501
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|
502
|
Abstract
Neutrophils are the most abundant myeloid cells in human blood and are emerging as important regulators of cancer. However, their functional importance has often been overlooked on the basis that they are short-lived, terminally differentiated and non-proliferative. Recent studies of their prominent roles in cancer have led to a paradigm shift in our appreciation of neutrophil functional diversity. This Review describes how neutrophil diversification, which in some contexts can lead to opposing functions, is generated within the tumour microenvironment as well as systemically. We compare neutrophil heterogeneity in cancer and in other pathophysiological contexts to provide an updated overview of our current knowledge of the functions of neutrophils in cancer.
Collapse
|
503
|
Liang C, Fan J, Liang C, Guo J. Identification and Validation of a Pyroptosis-Related Prognostic Model for Gastric Cancer. Front Genet 2022; 12:699503. [PMID: 35280928 PMCID: PMC8916103 DOI: 10.3389/fgene.2021.699503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death triggered by caspase-1/4/5/11 that plays an important role in the occurrence and development of gastric cancer (GC). We investigated the prognostic value of pyroptosis-related genes in GC. The “LIMMA” R package and univariate Cox analysis were used to find pyroptosis-related genes with differential expression and prognostic value in the TCGA cohort and the identified genes were analyzed for GO enrichment and KEGG pathways. The selected genes were then included in a multivariate Cox proportional hazard regression analysis, and a ten genes prognostic model (BIRC2, CD274, IRGM, ANXA2, GBP5, TXNIP, POP1, GBP1, DHX9, and TLR2) was established. To evaluate the predictive value of the risk score on prognosis, patients were divided into high-risk and low-risk groups according to the median risk score, and survival analysis was carried out. Compared with the low-risk group, the OS of GC patients in the high-risk group was significantly worse. Additionally, these results were verified in the GSE84437 and GSE66229 datasets. Finally, through the combination of prognostic gene characteristics and clinicopathological features, a nomogram was established to predict individual survival probability. The results show that the genetic risk characteristics related to clinical features can be used as independent prognostic indicators for patients with GC. In summary, the pyroptosis-related risk signals proposed in this study can potentially predict the prognosis of patients with GC. In addition, we also found significant infiltration of dendritic cells, macrophages, and neutrophils in tissues of high-risk patients.
Collapse
Affiliation(s)
- Chaowei Liang
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxin Fan
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chaojie Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| | - Jiansheng Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| |
Collapse
|
504
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
505
|
Dang J, He Z, Cui X, Fan J, Hambly DJ, Hambly BD, Li X, Bao S. The Role of IL-37 and IL-38 in Colorectal Cancer. Front Med (Lausanne) 2022; 9:811025. [PMID: 35186997 PMCID: PMC8847758 DOI: 10.3389/fmed.2022.811025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major killer. Dysregulation of IL-37 and IL-38, both anti-inflammatory cytokines, is observed in auto-immune diseases. The precise regulatory mechanisms of IL-37/IL-38 during the development of CRC remains unclear, but chronic intestinal inflammation is involved in the carcinogenesis of CRC. Constitutive production of colonic IL-37 and IL-38 is substantially reduced in CRC, consistent with an inverse correlation with CRC differentiation. Reduced colonic IL-37 and IL-38 is relating to CRC invasion and distant metastasis, suggesting a protective role for IL-38 within the tumor micro-environment. IL-38 is reduced in right-sided CRC compared to left-sided CRC, which is in line with multiple risk factors for right-sided CRC, including the embryonic development of the colon, and genetic differences in CRC between these two sides. Finally, colonic IL-37 and tumor associated neutrophils (TAN) seem to be independent biomarkers of prognostic value, whereas colonic IL-38 seems to be a reliable and independent biomarker in predicting the 5-year survival post-surgery in CRC. However, there is room for improvement in available studies, including the extension of these studies to different regions/countries incorporating different races, evaluation of the role of multi-drug resistance, and different subsets of CRC. It would be useful to determine the kinetics of circulating IL-38 and its relationship with drug resistance/targeted therapy. The measurement of colonic IL-38 at the molecular and cellular level is required to explore the contribution of IL-38 pathways during the development of CRC. These approaches could provide insight for the development of personalized medicine.
Collapse
Affiliation(s)
- Jie Dang
- Child and Adolescent Health Management Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiyun He
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Xiang Cui
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jingchun Fan
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - David J Hambly
- Resident Training Program, Gold Coast University Hospital, Southport, QLD, Australia
| | - Brett D Hambly
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China.,Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Xun Li
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Shisan Bao
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
506
|
Pires A, Burnell S, Gallimore A. Exploiting ECM remodelling to promote immune-mediated tumour destruction. Curr Opin Immunol 2022; 74:32-38. [PMID: 34627015 DOI: 10.1016/j.coi.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy represents a significant breakthrough in cancer treatment mainly due to the ability to harness the activities of cancer-specific T cells. Despite this, most cancers remain resistant to T cell attack. Many reasons have been proposed to explain this, ranging from a lack of antigenicity through to the immunosuppressive effects of the tumour microenvironment. In this review, we examine the relationship between the immune system and a key component of the tumour microenvironment, namely the extracellular matrix (ECM). Specifically, we explore the reciprocal effects of immune cells and the tumour ECM and how the processes underpinning this relationship act to either promote or restrain tumour progression.
Collapse
Affiliation(s)
- Ana Pires
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Burnell
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
507
|
Affiliation(s)
- Adina Heinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
508
|
Shirakawa K, Kobayashi E, Ichihara G, Kitakata H, Katsumata Y, Sugai K, Hakamata Y, Sano M. H 2 Inhibits the Formation of Neutrophil Extracellular Traps. JACC Basic Transl Sci 2022; 7:146-161. [PMID: 35257042 PMCID: PMC8897170 DOI: 10.1016/j.jacbts.2021.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
NETs have been implicated as therapeutic targets to address inflammation and thrombotic tissue damage in conditions such as sepsis, acute respiratory disease syndrome, COVID-19, and CVDs. H2 has been clinically and experimentally proven to ameliorate inflammation; however, the underlying molecular mechanisms remain elusive. Compared with control neutrophils, PMA-stimulated human neutrophils exposed to H2 exhibited reduced citrullination of histones and release of NET components; mechanistically, H2-mediated neutralization of HOCl produced during oxidative bursts suppresses DNA damage. Inhalation of H2 inhibited the formation and release of NET components in the blood and BAL of the LPS-induced sepsis in mice and aged mini pigs. H2 therapy is potentially a new therapeutic strategy for inflammatory diseases involving NETs associated with excessive neutrophil activation.
