5651
|
Chitsike L, Duerksen-Hughes P. Keep out! SARS-CoV-2 entry inhibitors: their role and utility as COVID-19 therapeutics. Virol J 2021; 18:154. [PMID: 34301275 PMCID: PMC8301738 DOI: 10.1186/s12985-021-01624-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic has put healthcare infrastructures and our social and economic lives under unprecedented strain. Effective solutions are needed to end the pandemic while significantly lessening its further impact on mortality and social and economic life. Effective and widely-available vaccines have appropriately long been seen as the best way to end the pandemic. Indeed, the current availability of several effective vaccines are already making a significant progress towards achieving that goal. Nevertheless, concerns have risen due to new SARS-CoV-2 variants that harbor mutations against which current vaccines are less effective. Furthermore, some individuals are unwilling or unable to take the vaccine. As health officials across the globe scramble to vaccinate their populations to reach herd immunity, the challenges noted above indicate that COVID-19 therapeutics are still needed to work alongside the vaccines. Here we describe the impact that neutralizing antibodies have had on those with early or mild COVID-19, and what their approval for early management of COVID-19 means for other viral entry inhibitors that have a similar mechanism of action. Importantly, we also highlight studies that show that therapeutic strategies involving various viral entry inhibitors such as multivalent antibodies, recombinant ACE2 and miniproteins can be effective not only for pre-exposure prophylaxis, but also in protecting against SARS-CoV-2 antigenic drift and future zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Lennox Chitsike
- Department of Basic Sciences, Loma Linda University School of Medicine, 11021 Campus Street, 101 Alumni Hall, Loma Linda, CA, 92354, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, Loma Linda University School of Medicine, 11021 Campus Street, 101 Alumni Hall, Loma Linda, CA, 92354, USA.
| |
Collapse
|
5652
|
Herdeis L, Gerlach D, McConnell DB, Kessler D. Stopping the beating heart of cancer: KRAS reviewed. Curr Opin Struct Biol 2021; 71:136-147. [PMID: 34303932 DOI: 10.1016/j.sbi.2021.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
It has taken four decades of research to see the first major breakthrough for KRAS-driven cancers. In particular, the last decade has seen a paradigm shift with the discovery of druggable pockets on KRAS and clinical efficacy with covalent KRASG12C inhibitors, culminating in the first approval of sotorasib monotherapy as second-line treatment in KRASG12C-driven non-small-cell lung cancer. Nevertheless, 85% of all KRAS-mutated cancers still lack novel agents. In this review, we will outline the structure, function, and post-translational modifications of KRAS and highlight the various approaches being adopted to drug KRAS, ranging from selective to pan concepts. The range of molecular modalities being explored, including PROTACs and glues, will also be described. Finally, an outlook toward the next wave of KRAS drugs and the challenges of resistance will be given.
Collapse
Affiliation(s)
- Lorenz Herdeis
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Daniel Gerlach
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Darryl B McConnell
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria
| | - Dirk Kessler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
5653
|
Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, Garrido-Cano I, Adam-Artigues A, Lluch A, Bermejo B, Cejalvo JM. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int J Mol Sci 2021; 22:ijms22157812. [PMID: 34360578 PMCID: PMC8345926 DOI: 10.3390/ijms22157812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Estrogen receptor-positive (ER+) is the most common subtype of breast cancer. Endocrine therapy is the fundamental treatment against this entity, by directly or indirectly modifying estrogen production. Recent advances in novel compounds, such as cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), or phosphoinositide 3-kinase (PI3K) inhibitors have improved progression-free survival and overall survival in these patients. However, some patients still develop endocrine resistance after or during endocrine treatment. Different underlying mechanisms have been identified as responsible for endocrine treatment resistance, where ESR1 gene mutations are one of the most studied, outstanding from others such as somatic alterations, microenvironment involvement and epigenetic changes. In this scenario, selective estrogen receptor degraders/downregulators (SERD) are one of the weapons currently in research and development against aromatase inhibitor- or tamoxifen-resistance. The first SERD to be developed and approved for ER+ breast cancer was fulvestrant, demonstrating also interesting activity in ESR1 mutated patients in the second line treatment setting. Recent investigational advances have allowed the development of new oral bioavailable SERDs. This review describes the evolution and ongoing studies in SERDs and new molecules against ER, with the hope that these novel drugs may improve our patients’ future landscape.
Collapse
Affiliation(s)
- Cristina Hernando
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Correspondence: (C.H.); (J.M.C.)
| | - Belén Ortega-Morillo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Marta Tapia
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Santiago Moragón
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - María Teresa Martínez
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Pilar Eroles
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Departamento de Fisiología, Universidad de València, 46010 Valencia, Spain
| | - Iris Garrido-Cano
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Anna Adam-Artigues
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Ana Lluch
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Begoña Bermejo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Juan Miguel Cejalvo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Correspondence: (C.H.); (J.M.C.)
| |
Collapse
|
5654
|
Chen Y, Terazono Y, Fefer M, Liu J, Gale CB, Brook MA. A simple route to photodynamic chlorin e6 amide derivatives. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amide derivatives of the porphyrin Ce6 have demonstrated efficacy for antimicrobial photodynamic therapy or inactivation of microorganisms. Traditional methods for their synthesis involve carbodiimide coupling agents for direct coupling or, as a more attractive option, to make key mono- and dianhydrides that are then able to react with a variety of nucleophiles. We report a process to efficiently create a Ce6 dianhydride by the simple expedient usage of acetic anhydride as both dehydrating agent and reagent. The dianhydride reacts to give mixtures of mono- and di-amide derivatives. While these are difficult to separate from each other, this route avoids the more difficult challenge of removing unreacted Ce6 from reaction mixtures. The process further avoids the need to separate undesired by-products arising from carbodiimides and provides additional benefits, as it was optimized for use with the greener solvent Cyrene.
Collapse
Affiliation(s)
- Yang Chen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton ON Canada L8S 4M1, Canada
| | - Yuichi Terazono
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga ON, Canada L5K 1A8, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga ON, Canada L5K 1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga ON, Canada L5K 1A8, Canada
| | - Cody B. Gale
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton ON Canada L8S 4M1, Canada
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton ON Canada L8S 4M1, Canada
| |
Collapse
|
5655
|
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics 2021; 247:104334. [PMID: 34298187 DOI: 10.1016/j.jprot.2021.104334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023]
Abstract
Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.
