5151
|
Wongpalee SP, Liu S, Gallego-Bartolomé J, Leitner A, Aebersold R, Liu W, Yen L, Nohales MA, Kuo PH, Vashisht AA, Wohlschlegel JA, Feng S, Kay SA, Zhou ZH, Jacobsen SE. CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. Nat Commun 2019; 10:3916. [PMID: 31477705 PMCID: PMC6718625 DOI: 10.1038/s41467-019-11759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Transcription by RNA polymerase V (Pol V) in plants is required for RNA-directed DNA methylation, leading to transcriptional gene silencing. Global chromatin association of Pol V requires components of the DDR complex DRD1, DMS3 and RDM1, but the assembly process of this complex and the underlying mechanism for Pol V recruitment remain unknown. Here we show that all DDR complex components co-localize with Pol V, and we report the cryoEM structures of two complexes associated with Pol V recruitment—DR (DMS3-RDM1) and DDR′ (DMS3-RDM1-DRD1 peptide), at 3.6 Å and 3.5 Å resolution, respectively. RDM1 dimerization at the center frames the assembly of the entire complex and mediates interactions between DMS3 and DRD1 with a stoichiometry of 1 DRD1:4 DMS3:2 RDM1. DRD1 binding to the DR complex induces a drastic movement of a DMS3 coiled-coil helix bundle. We hypothesize that both complexes are functional intermediates that mediate Pol V recruitment. RNA polymerase V transcription in plants, which is needed DNA methylation and transcriptional silencing, requires components of the DDR complex. Here the authors show that all components of the DDR complex co-localize with Pol V and report the cryoEM structures of two complexes associated with Pol V recruitment.
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.,California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolomé
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland.,Faculty of Science, University of Zürich, 8057, Zürich, Switzerland
| | - Wanlu Liu
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, 310058, Hangzhou, P. R. China
| | - Linda Yen
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Maria A Nohales
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peggy Hsuanyu Kuo
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
| | | | - Suhua Feng
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA, 90095, USA.
| | - Steven E Jacobsen
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5152
|
Kamal AHM, Aloor JJ, Fessler MB, Chowdhury SM. Cross-linking Proteomics Indicates Effects of Simvastatin on the TLR2 Interactome and Reveals ACTR1A as a Novel Regulator of the TLR2 Signal Cascade. Mol Cell Proteomics 2019; 18:1732-1744. [PMID: 31221720 PMCID: PMC6731082 DOI: 10.1074/mcp.ra119.001377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/25/2019] [Indexed: 01/23/2023] Open
Abstract
Toll-like receptor 2 (TLR2) is a pattern recognition receptor that, upon ligation by microbial molecules, interacts with other proteins to initiate pro-inflammatory responses by the cell. Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors), drugs widely prescribed to reduce hypercholesterolemia, are reported to have both pro- and anti-inflammatory effects upon cells. Some of these responses are presumed to be driven by effects on signaling proteins at the plasma membrane, but the underlying mechanisms remain obscure. We reasoned that profiling the effect of statins on the repertoire of TLR2-interacting proteins might provide novel insights into the mechanisms by which statins impact inflammation. In order to study the TLR2 interactome, we designed a coimmunoprecipitation (IP)-based cross-linking proteomics study. A hemagglutinin (HA)-tagged-TLR2 transfected HEK293 cell line was used to precipitate the TLR2 interactome upon cell exposure to the TLR2 agonist Pam3CSK4 and simvastatin, singly and in combination. To stabilize protein interactors, we used two different chemical cross-linkers with different spacer chain lengths. Proteomic analysis revealed important combinatorial effects of simvastatin and Pam3CSK4 on the TLR2 interactome. After stringent data filtering, we identified alpha-centractin (ACTR1A), an actin-related protein and subunit of the dynactin complex, as a potential interactor of TLR2. The interaction was validated using biochemical methods. RNA interference studies revealed an important role for ACTR1A in induction of pro-inflammatory cytokines. Taken together, we report that statins remodel the TLR2 interactome, and we identify ACTR1A, a part of the dynactin complex, as a novel regulator of TLR2-mediated immune signaling pathways.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- ‡Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas 76019
| | - Jim J Aloor
- §Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Michael B Fessler
- §Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Saiful M Chowdhury
- ‡Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas 76019.
| |
Collapse
|
5153
|
Erber L, Luo A, Chen Y. Targeted and Interactome Proteomics Revealed the Role of PHD2 in Regulating BRD4 Proline Hydroxylation. Mol Cell Proteomics 2019; 18:1772-1781. [PMID: 31239290 PMCID: PMC6731074 DOI: 10.1074/mcp.ra119.001535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Proline hydroxylation is a critical cellular mechanism regulating energy homeostasis and development. Our previous study identified and validated Bromodomain-containing protein 4 (BRD4) as a proline hydroxylation substrate in cancer cells. Yet, the regulatory mechanism and the functional significance of the modification remain unknown. In this study, we developed targeted quantification assays using parallel-reaction monitoring and biochemical analysis to identify the major regulatory enzyme of BRD4 proline hydroxylation. We further performed quantitative interactome analysis to determine the functional significance of the modification pathway in BRD4-mediated protein-protein interactions and gene transcription. Our findings revealed that PHD2 is the key regulatory enzyme of BRD4 proline hydroxylation and the modification significantly affects BRD4 interactions with key transcription factors as well as BRD4-mediated transcriptional activation. Taken together, this study provided mechanistic insights into the oxygen-dependent modification of BRD4 and revealed new roles of the pathway in regulating BRD4-dependent gene expression.
Collapse
Affiliation(s)
- Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455.
| |
Collapse
|
5154
|
Sap KA, Guler AT, Bezstarosti K, Bury AE, Juenemann K, Demmers JA, Reits EA. Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains. Mol Cell Proteomics 2019; 18:1705-1720. [PMID: 31138642 PMCID: PMC6731087 DOI: 10.1074/mcp.ra119.001486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/21/2019] [Indexed: 01/31/2023] Open
Abstract
Huntington's disease is caused by a polyglutamine repeat expansion in the huntingtin protein which affects the function and folding of the protein, and results in intracellular protein aggregates. Here, we examined whether this mutation leads to altered ubiquitination of huntingtin and other proteins in both soluble and insoluble fractions of brain lysates of the Q175 knock-in Huntington's disease mouse model and the Q20 wild-type mouse model. Ubiquitination sites are detected by identification of Gly-Gly (diGly) remnant motifs that remain on modified lysine residues after digestion. We identified K6, K9, K132, K804, and K837 as endogenous ubiquitination sites of soluble huntingtin, with wild-type huntingtin being mainly ubiquitinated at K132, K804, and K837. Mutant huntingtin protein levels were strongly reduced in the soluble fraction whereas K6 and K9 were mainly ubiquitinated. In the insoluble fraction increased levels of huntingtin K6 and K9 diGly sites were observed for mutant huntingtin as compared with wild type. Besides huntingtin, proteins with various roles, including membrane organization, transport, mRNA processing, gene transcription, translation, catabolic processes and oxidative phosphorylation, were differently expressed or ubiquitinated in wild-type and mutant huntingtin brain tissues. Correlating protein and diGly site fold changes in the soluble fraction revealed that diGly site abundances of most of the proteins were not related to protein fold changes, indicating that these proteins were differentially ubiquitinated in the Q175 mice. In contrast, both the fold change of the protein level and diGly site level were increased for several proteins in the insoluble fraction, including ubiquitin, ubiquilin-2, sequestosome-1/p62 and myo5a. Our data sheds light on putative novel proteins involved in different cellular processes as well as their ubiquitination status in Huntington's disease, which forms the basis for further mechanistic studies to understand the role of differential ubiquitination of huntingtin and ubiquitin-regulated processes in Huntington's disease.
Collapse
Affiliation(s)
- Karen A Sap
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Arzu Tugce Guler
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Karel Bezstarosti
- §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Aleksandra E Bury
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Katrin Juenemann
- ¶Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin, Robert-Roessle-St. 10 13089 Berlin, Germany
| | - JeroenA A Demmers
- §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Eric A Reits
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
5155
|
Kampstra ASB, van Heemst J, Janssen GM, de Ru AH, van Lummel M, van Veelen PA, Toes REM. Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft. Immunogenetics 2019; 71:519-530. [PMID: 31520135 PMCID: PMC6790208 DOI: 10.1007/s00251-019-01129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Human CD4+ T lymphocytes play an important role in inducing potent immune responses. T cells are activated and stimulated by peptides presented in human leucocyte antigen (HLA)-class II molecules. These HLA-class II molecules typically present peptides of between 12 and 20 amino acids in length. The region that interacts with the HLA molecule, designated as the peptide-binding core, is highly conserved in the residues which anchor the peptide to the molecule. In addition, as these peptides are the product of proteolytic cleavages, certain conserved residues may be expected at the N- and C-termini outside the binding core. To study whether similar conserved residues are present in different cell types, potentially harbouring different proteolytic enzymes, the ligandomes of HLA-DRB1*03:01/HLA-DRB > 1 derived from two different cell types (dendritic cells and EBV-transformed B cells) were identified with mass spectrometry and the binding core and N- and C-terminal residues of a total of 16,568 peptides were analysed using the frequencies of the amino acids in the human proteome. Similar binding motifs were found as well as comparable conservations in the N- and C-terminal residues. Furthermore, the terminal conservations of these ligandomes were compared to the N- and C-terminal conservations of the ligandome acquired from dendritic cells homozygous for HLA-DRB1*04:01. Again, comparable conservations were evident with only minor differences. Taken together, these data show that there are conservations in the terminal residues of peptides, presumably the result of the activity of proteases involved in antigen processing.