Neutrophil extracellular traps (NETs) contribute to inflammatory pathogenesis in numerous conditions, including infectious and cardiovascular diseases, and have attracted attention as potential therapeutic targets. H2 acts as an antioxidant and has been clinically and experimentally proven to ameliorate inflammation. This study was performed to investigate whether H2 could inhibit NET formation and excessive neutrophil activation. Neutrophils isolated from the blood of healthy volunteers were stimulated with phorbol-12-myristate-13-acetate (PMA) or the calcium ionophore A23187 in H2-exposed or control media. Compared with control neutrophils, PMA- or A23187-stimulated human neutrophils exposed to H2 exhibited reduced neutrophil aggregation, citrullination of histones, membrane disruption by chromatin complexes, and release of NET components. CXCR4high neutrophils are highly prone to NETs, and H2 suppressed Ser-139 phosphorylation in H2AX, a marker of DNA damage, thereby suppressing the induction of CXCR4 expression. H2 suppressed both myeloperoxidase chlorination activity and production of reactive oxygen species to the same degree as N-acetylcysteine and ascorbic acid, while showing a more potent ability to inhibit NET formation than these antioxidants do in PMA-stimulated neutrophils. Although A23187 formed NETs in a reactive oxygen species–independent manner, H2 inhibited A23187-induced NET formation, probably via direct inhibition of peptidyl arginine deiminase 4-mediated histone citrullination. Inhalation of H2 inhibited the formation and release of NET components in the blood and bronchoalveolar lavage fluid in animal models of lipopolysaccharide-induced sepsis (mice and aged mini pigs). Thus, H2 therapy can be a novel therapeutic strategy for NETs associated with excessive neutrophil activation.
Collapse
Key Words
- BAL, bronchoalveolar lavage
- CVD, cardiovascular disease
- CitH3, citrullinated histone H3
- H2
- HOCl, hypochlorous acid
- LPS, lipopolysaccharide
- MI, myocardial infarction
- MPO, myeloperoxidase
- NAC, N-acetyl-L-cysteine
- NET, neutrophil extracellular trap
- PA, pulmonary artery
- PADI4, peptidyl arginine deiminase 4
- PMA, phorbol-12-myristate-13-acetate
- ROS, reactive oxygen species
- dsDNA, double-stranded DNA
- neutrophil extracellular traps
- phorbol-12-myristate-13-acetate
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan.,Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| | - Eiji Kobayashi
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan.,Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan.,Department of Organ Fabrication, School of Medicine, Keio University, Tokyo, Japan
| | - Genki Ichihara
- Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroki Kitakata
- Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshinori Katsumata
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan.,Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuhisa Sugai
- Department of Basic Sciences, Faculty of Veterinary Sciences, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoji Hakamata
- Department of Basic Sciences, Faculty of Veterinary Sciences, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Motoaki Sano
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan.,Department of Cardiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
509
|
de los Reyes AA, Kim Y. Optimal regulation of tumour-associated neutrophils in cancer progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210705. [PMID: 35127110 PMCID: PMC8808100 DOI: 10.1098/rsos.210705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
In a tumour microenvironment, tumour-associated neutrophils could display two opposing differential phenotypes: anti-tumour (N1) and pro-tumour (N2) effector cells. Converting N2 to N1 neutrophils provides innovative therapies for cancer treatment. In this study, a mathematical model for N1-N2 dynamics describing the cancer survival and immune inhibition in response to TGF-β and IFN-β is considered. The effects of exogenous intervention of TGF-β inhibitor and IFN-β are examined in order to enhance N1 recruitment to combat tumour progression. Our approach employs optimal control theory to determine drug infusion protocols that could minimize tumour volume with least administration cost possible. Four optimal control scenarios corresponding to different therapeutic strategies are explored, namely, TGF-β inhibitor control only, IFN-β control only, concomitant TGF-β inhibitor and IFN-β controls, and alternating TGF-β inhibitor and IFN-β controls. For each scheme, different initial conditions are varied to depict different pathophysiological condition of a cancer patient, leading to adaptive treatment schedule. TGF-β inhibitor and IFN-β drug dosages, total drug amount, infusion times and relative cost of drug administrations are obtained under various circumstances. The control strategies achieved could guide in designing individualized therapeutic protocols.
Collapse
Affiliation(s)
- Aurelio A. de los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
| |
Collapse
|
510
|
Chemokines as Regulators of Neutrophils: Focus on Tumors, Therapeutic Targeting, and Immunotherapy. Cancers (Basel) 2022; 14:cancers14030680. [PMID: 35158948 PMCID: PMC8833344 DOI: 10.3390/cancers14030680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Neutrophils are the main leukocyte subset present in human blood and play a fundamental role in the defense against infections. Neutrophils are also an important component of the tumor stroma because they are recruited by selected chemokines produced by both cancer cells and other cells of the stroma. Even if their presence has been mostly associated with a bad prognosis, tumor-associated neutrophils are present in different maturation and activation states and can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines not only induce neutrophil directional migration but also have an important role in their activation and maturation. For these reasons, chemokines and chemokine receptors are now considered targets to improve the antitumoral function of neutrophils in cancer immunotherapy. Abstract Neutrophils are an important component of the tumor microenvironment, and their infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils have been shown to be endowed with both protumor and antitumor activities, reflecting their heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect neutrophil maturation and effector functions. Here, we review human and mouse data suggesting that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve their antitumor properties and the efficiency of immunotherapy.
Collapse
|
511
|
Du M, Cai YM, Yin YL, Xiao L, Ji Y. Evaluating tumor-infiltrating lymphocytes in hepatocellular carcinoma using hematoxylin and eosin-stained tumor sections. World J Clin Cases 2022; 10:856-869. [PMID: 35127901 PMCID: PMC8790462 DOI: 10.12998/wjcc.v10.i3.856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) constitute a prognostic factor in hepatocellular carcinoma (HCC). However, different methods of assessing TILs have various pre-analytical, analytical, and post-analytical challenges. The evaluation of TILs in hematoxylin and eosin (H&E)-stained tumor sections proposed by the International Immuno-Oncology Biomarker Working Group was demonstrated to be a reproducible, affordable and easily applied method in many tumors.
AIM To evaluate the prognostic significance of TILs in H&E-stained slides of HCCs.
METHODS This was a retrospective study performed in the hospital. HCC patients who underwent liver resection between 2015 and 2017 in Zhongshan Hospital were enrolled in this study. Patients who experienced recurrence or received therapy in addition to antiviral therapy before surgery at this time were excluded. A total of 204 patients were enrolled in the study. The ILs were counted manually in tumor sections stained with H&E under an optical microscope at 400 ×. The ILs were assessed separately in the center of the tumor (TILsCT), the invasive front (TILsIF), and peritumor (PILs) areas. Univariate and multivariate survival analyses were performed using a Cox regression model. P < 0.05 was considered statistically significant and all P-values were two-sided.