Collapse
|
5656
|
Hernando PJ, Dedola S, Marín MJ, Field RA. Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Front Chem 2021; 9:668509. [PMID: 34350156 PMCID: PMC8326456 DOI: 10.3389/fchem.2021.668509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-coated nanoparticles-glyconanoparticles-are finding increased interest as tools in biomedicine. This compilation, mainly covering the past five years, comprises the use of gold, silver and ferrite (magnetic) nanoparticles, silicon-based and cadmium-based quantum dots. Applications in the detection of lectins/protein toxins, viruses and bacteria are covered, as well as advances in detection of cancer cells. The role of the carbohydrate moieties in stabilising nanoparticles and providing selectivity in bioassays is discussed, the issue of cytotoxicity encountered in some systems, especially semiconductor quantum dots, is also considered. Efforts to overcome the latter problem by using other types of nanoparticles, based on gold or silicon, are also presented.
Collapse
Affiliation(s)
- Pedro J. Hernando
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simone Dedola
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
| | - María J. Marín
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Robert A. Field
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5657
|
Haroun M, Tratrat C, Kochkar H, Nair AB. CDATA[Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase. Curr Top Med Chem 2021; 21:462-506. [PMID: 33319673 DOI: 10.2174/1568026621999201214232018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5658
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
5659
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
5660
|
A Fine-Tuned Lipophilicity/Hydrophilicity Ratio Governs Antibacterial Potency and Selectivity of Bifurcated Halogen Bond-Forming NBTIs. Antibiotics (Basel) 2021; 10:antibiotics10070862. [PMID: 34356782 PMCID: PMC8300687 DOI: 10.3390/antibiotics10070862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Herein, we report the design of a focused library of novel bacterial topoisomerase inhibitors (NBTIs) based on innovative mainly monocyclic right-hand side fragments active against DNA gyrase and Topo IV. They exhibit a very potent and wide range of antibacterial activity, even against some of the most concerning hard-to-treat pathogens for which new antibacterials are urgently needed, as reported by the WHO and CDC. NBTIs enzyme activity and whole cell potency seems to depend on the fine-tuned lipophilicity/hydrophilicity ratio that governs the permeability of those compounds through the bacterial membranes. Lipophilicity of NBTIs is apparently optimal for passing through the membrane of Gram-positive bacteria, but the higher, although not excessive lipophilicity and suitable hydrophilicity seems to determine the passage through Gram-negative bacterial membranes. However, due to the considerable hERG inhibition, which is still at least two orders of magnitude away from MICs, continued optimization is required to realize their full potential.
Collapse
|
5661
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
5662
|
Zhang ZW, Rakesh KP, Liu J, Qin HL, Tang H. A general approach to nitrile- and sulfonyl fluoride-substituted cyclopropanes. Org Biomol Chem 2021; 19:6021-6024. [PMID: 34160538 DOI: 10.1039/d1ob01043c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both cis and trans relative configurations of functionalized cyano cyclopropane bearing sulfonyl fluoride moiety were accessed by Corey-Chaykovsky cyclopropanation reactions. This protocol used mild conditions, and obtained good yields with excellent functional group compatibility. Further application of this class of compounds in SuFEx reactions and cyano reductions were also successfully achieved in good yields.
Collapse
Affiliation(s)
- Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5663
|
Recent developments in mitogen activated protein kinase inhibitors as potential anticancer agents. Bioorg Chem 2021; 114:105161. [PMID: 34328852 DOI: 10.1016/j.bioorg.2021.105161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
The mitogen activated protein kinase (MAPK) belongs to group of kinase that links the extracellular stimuli to intracellular response. The MAPK signalling pathway (RAS-RAF-MEK-ERK) involved in different pathological conditions like cancer, caused due to genetic or any other factor such as physical or environmental. Many studies have been conducted on the pathological view of MAPK cascade and its associated element like RAS, RAF, MEK, ERK or its isoforms, and still the research is going on particularly with respect to its activation, regulation and inhibition. The MAPK signalling pathway has become the area of research to identify new target for the management of cancer. A number of heterocyclics are key to fight with the cancer associated with these enzymes thus give some hope in the management of cancer by inhibiting MAPK cascade. In the present article, we have focussed on MAPK signalling pathway and role of different heterocyclic scaffolds bearing nitrogen, sulphur and oxygen and about their potential to block MAPK signalling pathway. The heterocyclics are gaining importance due to high potency and selectivity with less off-target effects against different targets involved in the MAPK signalling pathway. We have tried to cover recent advancements in the MAPK signalling pathway inhibitors with an aim to get better understanding of the mechanism of action of the compounds. Several compounds in the preclinical and clinical studies have been thoroughly dealt with. In addition to the synthetic compounds, a significant number of natural products containing heterocyclic moieties as MAPK signalling pathway inhibitors have been put together. The structure activity relationship along with docking studies have been discussed to apprehend the mechanistic studies of various compounds that will ultimately help to design and develop more MAPK signalling pathway inhibitors.
Collapse
|
5664
|
Glanzmann N, Antinarelli LMR, da Costa Nunes IK, Pereira HMG, Coelho EAF, Coimbra ES, da Silva AD. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed Pharmacother 2021; 141:111857. [PMID: 34323702 DOI: 10.1016/j.biopha.2021.111857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.
Collapse
Affiliation(s)
- Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Isabelle Karine da Costa Nunes
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil.
