451
|
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep 2017; 7:15297. [PMID: 29127410 PMCID: PMC5681555 DOI: 10.1038/s41598-017-15717-7] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gert Grauls
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Paul H Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Van Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | - Carmen Lopez-Iglesias
- Microscopy Core Lab, M4I Nanoscopy division, FHML, Maastricht University, Universiteitssingel 50, G0.201, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Medical clinic I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
452
|
Lv LL, Wu WJ, Feng Y, Li ZL, Tang TT, Liu BC. Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 2017; 22:728-737. [PMID: 29083099 PMCID: PMC5783839 DOI: 10.1111/jcmm.13407] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membrane‐bound vesicles released from different cells. Recent studies have revealed that EVs may participate in renal tissue damage and regeneration through mediating inter‐nephron communication. Thus, the potential use of EVs as therapeutic vector has gained considerable interest. In this review, we will discuss the basic characteristics of EVs and its role in nephron cellular communication. Then, the application of EVs as therapeutic vector based on its natural content or as carriers of drug, in acute and chronic kidney injury, was discussed. Finally, perspectives and challenges of EVs in therapy of kidney disease were described.
Collapse
Affiliation(s)
- Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Wei-Jun Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
453
|
Sódar BW, Kovács Á, Visnovitz T, Pállinger É, Vékey K, Pocsfalvi G, Turiák L, Buzás EI. Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease. Expert Rev Proteomics 2017; 14:1073-1090. [DOI: 10.1080/14789450.2017.1392244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Barbara W. Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immunoproteogenomic Extracellular Vesicle Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
454
|
Zhu LL, Huang X, Yu W, Chen H, Chen Y, Dai YT. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 2017; 50. [PMID: 29057541 DOI: 10.1111/and.12871] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- L. L. Zhu
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - X. Huang
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - W. Yu
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - H. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. T. Dai
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| |
Collapse
|
455
|
Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One 2017; 12:e0186534. [PMID: 29023592 PMCID: PMC5638560 DOI: 10.1371/journal.pone.0186534] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by cells and act as media for transfer of proteins, small RNAs and mRNAs to distant sites. They can be isolated by different methods. However, the biological activities of the purified EVs have seldom been studied. In this study, we compared the use of ultracentrifugation (UC), ultra-filtration (UF), polymer-based precipitation (PBP), and PBP with size-based purification (PBP+SP) for isolation of EVs from human endometrial cells and mouse uterine luminal fluid (ULF). Electron microscopy revealed that the diameters of the isolated EVs were similar among the tested methods. UF recovered the highest number of EVs followed by PBP, while UC and PBP+SP were significantly less efficient (P<0.05). Based on the number of EVs-to-protein ratios, PBP had the least protein contamination, significantly better than the other methods (P<0.05). All the isolated EVs expressed exosome-enriched proteins CD63, TSG101 and HSP70. Incubation of the trophoblast JEG-3 cells with an equal amount of the fluorescence-labelled EVs isolated by the studied methods showed that many of the PBP-EVs treated cells were fluorescence positive but only a few cells were labelled in the UC- and UF-EVs treated groups. Moreover, the PBP-EVs could transfer significantly more miRNA to the recipient cells than the other 3 methods (P<0.05). The PBP method could isolate EVs from mouse ULF; the diameter of the isolated EVs was 62±19 nm and expressed CD63, TSG101 and HSP70 proteins. In conclusion, PBP could best preserve the activities of the isolated EVs among the 4 methods studied and was able to isolate EVs from a small volume of sample. The simple setup and low equipment demands makes PBP the most suitable method for rapid EV assessment and isolation of EVs in clinical and basic research settings.
Collapse
Affiliation(s)
- Ziru Niu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ronald T. K. Pang
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weimin Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qian Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ranran Cheng
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital
- * E-mail:
| |
Collapse
|
456
|
Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles 2017; 6:1388731. [PMID: 29184625 PMCID: PMC5699187 DOI: 10.1080/20013078.2017.1388731] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanocarriers of proteins, RNAs and DNAs. Isolation of pure sEV populations remains challenging, with reports of protein and lipoprotein contaminants in the isolates. Cellular uptake - a cornerstone for understanding exosome and sEV function - is frequently examined using lipophilic dyes such as PKH67 or CellMask to label the vesicles. In this study, we investigated whether contaminants can confound the outcomes from sEV and exosomes uptake experiments. sEVs were isolated from blood plasma of fasted or non-fasted rats as well as from serum-supplemented or serum-free conditioned cell culture medium using size-exclusion chromatography (SEC). Eluent fractions were characterized using nanoparticle tracking, protein and triglyceride assays and immunoassays. SEC fractions were labelled with different lipophilic dyes and cellular uptake was quantified using endothelial cells or primary cardiomyocytes. We report co-isolation of sEVs with apolipoprotein B-containing lipoproteins. Cellular dye transfer did not correspond to sEV content of the SEC fractions, but was severely affected by lipoprotein and protein content. Overnight fasting of rats decreased lipoprotein content and also decreased dye transfer, while late, sEV-poor/protein-rich fractions demonstrated even greater dye transfer. The potential for dye transfer to occur in the complete absence of sEVs was clearly shown by experiments using staining of sEV-depleted serum or pure protein sample. In conclusion, proteins and lipoproteins can make a substantial contribution to transfer of lipophilic dyes to recipient cells. Considering the likelihood of contamination of sEV and exosome isolates, lipophilic dye staining experiments should be carefully controlled, and conclusions interpreted with caution.
Collapse
Affiliation(s)
- Kaloyan Takov
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Derek M. Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| |
Collapse
|
457
|
Roberts-Dalton HD, Cocks A, Falcon-Perez JM, Sayers EJ, Webber JP, Watson P, Clayton A, Jones AT. Fluorescence labelling of extracellular vesicles using a novel thiol-based strategy for quantitative analysis of cellular delivery and intracellular traffic. NANOSCALE 2017; 9:13693-13706. [PMID: 28880029 DOI: 10.1039/c7nr04128d] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Extracellular vesicles, including exosomes, are naturally derived nanovesicles generated in and released by numerous cell types. As extracellular entities they have the capacity to interact with neighbouring cells and distant tissues and affect physiological processes as well as being implicated in numerous diseases including tumorigenesis and neurodegeneration. They are also under intense investigation as delivery vectors for biotherapeutics. The ways in which EVs interact with recipient cells to influence cell physiology and deliver a macromolecular payload are at the early stages of exploration. A significant challenge within these studies is the ability to label EVs directly or indirectly with fluorescent probes to allow visualization without compromising functionality. Here, we present a thiol-based fluorescence labelling method allowing comprehensive analysis of the cellular uptake of prostate cancer derived EVs in live cells using confocal microscopy. Labelling of the EVs in this way did not influence their size and had no effect on their ability to induce differentiation of lung fibroblasts to myofibroblasts. For endocytosis analyses, depletion of key endocytic proteins and the use of chemical inhibitors (Dynasore, EIPA, Rottlerin and IPA-3) indicated that fluid-phase endocytosis and/or macropinocytosis was involved in EV internalisation. Over a period of six hours EVs were observed to increasingly co-localise with lysosomes, indicating a possible termination point following internalisation. Overall this method provides new opportunities for analysing the cellular dynamics of EVs as biological entities affecting cell and whole body physiology as well as investigating their potential as drug delivery vectors.