Collapse
Affiliation(s)
- Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - George M Janssen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5156
|
Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii. J Proteomics 2019; 208:103490. [DOI: 10.1016/j.jprot.2019.103490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023]
|
5157
|
Gan J, Zheng J, Krishnakumar N, Goonatilleke E, Lebrilla CB, Barile D, German JB. Selective Proteolysis of α-Lactalbumin by Endogenous Enzymes of Human Milk at Acidic pH. Mol Nutr Food Res 2019; 63:e1900259. [PMID: 31271254 PMCID: PMC7231428 DOI: 10.1002/mnfr.201900259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Indexed: 01/01/2023]
Abstract
SCOPE The use of human milk products is increasing for high-risk infants. Human milk contains endogenous enzymes that comprise a dynamic proteolytic system, yet biological properties of these enzymes and their activities in response to variations including pH within infants are unclear. Human milk has a neutral pH around 7, while infant gastric pH varies from 2 to 6 depending on individual conditions. This study is designed to determine the specificity of enzyme-substrate interactions in human milk as a function of pH. METHODS AND RESULTS Endogenous proteolysis is characterized by incubating freshly expressed human milk at physiologically relevant pH ranging from 2 to 7 without the addition of exogenous enzymes. Results show that the effects of pH on endogenous proteolysis in human milk are protein-specific. Further, specific interactions between cathepsin D and α-lactalbumin are confirmed. The endogenous enzyme cathepsin D in human milk cleaves α-lactalbumin as the milk pH shifts from 7 to 3. CONCLUSIONS This study documents that selective proteolysis activated by pH shift is a mechanism for dynamic interactions between human milk and the infant. Controlled proteolysis can guide the use of human milk products based on individual circumstance.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Jingyuan Zheng
- Department of Nutrition, University of California, Davis, CA, USA
| | - Nithya Krishnakumar
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| |
Collapse
|
5158
|
Cogne Y, Almunia C, Gouveia D, Pible O, François A, Degli-Esposti D, Geffard O, Armengaud J, Chaumot A. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105244. [PMID: 31352074 DOI: 10.1016/j.aquatox.2019.105244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
High-throughput proteomics can be performed on animal sentinels for discovering key molecular biomarkers signing the physiological response and adaptation of organisms. Ecotoxicoproteomics is today amenable by means of proteogenomics to small arthropods such as Gammarids which are well known sentinels of aquatic environments. Here, we analysed two regional Gammarus pulex populations to characterize the potential proteome divergence induced in one site by natural bioavailable mono-metallic contamination (cadmium) compared to a non-contaminated site. Two RNAseq-derived protein sequence databases were established previously on male and female individuals sampled from the reference site. Here, individual proteomes were acquired on 10 male and 10 female paired organisms sampled from each site. Proteins involved in protein lipidation, carbohydrate metabolism, proteolysis, innate immunity, oxidative stress response and lipid transport were found more abundant in animals exposed to cadmium, while hemocyanins were found in lower abundance. The intrapopulation proteome variability of long-term exposed G. pulex was inflated relatively to the non-contaminated population. These results show that, while remaining a challenge for such organisms with not yet sequenced genomes, taking into account intrapopulation variability is important to better define the molecular players induced by toxic stress in a comparative field proteomics approach.
Collapse
Affiliation(s)
- Yannick Cogne
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Christine Almunia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Adeline François
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Davide Degli-Esposti
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Olivier Geffard
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France.
| | - Arnaud Chaumot
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69625, Villeurbanne, France
| |
Collapse
|
5159
|
Mandelbaum AD, Kredo-Russo S, Aronowitz D, Myers N, Yanowski E, Klochendler A, Swisa A, Dor Y, Hornstein E. miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice. Diabetologia 2019; 62:1653-1666. [PMID: 31187215 DOI: 10.1007/s00125-019-4916-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.
Collapse
Affiliation(s)
- Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Kredo-Russo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Aronowitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5160
|
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger CPR, Krause E. Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged Peptide Ions: Identification of Labile Protein Phosphorylations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1578-1585. [PMID: 31111417 DOI: 10.1007/s13361-019-02240-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In recent years, labile phosphorylation sites on arginine, histidine, cysteine, and lysine as well as pyrophosphorylation of serine and threonine have gained more attention in phosphoproteomic studies. However, the analysis of these delicate posttranslational modifications via tandem mass spectrometry remains a challenge. Common fragmentation techniques such as collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) are limited due to extensive phosphate-related neutral loss. Electron transfer dissociation (ETD) has shown to preserve labile modifications, but is restricted to higher charge states, missing the most prevalent doubly charged peptides. Here, we report the ability of electron transfer/higher energy collisional dissociation (EThcD) to fragment doubly charged phosphorylated peptides without losing the labile modifications. Using synthetic peptides that contain phosphorylated arginine, histidine, cysteine, and lysine as well as pyrophosphorylated serine residues, we evaluated the optimal fragmentation conditions, demonstrating that EThcD is the method of choice for unambiguous assignment of tryptic, labile phosphorylated peptides. Graphical Abstract.
Collapse
Affiliation(s)
- Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
| |
Collapse
|
5161
|
El Banna N, Hatem E, Heneman-Masurel A, Léger T, Baïlle D, Vernis L, Garcia C, Martineau S, Dupuy C, Vagner S, Camadro JM, Huang ME. Redox modifications of cysteine-containing proteins, cell cycle arrest and translation inhibition: Involvement in vitamin C-induced breast cancer cell death. Redox Biol 2019; 26:101290. [PMID: 31412312 PMCID: PMC6831881 DOI: 10.1016/j.redox.2019.101290] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Vitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor repurposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells. Our data showed that AA displayed higher cytotoxicity towards triple-negative breast cancer (TNBC) cell lines in vitro than DHA. AA exhibited a similar cytotoxicity on non-TNBC cells, while only a minor detrimental effect on noncancerous cells. Using MDA-MB-231, a representative TNBC cell line, we observed that AA- and DHA-induced cytotoxicity were linked to cellular redox-state alterations. Hydrogen peroxide (H2O2) accumulation in the extracellular medium and in different intracellular compartments, and to a lesser degree, intracellular glutathione oxidation, played a key role in AA-induced cytotoxicity. In contrast, DHA affected glutathione oxidation and had less cytotoxicity. A "redoxome" approach revealed that AA treatment altered the redox state of key antioxidants and a number of cysteine-containing proteins including many nucleic acid binding proteins and proteins involved in RNA and DNA metabolisms and in energetic processes. We showed that cell cycle arrest and translation inhibition were associated with AA-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlated with AA differential cytotoxicity in breast cancer cells, suggesting a potential predictive value of PRDX1. This study provides insight into the redox-based mechanisms of VitC anticancer activity, indicating that pharmacologic doses of VitC and VitC-based rational drug combinations could be novel therapeutic opportunities for triple-negative breast cancer.
Collapse
Affiliation(s)
- Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Elie Hatem
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Thibaut Léger
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Camille Garcia
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Corinne Dupuy
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Sud, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Jean-Michel Camadro
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
5162
|
Pinto-Fernández A, Davis S, Schofield AB, Scott HC, Zhang P, Salah E, Mathea S, Charles PD, Damianou A, Bond G, Fischer R, Kessler BM. Comprehensive Landscape of Active Deubiquitinating Enzymes Profiled by Advanced Chemoproteomics. Front Chem 2019; 7:592. [PMID: 31555637 PMCID: PMC6727631 DOI: 10.3389/fchem.2019.00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymes that bind and process ubiquitin, a small 76-amino-acid protein, have been recognized as pharmacological targets in oncology, immunological disorders, and neurodegeneration. Mass spectrometry technology has now reached the capacity to cover the proteome with enough depth to interrogate entire biochemical pathways including those that contain DUBs and E3 ligase substrates. We have recently characterized the breast cancer cell (MCF7) deep proteome by detecting and quantifying ~10,000 proteins, and within this data set, we can detect endogenous expression of 65 deubiquitylating enzymes (DUBs), whereas matching transcriptomics detected 78 DUB mRNAs. Since enzyme activity provides another meaningful layer of information in addition to the expression levels, we have combined advanced mass spectrometry technology, pre-fractionation, and more potent/selective ubiquitin active-site probes with propargylic-based electrophiles to profile 74 DUBs including distinguishable isoforms for 5 DUBs in MCF7 crude extract material. Competition experiments with cysteine alkylating agents and pan-DUB inhibitors combined with probe labeling revealed the proportion of active cellular DUBs directly engaged with probes by label-free quantitative (LFQ) mass spectrometry. This demonstrated that USP13, 39, and 40 are non-reactive to probe, indicating restricted enzymatic activity under these cellular conditions. Our extended chemoproteomics workflow increases depth of covering the active DUBome, including isoform-specific resolution, and provides the framework for more comprehensive cell-based small-molecule DUB selectivity profiling.