| |
Collapse
|
5665
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
5666
|
Goetz AE, Becirovic H, Blasberg F, Chen B, Clarke HJ, Colombo M, Daddario P, Damon DB, Depretz C, Dumond YR, Grilli MD, Han L, Houck TL, Johnson AM, Jones KN, Jung J, Leeman M, Liu F, Lu CV, Mangual EJ, Nelson JD, Puchlopek-Dermenci ALA, Ruggeri SG, Simonds PA, Sitter B, Virtue DE, Wang S, Yu L, Yu T. Large-Scale Cyclopropanation of Butyl Acrylate with Difluorocarbene and Classical Resolution of a Key Fluorinated Building Block. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam E. Goetz
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Husein Becirovic
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Florian Blasberg
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Bo Chen
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Hugh J. Clarke
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Pedro Daddario
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David B. Damon
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christelle Depretz
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | - Yves R. Dumond
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | | | - Lu Han
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tim L. Houck
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M. Johnson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kris N. Jones
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jörg Jung
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Michel Leeman
- Symeres BV, Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Fangfang Liu
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cuong V. Lu
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Emilio J. Mangual
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jade D. Nelson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Angela L. A. Puchlopek-Dermenci
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sally Gut Ruggeri
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paul A. Simonds
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Barbara Sitter
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel E. Virtue
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shuguang Wang
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Lixin Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Tao Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| |
Collapse
|
5667
|
Moquin SA, Simon O, Karuna R, Lakshminarayana SB, Yokokawa F, Wang F, Saravanan C, Zhang J, Day CW, Chan K, Wang QY, Lu S, Dong H, Wan KF, Lim SP, Liu W, Seh CC, Chen YL, Xu H, Barkan DT, Kounde CS, Sim WLS, Wang G, Yeo HQ, Zou B, Chan WL, Ding M, Song JG, Li M, Osborne C, Blasco F, Sarko C, Beer D, Bonamy GMC, Sasseville VG, Shi PY, Diagana TT, Yeung BKS, Gu F. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Transl Med 2021; 13:13/579/eabb2181. [PMID: 33536278 DOI: 10.1126/scitranslmed.abb2181] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.
Collapse
Affiliation(s)
- Stephanie A Moquin
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA.,Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Oliver Simon
- Novartis (Singapore) Pte Ltd, Singapore 117432, Singapore
| | - Ratna Karuna
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Feng Wang
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Chandra Saravanan
- Novartis Institutes for Biomedical Research, Translational Medicine: Preclinical Safety, Cambridge, MA 02139, USA
| | - Jin Zhang
- Novartis Institutes for Biomedical Research, Translational Medicine: Pharmacokinetics, East Hanover, NJ 07936, USA
| | - Craig W Day
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Katherine Chan
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Qing-Yin Wang
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Siyan Lu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Siew Pheng Lim
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Wei Liu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Cheah Chen Seh
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Haoying Xu
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - David T Barkan
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Cyrille S Kounde
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Gang Wang
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Hui-Quan Yeo
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Wai Ling Chan
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Mei Ding
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | - Jae-Geun Song
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Min Li
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Colin Osborne
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA
| | - Francesca Blasco
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - David Beer
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Vito G Sasseville
- Novartis Institutes for Biomedical Research, Translational Medicine: Preclinical Safety, Cambridge, MA 02139, USA
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore
| | | | - Bryan K S Yeung
- Novartis Institute for Tropical Diseases, Singapore 138670, Singapore.
| | - Feng Gu
- Novartis Institute for Tropical Diseases, Emeryville, CA 94608, USA.
| |
Collapse
|
5668
|
Brown AS, Owen JG, Jung J, Baker EN, Ackerley DF. Inhibition of Indigoidine Synthesis as a High-Throughput Colourimetric Screen for Antibiotics Targeting the Essential Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT. Pharmaceutics 2021; 13:pharmaceutics13071066. [PMID: 34371757 PMCID: PMC8309046 DOI: 10.3390/pharmaceutics13071066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
A recently-validated and underexplored drug target in Mycobacterium tuberculosis is PptT, an essential phosphopantetheinyl transferase (PPTase) that plays a critical role in activating enzymes for both primary and secondary metabolism. PptT possesses a deep binding pocket that does not readily accept labelled coenzyme A analogues that have previously been used to screen for PPTase inhibitors. Here we report on the development of a high throughput, colourimetric screen that monitors the PptT-mediated activation of the non-ribosomal peptide synthetase BpsA to a blue pigment (indigoidine) synthesising form in vitro. This screen uses unadulterated coenzyme A, avoiding analogues that may interfere with inhibitor binding, and requires only a single-endpoint measurement. We benchmark the screen using the well-characterised Library of Pharmaceutically Active Compounds (LOPAC1280) collection and show that it is both sensitive and able to distinguish weak from strong inhibitors. We further show that the BpsA assay can be applied to quantify the level of inhibition and generate consistent EC50 data. We anticipate these tools will facilitate both the screening of established chemical collections to identify new anti-mycobacterial drug leads and to guide the exploration of structure-activity landscapes to improve existing PPTase inhibitors.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
| | - James Jung
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- Correspondence: ; Tel.: +64-4-4635576
| |
Collapse
|
5669
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
5670
|
Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021; 26:molecules26144213. [PMID: 34299488 PMCID: PMC8307698 DOI: 10.3390/molecules26144213] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Chris LaRosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Janet Antwi
- Division of Mathematics, Computer & Natural Sciences Division, Ohio Dominican University, Columbus, OH 43219, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
- Correspondence:
| |
Collapse
|
5671
|
Lan L, Sun YJ, Jin XY, Xie LJ, Liu L, Cheng L. A Light-Controllable Chemical Modulation of m 6 A RNA Methylation. Angew Chem Int Ed Engl 2021; 60:18116-18121. [PMID: 34107156 DOI: 10.1002/anie.202103854] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Bioactive small molecules with photo-removable protecting groups have provided spatial and temporal control of corresponding biological effects. We present the design, synthesis, computational and experimental evaluation of the first photo-activatable small-molecule methyltransferase agonist. By blocking the functional N-H group on MPCH with a photo-removable ortho-nitrobenzyl moiety, we have developed a promising photo-caged compound that had completely concealed its biological activity. Short UV light exposure of cells treated with that caged molecule in a few minutes resulted in a considerable hypermethylation of m6 A modification in transcriptome RNAs, implicating a rapid release of the parent active compound. This study validates for the first time the photo-activatable small organic molecular concept in the field of RNA epigenetic research, which represents a novel tool in spatiotemporal and cellular modulation approaches.