Collapse
Affiliation(s)
- H D Roberts-Dalton
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Corso G, Mäger I, Lee Y, Görgens A, Bultema J, Giebel B, Wood MJA, Nordin JZ, Andaloussi SE. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep 2017; 7:11561. [PMID: 28912498 PMCID: PMC5599601 DOI: 10.1038/s41598-017-10646-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) play a pivotal role in cell-to-cell communication and have been shown to take part in several physiological and pathological processes. EVs have traditionally been purified by ultracentrifugation (UC), however UC has limitations, including resulting in, operator-dependant yields, EV aggregation and altered EV morphology, and moreover is time consuming. Here we show that commercially available bind-elute size exclusion chromatography (BE-SEC) columns purify EVs with high yield (recovery ~ 80%) in a time-efficient manner compared to current methodologies. This technique is reproducible and scalable, and surface marker analysis by bead-based flow cytometry revealed highly similar expression signatures compared with UC-purified samples. Furthermore, uptake of eGFP labelled EVs in recipient cells was comparable between BE-SEC and UC samples. Hence, the BE-SEC based EV purification method represents an important methodological advance likely to facilitate robust and reproducible studies of EV biology and therapeutic application.
Collapse
Affiliation(s)
- Giulia Corso
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Yi Lee
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jarred Bultema
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, USA
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Evox Therapeutics, King Charles House, Park End Street, Oxford, United Kingdom
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Evox Therapeutics, King Charles House, Park End Street, Oxford, United Kingdom.
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom. .,Evox Therapeutics, King Charles House, Park End Street, Oxford, United Kingdom.
| |
Collapse
|
459
|
Vykoukal J, Sun N, Aguilar-Bonavides C, Katayama H, Tanaka I, Fahrmann JF, Capello M, Fujimoto J, Aguilar M, Wistuba II, Taguchi A, Ostrin EJ, Hanash SM. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget 2017; 8:95466-95480. [PMID: 29221141 PMCID: PMC5707035 DOI: 10.18632/oncotarget.20748] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes and other extracellular vesicles (EVs) have been implicated as mediators of intercellular communication. Their release into the circulation has the potential to inform about tumor status. In-depth proteomic characterization of plasma-derived EVs has been limited by challenges in isolating EVs from protein-abundant biological fluids. We implemented a novel single-step density gradient flotation workflow for efficient and rapid isolation of highly enriched circulating EVs from plasma. Mass-spectrometry analysis of plasma EVs from subjects with lung adenocarcinoma and matched controls resulted in the identification of 640 proteins. A total of 108 proteins exhibited significant (p<0.05) differential expression in vesicle preparations derived from lung adenocarcinoma case plasmas compared to controls, of which 43 were also identified in EVs from lung adenocarcinoma cell lines. Four top performing EV-associated proteins that distinguished adenocarcinoma cases from controls, SRGN, TPM3, THBS1 and HUWE1, yielded a combined area under the receiver operating characteristic curve (AUC) of 0.90 (95% CI = 0.76-1). Our findings support the potential of EV derived proteins as a source of biomarkers that complement other approaches for tumor assessment.
Collapse
Affiliation(s)
- Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Nan Sun
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Clemente Aguilar-Bonavides
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ichidai Tanaka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Michela Capello
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mitzi Aguilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Edwin J Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
460
|
Salimu J, Webber J, Gurney M, Al-Taei S, Clayton A, Tabi Z. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles 2017; 6:1368823. [PMID: 28959385 PMCID: PMC5613918 DOI: 10.1080/20013078.2017.1368823] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022] Open
Abstract
Exosomes are a distinct population of extracellular vesicles of endocytic origin with a protein repertoire similar to the parent cell. Although tumour-derived exosomes harbour immunosuppressive characteristics, they also carry tumour antigens and thus potentially contribute to immune activation. The aim of this study was to examine the impact of prostate cancer exosomes on tumour antigen cross-presentation. DU145 cells, transduced with shRNA to knockdown Rab27a (DU145KD) that inhibits exosome secretion, triggered significantly stronger tumour-antigen-specific T cell responses when loaded onto dendritic cells (DC) than control DU145 cells. Enhanced T cell response was prevented by adding purified exogenous DU145 exosomes to DU145KD cells, demonstrating that the dominant effect of tumour exosomes is immunosuppression and not antigen delivery. CD8+ T cell responses were impaired via exosomal regulation of DC function; exosomes triggered the expression of CD73, an ecto-5-nucleotidase responsible for AMP to adenosine hydrolysis, on DC. CD73 induction on DC that constitutively express CD39 resulted in an ATP-dependent inhibition of TNFα- and IL-12-production. We identified exosomal prostaglandin E2 (PGE2) as a potential driver of CD73 induction, as inhibition of PGE2 receptors significantly reduced exosome-dependent CD73 induction. The results reveal a hitherto unknown suppression of DC function via exosomal PGE2, adding a new element to tumour exosome–immune cell cross-talk. Abbreviations: AMP: adenosine monophosphate; ATP: adenosine triphosphate; BLCL: B lymphoblastoid cell line; CME: exosomes enriched from cell line conditioned media; DC: dendritic cell; DMSO: dimethyl-sulfoxide; DU145C: DU145 cells with irrelevant knockdown control; DU145KD: DU145 cells with Rab27a knockdown; ELISA: enzyme-linked immunosorbent assay; FBS: fetal bovine serum; GM-CSF: granulocyte-monocyte colony stimulating factor; HLA: human lymphocyte antigen; IL: interleukin; LPS: lipopolysaccharide; mfi: mean fluorescence intensity; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffer solution; PGE2: prostaglandin E2; TRF: time-resolved fluorescence.
Collapse
Affiliation(s)
- Josephine Salimu
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jason Webber
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mark Gurney
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Saly Al-Taei
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
461
|
Welton JL, Loveless S, Stone T, von Ruhland C, Robertson NP, Clayton A. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles 2017; 6:1369805. [PMID: 28959386 PMCID: PMC5614217 DOI: 10.1080/20013078.2017.1369805] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
The discovery of disease biomarkers, along with the use of “liquid biopsies” as a minimally invasive source of biomarkers, continues to be of great interest. In inflammatory diseases of the central nervous system (CNS), cerebrospinal fluid (CSF) is the most obvious biofluid source. Extracellular vesicles (EVs) are also present in CSF and are thought to be potential “biomarker treasure chests”. However, isolating these CSF-derived EVs remains challenging. This small-scale pilot study developed and tested a protocol to enrich for CSF-EVs, both in relapsing remitting multiple sclerosis (RRMS) CSF and controls. These were subsequently compared, using an aptamer based proteomics array, SOMAscan™. EVs were enriched from RRMS patient (n = 4) and non-demyelinating control (idiopathic intracranial hypertension (IIH) (n = 3)) CSF using precipitation and mini size-exclusion chromatography (SEC). EV-enriched fractions were selected using pre-defined EV characteristics, including increased levels of tetraspanins. EVs and paired CSF were analysed by SOMAscan™, providing relative abundance data for 1128 proteins. CSF-EVs were characterised, revealing exosome-like features: rich in tetraspanins CD9 and CD81, size ~100 nm, and exosome-like morphology by TEM. Sufficient quantities of, SOMAscan™ compatible, EV material was obtained from 5 ml CSF for proteomics analysis. Overall, 348 and 580 proteins were identified in CSF-EVs and CSF, respectively, of which 50 were found to be significantly (t-test) and exclusively enriched in RRMS CSF-EVs. Selected proteins, Plasma kallikrein and Apolipoprotein-E4, were further validated by western blot and appeared increased in CSF-EVs compared to CSF. Functional enrichment analysis of the 50 enriched proteins revealed strong associations with biological processes relating to MS pathology and also extracellular regions, consistent with EV enrichment. This pilot study demonstrates practicality for EV enrichment in CSF derived from patients with MS and controls, allowing detailed analysis of protein profiles that may offer opportunities to identify novel biomarkers and therapeutic approaches in CNS inflammatory diseases.