Collapse
Affiliation(s)
- Adán Pinto-Fernández
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Davis
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abigail B Schofield
- University of Oxford, Oxford, United Kingdom.,Christ Church, University of Oxford, Oxford, United Kingdom
| | - Hannah C Scott
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ping Zhang
- University of Oxford, Oxford, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Eidarus Salah
- University of Oxford, Oxford, United Kingdom.,Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Structural Genomics Consortium (United Kingdom), Oxford, United Kingdom
| | - Sebastian Mathea
- Structural Genomics Consortium (United Kingdom), Oxford, United Kingdom.,Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Philip D Charles
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Damianou
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gareth Bond
- University of Oxford, Oxford, United Kingdom.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- University of Oxford, Oxford, United Kingdom.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5163
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
5164
|
Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH, Hay RT, Hale BG. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci U S A 2019; 116:17399-17408. [PMID: 31391303 PMCID: PMC6717285 DOI: 10.1073/pnas.1907031116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dynamic small ubiquitin-like modifier (SUMO) linkages to diverse cellular protein groups are critical to orchestrate resolution of stresses such as genome damage, hypoxia, or proteotoxicity. Defense against pathogen insult (often reliant upon host recognition of "non-self" nucleic acids) is also modulated by SUMO, but the underlying mechanisms are incompletely understood. Here, we used quantitative SILAC-based proteomics to survey pan-viral host SUMOylation responses, creating a resource of almost 600 common and unique SUMO remodeling events that are mounted during influenza A and B virus infections, as well as during viral innate immune stimulation. Subsequent mechanistic profiling focused on a common infection-induced loss of the SUMO-modified form of TRIM28/KAP1, a host transcriptional repressor. By integrating knockout and reconstitution models with system-wide transcriptomics, we provide evidence that influenza virus-triggered loss of SUMO-modified TRIM28 leads to derepression of endogenous retroviral (ERV) elements, unmasking this cellular source of "self" double-stranded (ds)RNA. Consequently, loss of SUMO-modified TRIM28 potentiates canonical cytosolic dsRNA-activated IFN-mediated defenses that rely on RIG-I, MAVS, TBK1, and JAK1. Intriguingly, although wild-type influenza A virus robustly triggers this SUMO switch in TRIM28, the induction of IFN-stimulated genes is limited unless expression of the viral dsRNA-binding protein NS1 is abrogated. This may imply a viral strategy to antagonize such a host response by sequestration of induced immunostimulatory ERV dsRNAs. Overall, our data reveal that a key nuclear mechanism that normally prevents aberrant expression of ERV elements (ERVs) has been functionally co-opted via a stress-induced SUMO switch to augment antiviral immunity.
Collapse
Affiliation(s)
- Nora Schmidt
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Patricia Domingues
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Filip Golebiowski
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Corinna Patzina
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
5165
|
Lange H, Ndecky SYA, Gomez-Diaz C, Pflieger D, Butel N, Zumsteg J, Kuhn L, Piermaria C, Chicher J, Christie M, Karaaslan ES, Lang PLM, Weigel D, Vaucheret H, Hammann P, Gagliardi D. RST1 and RIPR connect the cytosolic RNA exosome to the Ski complex in Arabidopsis. Nat Commun 2019; 10:3871. [PMID: 31455787 PMCID: PMC6711988 DOI: 10.1038/s41467-019-11807-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023] Open
Abstract
The RNA exosome is a key 3’−5’ exoribonuclease with an evolutionarily conserved structure and function. Its cytosolic functions require the co-factors SKI7 and the Ski complex. Here we demonstrate by co-purification experiments that the ARM-repeat protein RESURRECTION1 (RST1) and RST1 INTERACTING PROTEIN (RIPR) connect the cytosolic Arabidopsis RNA exosome to the Ski complex. rst1 and ripr mutants accumulate RNA quality control siRNAs (rqc-siRNAs) produced by the post-transcriptional gene silencing (PTGS) machinery when mRNA degradation is compromised. The small RNA populations observed in rst1 and ripr mutants are also detected in mutants lacking the RRP45B/CER7 core exosome subunit. Thus, molecular and genetic evidence supports a physical and functional link between RST1, RIPR and the RNA exosome. Our data reveal the existence of additional cytosolic exosome co-factors besides the known Ski subunits. RST1 is not restricted to plants, as homologues with a similar domain architecture but unknown function exist in animals, including humans. Cytosolic RNA degradation by the RNA exosome requires the Ski complex. Here the authors show that the proteins RST1 and RIPR assist the RNA exosome and the Ski complex in RNA degradation, thereby preventing the production of secondary siRNAs from endogenous mRNAs.
Collapse
Affiliation(s)
- Heike Lange
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Simon Y A Ndecky
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Carlos Gomez-Diaz
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Butel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Julie Zumsteg
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Michael Christie
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ezgi S Karaaslan
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5166
|
Ong JWJ, Tan KS, Ler SG, Gunaratne J, Choi H, Seet JE, Chow VTK. Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics. Cells 2019; 8:cells8090975. [PMID: 31455003 PMCID: PMC6769472 DOI: 10.3390/cells8090975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
During influenza pneumonia, the alveolar epithelial cells of the lungs are targeted by the influenza virus. The distal airway stem cells (DASCs) and proliferating alveolar type II (AT2) cells are reported to be putative lung repair cells. However, their relative spatial and temporal distribution is still unknown during influenza-induced acute lung injury. Here, we investigated the distribution of these cells, and concurrently performed global proteomic analysis of the infected lungs to elucidate and link the cellular and molecular events during influenza pneumonia recovery. BALB/c mice were infected with a sub-lethal dose of influenza H1N1 virus. From 5 to 25 days post-infection (dpi), mouse lungs were subjected to histopathologic and immunofluorescence analysis to probe for global distribution of lung repair cells (using P63 and KRT5 markers for DASCs; SPC and PCNA markers for AT2 cells). At 7 and 15 dpi, infected mouse lungs were also subjected to protein mass spectrometry for relative protein quantification. DASCs appeared only in the damaged area of the lung from 7 dpi onwards, reaching a peak at 21 dpi, and persisted until 25 dpi. However, no differentiation of DASCs to AT2 cells was observed by 25 dpi. In contrast, AT2 cells began proliferating from 7 dpi to replenish their population, especially within the boundary area between damaged and undamaged areas of the infected lungs. Mass spectrometry and gene ontology analysis revealed prominent innate immune responses at 7 dpi, which shifted towards adaptive immune responses by 15 dpi. Hence, proliferating AT2 cells but not DASCs contribute to AT2 cell regeneration following transition from innate to adaptive immune responses during the early phase of recovery from influenza pneumonia up to 25 dpi.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore 119228, Singapore
| | - Siok Ghee Ler
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore 119074, Singapore
| | - Vincent Tak-Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| |
Collapse
|
5167
|
SILAC-Based Quantification of TGFBR2-Regulated Protein Expression in Extracellular Vesicles of Microsatellite Unstable Colorectal Cancers. Int J Mol Sci 2019; 20:ijms20174162. [PMID: 31454892 PMCID: PMC6747473 DOI: 10.3390/ijms20174162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Microsatellite unstable (MSI) colorectal cancers (CRCs) are characterized by mutational inactivation of Transforming Growth Factor Beta Receptor Type 2 (TGFBR2). TGFBR2-deficient CRCs present altered target gene and protein expression. Such cellular alterations modulate the content of CRC-derived extracellular vesicles (EVs). EVs function as couriers of proteins, nucleic acids, and lipids in intercellular communication. At a qualitative level, we have previously shown that TGFBR2 deficiency causes overall alterations in the EV protein content. To deepen the basic understanding of altered protein dynamics, this work aimed to determine TGFBR2-dependent EV protein signatures in a quantitative manner. Using a stable isotope labeling with amino acids in cell culture (SILAC) approach for mass spectrometry-based quantification, 48 TGFBR2-regulated proteins were identified in MSI CRC-derived EVs. Overall, TGFBR2 deficiency caused upregulation of several EV proteins related to the extracellular matrix and nucleosome as well as downregulation of proteasome-associated proteins. The present study emphasizes the general overlap of proteins between EVs and their parental CRC cells but also highlights the impact of TGFBR2 deficiency on EV protein composition. From a clinical perspective, TGFBR2-regulated quantitative differences of protein expression in EVs might nominate novel biomarkers for liquid biopsy-based MSI typing in the future.