Collapse
Affiliation(s)
- Ling Lan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Jie Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5672
|
GC-MS Metabolic Profile and α-Glucosidase-, α-Amylase-, Lipase-, and Acetylcholinesterase-Inhibitory Activities of Eight Peach Varieties. Molecules 2021; 26:molecules26144183. [PMID: 34299456 PMCID: PMC8306053 DOI: 10.3390/molecules26144183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of certain digestive enzymes by target food matrices represents a new approach in the treatment of socially significant diseases. Proving the ability of fruits to inhibit such enzymes can support the inclusion of specific varieties in the daily diets of patients with diabetes, obesity, Alzheimer's disease, etc., providing them with much more than just valuable micro- and macromolecules. The current study aimed atidentifying and comparing the GC-MS metabolic profiles of eight peach varieties ("Filina", "Ufo 4, "Gergana", "Laskava", "July Lady", "Flat Queen", "Evmolpiya", and "Morsiani 90") grown in Bulgaria (local and introduced) and to evaluate the inhibitory potential of their extracts towards α-glucosidase, α-amylase, lipase, and acetylcholinesterase. In order to confirm samples' differences or similarities, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were also applied to the identified metabolites. The results provide important insights into the metabolomic profiles of the eight peach varieties and represent a first attempt to characterize the peels of the peach varieties with respect to α-glucosidase-, α-amylase-, lipase-, and acetylcholinesterase-inhibitory activities. All of the studied peach extracts displayed inhibitory activity towards α-glucosidase (IC50: 125-757 mg/mL) and acetylcholinesterase (IC50: 60-739 mg/mL), but none of them affected α-amylase activity. Five of the eight varieties showed inhibitory activity towards porcine pancreatic lipase (IC50: 24-167 mg/mL). The obtained results validate the usefulness of peaches and nectarines as valuable sources of natural agents beneficial for human health, although further detailed investigation should be performed in order to thoroughly identify the enzyme inhibitors responsible for each activity.
Collapse
|
5673
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
5674
|
Lei X, Lampiri P, Patil P, Angeli G, Neochoritis CG, Dömling A. A multicomponent tetrazolo indole synthesis. Chem Commun (Camb) 2021; 57:6652-6655. [PMID: 34128009 PMCID: PMC8259579 DOI: 10.1039/d1cc02384e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquitous presence of the indole fragment in natural products and drugs asks for ever novel syntheses. We report an unprecedented mild, two-step synthesis of 2-tetrazolo substituted indoles based on the Ugi-tetrazole reaction combined with an acidic ring closure. A gram-scale synthesis, a bioactive compound and further transformations were performed. A short, diverse, and scalable Ugi synthesis towards the bioactive tetrazolo indoles.![]()
Collapse
Affiliation(s)
- Xiaofang Lei
- University of Crete, Department of Chemistry, Heraklion, Greece. and University of Groningen, Department of Pharmacy, Drug Design group, Groningen, The Netherlands.
| | | | - Pravin Patil
- University of Groningen, Department of Pharmacy, Drug Design group, Groningen, The Netherlands.
| | - Giasemi Angeli
- University of Crete, Department of Chemistry, Heraklion, Greece.
| | | | - Alexander Dömling
- University of Groningen, Department of Pharmacy, Drug Design group, Groningen, The Netherlands.
| |
Collapse
|
5675
|
Preclinical Studies in Anti- Trypanosomatidae Drug Development. Pharmaceuticals (Basel) 2021; 14:ph14070644. [PMID: 34358070 PMCID: PMC8308625 DOI: 10.3390/ph14070644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or "Pathogen Box" (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.
Collapse
|
5676
|
Lomovskaya O, Tsivkovski R, Sun D, Reddy R, Totrov M, Hecker S, Griffith D, Loutit J, Dudley M. QPX7728, An Ultra-Broad-Spectrum B-Lactamase Inhibitor for Intravenous and Oral Therapy: Overview of Biochemical and Microbiological Characteristics. Front Microbiol 2021; 12:697180. [PMID: 34290688 PMCID: PMC8287861 DOI: 10.3389/fmicb.2021.697180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Abstract
QPX7728 is a novel β-lactamase inhibitor (BLI) that belongs to a class of cyclic boronates. The first member of this class, vaborbactam, is a BLI in the recently approved Vabomere (meropenem-vaborbactam). In this paper we provide the overview of the biochemical, structural and microbiological studies that were recently conducted with QPX7728. We show that QPX7728 is an ultra-broad-spectrum β-lactamase inhibitor with the broadest spectrum of inhibition reported to date in a single BLI molecule; in addition to potent inhibition of clinically important serine β-lactamases, including Class A and D carbapenemases from Enterobacterales and notably, diverse Class D carbapenemases from Acinetobacter, it also inhibits many metallo β-lactamases. Importantly, it is minimally affected by general intrinsic resistance mechanisms such as efflux and porin mutations that impede entry of drugs into gram-negative bacteria. QPX7728 combinations with several intravenous (IV) β-lactam antibiotics shows broad coverage of Enterobacterales, Acinetobacter baumannii and Pseudomonas aeruginosa, including strains that are resistant to other IV β-lactam-BLI combinations, e.g., ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam and imipenem-relebactam that were recently approved for clinical use. Based on studies with P. aeruginosa, different partner β-lactams in combination with QPX7728 may be optimal for the coverage of susceptible organisms. This provides microbiological justification for a stand-alone BLI product for co-administration with different β-lactams. QPX7728 can also be delivered orally; thus, its ultra-broad β-lactamase inhibition spectrum and other features could be also applied to oral QPX7728-based combination products. Clinical development of QPX7728 has been initiated.
Collapse
Affiliation(s)
| | | | - Dongxu Sun
- Qpex Biopharma, Inc., San Diego, CA, United States
| | - Raja Reddy
- Qpex Biopharma, Inc., San Diego, CA, United States
| | | | - Scott Hecker
- Qpex Biopharma, Inc., San Diego, CA, United States
| | | | | | | |
Collapse
|
5677
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|
5678
|
Nonadditivity in public and inhouse data: implications for drug design. J Cheminform 2021; 13:47. [PMID: 34215341 PMCID: PMC8254291 DOI: 10.1186/s13321-021-00525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Numerous ligand-based drug discovery projects are based on structure-activity relationship (SAR) analysis, such as Free-Wilson (FW) or matched molecular pair (MMP) analysis. Intrinsically they assume linearity and additivity of substituent contributions. These techniques are challenged by nonadditivity (NA) in protein-ligand binding where the change of two functional groups in one molecule results in much higher or lower activity than expected from the respective single changes. Identifying nonlinear cases and possible underlying explanations is crucial for a drug design project since it might influence which lead to follow. By systematically analyzing all AstraZeneca (AZ) inhouse compound data and publicly available ChEMBL25 bioactivity data, we show significant NA events in almost every second assay among the inhouse and once in every third assay in public data sets. Furthermore, 9.4% of all compounds of the AZ database and 5.1% from public sources display significant additivity shifts indicating important SAR features or fundamental measurement errors. Using NA data in combination with machine learning showed that nonadditive data is challenging to predict and even the addition of nonadditive data into training did not result in an increase in predictivity. Overall, NA analysis should be applied on a regular basis in many areas of computational chemistry and can further improve rational drug design.