Collapse
Affiliation(s)
- Joanne L Welton
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Division of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Cardiff, UK.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Timothy Stone
- Central Biotechnology Services, Cardiff University, School of Medicine, Cardiff, UK
| | - Chris von Ruhland
- Central Biotechnology Services, Cardiff University, School of Medicine, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Cardiff, UK
| |
Collapse
|
462
|
Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF, Lacroix R, Lee Y, van Leeuwen TG, Mackman N, Mäger I, Nolan JP, van der Pol E, Pegtel DM, Sahoo S, Siljander PRM, Sturk G, de Wever O, Nieuwland R. Methodological Guidelines to Study Extracellular Vesicles. Circ Res 2017; 120:1632-1648. [PMID: 28495994 DOI: 10.1161/circresaha.117.309417] [Citation(s) in RCA: 724] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to the relationship between extracellular vesicles (EVs) and physiological and pathological conditions, the interest in EVs is exponentially growing. EVs hold high hopes for novel diagnostic and translational discoveries. This review provides an expert-based update of recent advances in the methods to study EVs and summarizes currently accepted considerations and recommendations from sample collection to isolation, detection, and characterization of EVs. Common misconceptions and methodological pitfalls are highlighted. Although EVs are found in all body fluids, in this review, we will focus on EVs from human blood, not only our most complex but also the most interesting body fluid for cardiovascular research.
Collapse
Affiliation(s)
- Frank A W Coumans
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Alain R Brisson
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Edit I Buzas
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Françoise Dignat-George
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Esther E E Drees
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Samir El-Andaloussi
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Costanza Emanueli
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Aleksandra Gasecka
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - An Hendrix
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Andrew F Hill
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Romaric Lacroix
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Yi Lee
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Ton G van Leeuwen
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Nigel Mackman
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Imre Mäger
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - John P Nolan
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Edwin van der Pol
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - D Michiel Pegtel
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Susmita Sahoo
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Pia R M Siljander
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Guus Sturk
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Olivier de Wever
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.)
| | - Rienk Nieuwland
- From the Biomedical Engineering and Physics (F.A.W.C., T.G.v.L., E.v.d.P.), Vesicle Observation Centre (F.A.W.C., A.G., T.G.v.L., E.v.d.P., G.S., R.N.), and Laboratory of Experimental Clinical Chemistry (A.G., G.S., R.N.), Academic Medical Center, University of Amsterdam, The Netherlands; Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS, University of Bordeaux, IPB, Pessac, France (A.R.B.); Department of Genetics, Cell- and Immunobology, Semmelweis University, Budapest, Hungary (E.I.B.); VRCM, UMRS-1076, INSERM, Aix-Marseille University, UFR de Pharmacie, Marseille, France (F.D.-G., R.L.); Haematology and vascular biology department, CHU La Conception, APHM, Marseille, France (F.D.-G., R.L.); Exosomes Research Group, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands (E.E.E.D., D.M.P.); Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (S.E.-A., Y.L.); Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (S.E.-A., I.M.); Bristol Heart Institute, University of Bristol, United Kingdom (C.E.); National Heart & Lung Institute, Imperial College London, United Kingdom (C.E.); 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland (A.G.); Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium (A.H., O.d.W.); Cancer Research Institute Ghent, Belgium (A.H., O.d.W.); Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia (A.F.H.); Department of Medicine, University of North Carolina at Chapel Hill (N.M.); Institute of Technology, University of Tartu, Estonia (I.M.); Scintillon Institute, San Diego, CA (J.P.N.); Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (S.S.); and EV Core Facility, University of Helsinki and EV-Group, Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Finland (P.R.M.S.).
| |
Collapse
|
463
|
Kosanović M, Milutinović B, Goč S, Mitić N, Janković M. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques 2017; 63:65-71. [DOI: 10.2144/000114575] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 11/23/2022] Open
Abstract
Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Bojana Milutinović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Sanja Goč
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Ninoslav Mitić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Miroslava Janković
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
464
|
Reiner AT, Witwer KW, van Balkom BW, de Beer J, Brodie C, Corteling RL, Gabrielsson S, Gimona M, Ibrahim AG, de Kleijn D, Lai CP, Lötvall J, del Portillo HA, Reischl IG, Riazifar M, Salomon C, Tahara H, Toh WS, Wauben MH, Yang VK, Yang Y, Yeo RWY, Yin H, Giebel B, Rohde E, Lim SK. Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Transl Med 2017; 6:1730-1739. [PMID: 28714557 PMCID: PMC5689784 DOI: 10.1002/sctm.17-0055] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Growing interest in extracellular vesicles (EVs, including exosomes and microvesicles) as therapeutic entities, particularly in stem cell-related approaches, has underlined the need for standardization and coordination of development efforts. Members of the International Society for Extracellular Vesicles and the Society for Clinical Research and Translation of Extracellular Vesicles Singapore convened a Workshop on this topic to discuss the opportunities and challenges associated with development of EV-based therapeutics at the preclinical and clinical levels. This review outlines topic-specific action items that, if addressed, will enhance the development of best-practice models for EV therapies. Stem Cells Translational Medicine 2017;6:1730-1739.
Collapse
Affiliation(s)
- Agnes T. Reiner
- BioSensor Technologies, AIT Austrian Institute of TechnologyViennaAustria
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neurology, The Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bas W.M. van Balkom
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Chaya Brodie
- Department of NeurosurgeryHenry Ford HospitalDetroitMichiganUSA
- Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | | | - Susanne Gabrielsson
- Department of MedicineUnit for Immunology and Allergy, Karolinska InstituteStockholmSweden
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI‐TReCS), Paracelsus Medical University (PMU)SalzburgAustria
- Department of Blood Group Serology and Transfusion MedicineUniversity Hospital, Salzburger Landeskliniken GesmbH (SALK)SalzburgAustria
| | | | - Dominique de Kleijn
- Dept. of Vascular Surgery & CardiologyUtrecht UniversityUtrechtThe Netherlands
- NUS Surgery & A‐STARSingapore
| | - Charles P. Lai
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwanRepublic of China
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Gothenburg UniversityGothenburgSweden
- Codiak BioSciencesWoburnMassachusettsUSA
| | - Hernando A. del Portillo
- ICREA at ISGlobal Barcelona Institute for Global Health, Ctr. Int. Health Res. (CRESIB), Hospital Clínic, University of BarcelonaBarcelonaSpain
- Institut d'Investigació Germans Trias i Pujol (IGTP)BadalonaSpain
| | - Ilona G. Reischl
- Federal Office for Safety in Health Care, Institute SurveillanceViennaAustria
- Austrian Agency for Health and Food SafetyInstitute SurveillanceViennaAustria
| | - Milad Riazifar
- Department of Pharmaceutical SciencesUniversity of CaliforniaIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research Center, University of CaliforniaIrvineCaliforniaUSA
| | - Carlos Salomon
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of QueenslandBrisbaneAustralia
- Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansLouisianaUSA
| | - Hidetoshi Tahara
- Department of Cellular and Molecular BiologyInstitute of Biomedical & Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Wei Seong Toh
- Faculty of DentistryNational University of SingaporeSingapore
| | - Marca H.M. Wauben