RESULTS Among the 204 patients, univariate analysis indicated that macrovascular invasion (MaVI) (P = 0.001), microvascular invasion (MVI) (P = 0.012), multiple tumors (P = 0.008), large tumors (> 10 cm) (P = 0.001), absence of a tumor capsule (P = 0.026), macrotrabecular histological subtype (P = 0.001), low density of TILsCT (P = 0.039), TILsIF (P = 0.014), and PILs (P = 0.010) were predictors of progression-free survival (PFS). Cox multivariate analysis indicated that MaVI (P = 0.009), absence of a tumor capsule (P = 0.031), low-density of TILsIF (P = 0.047) and PILs (P = 0.0495) were independent predictors of PFS. A three-category analysis was carried out by combining TILsCT, TILsIF, and PILs, after which HCCs were classified into immunehigh [(TILsCT)high, (TILsIF)high, and PILshigh, 83 cases], immunemod (tumors other than immunehigh and immunelow subtypes, 94 cases), and immunelow [(TILsCT)low, (TILsIF)low, and PILslow, 27 cases)] subtypes. The immunehigh subtype had a lower rate of MVI (40.96%) than the immunemod (61.70%, P = 0.017) and immunelow (66.67%, P = 0.020) subtypes. The recurrence rates of the immunehigh, immunemod and immunelow subtypes were 10.8%, 25.5% and 33.3%, respectively.
CONCLUSION HCC patients with high infiltrating lymphocytes tend to have a lower recurrence rate and less MVI. The evaluation of TILs in H&E-stained specimens could be a prognostic parameter for HCC.
Collapse
Affiliation(s)
- Min Du
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200040, Shanghai Province, China
| | - Yu-Meng Cai
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, Shanghai Province, China
| | - Yu-Lei Yin
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200040, Shanghai Province, China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200040, Shanghai Province, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, Shanghai Province, China
| |
Collapse
|
512
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
513
|
Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel) 2022; 14:cancers14030510. [PMID: 35158779 PMCID: PMC8833347 DOI: 10.3390/cancers14030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. Abstract In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
Collapse
|
514
|
Zhang J, Ji C, Zhang H, Shi H, Mao F, Qian H, Xu W, Wang D, Pan J, Fang X, Santos HA, Zhang X. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. SCIENCE ADVANCES 2022; 8:eabj8207. [PMID: 35020437 PMCID: PMC8754405 DOI: 10.1126/sciadv.abj8207] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Neutrophils are the most abundant innate immune cells in human circulation; however, their derived exosomes have been rarely studied for tumor treatment. Here, we reported that exosomes from neutrophils (N-Ex) induce tumor cell apoptosis by delivering cytotoxic proteins and activating caspase signaling pathway. In addition, we decorated N-Ex with superparamagnetic iron oxide nanoparticles (SPIONs) to achieve higher tumor-targeting therapeutic effect. We further fabricated exosome-like nanovesicles from neutrophils (NNVs) at high yield. Compared with liposome-loaded doxorubicin (DOX) and natural NNVs, DOX-loaded NNVs show an improved inhibition of tumor cell proliferation. Moreover, DOX-loaded, SPION-decorated NNVs selectively accumulate at the tumor sites under an external magnetic field, effectively restraining tumor growth and extensively prolonging the survival rate in mice. Overall, a simple and effective method to engineer N-Ex and NNVs at clinical applicable scale was developed, which enables the efficient and safe drug delivery for targeted and combined tumor therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Biosciences Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, Jiangsu 222000, China
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen/University of Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Ant. Deusinglaan 1, 9713 AV Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| |
Collapse
|
515
|
Sun R, Huang J, Yang Y, Liu L, Shao Y, Li L, Sun B. Dysfunction of low-density neutrophils in peripheral circulation in patients with sepsis. Sci Rep 2022; 12:685. [PMID: 35027618 PMCID: PMC8758723 DOI: 10.1038/s41598-021-04682-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Low-density neutrophils (LDNs) have been described in tumors and various autoimmune diseases, where they exhibit immune dysfunction and alter disease progression. Nevertheless, LDNs have been rarely reported in sepsis. We studied sepsis patients admitted to the intensive care unit. Wright-Giemsa stain assay and Transmission electron microscopy were performed to detect the morphology of neutrophils. Flow cytometry was used to analyze the number and function of LDNs. Concentration of cytokines was measured using ELISA. Neutrophil chemotaxis was examined using an under-agarose chemotaxis model. We found that LDNs were significantly elevated in patients with sepsis. Phenotypes and morphological characteristics suggest that LDNs may be formed by mixtures of neutrophils at various maturation stages. In vitro experiments showed that LDN formation was closely associated with neutrophil degranulation. We preliminarily discussed changes in immune function in LDNs. Compared with high-density neutrophils, expression levels of CXC chemokine receptor 4 on LDN surfaces were increased, phagocytotic capacity was decreased, and life span was prolonged. The chemotactic ability of LDNs was significantly reduced, possibly related to the increased expression of P2X1. These data suggest that LDNs are essential components of neutrophils in sepsis. To clarify the source and dysfunction mechanism of LDN in sepsis may be helpful for the diagnosis and treatment of sepsis in the future.
Collapse
Affiliation(s)
- Ran Sun
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China
| | - Jiamin Huang
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China
| | - Yunxi Yang
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China
| | - Lu Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China
| | - Linbin Li
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, Jiangsu Province, China.
| |
Collapse
|
516
|
Li J, Zhang G, Liu CG, Xiang X, Le MT, Sethi G, Wang L, Goh BC, Ma Z. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy. Am J Cancer Res 2022; 12:87-104. [PMID: 34987636 PMCID: PMC8690929 DOI: 10.7150/thno.64096] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes are multifunctional regulators of intercellular communication by carrying various messages under both physiological and pathological status of cancer patients. Accumulating studies have identified the presence of circular RNAs (circRNAs) in exosomes with crucial regulatory roles in diverse pathophysiological processes. Exosomal circRNAs derived from donor cells can modulate crosstalk with recipient cells locally or remotely to enhance cancer development and propagation, and play crucial roles in the tumor microenvironment (TME), leading to significant enhancement of tumor immunity, metabolism, angiogenesis, drug resistance, epithelial mesenchymal transition (EMT), invasion and metastasis. In this review, we describe the advances of exosomal circRNAs and their roles in modulating cancer hallmarks, especially those in the TME. Moreover, clinical application potential of exosomal circRNAs in cancer diagnosis and therapy are highlighted, bridging the gap between basic knowledge and clinical practice.
