5801
|
Zhang Y, Qin W, Liu D, Liu Y, Wang C. Chemoproteomic profiling of itaconations in Salmonella. Chem Sci 2021; 12:6059-6063. [PMID: 33996001 PMCID: PMC8098682 DOI: 10.1039/d1sc00660f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Itaconate is an immunoregulatory and anti-bacterial metabolite, and plays important roles in host-pathogen interactions. Chemoproteomic strategies have been used to explore the anti-inflammatory effects of itaconate on activated macrophages and it has been found that many key proteins in immune pathways were modified; however, how itaconate modulates pathogens was not fully understood. Here, we have designed and synthesized a series of itaconate-based bioorthogonal probes, which enable quantitative and site-specific profiling of itaconated proteins and sites in Salmonella. Among many proteins related to energy metabolism, we identified a key enzyme involved in the glyoxylate cycle, isocitrate lyase (ICL), as the most prominent target. Covalent modification of the active-site cysteine in ICL by itaconate abolishes the enzyme activity and suppresses bacterial growth. Our chemoproteomic study has uncovered the wide array of itaconation targets in Salmonella and provided a comprehensive resource for understanding the anti-bacterial function of this intriguing metabolite.
Collapse
Affiliation(s)
- Yanling Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Dongyang Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education China
- College of Chemistry and Molecular Engineering China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education China
- College of Chemistry and Molecular Engineering China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education China
- College of Chemistry and Molecular Engineering China
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| |
Collapse
|
5802
|
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers (Basel) 2021; 13:cancers13071618. [PMID: 33807411 PMCID: PMC8037275 DOI: 10.3390/cancers13071618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Collapse
|
5803
|
A Novel Infection Protocol in Zebrafish Embryo to Assess Pseudomonas aeruginosa Virulence and Validate Efficacy of a Quorum Sensing Inhibitor In Vivo. Pathogens 2021; 10:pathogens10040401. [PMID: 33805384 PMCID: PMC8065929 DOI: 10.3390/pathogens10040401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.
Collapse
|
5804
|
Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021; 9:microorganisms9040691. [PMID: 33801655 PMCID: PMC8066228 DOI: 10.3390/microorganisms9040691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania is a protozoan parasite of the trypanosomatid family, causing a wide range of diseases with different clinical manifestations including cutaneous, mucocutaneous and visceral leishmaniasis. According to WHO, one billion people are at risk of Leishmania infection as they live in endemic areas while there are 12 million infected people worldwide. Annually, 0.9-1.6 million new infections are reported and 20-50 thousand deaths occur due to Leishmania infection. As current chemotherapy for treating leishmaniasis exhibits numerous drawbacks and due to the lack of effective human vaccine, there is an urgent need to develop new antileishmanial therapy treatment. To this end, eukaryotic protein kinases can be ideal target candidates for rational drug design against leishmaniasis. Eukaryotic protein kinases mediate signal transduction through protein phosphorylation and their inhibition is anticipated to be disease modifying as they regulate all essential processes for Leishmania viability and completion of the parasitic life cycle including cell-cycle progression, differentiation and virulence. This review highlights existing knowledge concerning the exploitation of Leishmania protein kinases as molecular targets to treat leishmaniasis and the current knowledge of their role in the biology of Leishmania spp. and in the regulation of signalling events that promote parasite survival in the insect vector or the mammalian host.
Collapse
|
5805
|
Prasher P, Sharma M, Zacconi F, Gupta G, Aljabali AA, Mishra V, Tambuwala MM, Kapoor DN, Negi P, Andreoli Pinto TDJ, Singh I, Chellappan DK, Dua K. Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200820152501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azole frameworks serve as privileged scaffolds in the contemporary drug design
paradigm owing to their unique physicochemical profile that promotes the development
of highly selective, physiological benevolent chemotherapeutics. Several azole nuclei
function as bioisostere in medicinal chemistry and prompt the development of tailored
therapeutics for targeting the desired biological entities. Besides, the azole scaffold forms
an integral part in the advanced drug designing methodologies, such as target template insitu
drug synthesis, that assists in rapid identification of the hit molecules form a diverse
pool of leads; and direct biomolecule-drug conjugation, along with bioorthogonal strategies
that ensure localization, and superior target specificity of the directed therapeutic.