- Department of Biochemistry and Cell BiologyFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Vicky K. Yang
- Department of Clinical SciencesTufts University Cummings School of Veterinary MedicineNorth GraftonMassachusettsUSA
| | - Yijun Yang
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | | | - Hang Yin
- Department of Chemistry and Biochemistry and the BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua UniversityBeijingChina
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg‐EssenGermany
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI‐TReCS), Paracelsus Medical University (PMU)SalzburgAustria
- Department of Blood Group Serology and Transfusion MedicineUniversity Hospital, Salzburger Landeskliniken GesmbH (SALK)SalzburgAustria
| | | |
Collapse
|
465
|
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017; 40:834-844. [PMID: 28737826 PMCID: PMC5548045 DOI: 10.3892/ijmm.2017.3080] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes are cell-derived vesicles and are abundant in biological fluids; they contain RNA molecules which may serve as potential diagnostic biomarkers in 'precision medicine'. To promote the clinical application of exosomal RNA (exoRNA), many isolation methods must be compared and validated. Exosomes in cell culture medium (CCM) and serum may be isolated using ultracentrifugation (UC), ExoQuick or Total Exosome Isolation Reagent (TEI), and exoRNA may be extracted using TRIzol-LS, SeraMir, Total Exosome RNA Isolation (TER), HiPure Liquid RNA/miRNA kit (HLR), miRNeasy or exoRNeasy. ExoRNA was assessed using NanoDrop, Bioanalyzer 2100, quantitative polymerase chain reaction and high-throughput sequencing. UC showed the lowest recovery of particles, but the highest protein purity for exosome isolation. For isolation of exoRNA, we found that combinations of the TEI and TER methods resulted in high extraction efficiency and purity of small RNA obtained using CCM. High yield and a narrow size distribution pattern of small RNA were shown in exoRNA isolated by exoRNeasy from serum. In RNA profile analysis, the small RNA constituent ratio, miRNA content and amount varied as a result of methodological differences. This study showed that different methods may introduce variations in the concentration, purity and size of exosomes and exoRNA. Herein we discuss the advantages and disadvantages of each method and their application to different materials, therefore providing a reference according to research design.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Yao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Hua Qin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xu-Ping Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tai-Xue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiu-Mei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
466
|
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. MOLECULAR BIOSYSTEMS 2017; 12:1407-19. [PMID: 27030573 DOI: 10.1039/c6mb00082g] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The re-discovery of exosomes as intercellular messengers with high potential for diagnostic and therapeutic utility has led to them becoming a popular topic of research in recent years. One of the essential research areas in this field is the characterization of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids. Unexpectedly, a very challenging aspect of exploration of extracellular vesicles has turned out to be their effective and selective isolation. The plurality of developed protocols leads to qualitative and quantitative variability in terms of the obtained exosomes, which significantly affects the results of downstream analyses and makes them difficult to compare, reproduce and interpret between research groups. Currently, there is a general consensus among the exosome-oriented community concerning the urgent need for the optimization and standardization of methods employed for the purification of these vesicles. Hence, we review here several strategies for exosome preparation including ultracentrifugation, chemical precipitation, affinity capturing and filtration techniques. The advantages and disadvantages of different approaches are discussed with special emphasis being placed on their adequacy for proteomics applications, which are particularly sensitive to sample quality. We conclude that certain methods, exemplified by ultracentrifugation combined with iodixanol density gradient centrifugation or gel filtration, although labor-intensive, provide superior quality exosome preparations suitable for reliable analysis by mass spectrometry.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Monika Pietrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
467
|
Furi I, Momen-Heravi F, Szabo G. Extracellular vesicle isolation: present and future. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:263. [PMID: 28706931 DOI: 10.21037/atm.2017.03.95] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
468
|
McBride JD, Rodriguez-Menocal L, Badiavas EV. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes. J Invest Dermatol 2017. [PMID: 28648952 DOI: 10.1016/j.jid.2017.04.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade.
Collapse
Affiliation(s)
- Jeffrey D McBride
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA
| | - Evangelos V Badiavas
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida, USA; Interdisciplinary Stem Cell Institute, Miami, Florida, USA.
| |
Collapse
|
469
|
Liao Z, Muth DC, Eitan E, Travers M, Learman LN, Lehrmann E, Witwer KW. Serum extracellular vesicle depletion processes affect release and infectivity of HIV-1 in culture. Sci Rep 2017; 7:2558. [PMID: 28566772 PMCID: PMC5451420 DOI: 10.1038/s41598-017-02908-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/20/2017] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication and affect processes including immune and antiviral responses. Blood serum, a common cell culture medium component, is replete with EVs and must be depleted prior to EV-related experiments. The extent to which depletion processes deplete non-EV particles is incompletely understood, but depleted serum is associated with reduced viability and growth in cell culture. Here, we examined whether serum depleted by two methods affected HIV-1 replication. In cell lines, including HIV-1 latency models, increased HIV-1 production was observed, along with changes in cell behavior and viability. Add-back of ultracentrifuge pellets (enriched in EVs but possibly other particles) rescued baseline HIV-1 production. Primary cells were less sensitive to serum depletion processes. Virus produced under processed serum conditions was more infectious. Finally, changes in cellular metabolism, surface markers, and gene expression, but not miRNA profiles, were associated with depleted serum culture. In conclusion, depleted serum conditions have a substantial effect on HIV-1 production and infectivity. Dependence of cell cultures on “whole serum” must be examined carefully along with other experimental variables, keeping in mind that the effects of EVs may be accompanied by or confused with those of closely associated or physically similar particles.
Collapse
Affiliation(s)
- Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dillon C Muth
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, United States
| | - Meghan Travers
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa N Learman
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, United States
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States. .,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States. .,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
470
|
Gerlach JQ, Maguire CM, Krüger A, Joshi L, Prina-Mello A, Griffin MD. Urinary nanovesicles captured by lectins or antibodies demonstrate variations in size and surface glycosylation profile. Nanomedicine (Lond) 2017; 12:1217-1229. [PMID: 28520506 DOI: 10.2217/nnm-2017-0016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The use of carbohydrate-binding proteins (lectins) to isolate urinary extracellular vesicles (uEVs) was investigated and the captured subpopulations were characterized. METHODS Pooled uEVs from multiple healthy donors were exposed to lectin-conjugated or antibody-conjugated beads. Recovered uEVs were evaluated by protein estimation, transmission electron microscopy, nanoparticle tracking analysis and lectin microarray profiling. RESULTS uEVs isolated by lectin- and antibody-based affinity capture exhibited distinct variations in size and surface content. Transmission electron microscopy confirmed similar EV diameters to those established by nanoparticle tracking analysis, but total particle counts did not correlate closely with protein-based quantification. Lectin microarray profiling demonstrated capture-dependent differences in surface glycosylation. CONCLUSION Selective, carbohydrate-mediated EV isolation by lectin affinity approaches may prove immediately useful for research and find eventual use in clinical applications.