Collapse
|
517
|
Li Y, Chen Y, Wei M, Wei C. Preclinical In Silico Evidence Indicates the Pharmacological Targets and Mechanisms of Mogroside V in Patients With Ovarian Cancer and Coronavirus Disease 2019. Front Endocrinol (Lausanne) 2022; 13:845404. [PMID: 35464051 PMCID: PMC9019927 DOI: 10.3389/fendo.2022.845404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The borderless transmission of coronavirus remains uncontrolled globally. The uncharted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant reduces the therapeutic efficacy of vaccines against coronavirus disease 2019 (COVID-19). Clinical observations suggest that tumour cases are highly infected with coronavirus, possibly due to immunologic injury, causing a higher COVID-19-related death toll. Presently, screening of candidate medication against coronavirus is in progress. Mogroside V, a bioactive ingredient of Siraitia grosvenorii, has been reported in China to have lung-protective and anticancer effects. The current study used network pharmacology and molecular docking to unlock the potential drug targets and remedial mechanisms of mogroside V against patients with ovarian cancer with COVID-19. We identified 24 related targets of mogroside V in patients with ovarian cancer and COVID-19 and characterised another 10 core targets of mogroside V against COVID-19 ovarian cancer, including Jun, IL2, HSP90AA1, AR, PRKCB, VEGFA, TLR9, TLR7, STAT3, and PRKCA. The core targets' biological processes and signalling pathways were revealed by enrichment analysis. Molecular docking suggested favourable docking between core target protein and mogroside V, including vascular endothelial growth factor A (VEGFA). These findings indicated that mogroside V might be a potential therapeutic agent in the mitigation of COVID-19 ovarian cancer.
Collapse
Affiliation(s)
- Yongming Li
- Department of Gynecology, Guigang Maternal and Child Health Care Hospital, Guigang, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Mulan Wei
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chaohe Wei
- Department of Pharmacy, Guigang City People’s Hospital, the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
- *Correspondence: Chaohe Wei,
| |
Collapse
|
518
|
Multi-Omics Profiling of the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:283-326. [DOI: 10.1007/978-3-030-91836-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
519
|
Li JH, Forghani R, Bure L, Wojtkiewicz GR, Wu Y, Iwamoto Y, Ali M, Li A, Wang C, Motlagh NJ, Papadakis AI, Pusztaszeri MP, Spatz A, Curtin H, Cheng YS, Chen JW. Molecular immuno-imaging improves tumor detection in head and neck cancer. FASEB J 2022; 36:e22092. [PMID: 34919761 PMCID: PMC9584652 DOI: 10.1096/fj.202100864r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Detection and accurate delineation of tumor is important for the management of head and neck squamous cell carcinoma (HNSCC) but is challenging with current imaging techniques. In this study, we evaluated whether molecular immuno-imaging targeting myeloperoxidase (MPO) activity, an oxidative enzyme secreted by many myeloid innate immune cells, would be superior in detecting tumor extent compared to conventional contrast agent (DTPA-Gd) in a carcinogen-induced immunocompetent HNSCC murine model and corroborated in human surgical specimens. In C57BL/6 mice given 4-nitroquinoline-N-oxide (4-NQO), there was increased MPO activity in the head and neck region as detected by luminol bioluminescence compared to that of the control group. On magnetic resonance imaging, the mean enhancing volume detected by the MPO-targeting agent (MPO-Gd) was higher than that by the conventional agent DTPA-Gd. The tumor volume detected by MPO-Gd strongly correlated with tumor size on histology, and higher MPO-Gd signal corresponded to larger tumor size found by imaging and histology. On the contrary, the tumor volume detected by DTPA-Gd did not correlate as well with tumor size on histology. Importantly, MPO-Gd imaging detected areas not visualized with DTPA-Gd imaging that were confirmed histopathologically to represent early tumor. In human specimens, MPO was similarly associated with tumors, especially at the tumor margins. Thus, molecular immuno-imaging targeting MPO not only detects oxidative immune response in HNSCC, but can better detect and delineate tumor extent than nonselective imaging agents. Thus, our findings revealed that MPO imaging could improve tumor resection as well as be a useful imaging biomarker for tumor progression, and potentially improve clinical management of HNSCC once translated.
Collapse
Affiliation(s)
- Jing-Hui Li
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Magnetic Resonance Imaging, FuWai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Reza Forghani
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lionel Bure
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory R. Wojtkiewicz
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Wu
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshiko Iwamoto
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Ali
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anning Li
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas I. Papadakis
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Marc P. Pusztaszeri
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Alan Spatz
- Department of Pathology, Jewish General Hospital & McGill University, Montreal, Quebec, Canada
| | - Hugh Curtin
- Department of Radiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying-Sheng Cheng
- Department of Radiology, The Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - John W. Chen
- Institute for Innovation in Imaging, Department of Radiology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
520
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
521
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
522
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
523
|
Ortiz-Espinosa S, Morales X, Senent Y, Alignani D, Tavira B, Macaya I, Ruiz B, Moreno H, Remírez A, Sainz C, Rodriguez-Pena A, Oyarbide A, Ariz M, Andueza MP, Valencia K, Teijeira A, Hoehlig K, Vater A, Rolfe B, Woodruff TM, Lopez-Picazo JM, Vicent S, Kochan G, Escors D, Gil-Bazo I, Perez-Gracia JL, Montuenga LM, Lambris JD, Ortiz de Solorzano C, Lecanda F, Ajona D, Pio R. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett 2021; 529:70-84. [PMID: 34971753 DOI: 10.1016/j.canlet.2021.12.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sergio Ortiz-Espinosa
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Xabier Morales
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Yaiza Senent
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Diego Alignani
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Cytometry Unit, Cima-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Tavira
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Borja Ruiz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Ana Remírez
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Cristina Sainz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alejandro Rodriguez-Pena
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Alvaro Oyarbide
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Mikel Ariz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Maria P Andueza
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alvaro Teijeira
- Program in Immunology and Immunotherapy, Cima-University of Navarra, Pamplona, Spain
| | | | | | - Barbara Rolfe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Jose Maria Lopez-Picazo
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Grazyna Kochan
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Immunomodulation Group, Navarrabiomed-Biomedical Research Center, Pamplona, Spain
| | - David Escors
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Immunomodulation Group, Navarrabiomed-Biomedical Research Center, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose Luis Perez-Gracia
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Ortiz de Solorzano
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ruben Pio
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
524
|
Ramirez MF, Cata JP. Anesthesia Techniques and Long-Term Oncological Outcomes. Front Oncol 2021; 11:788918. [PMID: 34956903 PMCID: PMC8692375 DOI: 10.3389/fonc.2021.788918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite advances in cancer treatments, surgery remains one of the most important therapies for solid tumors. Unfortunately, surgery promotes angiogenesis, shedding of cancer cells into the circulation and suppresses anti-tumor immunity. Together this increases the risk of tumor metastasis, accelerated growth of pre-existing micro-metastasis and cancer recurrence. It was theorized that regional anesthesia could influence long-term outcomes after cancer surgery, however new clinical evidence demonstrates that the anesthesia technique has little influence in oncologic outcomes. Several randomized controlled trials are in progress and may provide a better understanding on how volatile and intravenous hypnotics impact cancer progression. The purpose of this review is to summarize the effect of the anesthesia techniques on the immune system and tumor microenvironment (TME) as well as to summarize the clinical evidence of anesthesia techniques on cancer outcomes.