Collapse
|
5679
|
Analysis of the mechanisms of action of isopentenyl caffeate against Leishmania. Biochimie 2021; 189:158-167. [PMID: 34216704 DOI: 10.1016/j.biochi.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023]
Abstract
Leishmaniasis is a neglected parasitic disease for which the conventional treatment can be considered inefficient and extremely aggressive, generating several and severe side effects. Therefore, the discovery of new drug candidates is important for the improvement in the quality of life of patients. Previously, we reported the promising results of isopentyl caffeate (ICaf) against Leishmania chagasi (agent of visceral leishmaniasis) and Leishmania amazonensis (agent of cutaneous leishmaniasis) promastigotes, displaying IC50 of 1.56 and 1.71 μM, respectively. Herein, we aimed to decipher the mechanisms of anti-Leishmania action of ICaf. Light and scanning electron microscopy assays showed relevant morphological changes in promastigotes when treated with ICaf, including rounding of the parasite body, shortening of the flagellum, blebs on the plasma membrane and cellular aggregation. The parasite mitochondrion was targeted by ICaf, resulting in a significant reduction in its metabolic activity and electric membrane potential followed by an increase in the production of reactive oxygen species, which culminated in the loss of plasma membrane integrity and parasite death. Relevantly, ICaf also had a potent anti-amastigote action. The IC50 values calculated for intracellular amastigotes of L. amazonensis were 3.27, 1.60 and 1.52 μM, while for L. chagasi the values were 2.48, 1.84 and 1.60 μM, respectively, after treating the infected macrophages with ICaf for 24, 48 and 72 h. ICaf was well tolerated by THP-1 macrophages, which gave rise to excellent selectivity indexes considering both Leishmania species. The current results suggest that ICaf may emerge as a chemotherapeutic alternative for the treatment of leishmaniasis.
Collapse
|
5680
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Monoterpenoids for Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibition. Biomolecules 2021; 11:biom11070973. [PMID: 34356597 PMCID: PMC8301776 DOI: 10.3390/biom11070973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Usnic acid (UA) is a secondary metabolite of lichens that exhibits a wide range of biological activities. Previously, we found that UA derivatives are effective inhibitors of tyrosyl-DNA phosphodiesterase 1 (TDP1). It can remove covalent complex DNA-topoisomerase 1 (TOP1) stabilized by the TOP1 inhibitor topotecan, neutralizing the effect of the drugs. TDP1 removes damage at the 3′ end of DNA caused by other anticancer agents. Thus, TDP1 is a promising therapeutic target for the development of drug combinations with topotecan, as well as other drugs for cancer treatment. Ten new UA enamino derivatives with variation in the terpene fragment and substituent of the UA backbone were synthesized and tested as TDP1 inhibitors. Four compounds, 11a-d, had IC50 values in the 0.23–0.40 μM range. Molecular modelling showed that 11a-d, with relatively short aliphatic chains, fit to the important binding domains. The intrinsic cytotoxicity of 11a-d was tested on two human cell lines. The compounds had low cytotoxicity with CC50 ≥ 60 μM for both cell lines. 11a and 11c had high inhibition efficacy and low cytotoxicity, and they enhanced topotecan’s cytotoxicity in cancerous HeLa cells but reduced it in the non-cancerous HEK293A cells. This “protective” effect from topotecan on non-cancerous cells requires further investigation.
Collapse
|
5681
|
Gardner JMF, Mansour NR, Bell AS, Helmby H, Bickle Q. The discovery of a novel series of compounds with single-dose efficacy against juvenile and adult Schistosoma species. PLoS Negl Trop Dis 2021; 15:e0009490. [PMID: 34280206 PMCID: PMC8321398 DOI: 10.1371/journal.pntd.0009490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/29/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022] Open
Abstract
Treatment and control of schistosomiasis depends on a single drug, praziquantel, but this is not ideal for several reasons including lack of potency against the juvenile stage of the parasite, dose size, and risk of resistance. We have optimised the properties of a series of compounds we discovered through high throughput screening and have designed candidates for clinical development. The best compounds demonstrate clearance of both juvenile and adult S. mansoni worms in a mouse model of infection from a single oral dose of < 10 mg/kg. Several compounds in the series are predicted to treat schistosomiasis in humans across a range of species with a single oral dose of less than 5 mg/kg.
Collapse
Affiliation(s)
| | - Nuha R. Mansour
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Helena Helmby
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Quentin Bickle
- Department for Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5682
|
Sun LY, Chen C, Su J, Li JQ, Jiang Z, Gao H, Chigan JZ, Ding HH, Zhai L, Yang KW. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorg Chem 2021; 112:104889. [PMID: 33915460 PMCID: PMC8026246 DOI: 10.1016/j.bioorg.2021.104889] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/25/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised a global catastrophe. To date, there is no specific antiviral drug available to combat this virus, except the vaccine. In this study, the main protease (Mpro) required for SARS-CoV-2 viral replication was expressed and purified. Thirty-six compounds were tested as inhibitors of SARS-CoV-2 Mpro by fluorescence resonance energy transfer (FRET) technique. The half-maximal inhibitory concentration (IC50) values of Ebselen and Ebsulfur analogs were obtained to be in the range of 0.074-0.91 μM. Notably, the molecules containing furane substituent displayed higher inhibition against Mpro, followed by Ebselen 1i (IC50 = 0.074 μM) and Ebsulfur 2k (IC50 = 0.11 μM). The action mechanism of 1i and 2k were characterized by enzyme kinetics, pre-incubation and jump dilution assays, as well as fluorescent labeling experiments, which suggested that both compounds covalently and irreversibly bind to Mpro, while molecular docking suggested that 2k formed an SS bond with the Cys145 at the enzymatic active site. This study provides two very potent scaffolds Ebsulfur and Ebselen for the development of covalent inhibitors of Mpro to combat COVID-19.