Collapse
Affiliation(s)
- Jared Q Gerlach
- Advanced Glycoscience Research Cluster (AGRC), National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Ciaran M Maguire
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), School of Medicine, Trinity College Dublin, Ireland
| | - Anja Krüger
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Ireland
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), School of Medicine, Trinity College Dublin, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Ireland.,School of Medicine, College of Medicine, Nursing & Health Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|
471
|
Carney RP, Hazari S, Rojalin T, Knudson A, Gao T, Tang Y, Liu R, Viitala T, Yliperttula M, Lam KS. Targeting Tumor-Associated Exosomes with Integrin-Binding Peptides. ADVANCED BIOSYSTEMS 2017; 1:1600038. [PMID: 29911169 PMCID: PMC6001286 DOI: 10.1002/adbi.201600038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells expel a variety of nano-sized extracellular vesicles (EVs), including exosomes, with composition reflecting the cells' biological state. Cancer pathology is dramatically mediated by EV trafficking via key proteins, lipids, metabolites, and microRNAs. Recent proteomics evidence suggests that tumor-associated exosomes exhibit distinct expression of certain membrane proteins, rendering those proteins as attractive targets for diagnostic or therapeutic application. Yet, it is not currently feasible to distinguish circulating EVs in complex biofluids according to their tissue of origin or state of disease. Here we demonstrate peptide binding to tumor-associated EVs via overexpressed membrane protein. We find that SKOV-3 ovarian tumor cells and their released EVs express α3β1 integrin, which can be targeted by our in-house cyclic nonapeptide, LXY30. After measuring bulk SKOV-3 EV association with LXY30 by flow cytometry, Raman spectral analysis of laser-trapped single exosomes with LXY30-dialkyne conjugate enabled us to differentiate cancer-associated exosomes from non-cancer exosomes. Furthermore, we introduce the foundation for a highly specific detection platform for tumor-EVs in solution with biosensor surface-immobilized LXY30. LXY30 not only exhibits high specificity and affinity to α3β1 integrin-expressing EVs, but also reduces EV uptake into SKOV-3 parent cells, demonstrating the possibility for therapeutic application.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Sidhartha Hazari
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Tatu Rojalin
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland. Center for Biophotonics, University of California Davis, Sacramento, CA, 95817 USA
| | - Alisha Knudson
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Tingjuan Gao
- College of Chemistry, Central China Normal University, Wuhan 430079, China. Center for Biophotonics, University of California Davis, Sacramento, CA, 95817 USA
| | - Yuchen Tang
- College of Chemistry, Central China Normal University, Wuhan 430079, China. Center for Biophotonics, University of California Davis, Sacramento, CA, 95817 USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland. Department of Pharmaceutical Sciences, University of Padova, Italy
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| |
Collapse
|
472
|
Carney RP, Hazari S, Colquhoun M, Tran D, Hwang B, Mulligan MS, Bryers JD, Girda E, Leiserowitz GS, Smith ZJ, Lam KS. Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations. Anal Chem 2017; 89:5357-5363. [PMID: 28345878 DOI: 10.1021/acs.analchem.7b00017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, are circulating nanoscale particles heavily implicated in cell signaling and can be isolated in vast numbers from human biofluids. Study of their molecular profiling and materials properties is currently underway for purposes of describing a variety of biological functions and diseases. However, the large, and as yet largely unquantified, variety of EV subpopulations differing in composition, size, and likely function necessitates characterization schemes capable of measuring single vesicles. Here we describe the first application of multispectral optical tweezers (MS-OTs) to single vesicles for molecular fingerprinting of EV subpopulations. This versatile imaging platform allows for sensitive measurement of Raman chemical composition (e.g., variation in protein, lipid, cholesterol, nucleic acids), coupled with discrimination by fluorescence markers. For exosomes isolated by ultracentrifugation, we use MS-OTs to interrogate the CD9-positive subpopulations via antibody fluorescence labeling and Raman spectra measurement. We report that the CD9-positive exosome subset exhibits reduced component concentration per vesicle and reduced chemical heterogeneity compared to the total purified EV population. We observed that specific vesicle subpopulations are present across exosomes isolated from cell culture supernatant of several clonal varieties of mesenchymal stromal cells and also from plasma and ascites isolated from human ovarian cancer patients.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States
| | - Sidhartha Hazari
- Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States
| | - Macalistair Colquhoun
- Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States
| | - Di Tran
- Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States
| | - Billanna Hwang
- Department of Surgery, University of Washington , 850 Republican Street, Seattle, Washington 98195-0005, United States
| | - Michael S Mulligan
- Department of Surgery, University of Washington , 850 Republican Street, Seattle, Washington 98195-0005, United States
| | - James D Bryers
- Department of Bioengineering, University of Washington , 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Eugenia Girda
- Division of Gynecologic Oncology, University of California Davis Medical Center , Sacramento, California 98517, United States
| | - Gary S Leiserowitz
- Division of Gynecologic Oncology, University of California Davis Medical Center , Sacramento, California 98517, United States
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027 China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis , Sacramento, California 95817, United States.,Division of Hematology/Oncology, University of California Davis Cancer Center , Sacramento, California 95817, United States
| |
Collapse
|
473
|
Piffoux M, Silva AKA, Lugagne JB, Hersen P, Wilhelm C, Gazeau F. Extracellular Vesicle Production Loaded with Nanoparticles and Drugs in a Trade-off between Loading, Yield and Purity: Towards a Personalized Drug Delivery System. ACTA ACUST UNITED AC 2017; 1:e1700044. [DOI: 10.1002/adbi.201700044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Max Piffoux
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Jean-Baptiste Lugagne
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes; UMR 7057; CNRS and Université Paris Diderot; 10 rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 France
| |
Collapse
|
474
|
Cheruiyot C, Pataki Z, Williams R, Ramratnam B, Li M. SILAC Based Proteomic Characterization of Exosomes from HIV-1 Infected Cells. J Vis Exp 2017. [PMID: 28287540 DOI: 10.3791/54799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics is the large-scale analysis of proteins. Proteomic techniques, such as liquid chromatography tandem mass spectroscopy (LC-MS/MS), can characterize thousands of proteins at a time. These powerful techniques allow us to have a systemic understanding of cellular changes, especially when cells are subjected to various stimuli, such as infections, stresses, and specific test conditions. Even with recent developments, analyzing the exosomal proteome is time-consuming and often involves complex methodologies. In addition, the resultant large dataset often needs robust and streamlined analysis in order for researchers to perform further downstream studies. Here, we describe a SILAC-based protocol for characterizing the exosomal proteome when cells are infected with HIV-1. The method is based on simple isotope labeling, isolation of exosomes from differentially labeled cells, and mass spectrometry analysis. This is followed by detailed data mining and bioinformatics analysis of the proteomic hits. The resultant datasets and candidates are easy to understand and often offer a wealth of information that is useful for downstream analysis. This protocol is applicable to other subcellular compartments and a wide range of test conditions.
Collapse
Affiliation(s)
| | | | | | - Bharat Ramratnam
- COBRE Center for Cancer Research, Lifespan Laboratories, Rhode Island and Miriam Hospitals; Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University
| | - Ming Li
- Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University;
| |
Collapse
|
475
|
Koritzinsky EH, Street JM, Star RA, Yuen PST. Quantification of Exosomes. J Cell Physiol 2017; 232:1587-1590. [PMID: 27018079 DOI: 10.1002/jcp.25387] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
Exosomes are released by cells as self-contained vesicles with an intact lipid bilayer that encapsulates a small portion of the parent cell. Exosomes have been studied widely as information-rich sources of potential biomarkers that can reveal cellular physiology. We suggest that quantification is essential to understand basic biological relationships between exosomes and their parent cells and hence the underlying interpretation of exosome signals. The number of methods for quantifying exosomes has expanded as interest in exosomes has increased. However, a consensus on proper quantification has not developed, making each study difficult to compare to another. Overcoming this ad hoc approach will require widely available standards that have been adequately characterized, and multiple comparative studies across platforms. We outline the current status of these technical approaches and our view of how they can become more coherent. J. Cell. Physiol. 232: 1587-1590, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland
| |
Collapse
|
476
|
Kang H, Kim J, Park J. Methods to isolate extracellular vesicles for diagnosis. MICRO AND NANO SYSTEMS LETTERS 2017. [DOI: 10.1186/s40486-017-0049-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
477
|
A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS One 2017; 12:e0170628. [PMID: 28114422 PMCID: PMC5256994 DOI: 10.1371/journal.pone.0170628] [Citation(s) in RCA: 451] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40–150 nm). The three kits, though, produced a significantly higher yield (80–300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
Collapse
|
478
|
Soung YH, Ford S, Zhang V, Chung J. Exosomes in Cancer Diagnostics. Cancers (Basel) 2017; 9:cancers9010008. [PMID: 28085080 PMCID: PMC5295779 DOI: 10.3390/cancers9010008] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are endosome derived extracellular vesicles of 30–120 nm size ranges. Exosomes have been identified as mediators of cell-to-cell communication by transferring bioactive molecules such as nucleic acids, proteins and lipids into recipient cells. While exosomes are secreted by multiple cell types, cancer derived exosomes not only influence the invasive potentials of proximally located cells, but also affect distantly located tissues. Based on their ability to alter tumor microenvironment by regulating immunity, angiogenesis and metastasis, there has been growing interest in defining the clinical relevance of exosomes in cancers. In particular, exosomes are valuable sources for biomarkers due to selective cargo loading and resemblance to their parental cells. In this review, we summarize the recent findings to utilize exosomes as cancer biomarkers for early detection, diagnosis and therapy selection.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Shane Ford
- Department of Pathology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Vincent Zhang
- Department of Pathology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Jun Chung
- Department of Pathology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| |
Collapse
|
479
|
Abstract
Exosomes are nanometer-scale, membrane-enclosed vesicles that can potentially be used to detect nephrotoxicity, and reveal the subsequent response of the kidney. Epithelial cells of every nephron segment can contribute to the urinary exosome population, which is rich in potential biomarkers, including membrane proteins such as transporters and receptors, transcription factors, and microRNAs. These exosomal biomarkers may be up- or downregulated upon nephrotoxicant exposure. Exosome isolation is an area of ongoing research. Although faster and simpler methods have been developed, ultracentrifugation remains a mainstay for purification. A single ultracentrifugation step provides an enriched preparation suitable for biomarker discovery, and a second ultracentrifugation on a sucrose/D2O cushion provides the purest exosome preparation currently available and may be preferred for bioactivity assays. The concentration of exosomes can be determined using Nanosight Nanoparticle Tracking Analysis and their contents studied with a variety of approaches including western blots for proteins and RT-qPCR for microRNAs.