Collapse
Affiliation(s)
- Maria F Ramirez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| |
Collapse
|
525
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|
526
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
527
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
528
|
Liu Z, Liang Y, Tang X, Qu H. Decrease in Blood Neutrophil-to-Lymphocyte Ratio Indicates Better Survival After Neoadjuvant Chemotherapy in Patients With Advanced Gastric Cancer. Front Surg 2021; 8:745748. [PMID: 34869556 PMCID: PMC8635013 DOI: 10.3389/fsurg.2021.745748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction: Gastric cancer is the fifth most commonly diagnosed tumor and is the fourth leading cause of cancer-related mortality, worldwide. Due to the low rate of early diagnosis, approximately two-thirds of patients are first diagnosed at an advanced stage. Neoadjuvant chemotherapy (NAC) is recommended for patients with advanced gastric cancer (AGC). The neutrophil-to-lymphocyte ratio (NLR), a combined inflammatory and immunogenic factor, has been universally used for predicting outcomes in AGC patients. Given that NLR is a dynamic process, in this study, we investigated the value of NLR change for the prediction of chemotherapeutic responses and prognosis in patients with AGC. Methods: We retrospectively enrolled 111 patients with AGC who underwent NAC following curative surgery. Patients were divided into two groups according to the NLR change after chemotherapy into the increased and decreased groups. Outcome measures were overall survival (OS) and disease-free survival (DFS). Univariate was calculated by Kaplan-Meier method. Multivariate analysis was performed using the Cox proportional hazards regression model. Results: Post-chemotherapy, NLR increased in 36 patients and decreased in 75 patients. After a median follow-up time of 19 months, six patients developed local recurrence, 23 developed distant recurrence, and 34 died. Patients with reduced post-chemotherapy NLR showed significantly longer OS (p < 0.001) and DFS (p < 0.001). A decrease in the NLR after NAC was an independent indicator associated with better OS (p < 0.001) and DFS (p < 0.001). Conclusions: In patients with AGC, a decrease in NLR after NAC indicated better survival. NLR change could serve as a robust indicator for the efficiency of NAC and prognostic prediction in patients with AGC.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Clinical Medicine, Qilu Medical College of Shandong University, Jinan, China
| | - Yahang Liang
- Department of Clinical Medicine, Qilu Medical College of Shandong University, Jinan, China
| | - Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
529
|
Siwicki M, Pittet MJ. Versatile neutrophil functions in cancer. Semin Immunol 2021; 57:101538. [PMID: 34876331 DOI: 10.1016/j.smim.2021.101538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Neutrophils have historically been considered a singular, terminally-differentiated cell population, replete with pre-formed granules, poised to react quickly, aggressively, and somewhat non-specifically in the face of a microbial challenge or tissue injury. However, in recent years, neutrophil biologists have started revisiting this simplistic conception. Many studies have identified complexities in neutrophil biology, and these findings have led the field to redefine neutrophil heterogeneity from multiple angles including their development and maturation, their tissue location, and their ability to respond to various (pathological) stimuli. In this review, we discuss the importance of this reassessment within the context of cancer. Experimental evidence supports that neutrophil behavior is diverse, context-dependent, and manipulable; cutting-edge technologies have enabled the identification of neutrophil heterogeneity with high resolution and in an unbiased manner, revealing what may be critical underpinnings of these diverse behaviors, and enabling sophisticated computational assessments of specific programs and interactions. We are coming ever closer to delineating a holistic picture of neutrophil heterogeneity and how it may interplay with cancer stage, tumor microenvironment, and therapy. All of this together paints a promising picture when considering how clinical practice may harness the heterogeneity of these cells, for biomarkers or therapeutic approaches, leveraging what we are learning about these powerful and plentiful immune effectors.
Collapse
Affiliation(s)
- Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA.
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne and Geneva, Switzerland; Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Center for Translational Research in Onco-Hematology, University of Geneva, Switzerland.
| |
Collapse
|
530
|
Igea A, Martin OCB, Cooks T, Pateras IS. Editorial: Reprogramming Stromal Cells in Chronic Inflammation and Cancer. Front Cell Dev Biol 2021; 9:728439. [PMID: 34858972 PMCID: PMC8631759 DOI: 10.3389/fcell.2021.728439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Igea
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain
| | | | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ioannis S Pateras
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
531
|
Alessi JV, Ricciuti B, Alden SL, Bertram AA, Lin JJ, Sakhi M, Nishino M, Vaz VR, Lindsay J, Turner MM, Pfaff K, Sharma B, Felt KD, Rodig SJ, Gainor JF, Awad MM. Low peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) is associated with increased tumor T-cell infiltration and favorable outcomes to first-line pembrolizumab in non-small cell lung cancer. J Immunother Cancer 2021; 9:jitc-2021-003536. [PMID: 34824161 PMCID: PMC8627393 DOI: 10.1136/jitc-2021-003536] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND An elevated peripheral blood derived neutrophil-to-lymphocyte ratio (dNLR) is a negative prognostic marker for patients with non-small cell lung cancer (NSCLC) receiving chemotherapy and immune checkpoint inhibitors. Whether dNLR is also associated with clinical outcomes to first-line pembrolizumab among patients with NSCLC and a programmed cell death ligand 1 (PD-L1) Tumor Proportion Score (TPS) of ≥50% is uncertain. How dNLR relates to the tumor immune microenvironment is also unclear. METHODS In two participating academic centers, we retrospectively analyzed the dNLR (defined as the absolute neutrophil count/white cell count - absolute neutrophil count) prior to initiation of first-line pembrolizumab in patients with metastatic NSCLC and a PD-L1 TPS ≥50% and lacking genomic alterations in EGFR and ALK. An unbiased recursive partitioning algorithm was used to investigate an optimal dNLR cut-off with respect to objective response rate (ORR). Multiplexed immunofluorescence for CD8+, FOXP3+, PD-1+, and PD-L1 was performed on a separate cohort of NSCLCs to determine the immunophenotype associated with dNLR. RESULTS A total of 221 patients treated with first-line pembrolizumab were included in this study. The optimal dNLR cut-off to differentiate treatment responders from non-responders was 2.6. Compared with patients with a dNLR ≥2.6 (n=97), patients with dNLR <2.6 (n=124) had a significantly higher ORR (52.4% vs 24.7%, p<0.001), a significantly longer median progression-free survival (mPFS 10.4 vs 3.4 months, HR 0.48, 95% CI 0.35 to 0.66, p<0.001), and a significantly longer median overall survival (mOS 36.6 vs 9.8 months, HR 0.34, 95% CI 0.23 to 0.49, p<0.001). After adjusting for age, sex, tobacco use, performance status, histology, serum albumin level, oncogenic driver status, and PD-L1 distribution (50%-89% vs ≥90%), a dNLR <2.6 was confirmed to be an independent predictor of longer mPFS (HR 0.47, 95% CI 0.33 to 0.67, p<0.001) and mOS (HR 0.32, 95% CI 0.21 to 0.49, p<0.001). Among advanced NSCLC samples with a PD-L1 TPS of ≥50%, those with a dNLR <2.6 had significantly higher numbers of tumor-associated CD8+, FOXP3+, PD-1 +immune cells, and PD-1 +CD8+T cells than those with a dNLR ≥2.6. CONCLUSIONS Among patients with NSCLC and a PD-L1 TPS ≥50%, a low dNLR has a distinct immune tumor microenvironment and more favorable outcomes to first-line pembrolizumab.