Collapse
Affiliation(s)
- Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jianpeng Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zhihui Jiang
- Department of Pharmacy, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 72101, Shaanxi Province, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
5683
|
Gao H, Li JQ, Kang PW, Chigan JZ, Wang H, Liu L, Xu YS, Zhai L, Yang KW. N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorg Chem 2021; 114:105138. [PMID: 34229201 DOI: 10.1016/j.bioorg.2021.105138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/23/2023]
Abstract
The expression of β-lactamases, especially metallo-β-lactamases (MβLs) in bacteria is one of the main causes of drug resistance. In this work, an effective N-acylhydrazone scaffold as MβL inhibitor was constructed and characterized. The biological activity assays indicated that the synthesized N-acylhydrazones 1-11 preferentially inhibited MβL NDM-1, and 1 was found to be the most effective inhibitor with an IC50 of 1.2 µM. Analysis of IC50 data revealed a structure-activity relationship, which is that the pyridine and hydroxylbenzene substituents at 2-position improved inhibition of the compounds on NDM-1. ITC and enzyme kinetics assays suggested that it reversibly and competitively inhibited NDM-1 (Ki = 0.29 ± 0.05 µM). The synthesized N-acylhydrazones showed synergistic antibacterial activities with meropenem, reduced 4-16-fold MIC of meropenem on NDM-1- producing E. coli BL21 (DE3), while 1 restored 4-fold activity of meropenem on K. pneumonia expressing NDM-1 (NDM-K. pneumoniae). The mice experiments suggested that 1 combined meropenem to fight against NDM-K. pneumoniae infection in the spleen and liver. Cytotoxicity assays showed that 1 and 2 have low cytotoxicity. This study offered a new framework for the development of NDM-1 inhibitors.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Peng-Wei Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yin-Sui Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 72101, Shaanxi Province, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
5684
|
Williamson DS, Smith GP, Mikkelsen GK, Jensen T, Acheson-Dossang P, Badolo L, Bedford ST, Chell V, Chen IJ, Dokurno P, Hentzer M, Newland S, Ray SC, Shaw T, Surgenor AE, Terry L, Wang Y, Christensen KV. Design and Synthesis of Pyrrolo[2,3- d]pyrimidine-Derived Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Checkpoint Kinase 1 (CHK1)-Derived Crystallographic Surrogate. J Med Chem 2021; 64:10312-10332. [PMID: 34184879 DOI: 10.1021/acs.jmedchem.1c00720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitors of leucine-rich repeat kinase 2 (LRRK2) and mutants, such as G2019S, have potential utility in Parkinson's disease treatment. Fragment hit-derived pyrrolo[2,3-d]pyrimidines underwent optimization using X-ray structures of LRRK2 kinase domain surrogates, based on checkpoint kinase 1 (CHK1) and a CHK1 10-point mutant. (2R)-2-Methylpyrrolidin-1-yl derivative 18 (LRRK2 G2019S cKi 0.7 nM, LE 0.66) was identified, with increased potency consistent with an X-ray structure of 18/CHK1 10-pt. mutant showing the 2-methyl substituent proximal to Ala147 (Ala2016 in LRRK2). Further structure-guided elaboration of 18 gave the 2-[(1,3-dimethyl-1H-pyrazol-4-yl)amino] derivative 32. Optimization of 32 afforded diastereomeric oxolan-3-yl derivatives 44 and 45, which demonstrated a favorable in vitro PK profile, although they displayed species disconnects in the in vivo PK profile, and a propensity for P-gp- and/or BCRP-mediated efflux in a mouse model. Compounds 44 and 45 demonstrated high potency and exquisite selectivity for LRRK2 and utility as chemical probes for the study of LRRK2 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simon T Bedford
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Victoria Chell
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - I-Jen Chen
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | | - Samantha Newland
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Stuart C Ray
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Terry Shaw
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Allan E Surgenor
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Lindsey Terry
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Yikang Wang
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | |
Collapse
|
5685
|
Mariewskaya KA, Tyurin AP, Chistov AA, Korshun VA, Alferova VA, Ustinov AV. Photosensitizing Antivirals. Molecules 2021; 26:3971. [PMID: 34209713 PMCID: PMC8271894 DOI: 10.3390/molecules26133971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and "phenomenological" nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| |
Collapse
|
5686
|
Liang X, Sun C, Li C, Yu H, Wei X, Liu X, Bao W, Shi Y, Sun X, Khamrakulov M, Yang C, Liu H. Identification of Novel Fused Heteroaromatics-Based MALT1 Inhibitors by High-Throughput Screening to Treat B Cell Lymphoma. J Med Chem 2021; 64:9217-9237. [PMID: 34181850 DOI: 10.1021/acs.jmedchem.1c00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) inhibitors is of great value and significance in the treatment of neoplastic disorders and inflammatory and autoimmune diseases. However, there is a lack of effective MALT1 inhibitors in clinic. Herein, a novel class of potent 5-oxo-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-based MALT1 inhibitors and their covalent derivatives were first identified and designed through high-throughput screening. We demonstrated that compounds 15c, 15e, and 20c effectively inhibited the MALT1 protease and displayed selective cytotoxicity to activated B cell-like diffuse large B cell lymphoma with low single-digit micromolar potency. Furthermore, compound 20c specifically repressed NF-κB signaling and induced cell apoptosis in MALT1-dependent TMD8 cells in a dose-dependent manner. More importantly, 20c showed good pharmacokinetic properties and antitumor efficacy with no significant toxicity in the TMD8 xenograft tumor model. Collectively, this study provides valuable lead compounds of MALT1 inhibitors for further structural optimization and antitumor mechanism study.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxia Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xiaohui Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Bao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yuqiang Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Mirzadavlat Khamrakulov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5687
|
Miranda ACC, dos Santos SN, Fuscaldi LL, Balieiro LM, Bellini MH, Guimarães MICC, de Araújo EB. Radioimmunotheranostic Pair Based on the Anti-HER2 Monoclonal Antibody: Influence of Chelating Agents and Radionuclides on Biological Properties. Pharmaceutics 2021; 13:971. [PMID: 34198999 PMCID: PMC8309196 DOI: 10.3390/pharmaceutics13070971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.