Collapse
|
480
|
|
481
|
Huang T, He J. Characterization of Extracellular Vesicles by Size-Exclusion High-Performance Liquid Chromatography (HPLC). Methods Mol Biol 2017; 1660:191-199. [PMID: 28828657 PMCID: PMC6802587 DOI: 10.1007/978-1-4939-7253-1_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) have recently attracted substantial attention due to the potential diagnostic and therapeutic relevance. Although a variety of techniques have been used to isolate and analyze EVs, it is still far away from satisfaction. Size-exclusion chromatography (SEC), which separates subjects by size, has been widely applied in protein purification and analysis. The purpose of this chapter is to show the applications of size-exclusion high-performance liquid chromatography (HPLC) as methods for EV characterization of impurities or contaminants of small size, and thus for quality assay for the purity of the samples of EVs.
Collapse
Affiliation(s)
- Tao Huang
- Department of Radiology and Medical Imaging, University of Virginia, PO BOX 801339, Fontaine Research Park, Rm180, 480 Ray C Hunt Drive, Charlottesville, 22903, VA, USA
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, PO BOX 801339, Fontaine Research Park, Rm. 282, 480 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA.
| |
Collapse
|
482
|
Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics 2016; 14:69-95. [PMID: 27838931 DOI: 10.1080/14789450.2017.1260450] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are critical mediators of intercellular communication, capable of regulating the transcriptional landscape of target cells through horizontal transmission of biological information, such as proteins, lipids, and RNA species. This capability highlights their potential as novel targets for disease intervention. Areas covered: This review focuses on the emerging importance of discovery proteomics (high-throughput, unbiased quantitative protein identification) and targeted proteomics (hypothesis-driven quantitative protein subset analysis) mass spectrometry (MS)-based strategies in EV biology, especially exosomes and shed microvesicles. Expert commentary: Recent advances in MS hardware, workflows, and informatics provide comprehensive, quantitative protein profiling of EVs and EV-treated target cells. This information is seminal to understanding the role of EV subtypes in cellular crosstalk, especially when integrated with other 'omics disciplines, such as RNA analysis (e.g., mRNA, ncRNA). Moreover, high-throughput MS-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease.
Collapse
Affiliation(s)
- David W Greening
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Rong Xu
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shashi K Gopal
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Alin Rai
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Richard J Simpson
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
483
|
Reis M, Ogonek J, Qesari M, Borges NM, Nicholson L, Preußner L, Dickinson AM, Wang XN, Weissinger EM, Richter A. Recent Developments in Cellular Immunotherapy for HSCT-Associated Complications. Front Immunol 2016; 7:500. [PMID: 27895644 PMCID: PMC5107577 DOI: 10.3389/fimmu.2016.00500] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is associated with serious complications, and improvement of the overall clinical outcome of patients with hematological malignancies is necessary. During the last decades, posttransplant donor-derived adoptive cellular immunotherapeutic strategies have been progressively developed for the treatment of graft-versus-host disease (GvHD), infectious complications, and tumor relapses. To date, the common challenge of all these cell-based approaches is their implementation for clinical application. Establishing an appropriate manufacturing process, to guarantee safe and effective therapeutics with simultaneous consideration of economic requirements is one of the most critical hurdles. In this review, we will discuss the recent scientific findings, clinical experiences, and technological advances for cell processing toward the application of mesenchymal stromal cells as a therapy for treatment of severe GvHD, virus-specific T cells for targeting life-threating infections, and of chimeric antigen receptors-engineered T cells to treat relapsed leukemia.
Collapse
Affiliation(s)
- Monica Reis
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | | | - Nuno M Borges
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Lindsay Nicholson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | | | - Anne Mary Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Alcyomics Ltd., Newcastle upon Tyne, UK
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Eva M Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Anne Richter
- Miltenyi Biotec GmbH , Bergisch Gladbach , Germany
| |
Collapse
|
484
|
Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6:36162. [PMID: 27824088 PMCID: PMC5099918 DOI: 10.1038/srep36162] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are important mediators in intercellular communication. Released by many cell types, they transport proteins, lipids, and nucleic acids to distant recipient cells and contribute to important physiopathological processes. Standard current exosome isolation methods based on differential centrifugation protocols tend to induce aggregation of particles in highly concentrated suspensions and freezing of exosomes can induce damage and inconsistent biological activity. Trehalose is a natural, non-toxic sugar widely used as a protein stabilizer and cryoprotectant by the food and drug industry. Here we report that addition of 25 mM trehalose to pancreatic beta-cell exosome-like vesicle isolation and storage buffer narrows the particle size distribution and increases the number of individual particles per microgram of protein. Repeated freeze-thaw cycles induce an increase in particle concentration and in the width of the size distribution for exosome-like vesicles stored in PBS, but not in PBS 25 mM trehalose. No signs of lysis or incomplete vesicles were observed by cryo-electron tomography in PBS and trehalose samples. In macrophage immune assays, beta-cell extracellular vesicles in trehalose show consistently higher TNF-alpha cytokine secretion stimulation indexes suggesting improved preservation of biological activity. The addition of trehalose might be an attractive means to standardize experiments in the field of exosome research and downstream applications.
Collapse
Affiliation(s)
- Steffi Bosch
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Marie Allard
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Mathilde Mosser
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Denis Chrétien
- IGDR, UMR6290 CNRS, University of Rennes 1, Rennes, France.,MRIC-Biosit, UMS3480 CNRS, University of Rennes 1, Rennes, France
| | - Dominique Jegou
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Jean-Marie Bach
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| |
Collapse
|
485
|
Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 2016; 5:32945. [PMID: 27802845 PMCID: PMC5090131 DOI: 10.3402/jev.v5.32945] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%). Ultracentrifugation remains the most commonly used isolation method (81%) with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed.
Collapse
Affiliation(s)
- Chris Gardiner
- Haemostasis Research Unit, Research Department of Haematology, University College London, London, UK;
| | - Dolores Di Vizio
- Icahn School of Medicine, Cardiovascular Research Center, Cedars-Sinai, Los Angeles, CA, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
486
|
Nguyen HPT, Simpson RJ, Salamonsen LA, Greening DW. Extracellular Vesicles in the Intrauterine Environment: Challenges and Potential Functions. Biol Reprod 2016; 95:109. [PMID: 27655784 PMCID: PMC5333933 DOI: 10.1095/biolreprod.116.143503] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes (30–150 nm) and microvesicles (100–1500 nm), play important roles in mediating cell-cell communication. Such particles package distinct cargo elements, including lipids, proteins, mRNAs, microRNAs, and DNA, that vary depending on the cell of origin and its phenotype. This cargo can be horizontally transferred to target cells where its components can reprogram the recipient cell to modify its function. EVs have been identified within the uterine cavity of women, sheep, and mice, where they contribute to the microenvironment of sperm transport, and of blastocyst and endometrial preparation for implantation. It is likely that exosomes and microvesicles carry different cargo and coordinate different roles in this intrauterine environment. Understanding and defining these subtypes of EVs is important for future functional studies and clinical translation. Here we critically review the various purification and validation procedures for extracellular vesicle analysis and discuss what is known of endometrial-derived exosome cargo and of their hormonal regulation. The current knowledge of the functions of uterine exosomes, with respect to sperm transport and function, and of their actions on trophectodermal cells to promote implantation are summarized and evaluated in their physiological context. Given the potential importance of this form of cell-cell interactions within the reproductive tract, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
- Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
487
|
Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj 2016; 1861:3164-3179. [PMID: 27495390 DOI: 10.1016/j.bbagen.2016.07.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. SCOPE OF REVIEW This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. MAJOR CONCLUSIONS The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. GENERAL SIGNIFICANCE The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks.