Collapse
Affiliation(s)
- Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stephanie L Alden
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Arrien A Bertram
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Mustafa Sakhi
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Victor R Vaz
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - James Lindsay
- Knowledge Systems Group, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Madison M Turner
- ImmunoProfile, Brigham & Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen Pfaff
- ImmunoProfile, Brigham & Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Bijaya Sharma
- ImmunoProfile, Brigham & Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kristen D Felt
- ImmunoProfile, Brigham & Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
532
|
Wang H, Zang J, Zhao Z, Zhang Q, Chen S. The Advances of Neutrophil-Derived Effective Drug Delivery Systems: A Key Review of Managing Tumors and Inflammation. Int J Nanomedicine 2021; 16:7663-7681. [PMID: 34815670 PMCID: PMC8605828 DOI: 10.2147/ijn.s328705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
The chimeric trait of recruitment by inflammatory signals endows neutrophils with the functionality of migrating to inflamed tissues, which can be utilized to tailor novel drug delivery systems. In this review, we introduce a mechanism of neutrophil-derived drug delivery systems recruited into inflamed sites and provide insight into tumors and inflammation therapy. In particular, the advantages of neutrophils—their endogenous-derived neutrophil membrane, exosomes as drug carriers for augmented targeting, prolonged circulation, and improved biostability—were concluded. Subsequently, the latest application in the treatment of tumors and inflammation was elaborated upon, followed by a discussion of the future prospects to neutrophil-derived delivery systems. This promising system will provide new therapeutic avenues for the treatment of inflammation and tumors.
Collapse
Affiliation(s)
- Huaiji Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jie Zang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zihan Zhao
- Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qin Zhang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
533
|
Bao L, Sun K, Zhang X. PANX1 is a potential prognostic biomarker associated with immune infiltration in pancreatic adenocarcinoma: A pan-cancer analysis. Channels (Austin) 2021; 15:680-696. [PMID: 34796785 PMCID: PMC8632293 DOI: 10.1080/19336950.2021.2004758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pannexin 1 (PANX1) channel is a critical ATP-releasing pathway that modulates tumor immunity, progression, and prognosis. However, the roles of PANX1 in different cancers remain unclear. We analyzed the expression of PANX1 in human pan-cancer in the Oncomine and GEPIA2.0 databases. The prognostic value of PANX1 expression was determined using Kaplan-Meier plotter and OncoLnc tools. The correlation between PANX1 and tumor-infiltrating immune cells was investigated using the TIMER 2.0. In addition, the relationship between PANX1 and immunomodulators was explored using TISIDB. Finally, gene set enrichment analysis (GSEA) was performed utilizing LinkedOmics. The results indicated that PANX1 was overexpressed in most cancers compared to normal tissues. The high expression of PANX1 was associated with poor prognosis in multiple tumors, especially in pancreatic adenocarcinoma (PAAD). In addition, PANX1 was correlated with a variety of immunomodulators, such as CD274, IL10, CD276, IL2RA, TAP1, and TAP2. PANX1 expression level was significantly related to infiltration of multiple immune cells in many cancers, including cancer associated fibroblast, macrophage, and neutrophil cells. Further analysis revealed that PANX1 was significantly associated with T cells CD8+ (rho = 0.524, P = 1.94e-13) and Myeloid dendritic cell (rho = 0.564, P = 9.45e-16). GSEA results showed that PANX1 was closely associated with leukocyte cell-cell adhesion, endoplasmic reticulum lumen, ECM-receptor interaction, and Focal adhesion pathways in PAAD. PANX1 expression was higher in pan-cancer samples than in normal tissues. The high expression of PANX1 was associated with poor outcome and immune infiltration in multiple cancers, especially in PAAD.
Collapse
Affiliation(s)
- Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Kai Sun
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
534
|
Subhan MA, Torchilin VP. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sci 2021; 285:119952. [PMID: 34520766 DOI: 10.1016/j.lfs.2021.119952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023]
Abstract
Activation of neutrophils is necessary for the protection of the host against microbial infection. This property can be used as mode of therapy for cancer treatment. Neutrophils have conflicting dual functions in cancer as either a tumor promoter or inhibitor. Neutrophil-based drug delivery has achieved increased attention in pre-clinical models. This review addresses in detail the different neutrophil constituents, the conflicting function of neutrophils and activation of the neutrophil as an important target of therapy for cancer treatment, and use of neutrophils or neutrophil membrane-derived vesicles as vehicles for drug delivery and targeting.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh..
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
535
|
Zhang W, Qin T, Yang Z, Yin L, Zhao C, Feng L, Lin S, Liu B, Cheng S, Zhang K. Telomerase-positive circulating tumor cells are associated with poor prognosis via a neutrophil-mediated inflammatory immune environment in glioma. BMC Med 2021; 19:277. [PMID: 34763698 PMCID: PMC8588721 DOI: 10.1186/s12916-021-02138-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiancheng Qin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing, 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
536
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
537
|
Cheng X, Wang Z. Immune Modulation of Metastatic Niche Formation in the Bone. Front Immunol 2021; 12:765994. [PMID: 34745140 PMCID: PMC8564379 DOI: 10.3389/fimmu.2021.765994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis is commonly seen in patients with breast cancer, prostate cancer and lung cancer. Tumor-intrinsic factors and the tumor microenvironment cooperate to affect the formation of bone metastatic niche. Within the bone microenvironment, immune cells have been regarded as a major contributor to metastatic progression. In this review, we describe the dynamic roles of immune cells in regulating metastatic homing, seeding, dormancy, and outgrowth in the bone. We also summarize the diverse functions of immune molecules including chemokines, cytokines, and exosomes in remodeling the bone metastatic niche. Furthermore, we discuss the therapeutic and prognostic potential of these cellular and molecular players in bone metastasis.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
538
|
Guan H, Xie L, Ji Z, Song R, Qi J, Nie X. Triptolide inhibits neutrophil extracellular trap formation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1384. [PMID: 34733936 PMCID: PMC8506553 DOI: 10.21037/atm-21-3522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023]
Abstract
Background Triptolide (PG490), as a triterpene dicyclic oxide has been reported to increase the generation of reactive oxygen species (ROS) and nitric oxide (NO) and induce apoptosis of RAW 264.7 cells in a dose-dependent manner. The activity of death NETs plays an important role in anti-bacterial processes in the human body. This study aimed to investigate the effect of triptolide (PG490) on neutrophil extracellular traps (NETs) formation. Methods After isolating peripheral blood neutrophils from healthy volunteers, cells were incubated with PG490 to observe and detect the level of NETs and detect the level of reactive oxygen species (ROS). The cells were cultured, stained and analyzed by fluorescence microscopy. Results Compared with the 12-myristate-13-acetate (PMA) group, the average fluorescence intensity of SYTOX Green in the PG490 + PMA group, as detected by a multifunctional microplate reader, was significantly decreased. Intracellular ROS were labeled by fluorescence, with fluorescence intensity then measured by multifunctional microplate reader and flow cytometry. The results showed that compared with the control group, the fluorescence intensity of the PMA group was significantly increased, while there was no significant difference between PMA group and PG490 + PMA group. Conclusions The production of NETs is inhibited by PG490 in vitro, which is not associated with the level of cellular ROS. This suggests that PG490in Tripterygium wilfordii Hook F can suppress related diseases.