Lastly, the structural diversity of azole framework and high yielding click synthetic methods
provide a comprehensive Structure-Activity Relationship analysis for design optimization of the potential
drug molecules by fine-tuning the placement of different substituents critical for the activity. This review provides
a comprehensive analysis of the synthesis and anticancer potential of azole based chemotherapeutics.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun 248007, India
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302 017, Jaipur, India
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland BT52 1SA, United Kingdom
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh 173 229, India
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo 05508-000, Brazil
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5806
|
Belachew EB, Sewasew DT. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol (Lausanne) 2021; 12:599586. [PMID: 33841325 PMCID: PMC8030661 DOI: 10.3389/fendo.2021.599586] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The estrogen receptor is a vital receptor for therapeutic targets in estrogen receptor-positive breast cancer. The main strategy for the treatment of estrogen receptor-positive breast cancers is blocking the estrogen action on estrogen receptors by endocrine therapy but this can be restricted via endocrine resistance. Endocrine resistance occurs due to both de novo and acquired resistance. This review focuses on the mechanisms of the ligand-dependent and ligand-independent pathways and other coregulators, which are responsible for endocrine resistance. It concludes that combinatorial drugs that target different signaling pathways and coregulatory proteins together with endocrine therapy could be a novel therapeutic modality to stop endocrine resistance.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology, Mizan Tepi University, Addis Ababa, Ethiopia
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
5807
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5808
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
5809
|
Gauto D, Dakhlaoui O, Marin-Montesinos I, Hediger S, De Paëpe G. Targeted DNP for biomolecular solid-state NMR. Chem Sci 2021; 12:6223-6237. [PMID: 34084422 PMCID: PMC8115112 DOI: 10.1039/d0sc06959k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.
Collapse
Affiliation(s)
- Diego Gauto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France
| | - Ildefonso Marin-Montesinos
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- University of Aveiro, CICECO Chem. Dept. Aveiro Portugal
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
5810
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark, kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
5811
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
5812
|
Atkinson AJ, Armstrong MD, Eskew JT, Coronell O. 2-Aminoimidazole Reduces Fouling and Improves Membrane Performance. J Memb Sci 2021; 629. [PMID: 34366551 DOI: 10.1016/j.memsci.2021.119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biofouling is difficult to control and hinders the performance of membranes in all applications but is of particular concern when natural waters are purified. Fouling, via multiple mechanisms (organic-only, biofouling-only, cell-deposition-only, and organic+biofouling), of a commercially available membrane (control) and a corresponding membrane coated with an anti-biofouling 2-aminoimidazole (2-AI membrane) was monitored and characterized during the purification of a natural water. Results show that the amount of bacterial cell deposition and organic fouling was not significantly different between control and 2-AI membranes; however, biofilm formation, concurrent or not with other fouling mechanisms, was significantly inhibited (95-98%, p<0.001) by the 2-AI membrane. The limited biofilm that formed on the 2-AI membrane was weaker (as indicated by the polysaccharide to protein ratio) and thus presumably easier to remove. The conductivity rejection by the 2-AI and control membranes was not significantly different throughout the 75-hour experiments, but the rejection of dissolved organic carbon by biofouled (biofouling-only, cell-deposition-only, and organic+biofouling) 2-AI membranes was statistically higher (10-12%, p=0.003-0.07). When biofouled, the water permeance of the 2-AI membranes decreased significantly less (p<0.05) over 75 hours than that of the control membranes, whether or not other additional types of fouling occurred concurrently. Despite the initially lower water permeances of 2-AI membranes (11% lower on average than controls), the 2-AI membranes outperformed the controls (10-11% higher average water permeance) after biofilm formation occurred. Overall, 2-AI membranes fouled less than controls without detriment to water productivity and solute rejection.
Collapse
Affiliation(s)
- Ariel J Atkinson
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mikayla D Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John T Eskew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5813
|
Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ. Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study. Molecules 2021; 26:1678. [PMID: 33802860 PMCID: PMC8002701 DOI: 10.3390/molecules26061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.A.); (M.M.A.)
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.A.); (M.M.A.)