Collapse
|
5168
|
Zeng L, Deng X, Zhong J, Yuan L, Tao X, Zhang S, Zeng Y, He G, Tan P, Tao Y. Prognostic value of biomarkers EpCAM and αB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis. BMC Cancer 2019; 19:831. [PMID: 31443698 PMCID: PMC6708189 DOI: 10.1186/s12885-019-6016-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Methods Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. Results We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. Conclusion We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-6016-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China.
| | - Jingmin Zhong
- Department of Pathology, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, WuHan, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Tao
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sai Zhang
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5169
|
Demtröder L, Pfänder Y, Schäkermann S, Bandow JE, Masepohl B. NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. Microbiologyopen 2019; 8:e921. [PMID: 31441241 PMCID: PMC6925177 DOI: 10.1002/mbo3.921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
Rhodobacter capsulatus fixes atmospheric nitrogen (N2) by a molybdenum (Mo)‐nitrogenase and a Mo‐free iron (Fe)‐nitrogenase, whose production is induced or repressed by Mo, respectively. At low nanomolar Mo concentrations, both isoenzymes are synthesized and contribute to nitrogen fixation. Here we examined the regulatory interplay of the central transcriptional activators NifA and AnfA by proteome profiling. As expected from earlier studies, synthesis of the structural proteins of Mo‐nitrogenase (NifHDK) and Fe‐nitrogenase (AnfHDGK) required NifA and AnfA, respectively, both of which depend on the alternative sigma factor RpoN to activate expression of their target genes. Unexpectedly, NifA was found to be essential for the synthesis of Fe‐nitrogenase, electron supply to both nitrogenases, biosynthesis of their cofactors, and production of RpoN. Apparently, RpoN is the only NifA‐dependent factor required for target gene activation by AnfA, since plasmid‐borne rpoN restored anfH transcription in a NifA‐deficient strain. However, plasmid‐borne rpoN did not restore Fe‐nitrogenase activity in this strain. Taken together, NifA requirement for synthesis and activity of both nitrogenases suggests that Fe‐nitrogenase functions as a complementary nitrogenase rather than an alternative isoenzyme in R. capsulatus.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5170
|
Structural basis for lamin assembly at the molecular level. Nat Commun 2019; 10:3757. [PMID: 31434876 PMCID: PMC6704074 DOI: 10.1038/s41467-019-11684-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Nuclear structure and function are governed by lamins, which are intermediate filaments that mostly consist of α-helices. Different lamin assembly models have been proposed based on low resolution and fragmented structures. However, their assembly mechanisms are still poorly understood at the molecular level. Here, we present the crystal structure of a long human lamin fragment at 3.2 Å resolution that allows the visualization of the features of the full-length protein. The structure shows an anti-parallel arrangement of the two coiled-coil dimers, which is important for the assembly process. We further discover an interaction between the lamin dimers by using chemical cross-linking and mass spectrometry analysis. Based on these two interactions, we propose a molecular mechanism for lamin assembly that is in agreement with a recent model representing the native state and could explain pathological mutations. Our findings also provide the molecular basis for assembly mechanisms of other intermediate filaments. Lamins are intermediate filaments and the major component of the nuclear lamina. Here the authors determine the crystal structure of a construct comprising the N-terminal half of human lamin A/C and use their structure and cross-linking and biochemical experiments to discuss lamin assembly.
Collapse
|
5171
|
Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. J Am Chem Soc 2019; 141:12974-12978. [PMID: 31373491 PMCID: PMC6849375 DOI: 10.1021/jacs.9b06061] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O-GlcNAc is an abundant post-translational modification found on nuclear and cytoplasmic proteins in all metazoans. This modification regulates a wide variety of cellular processes, and elevated O-GlcNAc levels have been implicated in cancer progression. A single essential enzyme, O-GlcNAc transferase (OGT), is responsible for all nucleocytoplasmic O-GlcNAcylation. Understanding how this enzyme chooses its substrates is critical for understanding, and potentially manipulating, its functions. Here we use protein microarray technology and proteome-wide glycosylation profiling to show that conserved aspartate residues in the tetratricopeptide repeat (TPR) lumen of OGT drive substrate selection. Changing these residues to alanines alters substrate selectivity and unexpectedly increases rates of protein glycosylation. Our findings support a model where sites of glycosylation for many OGT substrates are determined by TPR domain contacts to substrate side chains five to fifteen residues C-terminal to the glycosite. In addition to guiding design of inhibitors that target OGT's TPR domain, this information will inform efforts to engineer substrates to explore biological functions.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| | - Zebulon G. Levine
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115
| |
Collapse
|
5172
|
Prakash A, Majumder S, Ahmad S, Varkey M, Anish TA, Jenkins C, Rigby M, Orsburn B. Detection and verification of 2.3 million cancer mutations in NCI60 cancer cell lines with a cloud search engine. J Proteomics 2019; 209:103488. [PMID: 31445215 DOI: 10.1016/j.jprot.2019.103488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Today we have unprecedented access to human genomic and proteomic data that appear to be rapidly approaching our current understanding of comprehensive coverage. Combining genomic information with shotgun proteomics remains challenging due to the large increase in proteomics search space. However, making this connection between genomic and proteomic information is critical for cancer studies to vaccine development. Furthermore, as we progress towards personalized medicine, it will be essential for proteomics analysis to identify individual mutations and variants in order to fully understand protein networks and to develop personalized therapies. While these advantages are well-established, only a few studies have demonstrated the successful integration of proteomic data with large genomic input. We present and examine the abilities of Bolt, a new cloud-based proteomics search engine to search for the presence of over 2.3 million known cancer mutations in a matter of minutes while still performing a standard proteomics search that includes 31 post translational modifications. We use previously published proteomics data sets and identify mutations that are verified using genomic studies as well as previous proteomics efforts. Our results also emphasize the need to search for mutations in a comprehensive manner while still searching for both common and rare PTMs. SIGNIFICANCE: We present and examine the abilities of Bolt, a new cloud-based proteomics search engine to search for the presence of over 2.3 million known cancer mutations in a matter of minutes while still performing a standard proteomics search that includes 31 post translational modifications. No other proteomics search software can do so.
Collapse
Affiliation(s)
- Amol Prakash
- Optys Tech Corporation, Shrewsbury, MA, United States of America.
| | | | - Shadab Ahmad
- Optys Tech Corporation, Shrewsbury, MA, United States of America
| | - Manu Varkey
- Optys Tech Corporation, Shrewsbury, MA, United States of America
| | - T A Anish
- Optys Tech Corporation, Shrewsbury, MA, United States of America
| | - Conor Jenkins
- Proteomic und Genomic Sciences, Baltimore, MD 21214, United States of America
| | - Megan Rigby
- Hood College Department of Biology, Frederick, MD 21701, United States of America
| | - Benjamin Orsburn
- Proteomic und Genomic Sciences, Baltimore, MD 21214, United States of America
| |
Collapse
|
5173
|
Morkūnaitė-Haimi Š, Vinskiene J, Stanienė G, Haimi P. Differential Chloroplast Proteomics of Temperature Adaptation in Apple (Malus x domestica Borkh.) Microshoots. Proteomics 2019; 19:e1800142. [PMID: 31430045 DOI: 10.1002/pmic.201800142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2019] [Indexed: 11/10/2022]
Abstract
Temperature stress is one of the most common external factors that plants have to adapt to. Accordingly, plants have developed several adaptation mechanisms to deal with temperature stress. Chloroplasts are one of the organelles that are responsible for the sensing of the temperature signal and triggering a response. Here, chloroplasts are purified from low temperature (4° C), control (22° C) and high temperature (30° C) grown Malus x domestica microshoots. The purity of the chloroplast fractions is evaluated by marker proteins, as well as by using in silico subcellular localization predictions. The proteins are digested using filter-aided sample processing and analyzed using nano-LC MS/MS. 733 proteins are observed corresponding to published Malus x domestica gene models and 16 chloroplast genome -encoded proteins in the chloroplast preparates. In ANOVA, 56 proteins are found to be significantly differentially abundant (p < 0.01) between chloroplasts isolated from plants grown in different conditions. The differentially abundant proteins are involved in protein digestion, cytoskeleton structure, cellular redox state and photosynthesis, or have protective functions. Additionally, a putative chloroplastic aquaporin is observed. Data are available via ProteomeXchange with identifier PXD014212.
Collapse
Affiliation(s)
- Šarūnė Morkūnaitė-Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Jurgita Vinskiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Gražina Stanienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| |
Collapse
|
5174
|
Antelo-Varela M, Bartel J, Quesada-Ganuza A, Appel K, Bernal-Cabas M, Sura T, Otto A, Rasmussen M, van Dijl JM, Nielsen A, Maaß S, Becher D. Ariadne’s Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Anal Chem 2019; 91:11972-11980. [DOI: 10.1021/acs.analchem.9b02869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minia Antelo-Varela
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Jürgen Bartel
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Ane Quesada-Ganuza
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Karen Appel
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Margarita Bernal-Cabas
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Thomas Sura
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Michael Rasmussen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Jan Maarten van Dijl
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Allan Nielsen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Sandra Maaß
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| |
Collapse
|
5175
|
Allu PK, Dawicki-McKenna JM, Van Eeuwen T, Slavin M, Braitbard M, Xu C, Kalisman N, Murakami K, Black BE. Structure of the Human Core Centromeric Nucleosome Complex. Curr Biol 2019; 29:2625-2639.e5. [PMID: 31353180 PMCID: PMC6702948 DOI: 10.1016/j.cub.2019.06.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM). CENP-CCD is part of the CCNC by virtue of its high specificity for CENP-A nucleosomes and ability to stabilize CENP-A at the centromere. CENP-CCM is thought to engage a neighboring nucleosome, either one containing conventional H3 or CENP-A, and a crystal structure of a nucleosome complex containing two copies of CENP-CCM was reported. Recent structures containing a single copy of CENP-NNT bound to the CENP-A nucleosome in the absence of CENP-C were reported. Here, we find that one copy of CENP-N is lost for every two copies of CENP-C on centromeric chromatin just prior to kinetochore formation. We present the structures of symmetric and asymmetric forms of the CCNC that vary in CENP-N stoichiometry. Our structures explain how the central domain of CENP-C achieves its high specificity for CENP-A nucleosomes and how CENP-C and CENP-N sandwich the histone H4 tail. The natural centromeric DNA path in our structures corresponds to symmetric surfaces for CCNC assembly, deviating from what is observed in prior structures using artificial sequences. At mitosis, we propose that CCNC asymmetry accommodates its asymmetric connections at the chromosome/kinetochore interface. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moriya Slavin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Braitbard
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5176
|
Lane R, Simon T, Vintu M, Solkin B, Koch B, Stewart N, Benstead-Hume G, Pearl FMG, Critchley G, Stebbing J, Giamas G. Cell-derived extracellular vesicles can be used as a biomarker reservoir for glioblastoma tumor subtyping. Commun Biol 2019; 2:315. [PMID: 31453379 PMCID: PMC6700082 DOI: 10.1038/s42003-019-0560-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive solid tumors for which treatment options and biomarkers are limited. Small extracellular vesicles (sEVs) produced by both GBM and stromal cells are central in the inter-cellular communication that is taking place in the tumor bulk. As tumor sEVs are accessible in biofluids, recent reports have suggested that sEVs contain valuable biomarkers for GBM patient diagnosis and follow-up. The aim of the current study was to describe the protein content of sEVs produced by different GBM cell lines and patient-derived stem cells. Our results reveal that the content of the sEVs mirrors the phenotypic signature of the respective GBM cells, leading to the description of potential informative sEV-associated biomarkers for GBM subtyping, such as CD44. Overall, these data could assist future GBM in vitro studies and provide insights for the development of new diagnostic and therapeutic methods as well as personalized treatment strategies.