Collapse
Affiliation(s)
- Haiyu Guan
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Lifen Xie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhenzhen Ji
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Rheumatology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jieying Qi
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
539
|
Mehrabi SF, Ghatak S, Mehdawi LM, Topi G, Satapathy SR, Sjölander A. Brain-Derived Neurotrophic Factor, Neutrophils and Cysteinyl Leukotriene Receptor 1 as Potential Prognostic Biomarkers for Patients with Colon Cancer. Cancers (Basel) 2021; 13:cancers13215520. [PMID: 34771682 PMCID: PMC8583027 DOI: 10.3390/cancers13215520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is one of the most common type of cancer and the third leading cause of cancer-related death. CRC is associated with inflammatory bowel disease. We have earlier shown that high levels of the inflammatory receptor CysLT1 goes with poor prognosis for CRC patients. In this study, we found that high levels of neutrophils (CD66b) and brain-derived neurotropic factor (BDNF) goes with poor prognosis for colon cancer patient. We discovered a strong positive correlation between CysLT1, CD66b and BDNF. Our data support that these three proteins can be used as a combined biomarker for CC patients. Abstract The tumor microenvironment has been recognized as a complex network in which immune cells play an important role in cancer progression. We found significantly higher CD66b neutrophil expression in tumor tissue than in matched normal mucosa in the Malmö colon cancer (CC) cohort and poorer survival of stage I-III patients with high CD66b expression. Additionally, mice lacking CysLT1R expression (cysltr1−/−) produce less brain-derived neurotrophic factor (BDNF) compared to WT mice and Montelukast (a CysLT1R antagonist)-treated mice also reduced BDNF expression in a mouse xenograft model with human SW480 CC cells. CD66b and BDNF expression was significantly higher in patient tumor tissues than in the matched normal mucosa. The univariate Cox PH analysis yielded CD66b and BDNF as an independent predictor of overall survival, which was also found in the public TCGA-COAD dataset. We also discovered a strong positive correlation between CD66b, BDNF and CysLT1R expression in the Malmö CC cohort and in the TCGA-COAD dataset. Our data suggest that CD66b/BDNF/CysLT1R expression as a prognostic combined biomarker signature for CC patients.
Collapse
|
540
|
Xie Y, Xie F, Zhang L, Zhou X, Huang J, Wang F, Jin J, Zhang L, Zeng L, Zhou F. Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101672. [PMID: 34658167 PMCID: PMC8596143 DOI: 10.1002/advs.202101672] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Indexed: 05/08/2023]
Abstract
In the tumor microenvironment, T cells, B cells, and many other cells play important and distinct roles in anti-tumor immunotherapy. Although the immune checkpoint blockade and adoptive cell transfer can elicit durable clinical responses, only a few patients benefit from these therapies. Increased understanding of tumor-infiltrating immune cells can provide novel therapies and drugs that induce a highly specific anti-tumor immune response to certain groups of patients. Herein, the recent research progress on tumor-infiltrating B cells and T cells, including CD8+ T cells, CD4+ T cells, and exhausted T cells and their role in anti-tumor immunity, is summarized. Moreover, several anti-tumor therapy approaches are discussed based on different immune cells and their prospects for future applications in cancer treatment.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeHangzhou310015China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Lei Zhang
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Wenzhou Medical UniversityRui'an325200China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jin Jin
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeHangzhou310015China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
541
|
Grisaru-Tal S, Dulberg S, Beck L, Zhang C, Itan M, Hediyeh-Zadeh S, Caldwell J, Rozenberg P, Dolitzky A, Avlas S, Hazut I, Gordon Y, Shani O, Tsuriel S, Gerlic M, Erez N, Jacquelot N, Belz GT, Rothenberg ME, Davis MJ, Yu H, Geiger T, Madi A, Munitz A. Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Res 2021; 81:5555-5571. [PMID: 34429328 DOI: 10.1158/0008-5472.can-21-0839] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Dulberg
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lir Beck
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Julie Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perri Rozenberg
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Tsuriel
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Jacquelot
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T Belz
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia.,The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
542
|
Qin G, Liu S, Yang L, Yu W, Zhang Y. Myeloid cells in COVID-19 microenvironment. Signal Transduct Target Ther 2021; 6:372. [PMID: 34707085 PMCID: PMC8549428 DOI: 10.1038/s41392-021-00792-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Varying differentiation of myeloid cells is common in tumors, inflammation, autoimmune diseases, and metabolic diseases. The release of cytokines from myeloid cells is an important driving factor that leads to severe COVID-19 cases and subsequent death. This review briefly summarizes the results of single-cell sequencing of peripheral blood, lung tissue, and cerebrospinal fluid of COVID-19 patients and describes the differentiation trajectory of myeloid cells in patients. Moreover, we describe the function and mechanism of abnormal differentiation of myeloid cells to promote disease progression. Targeting myeloid cell-derived cytokines or checkpoints is essential in developing a combined therapeutic strategy for patients with severe COVID-19.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
543
|
Hidalgo A, Casanova-Acebes M. Dimensions of neutrophil life and fate. Semin Immunol 2021; 57:101506. [PMID: 34711490 DOI: 10.1016/j.smim.2021.101506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023]
Abstract
The earliest reported observations on neutrophils date from 1879 to 1880, when Paul Ehrlich utilized a set of coal tar dyes to interrogate differential staining properties of the granules from white blood cells. While acidic and basic dyes identified eosinophils and basophils respectively, neutrophils were revealed by neutral dyes. Unknowingly, his work staining blood films set the stage for one of the most exciting features of immune cells discovered in the last decade, myeloid heterogeneity. Since then, advances in live imaging and high-resolution sequencing technologies have revolutionized how we analyze and envision those cells that Ehrich fixed in blood smears. Neutrophil plasticity and heterotypic interactions with immune and non-immune compartments are increasingly appreciated as an important part of their biology. In this review, we highlight early and recent work that will help the reader to appreciate our current view of the neutrophil life cycle -from maturation to elimination-, and how neutrophils behave and dynamically modulate tissue immunity, both in steady-state and in disease.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncologicas Carlos III, Madrid, Spain.
