise and Fetal Spinal Cord Transplantation Act Synergistically on Atrophied Muscle following Chronic Spinal Cord Injury in Rats. Neurorehabil Neural Repair 2000; 14:85-91. [PMID: 15470819 DOI: 10.1177/154596830001400201] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.
Collapse
Affiliation(s)
- C A Peterson
- Department of Geriatrics, University of Arkansas for Medical Sciences, USA
| | | | | | | |
Collapse
|
497
|
Lucas CA, Kang LH, Hoh JF. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun 2000; 272:303-8. [PMID: 10872844 DOI: 10.1006/bbrc.2000.2768] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle fibres in mammalian limb muscles are of four types: slow, 2A, 2X, and 2B, each characterized by a distinct myosin heavy chain (MyHC) isoform. Existing monoclonal antibodies (mabs) against fast MyHCs lack fibre-type specificity across species and could not positively identify 2X fibres. In this work, mabs were raised against each of the fast MyHCs. These mabs were shown to be monospecific by Western blots and immunohistochemistry in the rat. The advantages of using these mabs for identifying the three fast fibre types and hybrid fibres expressing multiple isoforms were illustrated using rat tibialis anterior muscle. Immunohistochemical analyses confirmed the monospecificity of these mabs in the following additional species: mouse, guinea pig, rabbit, cat, and baboon. 2B fibres were absent in limb muscles of the cat and baboon. These mabs constitute a set of powerful tools for studying muscle fibre types and their transformations.
Collapse
Affiliation(s)
- C A Lucas
- Department of Physiology and Institute for Biomedical Research, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
498
|
Roy RR, Kim JA, Grossman EJ, Bekmezian A, Talmadge RJ, Zhong H, Edgerton VR. Persistence of myosin heavy chain-based fiber types in innervated but silenced rat fast muscle. Muscle Nerve 2000; 23:735-47. [PMID: 10797397 DOI: 10.1002/(sici)1097-4598(200005)23:5<735::aid-mus11>3.0.co;2-t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myosin heavy chain (MHC) profile and size of fibers in deep and superficial regions of the adult rat medial gastrocnemius (MG) were determined after 4, 15, 30, and 60 days of inactivity induced by spinal cord isolation (SI). After 4 days, fiber size decreased by 33 to 50% and 36 to 46% in deep and superficial regions, whereas MHC composition was unaffected. By 15 days, these values were 45 to 78% and 51 to 69%, and MHC composition was shifting toward faster isoforms. By 60 days, there were no pure type I MHC fibers and increases from 1 to 18% and 78 to 93% in pure type IIb fibers in deep and superficial regions. The percentage of type I MHC (gel electrophoresis) was approximately 10 and approximately 3%, and of type IIb approximately 40 and approximately 60% in control and 60-day SI rats. Thus, adaptations in the MHC molecule occurred at a slower rate and for a longer duration than the atrophic response.
Collapse
Affiliation(s)
- R R Roy
- Brain Research Institute, University of California, Los Angeles, Box 951761, 1320 Gonda Neuroscience and Genetics Building, Los Angeles, California 90095-1761, USA.