Collapse
Affiliation(s)
- Ana Cláudia Camargo Miranda
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, Sao Paulo 05652-900, Brazil
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Sofia Nascimento dos Santos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Leonardo Lima Fuscaldi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo 01221-020, Brazil;
| | - Luiza Mascarenhas Balieiro
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Helena Bellini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Inês Calil Cury Guimarães
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-911, Brazil;
| | - Elaine Bortoleti de Araújo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| |
Collapse
|
5688
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021; 60:17080-17087. [PMID: 34060195 DOI: 10.1002/anie.202104347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Collapse
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
5689
|
Wang J, Ansari MF, Lin J, Zhou C. Design and Synthesis of Sulfanilamide Aminophosphonates as Novel Antibacterial Agents towards
Escherichia coli. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jian‐Mei Lin
- School of Medicine University of Electronic Science and Technology of China Chengdu Sichuan 610072 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
5690
|
Petrillo G, Tavani C, Bianchi L, Benzi A, Cavalluzzi MM, Salvagno L, Quintieri L, De Palma A, Caputo L, Rosato A, Lentini G. Densely Functionalized 2-Methylideneazetidines: Evaluation as Antibacterials. Molecules 2021; 26:3891. [PMID: 34202191 PMCID: PMC8271477 DOI: 10.3390/molecules26133891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/27/2023] Open
Abstract
Twenty-two novel, variously substituted nitroazetidines were designed as both sulfonamide and urethane vinylogs possibly endowed with antimicrobial activity. The compounds under study were obtained following a general procedure recently developed, starting from 4-nitropentadienoates deriving from a common β-nitrothiophenic precursor. While being devoid of any activity against fungi and Gram-negative bacteria, most of the title compounds performed as potent antibacterial agents on Gram-positive bacteria (E. faecalis and three strains of S. aureus), with the most potent congener being the 1-(4-chlorobenzyl)-3-nitro-4-(p-tolyl)azetidine 22, which displayed potency close to that of norfloxacin, the reference antibiotic (minimum inhibitory concentration values 4 and 1-2 μg/mL, respectively). Since 22 combines a relatively efficient activity against Gram-positive bacteria and a cytotoxicity on eucharyotic cells only at 4-times higher concentrations (inhibiting concentration on 50% of the cultured eukaryotic cells: 36 ± 10 μM, MIC: 8.6 μM), it may be considered as a promising hit compound for the development of a new series of antibacterials selectively active on Gram-positive pathogens. The relatively concise synthetic route described herein, based on widely available starting materials, could feed further structure-activity relationship studies, thus allowing for the fine investigation and optimization of the toxico-pharmacological profile.
Collapse
Affiliation(s)
- Giovanni Petrillo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Cinzia Tavani
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Lara Bianchi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Alice Benzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| |
Collapse
|
5691
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
5692
|
Kingdon ADH, Alderwick LJ. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:3708-3719. [PMID: 34285773 PMCID: PMC8258792 DOI: 10.1016/j.csbj.2021.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of TB and was estimated to cause 1.4 million death in 2019, alongside 10 million new infections. Drug resistance is a growing issue, with multi-drug resistant infections representing 3.3% of all new infections, hence novel antimycobacterial drugs are urgently required to combat this growing health emergency. Alongside this, increased knowledge of gene essentiality in the pathogenic organism and larger compound databases can aid in the discovery of new drug compounds. The number of protein structures, X-ray based and modelled, is increasing and now accounts for greater than > 80% of all predicted M. tuberculosis proteins; allowing novel targets to be investigated. This review will focus on structure-based in silico approaches for drug discovery, covering a range of complexities and computational demands, with associated antimycobacterial examples. This includes molecular docking, molecular dynamic simulations, ensemble docking and free energy calculations. Applications of machine learning onto each of these approaches will be discussed. The need for experimental validation of computational hits is an essential component, which is unfortunately missing from many current studies. The future outlooks of these approaches will also be discussed.
Collapse
Key Words
- CV, collective variable
- Docking
- Drug discovery
- In silico
- LIE, Linear Interaction Energy
- MD, Molecular Dynamic
- MDR, multi-drug resistant
- MMPB(GB)SA, Molecular Mechanics with Poisson Boltzmann (or generalised Born) and Surface Area solvation
- Machine learning
- Mt, Mycobacterium tuberculosis
- Mycobacterium tuberculosis
- PTC, peptidyl transferase centre
- RMSD, root-mean square-deviation
- Tuberculosis, TB
- cMD, Classical Molecular Dynamic
- cryo-EM, cryogenic electron microscopy
- ns, nanosecond
Collapse
Affiliation(s)
- Alexander D H Kingdon
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5693
|
Pflégr V, Horváth L, Stolaříková J, Pál A, Korduláková J, Bősze S, Vinšová J, Krátký M. Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur J Med Chem 2021; 223:113668. [PMID: 34198149 DOI: 10.1016/j.ejmech.2021.113668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Based on successful antitubercular isoniazid scaffold we have designed its "mee-too" analogues by a combination of this drug linked with substituted anilines through pyruvic acid as a bridge. Lipophilicity important for passive diffusion through impenetrable mycobacterial cell wall was increased by halogen substitution on the aniline. We prepared twenty new 2-(2-isonicotinoylhydrazineylidene)propanamides that were assayed against susceptible Mycobacterium tuberculosis H37Rv, nontuberculous mycobacteria, and also multidrug-resistant tuberculous strains (MDR-TB). All the compounds showed excellent activity not only against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.03 μM), but also against M. kansasii (MIC ≥2 μM). The most active molecules have CF3 and OCF3 substituent in the position 4 on the aniline ring. MIC against MDR-TB were from 8 μM. The most effective derivatives were used for the mechanism of action investigation. The treatment of Mtb. H37Ra with tested compounds led to decreased production of mycolic acids and the strains overproducing InhA were more resistant to them. These results confirm that studied compounds inhibit the enoyl-acyl carrier protein reductase (InhA) in mycobacteria. The compounds did not show any cytotoxic and cytostatic activity for HepG2 cells. The amides can be considered as a promising scaffold for antitubercular drug discovery having better antimicrobial properties than original isoniazid together with a significantly improved pharmaco-toxicological profile.