| |
Collapse
|
544
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
545
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
546
|
De Lerma Barbaro A, Palano MT, Cucchiara M, Gallazzi M, Mortara L, Bruno A. Metabolic Rewiring in the Tumor Microenvironment to Support Immunotherapy: A Focus on Neutrophils, Polymorphonuclear Myeloid-Derived Suppressor Cells and Natural Killer Cells. Vaccines (Basel) 2021; 9:vaccines9101178. [PMID: 34696286 PMCID: PMC8539473 DOI: 10.3390/vaccines9101178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Leukocytes often undergo rapid changes in cell phenotype, for example, from a resting to an activated state, which places significant metabolic demands on the cell. These rapid changes in metabolic demand need to be tightly regulated to support immune cell effector functions during the initiation and downregulation of an immune response. Prospects for implementing cancer immunotherapy also rest on the idea of optimizing the metabolic profile of immune cell effectors. Here, we examine this issue by focusing on neutrophils and NK cells as cells of increasing interest in cancer immunology and tumor immunometabolism, because they can be targeted or, in the case of NK, used as effectors in immunotherapy. In addition, neutrophils and NK cells have been shown to functionally interact. In the case of neutrophils, we also extended our interest to polymorphonuclear MDSC (PMN-MDSCs), since the granulocytic subset of MDSCs share many phenotypes and are functionally similar to pro-tumor neutrophils. Finally, we reviewed relevant strategies to target tumor metabolism, focusing on neutrophils and NK cells.
Collapse
Affiliation(s)
- Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (A.D.L.B.); (A.B.)
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
| | - Martina Cucchiara
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (M.G.); (L.M.)
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (M.G.); (L.M.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
- Correspondence: (A.D.L.B.); (A.B.)
| |
Collapse
|
547
|
Arpinati L, Kaisar-Iluz N, Shaul ME, Groth C, Umansky V, Fridlender ZG. Tumor-Derived Factors Differentially Affect the Recruitment and Plasticity of Neutrophils. Cancers (Basel) 2021; 13:cancers13205082. [PMID: 34680231 PMCID: PMC8534125 DOI: 10.3390/cancers13205082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neutrophils play a key role in cancer biology. In contrast to circulating normal-density neutrophils (NDN), the amount of low-density neutrophils (LDN) significantly increases with tumor progression. The correlation between these neutrophil subpopulations and intratumoral neutrophils (TANs) is still under debate. Using 4T1 (breast) and AB12 (mesothelioma) tumor models, we aimed to elucidate the source of TANs and to assess the mechanisms driving neutrophils' plasticity in cancer. Both NDN and LDN were found to migrate in response to CXCL1 and CXCL2 exposure, and co-infiltrate the tumor site ex vivo and in vivo, although LDN migration into the tumor was higher than NDN. Tumor-derived factors and chemokines, particularly CXCL1, were found to drive neutrophil phenotypical plasticity, inducing NDN to transition towards a low-density state (LD-NDN). LD-NDN appeared to differ from NDN by displaying a phenotypical profile similar to LDN in terms of nuclear morphology, surface receptor markers, decreased phagocytic abilities, and increased ROS production. Interestingly, all three subpopulations displayed comparable cytotoxic abilities towards tumor cells. Our data suggest that TANs originate from both LDN and NDN, and that a portion of LDN derives from NDN undergoing phenotypical changes. NDN plasticity resulted in a change in surface marker expression and functional activity, gaining characteristics of LDN.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12000, Jerusalem 9112001, Israel; (L.A.); (N.K.-I.); (M.E.S.)
| | - Naomi Kaisar-Iluz
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12000, Jerusalem 9112001, Israel; (L.A.); (N.K.-I.); (M.E.S.)
| | - Merav E. Shaul
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12000, Jerusalem 9112001, Israel; (L.A.); (N.K.-I.); (M.E.S.)
| | - Christopher Groth
- German Cancer Research Center (DKFZ), Skin Cancer Unit, 69120 Heidelberg, Germany; (C.G.); (V.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), University of Heidelberg, 68167 Mannheim, Germany
- Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Viktor Umansky
- German Cancer Research Center (DKFZ), Skin Cancer Unit, 69120 Heidelberg, Germany; (C.G.); (V.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), University of Heidelberg, 68167 Mannheim, Germany
| | - Zvi G. Fridlender
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12000, Jerusalem 9112001, Israel; (L.A.); (N.K.-I.); (M.E.S.)
- Correspondence: ; Tel.: +972-2-6779311
| |
Collapse
|
548
|
High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proc Natl Acad Sci U S A 2021; 118:2109123118. [PMID: 34548411 PMCID: PMC8501786 DOI: 10.1073/pnas.2109123118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence shows that granulocytes are key modulators of the immune response to SARS-CoV-2 infection, and their dysregulation could significantly impact COVID-19 severity and patient recovery after virus clearance. In the present study, we identify selected immune traits in neutrophil, eosinophil, and basophil subsets associated with severity of COVID-19 and with peripheral protein profiles. Moreover, computational modeling indicates that the combined use of phenotypic data and laboratory measurements can effectively predict key clinical outcomes in COVID-19 patients. Finally, patient-matched longitudinal analysis shows phenotypic normalization of granulocyte subsets 4 mo after hospitalization. Overall, in this work, we extend the current understanding of the distinct contribution of granulocyte subsets to COVID-19 pathogenesis. Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)−infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.
Collapse
|
549
|
Abstract
The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.
Collapse
|
550
|
Song Y, Song X, Zhang D, Yang Y, Wang L, Song L. An HECT domain ubiquitin ligase CgWWP1 regulates granulocytes proliferation in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104148. [PMID: 34097916 DOI: 10.1016/j.dci.2021.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitination is involved in the regulation of granulocyte proliferation in vertebrate, and E3 ubiquitin ligase WWP1 has been reported to play an essential role in this process. In the present study, an HECT type E3 ubiquitin ligase (CgWWP1) was identified from oyster Crassostrea gigas, which contained a N-terminal C2 domain, four WW domains, and a C-terminal HECT domain. CgWWP1 was able to bind the activated ubiquitin (Ub) and formed CgWWP1-Ub complex in vitro. The mRNA transcripts of CgWWP1 were expressed in granulocytes, semi-granulocytes and agranulocytes, with the highest expression level in granulocytes. The expressions of potential granulocyte markers CgSOX11 (0.18-fold, p < 0.05) and CgAATase (0.2-fold, p < 0.01) in haemocytes were significantly down-regulated at 24 h after the treatment with Indole-3-carbinol (I3C), a WWP1 inhibitor. The proportions of EdU+ granulocytes reduced significantly at 12 h (8.1% ± 1.4%) and 24 h (9.7% ± 2.8%) after I3C treatment, which were significantly lower than that in the sterile seawater treatment (SW) group at 12 h (15.8% ± 4.2%) and 24 h (17.6% ± 0.8%), respectively. Meanwhile, the green EdU signals observed by confocal scanning microscopy in granulocytes of oysters treated by I3C became weaker compared to that in the SW group. These results indicated that CgWWP1 was involved in the regulation of granulocyte proliferation as a ubiquitin-protein ligase.
Collapse
Affiliation(s)
- Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|