Collapse
Affiliation(s)
- Rosemary Lane
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Marian Vintu
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Benjamin Solkin
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Barbara Koch
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Nicolas Stewart
- Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ UK
| | - Graeme Benstead-Hume
- Bioinformatics Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Frances M. G. Pearl
- Bioinformatics Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Giles Critchley
- Department of Neurosurgery, Hurstwood Park Neurosciences Centre, Brighton and Sussex University Hospitals, Brighton, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| |
Collapse
|
5177
|
Nagarajan A, Zhou M, Nguyen AY, Liberton M, Kedia K, Shi T, Piehowski P, Shukla A, Fillmore TL, Nicora C, Smith RD, Koppenaal DW, Jacobs JM, Pakrasi HB. Proteomic Insights into Phycobilisome Degradation, A Selective and Tightly Controlled Process in The Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973. Biomolecules 2019; 9:biom9080374. [PMID: 31426316 PMCID: PMC6722726 DOI: 10.3390/biom9080374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In Synechococcus elongatus UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO2 conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.
Collapse
Affiliation(s)
- Aparna Nagarajan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Amelia Y Nguyen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Komal Kedia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Paul Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Anil Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Carrie Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David W Koppenaal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
5178
|
Schmelter C, Fomo KN, Perumal N, Manicam C, Bell K, Pfeiffer N, Grus FH. Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med 2019; 8:jcm8081222. [PMID: 31443184 PMCID: PMC6723090 DOI: 10.3390/jcm8081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Katharina Bell
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
5179
|
Lau BYC, Othman A. Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One 2019; 14:e0221052. [PMID: 31415606 PMCID: PMC6695131 DOI: 10.1371/journal.pone.0221052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022] Open
Abstract
Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
Collapse
Affiliation(s)
- Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Abrizah Othman
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| |
Collapse
|
5180
|
Uyaniker S, van der Spek SJF, Reinders NR, Xiong H, Li KW, Bossers K, Smit AB, Verhaagen J, Kessels HW. The Effects of Sindbis Viral Vectors on Neuronal Function. Front Cell Neurosci 2019; 13:362. [PMID: 31440143 PMCID: PMC6694438 DOI: 10.3389/fncel.2019.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022] Open
Abstract
Viral vectors are attractive tools to express genes in neurons. Transduction of neurons with a recombinant, replication-deficient Sindbis viral vector is a method of choice for studying the effects of short-term protein overexpression on neuronal function. However, to which extent Sindbis by itself may affect neurons is not fully understood. We assessed effects of neuronal transduction with a Sindbis viral vector on the transcriptome and proteome in organotypic hippocampal slice cultures, and analyzed the electrophysiological properties of individual CA1 neurons, at 24 h and 72 h after viral vector injection. Whereas Sindbis caused substantial gene expression alterations, changes at the protein level were less pronounced. Alterations in transcriptome and proteome were predominantly limited to proteins involved in mediating anti-viral innate immune responses. Sindbis transduction did not affect the intrinsic electrophysiological properties of individual neurons: the membrane potential and neuronal excitability were similar between transduced and non-transduced CA1 neurons up to 72 h after Sindbis injection. Synaptic currents also remained unchanged upon Sindbis transduction, unless slices were massively infected for 72 h. We conclude that Sindbis viral vectors at low transduction rates are suitable for studying short-term effects of a protein of interest on electrophysiological properties of neurons, but not for studies on the regulation of gene expression.
Collapse
Affiliation(s)
- Seçil Uyaniker
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Niels R Reinders
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Hui Xiong
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Helmut W Kessels
- Laboratory for Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Cellular and Computational Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5181
|
Lee N, Lee JW, Kang GY, Park SH, Kim KP. Quantification of the Dynamic Phosphorylation Process of ERK Using Stable Isotope Dilution Selective Reaction Monitoring Mass Spectrometry. Proteomics 2019; 19:e1900086. [PMID: 31318149 DOI: 10.1002/pmic.201900086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/20/2019] [Indexed: 01/21/2023]
Abstract
Mitogen-activated protein (MAP) kinase signaling is critical for various cellular responses, including cell proliferation, differentiation, and cell death. The MAP kinase cascade is conserved in the eukaryotic kingdom as a three-tiered kinase module-MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase-that transduces signals via sequential phosphorylation upon stimulation. Dual phosphorylation of MAP kinase on the conserved threonine-glutamic acid-tyrosine (TEY) motif is essential for its catalytic activity and signal activation; however, the molecular mechanism by which the two residues are phosphorylated remains elusive. In the present study, the pattern of dual phosphorylation of extracellular signal-regulated kinase (ERK) is profiled on the TEY motif using stable isotope dilution (SID)-selective reaction monitoring (SRM) mass spectrometry (MS) to elucidate the order and magnitude of endogenous ERK phosphorylation in cellular model systems. The SID-SRM-MS analysis of phosphopeptides demonstrates that tyrosine phosphorylation in the TEY motif is dynamic, while threonine phosphorylation is static. Analyses of the mono-phosphorylatable mutants ERKT202A and ERKY204F indicate that phosphorylation of tyrosine is not affected by the phosphorylation state of threonine, while threonine phosphorylation depends on tyrosine phosphorylation. The data suggest that dual phosphorylation of ERK is a highly ordered and restricted mechanism determined by tyrosine phosphorylation.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Gum-Yong Kang
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Sang-Hyun Park
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| |
Collapse
|
5182
|
Abstract
Tens of millions suffer from insulin deficiency (ID); a defect leading to severe metabolic imbalance and death. The only means for management of ID is insulin therapy; yet, this approach is sub-optimal and causes life-threatening hypoglycemia. Hence, ID represents a great medical and societal challenge. Here we report that S100A9, also known as Calgranulin B or Myeloid-Related Protein 14 (MRP14), is a leptin-induced circulating cue exerting beneficial anti-diabetic action. In murine models of ID, enhanced expression of S100A9 alone (i.e. without administered insulin and/or leptin) slightly improves hyperglycemia, and normalizes key metabolic defects (e.g. hyperketonemia, hypertriglyceridemia, and increased hepatic fatty acid oxidation; FAO), and extends lifespan by at least a factor of two. Mechanistically, we report that Toll-Like Receptor 4 (TLR4) is required, at least in part, for the metabolic-improving and pro-survival effects of S100A9. Thus, our data identify the S100A9/TLR4 axis as a putative target for ID care. Insulin replacement is a valuable therapy for insulin deficiency, however, other therapies are being investigated to restore metabolic homeostasis. Here, the authors identify S100A9 as a leptin induced circulating cue that improves glucose and lipid homeostasis and extends survival in insulin deficient mice.
Collapse
|
5183
|
Jansen RP, Beuck C, Moch M, Klein B, Küsters K, Morschett H, Wiechert W, Oldiges M. A closer look at Aspergillus: online monitoring via scattered light enables reproducible phenotyping. Fungal Biol Biotechnol 2019; 6:11. [PMID: 31396392 PMCID: PMC6681481 DOI: 10.1186/s40694-019-0073-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Filamentously growing microorganisms offer unique advantages for biotechnological processes, such as extraordinary secretion capacities, going along with multiple obstacles due to their complex morphology. However, limited experimental throughput in bioprocess development still hampers taking advantage of their full potential. Miniaturization and automation are powerful tools to accelerate bioprocess development, but so far the application of such technologies has mainly been focused on non-filamentous systems. During cultivation, filamentous fungi can undergo remarkable morphological changes, creating challenging cultivation conditions. Depending on the process and product, only one specific state of morphology may be advantageous to achieve e.g. optimal productivity or yield. Different approaches to control morphology have been investigated, such as microparticle enhanced cultivation. However, the addition of solid microparticles impedes the optical measurements typically used by microbioreactor systems and thus alternatives are needed. RESULTS Aspergillus giganteus IfGB 0902 was used as a model system to develop a time-efficient and robust workflow allowing microscale cultivation with increased throughput. The effect of microtiter plate geometry, shaking frequency and medium additives (talc and calcium chloride) on homogeneity of culture morphology as well as reproducibility were analyzed via online biomass measurement, microscopic imaging and cell dry weight. While addition of talc severely affected online measurements, 2% (w v-1) calcium chloride was successfully applied to obtain a highly reproducible growth behavior with homogenous morphology. Furthermore, the influence of small amounts of complex components was investigated for the applied model strain. By correlation to cell dry weight, it could be shown that optical measurements are a suitable signal for biomass concentration. However, each correlation is only applicable for a specific set of cultivation parameters. These optimized conditions were used in micro as well as lab-scale bioreactor cultivation in order to verify the reproducibility and scalability of the setup. CONCLUSION A robust workflow for A. giganteus was developed, allowing for reproducible microscale cultivation with online monitoring, where calcium chloride is an useful alternative to microparticle enhanced cultivation in order to control the morphology. Independent of the cultivation volume, comparable phenotypes were observed in microtiter plates and in lab-scale bioreactor.