Collapse
Affiliation(s)
- Déborah L M Rupert
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Virginia Claudio
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie, Paris, France.
| |
Collapse
|
488
|
Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Gursel I, Pavlakis GN. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 2016; 105:195-205. [PMID: 27522254 DOI: 10.1016/j.biomaterials.2016.07.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles. We have used a hollow-fiber bioreactor for the efficient production of bioactive EV bearing the heterodimeric cytokine complex Interleukin-15:Interleukin-15 receptor alpha. Bioreactor culture yielded ∼40-fold more EV per mL conditioned medium, as compared to conventional cell culture. Biophysical analysis and comparative proteomics suggested a more diverse population of EV in the bioreactor preparations, while serum protein contaminants were detectable only in conventional culture EV preparations. We also identified the Scavenger Receptor Class A family (SR-A) as a novel monocyte/macrophage uptake receptor for EV. In vivo blockade of SR-A with dextran sulfate dramatically decreased EV liver clearance in mice, while enhancing tumor accumulation. These findings facilitate development of EV therapeutic methods.
Collapse
Affiliation(s)
- Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Department of Medicine, University of Patras, Greece
| | - Defne Bayik
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800 Turkey
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Mitchell Monninger
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Mei Sun
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Aizea Morales-Kastresana
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Jennifer C Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800 Turkey
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
489
|
Welton JL, Brennan P, Gurney M, Webber JP, Spary LK, Carton DG, Falcón-Pérez JM, Walton SP, Mason MD, Tabi Z, Clayton A. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array. J Extracell Vesicles 2016; 5:31209. [PMID: 27363484 PMCID: PMC4929354 DOI: 10.3402/jev.v5.31209] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 12/28/2022] Open
Abstract
Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen–antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios.
Collapse
Affiliation(s)
- Joanne Louise Welton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom.,Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Paul Brennan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark Gurney
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Jason Paul Webber
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Lisa Kate Spary
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - David Gil Carton
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
| | | | - Sean Peter Walton
- Department of Computer Science, College of Science, Swansea University, United Kingdom
| | - Malcolm David Mason
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom;
| |
Collapse
|
490
|
Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, Stolz DB, Badylak SF. Matrix-bound nanovesicles within ECM bioscaffolds. SCIENCE ADVANCES 2016; 2:e1600502. [PMID: 27386584 PMCID: PMC4928894 DOI: 10.1126/sciadv.1600502] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/19/2016] [Indexed: 05/13/2023]
Abstract
Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis.
Collapse
Affiliation(s)
- Luai Huleihel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jenna L. Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center of Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Corresponding author.
| |
Collapse
|
491
|
Rider MA, Hurwitz SN, Meckes DG. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci Rep 2016; 6:23978. [PMID: 27068479 PMCID: PMC4828635 DOI: 10.1038/srep23978] [Citation(s) in RCA: 471] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Initially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their utility. Here we describe a method for purifying exosomes and other extracellular vesicles by adapting methods for isolating viruses using polyethylene glycol. This technique, called ExtraPEG, enriches exosomes from large volumes of media rapidly and inexpensively using low-speed centrifugation, followed by a single small-volume ultracentrifugation purification step. Total protein and RNA harvested from vesicles is sufficient in quantity and quality for proteomics and sequencing analyses, demonstrating the utility of this method for biomarker discovery and diagnostics. Additionally, confocal microscopy studies suggest that the biological activity of vesicles is not impaired. The ExtraPEG method can be easily adapted to enrich for different vesicle populations, or as an efficient precursor to subsequent purification techniques, providing a means to harvest exosomes from many different biological fluids and for a wide variety of purposes.
Collapse
Affiliation(s)
- Mark A. Rider
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, 32306, FL, USA
| | - Stephanie N. Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, 32306, FL, USA
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, 32306, FL, USA
| |
Collapse
|
492
|
Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016; 126:1152-62. [PMID: 27035807 DOI: 10.1172/jci81129] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two broad categories of extracellular vesicles (EVs), exosomes and shed microvesicles (sMVs), which differ in size distribution as well as protein and RNA profiles, have been described. EVs are known to play key roles in cell-cell communication, acting proximally as well as systemically. This Review discusses the nature of EV subtypes, strategies for isolating EVs from both cell-culture media and body fluids, and procedures for quantifying EVs. We also discuss proteins selectively enriched in exosomes and sMVs that have the potential for use as markers to discriminate between EV subtypes, as well as various applications of EVs in clinical diagnosis.
Collapse
|
493
|
Paolini L, Zendrini A, Di Noto G, Busatto S, Lottini E, Radeghieri A, Dossi A, Caneschi A, Ricotta D, Bergese P. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep 2016; 6:23550. [PMID: 27009329 PMCID: PMC4806376 DOI: 10.1038/srep23550] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 02/05/2023] Open
Abstract
Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Andrea Zendrini
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Giuseppe Di Noto
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Elisabetta Lottini
- Department of Chemistry and INSTM, Laboratory of Molecular Magnetism, University of Firenze, Sesto Fiorentino (Firenze), Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Alessandra Dossi
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Andrea Caneschi
- Department of Chemistry and INSTM, Laboratory of Molecular Magnetism, University of Firenze, Sesto Fiorentino (Firenze), Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine and INSTM, University of Brescia, Brescia, Italy
| |
Collapse
|
494
|
Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA, Goodfellow VS, Malhi H, Gores GJ. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 2016; 63:731-44. [PMID: 26406121 PMCID: PMC4764421 DOI: 10.1002/hep.28252] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Mixed lineage kinase 3 (MLK3) deficiency reduces macrophage-associated inflammation in a murine model of nonalcoholic steatohepatitis (NASH). However, the mechanistic links between MLK3 activation in hepatocytes and macrophage-driven inflammation in NASH are uncharted. Herein, we report that MLK3 mediates the release of (C-X-C motif) ligand 10 (CXCL10)-laden extracellular vesicles (EVs) from lipotoxic hepatocytes, which induce macrophage chemotaxis. Primary mouse hepatocytes (PMHs) and Huh7 cells were treated with palmitate or lysophosphatidylcholine (LPC). Released EVs were isolated by differential ultracentrifugation. LPC treatment of PMH or Huh7 cells induced release of EVs, which was prevented by either genetic or pharmacological inhibition of MLK3. Mass spectrometry identified the potent chemokine, CXCL10, in the EVs, which was markedly enriched in EVs isolated from LPC-treated hepatocytes versus untreated cells. Green fluorescent protein (GFP)-tagged CXCL10 was present in vesicular structures and colocalized with the red fluorescent protein (RFP)-tagged EV marker, CD63, after LPC treatment of cotransfected Huh-7 cells. Either genetic deletion or pharmacological inhibition of MLK3 prevented CXCL10 enrichment in EVs. Treatment of mouse bone-marrow-derived macrophages with lipotoxic hepatocyte-derived EVs induced macrophage chemotaxis, an effect blocked by incubation with CXCL10-neutralizing antisera. MLK3-deficient mice fed a NASH-inducing diet had reduced concentrations of total plasma EVs and CXCL10 containing EVs compared to wild-type mice. CONCLUSIONS During hepatocyte lipotoxicity, activated MLK3 induces the release of CXCL10-bearing vesicles from hepatocytes, which are chemotactic for macrophages.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kyoko Tomita
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven F. Bronk
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nathan W. Werneburg
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Harmeet Malhi
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
495
|
Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV, Mo YY, Xu R, Liu Y, Watabe K, Vemuri MC, Pochampally R. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 2016; 6:4953-67. [PMID: 25669974 PMCID: PMC4467126 DOI: 10.18632/oncotarget.3211] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have been shown to support breast cancer cell proliferation and metastasis, partly through their secretome. hMSCs have a remarkable ability to survive for long periods under stress, and their secretome is tumor supportive. In this study, we have characterized the cargo of extracellular vesicular (EV) fraction (that is in the size range of 40-150nm) of serum deprived hMSCs (SD-MSCs). Next Generation Sequencing assays were used to identify small RNA secreted in the EVs, which indicated presence of tumor supportive miRNA. Further assays demonstrated the role of miRNA-21 and 34a as tumor supportive miRNAs. Next, proteomic assays revealed the presence of ≈150 different proteins, most of which are known tumor supportive factors such as PDGFR-β, TIMP-1, and TIMP-2. Lipidomic assays verified presence of bioactive lipids such as sphingomyelin. Furthermore, metabolite assays identified the presence of lactic acid and glutamic acid in EVs. The co-injection xenograft assays using MCF-7 breast cancer cells demonstrated the tumor supportive function of these EVs. To our knowledge this is the first comprehensive -omics based study that characterized the complex cargo of extracellular vesicles secreted by hMSCs and their role in supporting breast cancers.