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| |
Collapse
|
5814
|
Mustafa M, Abuo-Rahma GEDA, Abd El-Hafeez AA, Ahmed ER, Abdelhamid D, Ghosh P, Hayallah AM. Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton. Bioorg Med Chem Lett 2021; 40:127965. [PMID: 33744442 DOI: 10.1016/j.bmcl.2021.127965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
Small molecule inhibitors of the focal adhesion kinase are regarded as promising tools in our armamentarium for treating cancer. Here, we identified four 1,2,4-triazole derivatives that inhibit FAK kinase significantly and evaluated their therapeutic potential. Most tested compounds revealed potent antiproliferative activity in HepG2 and Hep3B liver cancer cells, in which 3c and 3d were the most potent (IC50 range; 2.88 ~ 4.83 µM). Compound 3d possessed significant FAK inhibitory activity with IC50 value of 18.10 nM better than the reference GSK-2256098 (IC50 = 22.14 nM). The preliminary mechanism investigation by Western blot analysis showed that both 3c and 3d repressed FAK phosphorylation comparable to GSK-2256098 in HepG2 cells. As a result of FAK inhibition, 3c and 3d inhibited the pro-survival pathways by decreasing the phosphorylation levels of PI3K, Akt, JNK, and STAT3 proteins. This effect led to apoptosis induction and cell cycle arrest. Taken together, these results indicate that 3d could serve as a potent preclinical candidate for the treatment of cancers.
Collapse
Affiliation(s)
- Muhamad Mustafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA; Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Alaa M Hayallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, 71526, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| |
Collapse
|
5815
|
Mengist HM, Dilnessa T, Jin T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem 2021; 9:622898. [PMID: 33889562 PMCID: PMC8056153 DOI: 10.3389/fchem.2021.622898] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus disease-19 (COVID-19) pandemic is still devastating the world causing significant social, economic, and political chaos. Corresponding to the absence of globally approved antiviral drugs for treatment and vaccines for controlling the pandemic, the number of cases and/or mortalities are still rising. Current patient management relies on supportive treatment and the use of repurposed drugs as an indispensable option. Of a crucial role in the viral life cycle, ongoing studies are looking for potential inhibitors to the main protease (Mpro) of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2) to tackle the pandemic. Although promising results have been achieved in searching for drugs inhibiting the Mpro, work remains to be done on designing structure-based improved drugs. This review discusses the structural basis of potential inhibitors targeting SARS-CoV-2 Mpro, identifies gaps, and provides future directions. Further, compounds with potential Mpro based antiviral activity are highlighted.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of innate immunity and chronic disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Tebelay Dilnessa
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of innate immunity and chronic disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
5816
|
Merz V, Gaule M, Zecchetto C, Cavaliere A, Casalino S, Pesoni C, Contarelli S, Sabbadini F, Bertolini M, Mangiameli D, Milella M, Fedele V, Melisi D. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front Oncol 2021; 11:638360. [PMID: 33777798 PMCID: PMC7991835 DOI: 10.3389/fonc.2021.638360] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although historically considered to be undruggable, a particular KRAS mutation, the G12C variant, has recently emerged as an actionable alteration especially in non-small cell lung cancer (NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other approaches are being explored. The inhibition of target upstream activators or downstream effectors of KRAS pathway has shown to be moderately effective given the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of KRAS have recently being identified and the inhibition of some of those might prove to be successful in the future. The study of escape mechanisms to KRAS inhibition could support the utility of combination strategies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of the microenvironment in influencing tumor initiation and promotion, the immune tumor niche of KRAS mutant tumors has been deeply explored and characterized for its unique immunosuppressive skewing. However, a number of aspects remains to be fully understood, and modulating this tumor niche might revert the immunoresistance of KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint inhibitors are being tested.
Collapse
Affiliation(s)
- Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Marina Gaule
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Cavaliere
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Pesoni
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
5817
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
5818
|
Vetvicka D, Sivak L, Jogdeo CM, Kumar R, Khan R, Hang Y, Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J Control Release 2021; 331:246-259. [PMID: 33482273 DOI: 10.1016/j.jconrel.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Despite intensive research efforts and development of numerous new anticancer drugs and treatment strategies over the past decades, there has been only very limited improvement in overall patient survival and in effective treatment options for pancreatic cancer. Current chemotherapy improves survival in terms of months and death rates in pancreatic cancer patients are almost equivalent to incidence rates. It is imperative to develop new therapeutic approaches. Among them, gene silencing shows promise of effectiveness in both tumor cells and stromal cells by inhibiting tumor-promoting genes. This review summarizes potential targets for gene silencing in both pancreatic cancer cells and abundant stromal cells focusing on non-viral delivery systems for small RNAs and discusses the potential immunological implications. The review concludes with the importance of multifactorial therapy of pancreatic cancer.