Collapse
Affiliation(s)
- Roman P. Jansen
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Carina Beuck
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Bianca Klein
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Kira Küsters
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Holger Morschett
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences-Biotechnology (IBG-1), Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5184
|
Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc Natl Acad Sci U S A 2019; 116:16899-16908. [PMID: 31383764 PMCID: PMC6708340 DOI: 10.1073/pnas.1906897116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term coexistence between unicellular cyanobacteria and their lytic viruses (cyanophages) in the oceans is thought to be due to the presence of sensitive cells in which cyanophages reproduce, ultimately killing the cell, while other cyanobacteria survive due to resistance to infection. Here, we investigated resistance in marine cyanobacteria from the genera Synechococcus and Prochlorococcus and compared modes of resistance against specialist and generalist cyanophages belonging to the T7-like and T4-like cyanophage families. Resistance was extracellular in most interactions against specialist cyanophages irrespective of the phage family, preventing entry into the cell. In contrast, resistance was intracellular in practically all interactions against generalist T4-like cyanophages. The stage of intracellular arrest was interaction-specific, halting at various stages of the infection cycle. Incomplete infection cycles proceeded to various degrees of phage genome transcription and translation as well as phage genome replication in numerous interactions. In a particularly intriguing case, intracellular capsid assembly was observed, but the phage genome was not packaged. The cyanobacteria survived the encounter despite late-stage infection and partial genome degradation. We hypothesize that this is tolerated due to genome polyploidy, which we found for certain strains of both Synechococcus and Prochlorococcus Our findings unveil a heavy cost of promiscuous entry of generalist phages into nonhost cells that is rarely paid by specialist phages and suggests the presence of unknown mechanisms of intracellular resistance in the marine unicellular cyanobacteria. Furthermore, these findings indicate that the range for virus-mediated horizontal gene transfer extends beyond hosts to nonhost cyanobacterial cells.
Collapse
|
5185
|
Abstract
The amount of omics data in the public domain is increasing every year. Modern science has become a data-intensive discipline. Innovative solutions for data management, data sharing, and for discovering novel datasets are therefore increasingly required. In 2016, we released the first version of the Omics Discovery Index (OmicsDI) as a light-weight system to aggregate datasets across multiple public omics data resources. OmicsDI aggregates genomics, transcriptomics, proteomics, metabolomics and multiomics datasets, as well as computational models of biological processes. Here, we propose a set of novel metrics to quantify the attention and impact of biomedical datasets. A complete framework (now integrated into OmicsDI) has been implemented in order to provide and evaluate those metrics. Finally, we propose a set of recommendations for authors, journals and data resources to promote an optimal quantification of the impact of datasets. Increasing amount of public omics data are important and valuable resources for the research community. Here, the authors develop a set of metrics to quantify the attention and impact of biomedical datasets and integrate them into the framework of Omics Discovery Index (OmicsDI).
Collapse
|
5186
|
Shi Y, Wang Y, Huang W, Wang Y, Wang R, Yuan Y. Integration of Metabolomics and Transcriptomics To Reveal Metabolic Characteristics and Key Targets Associated with Cisplatin Resistance in Nonsmall Cell Lung Cancer. J Proteome Res 2019; 18:3259-3267. [PMID: 31373204 DOI: 10.1021/acs.jproteome.9b00209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| |
Collapse
|
5187
|
Escobar-Correas S, Mendoza-Porras O, Dellagnola FA, Colgrave ML, Vega IA. Integrative Proteomic Analysis of Digestive Tract Glycosidases from the Invasive Golden Apple Snail, Pomacea canaliculata. J Proteome Res 2019; 18:3342-3352. [PMID: 31321981 DOI: 10.1021/acs.jproteome.9b00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The freshwater snail Pomacea canaliculata, an invasive species of global significance, possesses a well-developed digestive system and diverse feeding mechanisms enabling the intake of a wide variety of food. The identification of glycosidases in adult snails would increase the understanding of their digestive physiology and potentially generate new opportunities to eradicate and/or control this invasive species. In this study, liquid chromatography coupled to tandem mass spectrometry was applied to define the occurrence, diversity, and origin of glycoside hydrolases along the digestive tract of P. canaliculata. A range of cellulases, hemicellulases, amylases, maltases, fucosidases, and galactosidases were identified across the digestive tract. The digestive gland and the contents of the crop and style sac yield a higher diversity of glycosidase-derived peptides. Subsequently, peptides derived from 81 glycosidases (46 proteins from the public database and 35 uniquely from the transcriptome database) that were distributed among 13 glycoside hydrolase families were selected and quantified using multiple reaction monitoring mass spectrometry. This study showed a high glycosidase abundance and diversity in the gut contents of P. canaliculata which participate in extracellular digestion of complex dietary carbohydrates. Salivary and digestive glands were the main tissues involved in their synthesis and secretion.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina
| | - Omar Mendoza-Porras
- Agriculture & Food , CSIRO , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Federico A Dellagnola
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina.,Universidad Nacional de Cuyo , Facultad de Ciencias Exactas y Naturales, Departamento de Biología , Mendoza 5500 , Argentina
| | - Michelle L Colgrave
- Agriculture & Food , CSIRO , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Israel A Vega
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina.,Universidad Nacional de Cuyo , Facultad de Ciencias Exactas y Naturales, Departamento de Biología , Mendoza 5500 , Argentina
| |
Collapse
|
5188
|
Li W, Chi H, Salovska B, Wu C, Sun L, Rosenberger G, Liu Y. Assessing the Relationship Between Mass Window Width and Retention Time Scheduling on Protein Coverage for Data-Independent Acquisition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1396-1405. [PMID: 31147889 DOI: 10.1007/s13361-019-02243-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Due to the technical advances of mass spectrometers, particularly increased scanning speed and higher MS/MS resolution, the use of data-independent acquisition mass spectrometry (DIA-MS) became more popular, which enables high reproducibility in both proteomic identification and quantification. The current DIA-MS methods normally cover a wide mass range, with the aim to target and identify as many peptides and proteins as possible and therefore frequently generate MS/MS spectra of high complexity. In this report, we assessed the performance and benefits of using small windows with, e.g., 5-m/z width across the peptide elution time. We further devised a new DIA method named RTwinDIA that schedules the small isolation windows in different retention time blocks, taking advantage of the fact that larger peptides are normally eluting later in reversed phase chromatography. We assessed the direct proteomic identification by using shotgun database searching tools such as MaxQuant and pFind, and also Spectronaut with an external comprehensive spectral library of human proteins. We conclude that algorithms like pFind have potential in directly analyzing DIA data acquired with small windows, and that the instrumental time and DIA cycle time, if prioritized to be spent on small windows rather than on covering a broad mass range by large windows, will improve the direct proteome coverage for new biological samples and increase the quantitative precision. These results further provide perspectives for the future convergence between DDA and DIA on faster MS analyzers.
Collapse
Affiliation(s)
- Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
5189
|
Doonan LB, Lynham S, Quinlan C, Ibiji SC, Winter CE, Padilla G, Jaimes-Becerra A, Morandini AC, Marques AC, Long PF. Venom Composition Does Not Vary Greatly Between Different Nematocyst Types Isolated from the Primary Tentacles of Olindias sambaquiensis (Cnidaria: Hydrozoa). THE BIOLOGICAL BULLETIN 2019; 237:26-35. [PMID: 31441701 DOI: 10.1086/705113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this quantitative proteomics study we determined the variety and relative abundance of toxins present in enriched preparations of two nematocyst types isolated from the primary tentacles of the adult medusa stage of the hydrozoan Olindias sambaquiensis. The two nematocyst types were microbasic mastigophores and microbasic euryteles, and these were recovered from the macerated tentacle tissues by using a differential centrifugation approach. Soluble protein extracts from these nematocysts were tagged with tandem mass tag isobaric labels and putative toxins identified using tandem mass spectrometry coupled with a stringent bioinformatics annotation pipeline. Astonishingly, the venom composition of the two capsule types was nearly identical, and there was also little difference in the comparative abundance of toxins between the two nematocyst preparations. This homogeneity suggested that the same toxin complement was present regardless of the penetrative ability of the nematocyst type. Predicted toxin protein families that constituted the venom closely matched those of the toxic proteome of O. sambaquiensis published four years previously, suggesting that venom composition in this species changes little over time. Retaining an array of different nematocyst types to deliver a single venom, rather than sustaining the high metabolic cost necessary to maintain a dynamically evolving venom, may be more advantageous, given the vastly different interspecific interactions that adult medusa encounter in coastal zones.