| | | | | | | | | | | | | |
Collapse
|
499
|
Matthys D, Derave W, Calders P, Pannier JL. Carbohydrate availability affects ammonemia during exercise after beta 2-adrenergic blockade. Med Sci Sports Exerc 2000; 32:940-5. [PMID: 10795784 DOI: 10.1097/00005768-200005000-00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Beta-adrenergic blockade increases blood ammonia concentration during exercise. The purpose of this study was to assess the role of decreased carbohydrate availability in this process. METHODS Wistar rats (N = 47) were injected intravenously with a selective beta 2-adrenoceptor blocker (ICI 118,551), placebo, or beta 2-blocker + glucose 1 h before a treadmill exercise test. Blood samples were taken to measure the concentration of ammonia, glucose, lactic acid, free fatty acids (FFA), glycerol, branched-chain amino acids (BCAA), and muscle samples for determination of glycogen content. RESULTS Beta 2-adrenergic blockade shortened running time to exhaustion (23 +/- 4.3 min compared to 44 +/- 5.2 min with placebo), increased blood ammonia levels (146.7 +/- 16.21 micromol x L(-1) compared to 47.5 +/- 0.92 micromol x L(-1) with placebo) and prevented exercise-induced glycogen breakdown in soleus and gastrocnemius muscles. Pre-exercise supplementation of glucose during beta 2-blockade restored exercise-induced glycogen breakdown and reduced blood ammonia concentration during exercise (66.5 +/- 5.65 mmol x L(-1)) but did not improve exercise capacity (26 +/- 3.2 min) when compared with beta2-blockade alone. CONCLUSION The results suggest that the enhanced rise in blood ammonia concentration during exercise after beta-blockade is caused by impaired carbohydrate availability.
Collapse
Affiliation(s)
- D Matthys
- Department of Pediatric Cardiology, Institute of Kinesiology and Sport Sciences, University of Ghent, Belgium.
| | | | | | | |
Collapse
|
500
|
Gayan-Ramirez G, Vanzeir L, Wuytack F, Decramer M. Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm. J Physiol 2000; 524 Pt 2:387-97. [PMID: 10766920 PMCID: PMC2269887 DOI: 10.1111/j.1469-7793.2000.t01-2-00387.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. In order to explore the potential role of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA)-type pumps and of their modulators phospholamban (PLB) and sarcolipin (SLN) in the functional alterations of the diaphragm induced by corticosteroid treatment, expression of SERCA, PLB and SLN was assessed by RT-PCR in the diaphragm of rats treated daily for 5 days either with triamcinolone (80 mg kg-1, n = 8) or with saline (control; 0.6 ml, n = 8). 2. Triamcinolone treatment reduced the normalised overall amount of all SERCA mRNA in diaphragm by 70 % compared to controls (P < 0.05). This reduction was accounted for by a relatively larger decrease in the SERCA1 mRNA (-69 %, P < 0.05) whilst the decrease in SERCA2 mRNA (-49 %, P = 0.09) did not reach statistical significance. As a result the relative proportion of SERCA2 mRNA was increased from 43 +/- 7 % in control diaphragm to 52 +/- 4 % after triamcinolone treatment (P < 0.05). 3. Only the adult isoform of SERCA1 (i.e. SERCA1a) mRNA was found in the diaphragm of the 15-week-old control rats. Furthermore, triamcinolone treatment resulted in reduced levels of SERCA2a (-40 %, P < 0.05) and increased levels of SLN mRNA (+100 %, P < 0.05), while the decrease in PLB mRNA (-31 %, P = 0.277) did not reach statistical significance. SERCA1b, SERCA2b and SERCA3 mRNA levels fell below the detection limit in the diaphragm of both control and triamcinolone-treated rats. 4. Compared to control diaphragm, control rat heart showed a relatively high PLB/(SERCA1 + SERCA2) mRNA ratio of 7.88 while this ratio amounted only to 0.16 in control extensor digitorum longus (EDL) muscle. Remarkably, the SLN/(SERCA1 + SERCA2) mRNA ratio in normal cardiac muscle (0.96) was nearly the same as in diaphragm, but in EDL it amounted to only 0.05 that in diaphragm. This indicates the very low expression of SLN in rat EDL. 5. These data reveal that considerable alterations in SERCA mRNA levels accompany the functional changes seen in diaphragm after corticosteroid treatment. The relatively larger decrease in SERCA1 mRNA is in agreement with the selective type II fibre atrophy previously observed in the diaphragm of triamcinolone-treated rats, but the magnitude of SERCA alterations is more pronounced than expected on the basis of the structural changes in the diaphragm. The increase in SLN mRNA levels may represent a compensatory mechanism.
Collapse
Affiliation(s)
- G Gayan-Ramirez
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Laboratory of Physiology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|