Collapse
Affiliation(s)
- Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518, Budapest 112, Hungary
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00, Ostrava, Czech Republic
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518, Budapest 112, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
5694
|
Biernasiuk A, Banasiewicz A, Masłyk M, Martyna A, Janeczko M, Baranowska-Łączkowska A, Malm A, Łączkowski KZ. Synthesis and Physicochemical Characterization of Novel Dicyclopropyl-Thiazole Compounds as Nontoxic and Promising Antifungals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3500. [PMID: 34201678 PMCID: PMC8269541 DOI: 10.3390/ma14133500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
Collapse
Affiliation(s)
- Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Banasiewicz
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Aleksandra Martyna
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland; (M.M.); (A.M.); (M.J.)
| | | | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (A.B.); (K.Z.Ł.)
| |
Collapse
|
5695
|
Turner LD, Nielsen AL, Lin L, Pellett S, Sugane T, Olson ME, Johnson EA, Janda KD. Irreversible inhibition of BoNT/A protease: proximity-driven reactivity contingent upon a bifunctional approach. RSC Med Chem 2021; 12:960-969. [PMID: 34223161 PMCID: PMC8221255 DOI: 10.1039/d1md00089f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is categorized as a Tier 1 bioterrorism agent and persists within muscle neurons for months, causing paralysis. A readily available treatment that abrogates BoNT/A's toxicity and longevity is a necessity in the event of a widespread BoNT/A attack and for clinical treatment of botulism, yet remains an unmet need. Herein, we describe a comprehensive warhead screening campaign of bifunctional hydroxamate-based inhibitors for the irreversible inhibition of the BoNT/A light chain (LC). Using the 2,4-dichlorocinnamic hydroxamic acid (DCHA) metal-binding pharmacophore modified with a pendent warhead, a total of 37 compounds, possessing 13 distinct warhead types, were synthesized and evaluated for time-dependent inhibition against the BoNT/A LC. Iodoacetamides, maleimides, and an epoxide were found to exhibit time-dependent inhibition and their k GSH measured as a description of reactivity. The epoxide exhibited superior time-dependent inhibition over the iodoacetamides, despite reacting with glutathione (GSH) 51-fold slower. The proximity-driven covalent bond achieved with the epoxide inhibitor was contingent upon the vital hydroxamate-Zn2+ anchor in placing the warhead in an optimal position for reaction with Cys165. Monofunctional control compounds exemplified the necessity of the bifunctional approach, and Cys165 modification was confirmed through high-resolution mass spectrometry (HRMS) and ablation of time-dependent inhibitory activity against a C165A variant. Compounds were also evaluated against BoNT/A-intoxicated motor neuron cells, and their cell toxicity, serum stability, and selectivity against matrix metalloproteinases (MMPs) were characterized. The bifunctional approach allows the use of less intrinsically reactive electrophiles to intercept Cys165, thus expanding the toolbox of potential warheads for selective irreversible BoNT/A LC inhibition. We envision that this dual-targeted strategy is amenable to other metalloproteases that also possess non-catalytic cysteines proximal to the active-site metal center.
Collapse
Affiliation(s)
- Lewis D Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Alexander L Nielsen
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Lucy Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Takashi Sugane
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| | - Margaret E Olson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
- College of Pharmacy, Roosevelt University Schaumburg IL 60173 USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison WI 53706 USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), Scripps Research 10550 N Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
5696
|
Zaidman D, Gehrtz P, Filep M, Fearon D, Gabizon R, Douangamath A, Prilusky J, Duberstein S, Cohen G, Owen CD, Resnick E, Strain-Damerell C, Lukacik P, Barr H, Walsh MA, von Delft F, London N. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 M pro inhibitor. Cell Chem Biol 2021; 28:1795-1806.e5. [PMID: 34174194 PMCID: PMC8228784 DOI: 10.1016/j.chembiol.2021.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found ∼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 μM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.
Collapse
Affiliation(s)
- Daniel Zaidman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Paul Gehrtz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mihajlo Filep
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Ronen Gabizon
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Jaime Prilusky
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shirly Duberstein
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Galit Cohen
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - C David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Efrat Resnick
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK; Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
5697
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
5698
|
Puchkov PA, Maslov MA. Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems. Pharmaceutics 2021; 13:920. [PMID: 34205825 PMCID: PMC8234823 DOI: 10.3390/pharmaceutics13060920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.
Collapse
Affiliation(s)
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia;
| |
Collapse
|
5699
|
Polites VC, Badir SO, Keess S, Jolit A, Molander GA. Nickel-Catalyzed Decarboxylative Cross-Coupling of Bicyclo[1.1.1]pentyl Radicals Enabled by Electron Donor-Acceptor Complex Photoactivation. Org Lett 2021; 23:4828-4833. [PMID: 34100624 DOI: 10.1021/acs.orglett.1c01558] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of bicyclo[1.1.1]pentanes (BCPs) as para-disubstituted aryl bioisosteres has gained considerable momentum in drug development programs. Carbon-carbon bond formation via transition-metal-mediated cross-coupling represents an attractive strategy to generate BCP-aryl compounds for late-stage functionalization, but these typically require reactive organometallics to prepare BCP nucleophiles on demand from [1.1.1]propellane. In this study, the synthesis and Ni-catalyzed functionalization of BCP redox-active esters with (hetero)aryl bromides via the action of a photoactive electron donor-acceptor complex are reported.
Collapse
Affiliation(s)
- Viktor C Polites
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
5700
|
Discovery of Selective Inhibitor Leads by Targeting an Allosteric Site in Insulin-Regulated Aminopeptidase. Pharmaceuticals (Basel) 2021; 14:ph14060584. [PMID: 34207179 PMCID: PMC8233869 DOI: 10.3390/ph14060584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin-Regulated aminopeptidase (IRAP) is a zinc-dependent aminopeptidase with several important biological functions and is an emerging pharmaceutical target for cognitive enhancement and immune system regulation. Aiming to discover lead-like IRAP inhibitors with enhanced selectivity versus homologous enzymes, we targeted an allosteric site at the C-terminal domain pocket of IRAP. We compiled a library of 2.5 million commercially available compounds from the ZINC database, and performed molecular docking at the target pocket of IRAP and the corresponding pocket of the homologous endoplasmic reticulum aminopeptidase 1 (ERAP1). Of the top compounds that showed high selectivity, 305 were further analyzed by molecular dynamics simulations and free energy calculations, leading to the selection of 33 compounds for in vitro evaluation. Two orthogonal functional assays were employed: one using a small fluorogenic substrate and one following the degradation of oxytocin, a natural peptidic substrate of IRAP. In vitro evaluation suggested that several of the compounds tested can inhibit IRAP, but the inhibition profile was dependent on substrate size, consistent with the allosteric nature of the targeted site. Overall, our results describe several novel leads as IRAP inhibitors and suggest that the C-terminal domain pocket of IRAP is a promising target for developing highly selective IRAP inhibitors.
Collapse
|