Collapse
|
5190
|
Cuesta R, Gritsenko MA, Petyuk VA, Shukla AK, Tsai CF, Liu T, McDermott JE, Holz MK. Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR. Mol Cell Proteomics 2019; 18:1607-1618. [PMID: 31189691 PMCID: PMC6683011 DOI: 10.1074/mcp.ra119.001506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
ER-positive breast tumors represent ∼70% of all breast cancer cases. Although their treatment with endocrine therapies is effective in the adjuvant or recurrent settings, the development of resistance compromises their effectiveness. The binding of estrogen to ERα, a transcription factor, triggers the regulation of the target genes (genomic pathway). Additionally, a cytoplasmic fraction of estrogen-bound ERα activates oncogenic signaling pathways such as PI3K/AKT/mTOR (nongenomic pathway). The upregulation of the estrogenic and the PI3K/AKT/mTOR signaling pathways are frequently associated with a poor outcome. To better characterize the connection between these two pathways, we performed a phosphoproteome analysis of ER-positive MCF7 breast cancer cells treated with estrogen or estrogen and the mTORC1 inhibitor rapamycin. Many proteins were identified as estrogen-regulated mTORC1 targets and among them, DEPTOR was selected for further characterization. DEPTOR binds to mTOR and inhibits the kinase activity of both mTOR complexes mTORC1 and mTORC2, but mitogen-activated mTOR promotes phosphorylation-mediated DEPTOR degradation. Although estrogen enhances the phosphorylation of DEPTOR by mTORC1, DEPTOR levels increase in estrogen-stimulated cells. We demonstrated that DEPTOR accumulation is the result of estrogen-ERα-mediated transcriptional upregulation of DEPTOR expression. Consequently, the elevated levels of DEPTOR partially counterbalance the estrogen-induced activation of mTORC1 and mTORC2. These results underscore the critical role of estrogen-ERα as a modulator of the PI3K/AKT/mTOR signaling pathway in ER-positive breast cancer cells. Additionally, these studies provide evidence supporting the use of dual PI3K/mTOR or dual mTORC1/2 inhibitors in combination with endocrine therapies as a first-line treatment option for the patients with ER-positive advanced breast cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595
| | - Marina A Gritsenko
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Anil K Shukla
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Chia-Feng Tsai
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Tao Liu
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Jason E McDermott
- ¶Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland WA 99352
| | - Marina K Holz
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595; ‖Albert Einstein Cancer Center, Bronx NY 10461.
| |
Collapse
|
5191
|
Tang J, Fu J, Wang Y, Luo Y, Yang Q, Li B, Tu G, Hong J, Cui X, Chen Y, Yao L, Xue W, Zhu F. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Mol Cell Proteomics 2019; 18:1683-1699. [PMID: 31097671 PMCID: PMC6682996 DOI: 10.1074/mcp.ra118.001169] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
The label-free proteome quantification (LFQ) is multistep workflow collectively defined by quantification tools and subsequent data manipulation methods that has been extensively applied in current biomedical, agricultural, and environmental studies. Despite recent advances, in-depth and high-quality quantification remains extremely challenging and requires the optimization of LFQs by comparatively evaluating their performance. However, the evaluation results using different criteria (precision, accuracy, and robustness) vary greatly, and the huge number of potential LFQs becomes one of the bottlenecks in comprehensively optimizing proteome quantification. In this study, a novel strategy, enabling the discovery of the LFQs of simultaneously enhanced performance from thousands of workflows (integrating 18 quantification tools with 3,128 manipulation chains), was therefore proposed. First, the feasibility of achieving simultaneous improvement in the precision, accuracy, and robustness of LFQ was systematically assessed by collectively optimizing its multistep manipulation chains. Second, based on a variety of benchmark datasets acquired by various quantification measurements of different modes of acquisition, this novel strategy successfully identified a number of manipulation chains that simultaneously improved the performance across multiple criteria. Finally, to further enhance proteome quantification and discover the LFQs of optimal performance, an online tool (https://idrblab.org/anpela/) enabling collective performance assessment (from multiple perspectives) of the entire LFQ workflow was developed. This study confirmed the feasibility of achieving simultaneous improvement in precision, accuracy, and robustness. The novel strategy proposed and validated in this study together with the online tool might provide useful guidance for the research field requiring the mass-spectrometry-based LFQ technique.
Collapse
Affiliation(s)
- Jing Tang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; ¶Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Fu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Li
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiajun Hong
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Cui
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- ‖Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lixia Yao
- **Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905, United States
| | - Weiwei Xue
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
5192
|
Danquah BD, Röwer C, Opuni KM, El-Kased R, Frommholz D, Illges H, Koy C, Glocker MO. Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE). Mol Cell Proteomics 2019; 18:1543-1555. [PMID: 31147491 PMCID: PMC6683010 DOI: 10.1074/mcp.ra119.001429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Collapse
Affiliation(s)
- Bright D Danquah
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Claudia Röwer
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | - Reham El-Kased
- ¶Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - David Frommholz
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| | - Harald Illges
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany;; **University of Applied Sciences Bonn-Rhein-Sieg, Institute for Functional Gene Analytics, Rheinbach, Germany
| | - Cornelia Koy
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Michael O Glocker
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
5193
|
So YS, Lee DG, Idnurm A, Ianiri G, Bahn YS. The TOR Pathway Plays Pleiotropic Roles in Growth and Stress Responses of the Fungal Pathogen Cryptococcus neoformans. Genetics 2019; 212:1241-1258. [PMID: 31175227 PMCID: PMC6707454 DOI: 10.1534/genetics.119.302191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
The target of rapamycin (TOR) pathway is an evolutionarily conserved signal transduction system that governs a plethora of eukaryotic biological processes, but its role in Cryptococcus neoformans remains elusive. In this study, we investigated the TOR pathway by functionally characterizing two Tor-like kinases, Tor1 and Tlk1, in C. neoformans We successfully deleted TLK1, but not TOR1TLK1 deletion did not result in any evident in vitro phenotypes, suggesting that Tlk1 is dispensable for the growth of C. neoformans We demonstrated that Tor1, but not Tlk1, is essential and the target of rapamycin by constructing and analyzing conditionally regulated strains and sporulation analysis of heterozygous mutants in the diploid strain background. To further analyze the Tor1 function, we constructed constitutive TOR1 overexpression strains. Tor1 negatively regulated thermotolerance and the DNA damage response, which are two important virulence factors of C. neoformansTOR1 overexpression reduced Mpk1 phosphorylation, which is required for cell wall integrity and thermoresistance, and Rad53 phosphorylation, which governs the DNA damage response pathway. Tor1 is localized to the cytoplasm, but enriched in the vacuole membrane. Phosphoproteomics and transcriptomics revealed that Tor1 regulates a variety of biological processes, including metabolic processes, cytoskeleton organization, ribosome biogenesis, and stress response. TOR inhibition by rapamycin caused actin depolarization in a Tor1-dependent manner. Finally, screening rapamycin-sensitive and -resistant kinase and transcription factor mutants revealed that the TOR pathway may crosstalk with a number of stress signaling pathways. In conclusion, our study demonstrates that a single Tor1 kinase plays pleiotropic roles in C. neoformans.
Collapse
Affiliation(s)
- Yee-Seul So
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Gi Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5194
|
Taubert M, Grob C, Crombie A, Howat AM, Burns OJ, Weber M, Lott C, Kaster AK, Vollmers J, Jehmlich N, von Bergen M, Chen Y, Murrell JC. Communal metabolism by Methylococcaceae and Methylophilaceae is driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ Microbiol 2019; 21:3780-3795. [PMID: 31267680 DOI: 10.1111/1462-2920.14728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022]
Abstract
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13 C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.
Collapse
Affiliation(s)
- Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159 07743, Jena, Germany.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Carolina Grob
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Alexandra M Howat
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Oliver J Burns
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Microsensor Group, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Christian Lott
- HYDRA Marine Sciences GmbH, Sinzheim, Germany.,HYDRA Field Station Elba, Italy.,Department of Symbiosis, Max Plank Institute for Marine Microbiology, 28359, Celsiusstr. 1, Bremen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Inhoffenstrasse 7B, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103, Brüderstraße 32, Leipzig, Germany.,Department of Chemistry and Bioscience, University of Aalborg, 9220, Fredrik Bajers Vej 7H, Aalborg East, Denmark
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
5195
|
Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz V, Höger H, Lubec G. Dentate Gyrus Peroxiredoxin 6 Levels Discriminate Aged Unimpaired From Impaired Rats in a Spatial Memory Task. Front Aging Neurosci 2019; 11:198. [PMID: 31417400 PMCID: PMC6684764 DOI: 10.3389/fnagi.2019.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
Similar to humans, the normal aged rat population is not homogeneous in terms of cognitive function. Two distinct subpopulations of aged Sprague-Dawley rats can be identified on the basis of spatial memory performance in the hole-board paradigm. It was the aim of the study to reveal protein changes relevant to aging and spatial memory performance. Aged impaired (AI) and unimpaired (AU) male rats, 22-24 months old were selected from a large cohort of 160 animals; young animals served as control. Enriched synaptosomal fractions from dentate gyrus from behaviorally characterized old animals were used for isobaric tags labeling based quantitative proteomic analysis. As differences in peroxiredoxin 6 (PRDX6) levels were a pronounced finding, PRDX6 levels were also quantified by immunoblotting. AI showed impaired spatial memory abilities while AU performed comparably to young animals. Our study demonstrates substantial quantitative alteration of proteins involved in energy metabolism, inflammation and synaptic plasticity during aging. Moreover, we identified protein changes specifically coupled to memory performance of aged rats. PRDX6 levels clearly differentiated AI from AU and levels in AU were comparable to those of young animals. In addition, it was observed that stochasticity in protein levels increased with age and discriminate between AI and AU groups. Moreover, there was a significantly higher variability of protein levels in AI. PRDX6 is a member of the PRDX family and well-defined as a cystein-1 PRDX that reduces and detoxifies hydroxyperoxides. It is well-known and documented that the aging brain shows increased active oxygen species but so far no study proposed a potential target with antioxidant activity that would discriminate between impaired and unimpaired memory performers. Current data, representing so far the largest proteomics data set in aging dentate gyrus (DG), provide the first evidence for a probable role of PRDX6 in memory performance.