Collapse
Affiliation(s)
- David Vetvicka
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, Prague 2 12000, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-61300, Czech Republic
| | - Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
5819
|
Zhang P, Guo Q, Wei Z, Yang Q, Guo Z, Shen L, Duan K, Chen L. Baicalin Represses Type Three Secretion System of Pseudomonas aeruginosa through PQS System. Molecules 2021; 26:molecules26061497. [PMID: 33801847 PMCID: PMC8001617 DOI: 10.3390/molecules26061497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin's impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Pansong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
| | - Zhihua Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
| | - Qin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
| | - Zisheng Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
| | - Kangmin Duan
- Department of Oral Biology & Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB R3E 0W2, Canada
- Correspondence: (K.D.); (L.C.)
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (P.Z.); (Z.W.); (Q.Y.); (Z.G.); (L.S.)
- Correspondence: (K.D.); (L.C.)
| |
Collapse
|
5820
|
Bhanot A, Sundriyal S. Physicochemical Profiling and Comparison of Research Antiplasmodials and Advanced Stage Antimalarials with Oral Drugs. ACS OMEGA 2021; 6:6424-6437. [PMID: 33718733 PMCID: PMC7948433 DOI: 10.1021/acsomega.1c00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
To understand the property space of antimalarials, we collated a large dataset of research antiplasmodial (RAP) molecules with known in vitro potencies and advanced stage antimalarials (ASAMs) with established oral bioavailability. While RAP molecules are "non-druglike", ASAM molecules display properties closer to Lipinski's and Veber's thresholds. Comparison within the different potency groups of RAP molecules indicates that the in vitro potency is positively correlated to the molecular weight, the calculated octanol-water partition coefficient (clog P), aromatic ring counts (#Ar), and hydrogen bond acceptors. Despite both categories being bioavailable, the ASAM molecules are relatively larger and more lipophilic, have a lower polar surface area, and possess a higher count of heteroaromatic rings than oral drugs. Also, antimalarials are found to have a higher proportion of aromatic (#ArN) and basic nitrogen (#BaN) counts, features implicitly used in the design of antimalarial molecules but not well studied hitherto. We also propose using descriptors scaled by the sum of #ArN and #BaN (SBAN) to define an antimalarial property space. Together, these results may have important applications in the identification and optimization of future antimalarials.
Collapse
Affiliation(s)
- Amritansh Bhanot
- Department of Pharmacy, Birla
Institute of Technology and Science Pilani, Pilani Campus,
Vidya Vihar, Pilani, Rajasthan 333 031, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla
Institute of Technology and Science Pilani, Pilani Campus,
Vidya Vihar, Pilani, Rajasthan 333 031, India
| |
Collapse
|
5821
|
Kumar M, Joshi G, Arora S, Singh T, Biswas S, Sharma N, Bhat ZR, Tikoo K, Singh S, Kumar R. Design and Synthesis of Non-Covalent Imidazo[1,2- a]quinoxaline-Based Inhibitors of EGFR and Their Anti-Cancer Assessment. Molecules 2021; 26:1490. [PMID: 33803355 PMCID: PMC7967119 DOI: 10.3390/molecules26051490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
- School of Pharmacy, Graphic Era Hill University, Dehradun 248171, Uttarakhand, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India; (T.S.); (S.S.)
| | - Sajal Biswas
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Zahid Rafiq Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India; (N.S.); (Z.R.B.); (K.T.)
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India; (T.S.); (S.S.)