Collapse
Affiliation(s)
| | - Patrice Penfornis
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Santosh Dhule
- Department of Chemical and Biomolecular Engineering, New Orleans, LA, USA
| | - Francois Guillonneau
- 3P5 Proteomic Platform of the Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristen V Adams
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yin Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rui Xu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Yiming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohan C Vemuri
- Stem Cell Biology, Thermo Fisher Scientific, Frederick, MD, USA
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
496
|
Kalra H, Drummen GPC, Mathivanan S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int J Mol Sci 2016; 17:170. [PMID: 26861301 PMCID: PMC4783904 DOI: 10.3390/ijms17020170] [Citation(s) in RCA: 600] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These “extracellular vesicles” (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The “Focus on extracellular vesicles” series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.
Collapse
Affiliation(s)
- Hina Kalra
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Gregor P C Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio&Nano-Solutions, D-33647 Bielefeld, Germany.
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
497
|
Tong M, Kleffmann T, Pradhan S, Johansson CL, DeSousa J, Stone PR, James JL, Chen Q, Chamley LW. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Hum Reprod 2016; 31:687-99. [PMID: 26839151 DOI: 10.1093/humrep/dew004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What proteins are carried by extracellular vesicles (EVs) released from normal first trimester placentae? SUMMARY ANSWER One thousand five hundred and eighty-five, 1656 and 1476 proteins were characterized in macro-, micro- and nano-vesicles, respectively, from first trimester placentae, with all EV fractions being enriched for proteins involved in vesicle transport and inflammation. WHAT IS KNOWN ALREADY Placental EVs are being increasingly recognized as important mediators of both healthy and pathological pregnancies. However, current research has focused on detecting changes in specific proteins in particular fractions of vesicles during disease. This is the first study to investigate the full proteome of different-sized fractions of EVs from the same first trimester placenta and highlights the differences/similarities between the vesicle fractions. STUDY DESIGN, SIZE, DURATION A well-established ex vivo placental explant culture model was used to generate macro-, micro- and nano-vesicles from 56 first trimester placentae. Vesicle fractions were collected by differential ultracentrifugation, quantified and characterized. PARTICIPANTS/MATERIALS, SETTING, METHODS Placental macro-, micro- and nano-vesicles were characterized by microscopy, dynamic light scattering and nanoparticle tracking analysis. The proteome of each EV fraction was interrogated using liquid chromatography-coupled tandem mass spectrometry. Results were validated by semi-quantitative western blotting. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1585, 1656 and 1476 proteins were identified in macro-, micro- and nano-vesicles, respectively. One thousand one hundred and twenty-five proteins were shared between all three fractions while up to 223 proteins were unique to each fraction. Gene Ontology pathway analysis showed an enrichment of proteins involved in vesicle transport and inflammation in all three fractions of EVs. The expression levels of proteins involved in internalization of vesicles (annexin V, calreticulin, CD31, CD47), the complement pathway [C3, decay-accelerating factor (DAF), membrane cofactor protein (MCP), protectin] and minor histocompatibility antigens [ATP-dependent RNA helicase (DDX3), ribosomal protein S4 (RPS4)] were different between different-sized EVs. LIMITATIONS, REASONS FOR CAUTION This study is largely hypothesis-generating in nature. It is important to validate these findings using EVs isolated from maternal plasma and the function of the different EV fractions would need further investigation. WIDER IMPLICATIONS OF THE FINDINGS Our results support the concept that various EV factions can interact with different maternal cells and have unique effects to mediate feto-maternal communication during early pregnancy. This study also provides a list of candidate proteins, which may inform the identification of robust markers that can be used to isolate placental vesicles from the maternal blood in the future. STUDY FUNDING/COMPETING INTERESTS M.T. is a recipient of the University of Auckland Health Research Doctoral Scholarship and the Freemasons Postgraduate Scholarship. This project was supported by a School of Medicine Performance-based research fund (PBRF) grant awarded to L.W.C. No authors have any conflicts of interest to disclose.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shantanu Pradhan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Caroline L Johansson
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-581 83, Sweden
| | - Joana DeSousa
- Maternal Fetal Medicine, Auckland City Hospital, Auckland 1023, New Zealand
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand Maternal Fetal Medicine, Auckland City Hospital, Auckland 1023, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| |
Collapse
|
498
|
Vituret C, Gallay K, Confort MP, Ftaich N, Matei CI, Archer F, Ronfort C, Mornex JF, Chanson M, Di Pietro A, Boulanger P, Hong SS. Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles. Hum Gene Ther 2016; 27:166-83. [DOI: 10.1089/hum.2015.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cyrielle Vituret
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Kathy Gallay
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marie-Pierre Confort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Najate Ftaich
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Constantin I. Matei
- Centre Technologique des Microstructures, Université Claude Bernard—Lyon, Villeurbanne, France
| | - Fabienne Archer
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Corinne Ronfort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Jean-François Mornex
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marc Chanson
- Département de Physiologie Cellulaire & Métabolisme, Centre Médical Universitaire, Geneva, Switzerland
| | - Attilio Di Pietro
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Pierre Boulanger
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Saw See Hong
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
499
|
Abstract
Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure.
Collapse
Affiliation(s)
- Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada. .,Hamilton Centre for Kidney Research (HCKR), St. Joseph's Hospital, Hamilton, ON, Canada.
| | - Jolene Read
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Centre for Kidney Research (HCKR), St. Joseph's Hospital, Hamilton, ON, Canada
| |
Collapse
|
500
|
Smith ZJ, Lee C, Rojalin T, Carney RP, Hazari S, Knudson A, Lam K, Saari H, Ibañez EL, Viitala T, Laaksonen T, Yliperttula M, Wachsmann-Hogiu S. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles 2015; 4:28533. [PMID: 26649679 PMCID: PMC4673914 DOI: 10.3402/jev.v4.28533] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/26/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022] Open
Abstract
Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level.
Collapse
Affiliation(s)
- Zachary J Smith
- Center for Biophotonics, University of California Davis, Sacramento, CA, USA.,Department of Precision Mechanics and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China
| | - Changwon Lee
- Center for Biophotonics, University of California Davis, Sacramento, CA, USA
| | - Tatu Rojalin
- Center for Biophotonics, University of California Davis, Sacramento, CA, USA.,Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Randy P Carney
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Sidhartha Hazari
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Alisha Knudson
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Kit Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Heikki Saari
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Elisa Lazaro Ibañez
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Sebastian Wachsmann-Hogiu
- Center for Biophotonics, University of California Davis, Sacramento, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA;
| |
Collapse
|