Collapse
Affiliation(s)
- Jana Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Daniel Daba Feyissa
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Volker Korz
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
5196
|
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Mechanism of pharmacochaperoning in a mammalian K ATP channel revealed by cryo-EM. eLife 2019; 8:46417. [PMID: 31343405 PMCID: PMC6699824 DOI: 10.7554/elife.46417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of a pore-forming Kir6.2 potassium channel and a regulatory ABC transporter sulfonylurea receptor 1 (SUR1) regulate insulin secretion in pancreatic β-cells to maintain glucose homeostasis. Mutations that impair channel folding or assembly prevent cell surface expression and cause congenital hyperinsulinism. Structurally diverse KATP inhibitors are known to act as pharmacochaperones to correct mutant channel expression, but the mechanism is unknown. Here, we compare cryoEM structures of a mammalian KATP channel bound to pharmacochaperones glibenclamide, repaglinide, and carbamazepine. We found all three drugs bind within a common pocket in SUR1. Further, we found the N-terminus of Kir6.2 inserted within the central cavity of the SUR1 ABC core, adjacent the drug binding pocket. The findings reveal a common mechanism by which diverse compounds stabilize the Kir6.2 N-terminus within SUR1’s ABC core, allowing it to act as a firm ‘handle’ for the assembly of metastable mutant SUR1-Kir6.2 complexes.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Min Woo Sung
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Laura M Innes
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
5197
|
Istaces N, Splittgerber M, Lima Silva V, Nguyen M, Thomas S, Le A, Achouri Y, Calonne E, Defrance M, Fuks F, Goriely S, Azouz A. EOMES interacts with RUNX3 and BRG1 to promote innate memory cell formation through epigenetic reprogramming. Nat Commun 2019; 10:3306. [PMID: 31341159 PMCID: PMC6656725 DOI: 10.1038/s41467-019-11233-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Memory CD8+ T cells have the ability to provide lifelong immunity against pathogens. Although memory features generally arise after challenge with a foreign antigen, naïve CD8 single positive (SP) thymocytes may acquire phenotypic and functional characteristics of memory cells in response to cytokines such as interleukin-4. This process is associated with the induction of the T-box transcription factor Eomesodermin (EOMES). However, the underlying molecular mechanisms remain ill-defined. Using epigenomic profiling, we show that these innate memory CD8SP cells acquire only a portion of the active enhancer repertoire of conventional memory cells. This reprograming is secondary to EOMES recruitment, mostly to RUNX3-bound enhancers. Furthermore, EOMES is found within chromatin-associated complexes containing BRG1 and promotes the recruitment of this chromatin remodelling factor. Also, the in vivo acquisition of EOMES-dependent program is BRG1-dependent. In conclusion, our results support a strong epigenetic basis for the EOMES-driven establishment of CD8+ T cell innate memory program.
Collapse
Affiliation(s)
- Nicolas Istaces
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Marion Splittgerber
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Viviana Lima Silva
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Muriel Nguyen
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Séverine Thomas
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Aurore Le
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| | - Younes Achouri
- Université Catholique de Louvain, Institut de Duve, Brussels, 1200, Belgium
| | - Emilie Calonne
- Université Libre de Bruxelles, Laboratory of Cancer Epigenetics, Brussels, 1070, Belgium
| | - Matthieu Defrance
- Université Libre de Bruxelles, Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, 1050, Belgium
| | - François Fuks
- Université Libre de Bruxelles, Laboratory of Cancer Epigenetics, Brussels, 1070, Belgium
| | - Stanislas Goriely
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium.
| | - Abdulkader Azouz
- Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041, Belgium
| |
Collapse
|
5198
|
Wild P, Susperregui A, Piazza I, Dörig C, Oke A, Arter M, Yamaguchi M, Hilditch AT, Vuina K, Chan KC, Gromova T, Haber JE, Fung JC, Picotti P, Matos J. Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 2019; 75:859-874.e4. [PMID: 31351878 PMCID: PMC6715774 DOI: 10.1016/j.molcel.2019.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Aitor Susperregui
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ilaria Piazza
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christian Dörig
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Miyuki Yamaguchi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Alexander T Hilditch
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Karla Vuina
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ki Choi Chan
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Tatiana Gromova
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Picotti
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
5199
|
Hoppstädter J, Dembek A, Linnenberger R, Dahlem C, Barghash A, Fecher-Trost C, Fuhrmann G, Koch M, Kraegeloh A, Huwer H, Kiemer AK. Toll-Like Receptor 2 Release by Macrophages: An Anti-inflammatory Program Induced by Glucocorticoids and Lipopolysaccharide. Front Immunol 2019; 10:1634. [PMID: 31396208 PMCID: PMC6664002 DOI: 10.3389/fimmu.2019.01634] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are widely prescribed therapeutics for the treatment of inflammatory diseases, and endogenous GCs play a key role in immune regulation. Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, thereby promoting inflammation. The interaction of GCs with macrophages in the immunosuppressive resolution phase upon prolonged TLR activation is widely unknown. Treatment of human alveolar macrophages (AMs) with the synthetic GC dexamethasone (Dex) did not alter the expression of TLRs −1, −4, and −6. In contrast, TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term lipopolysaccharide (LPS) exposure mimicking immunosuppression in the resolution phase of inflammation synergistically increased Dex-mediated TLR2 upregulation. Analyses of publicly available datasets suggested that TLR2 is induced during the resolution phase of inflammatory diseases, i.e., under conditions associated with high endogenous GC production. TLR2 induction did not enhance TLR2 signaling, as indicated by reduced cytokine production after treatment with TLR2 ligands in Dex- and/or LPS-primed AMs. Thus, we hypothesized that the upregulated membrane-bound TLR2 might serve as a precursor for soluble TLR2 (sTLR2), known to antagonize TLR2-dependent cell actions. Supernatants of LPS/Dex-primed macrophages contained sTLR2, as demonstrated by Western blot analysis. Activation of metalloproteinases resulted in enhanced sTLR2 shedding. Additionally, we detected full-length TLR2 and assumed that this might be due to the production of TLR2-containing extracellular vesicles (EVs). EVs from macrophage supernatants were isolated by sequential centrifugation. Both untreated and LPS/Dex-treated cells produced vesicles of various sizes and shapes, as shown by cryo-transmission electron microscopy. These vesicles were identified as the source of full-length TLR2 in macrophage supernatants by Western blot and mass spectrometry. Flow cytometric analysis indicated that TLR2-containing EVs were able to bind the TLR2 ligand Pam3CSK4. In addition, the presence of EVs reduced inflammatory responses in Pam3CSK4-treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released by macrophages under anti-inflammatory conditions, which may contribute to GC-induced immunosuppression.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Anna Dembek
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Rebecca Linnenberger
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5200
|
Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature 2019; 572:382-386. [PMID: 31330532 PMCID: PMC6715450 DOI: 10.1038/s41586-019-1440-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
The family of bacterial SidE enzymes catalyzes phosphoribosyl-linked (PR) serine ubiquitination and promotes infectivity of Legionella pneumophilia, a pathogenic bacterium causing Legionnaires’ disease1,2,3. SidEs share the genetic locus with the Legionella effector SidJ that spatiotemporally opposes their toxicity in yeast and mammalian cells, through an unknown mechanism4–6. Deletion of SidJ leads to a significant defect in the growth of Legionella in both its natural host amoeba and in murine macrophages4,5. Here, we demonstrate that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADPribosyl transferase (mART) domain of SdeA thus blocking its ubiquitin (Ub) ligase activity. SidJ glutamylation activity requires interaction with Calmodulin (CaM), a eukaryotic specific co-factor, and can be regulated by intracellular changes in Ca2+ concentrations. The cryo-EM structure of SidJ/human apo-CaM complex revealed the architecture of this unique heterodimeric glutamylase. In infected cells, we show that SidJ mediates glutamylation of SidEs on the surface of Legionella-containing vacuoles (LCVs). Using quantitative proteomics, we also uncovered multiple host proteins as putative targets of SidJ-mediated glutamylation. Collectively, this study reveals the mechanism of SidE ligases inhibition by a SidJ/CaM glutamylase and opens new avenues for studying protein glutamylation, an understudied protein modification in higher eukaryotes.
Collapse
Affiliation(s)
- Sagar Bhogaraju
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany. .,European Molecular Biology Laboratory, Grenoble, France.
| | - Florian Bonn
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Michael Adams
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Vigor Matkovic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Jaime Lopez-Mosqueda
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Sissy Kalayil
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Donghyuk Shin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.,Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany. .,Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|