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India; (M.K.); (G.J.); (S.A.); (S.B.)
| |
Collapse
|
5822
|
Crosstalk between miRNAs and signaling pathways involved in pancreatic cancer and pancreatic ductal adenocarcinoma. Eur J Pharmacol 2021; 901:174006. [PMID: 33711308 DOI: 10.1016/j.ejphar.2021.174006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide with 5-year survival rates below 8%. Most patients with PC and pancreatic ductal adenocarcinoma (PDAC) die after relapse and cancer progression as well as resistance to treatment. Pancreatic tumors contain a high desmoplastic stroma that forms a rigid mass and has a potential role in tumor growth and metastasis. PC initiates from intraepithelial neoplasia lesions leading to invasive cancer through various pathways. These lesions harbor particular changes in signaling pathways involved in the tumorigenesis process. These events affect both the epithelial cells, including the tumor and the surrounding stroma, and eventually lead to the formation of complex signaling networks. Genetic studies of PC have revealed common molecular features such as the presence of mutations in KRAS gene in more than 90% of patients, as well as the inactivation or deletion mutations of some tumor suppressor genes including TP53, CDKN2A, and SMAD4. In recent years, studies have also identified different roles of microRNAs in PC pathogenesis as well as their importance in PC diagnosis and treatment, and their involvement in various signaling pathways. In this study, we discussed the most common pathways involved in PC and PDAC as well as their role in tumorigenesis and progression. Furthermore, the miRNAs participating in the regulation of these signaling pathways in PC progression are summarized in this study. Therefore, understanding more about pathways involved in PC can help with the development of new and effective therapies in the future.
Collapse
|
5823
|
Kaur R, Chaudhary G, Kaur A, Singh P, Longowal GD, Sapkale GP, Arora S. PROTACs: A Hope for Breast Cancer Patients? Anticancer Agents Med Chem 2021; 22:406-417. [PMID: 33687888 DOI: 10.2174/1871520621666210308100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the most widely recognized disease in women. A massive number of women are diagnosed with breast cancer and many lost their lives every year. Cancer is the subsequent driving reason for dying, giving rise to it one of the current medication's most prominent difficulties. OBJECTIVES The main objective of the study is to examine and explore novel therapy (PROTAC) and its effectiveness against breast cancer. METHODS The literature search was done across Medline, Cochrane, ScienceDirect, Wiley Online, Google Scholar, PubMed, Bentham Sciences from 2001 to 2020. The articles were collected; screened, segregated, and selected papers were included for writing the review article. RESULTS AND CONCLUSION A novel innovation emerged around two decades ago that has great potential to not only overcome the limitations but also can provide future direction for the treatment of many diseases which has presently not many therapeutic options available and regarded as incurable with traditional techniques; that innovation is called PROTAC (Proteolysis Targeting Chimera) and able to efficaciously ubiquitinate and debase cancer encouraging proteins by noncovalent interaction. PROTACs are constituted of two active regions isolated by a linker and equipped for eliminating explicit undesirable protein. It is empowering greater sensitivity to "drug-resistant targets" as well as a more prominent opportunity to influence non-enzymatic function. PROTACs have been demonstrated to show better target selectivity contrasted with traditional small-molecule inhibitors. So far, the most investigation into PROTACs possesses particularly concentrated on applications to cancer treatment including breast cancer, the treatment of different ailments may profit from this blossoming innovation.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Gaurav Chaudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Pargat Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | | | - Gayatri P Sapkale
- Fortis Flt. Lt. Rajan Dhall Hospital, Aruna Asaf Ali Marg, Pocket 1, Sector B, Vasant Kunj, New Delhi-110070. India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| |
Collapse
|
5824
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
5825
|
VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021; 9:vaccines9030220. [PMID: 33807516 PMCID: PMC7998750 DOI: 10.3390/vaccines9030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
Research on vaccines against trypanosomatids, a family of protozoa that cause neglected tropical diseases, such as Chagas disease, leishmaniasis, and sleeping sickness, is a current need. Today, according to modern vaccinology, virus-like particle (VLP) technology is involved in many vaccines, including those undergoing studies related to COVID-19. The potential use of VLPs as vaccine adjuvants opens an opportunity for the use of protozoan antigens for the development of vaccines against diseases caused by Trypanosoma cruzi, Leishmania spp., and Trypanosoma brucei. In this context, it is important to consider the evasion mechanisms of these protozoa in the host and the antigens involved in the mechanisms of the parasite–host interaction. Thus, the immunostimulatory properties of VLPs can be part of an important strategy for the development and evaluation of new vaccines. This work aims to highlight the potential of VLPs as vaccine adjuvants for the development of immunity in complex diseases, specifically in the context of tropical diseases caused by trypanosomatids.
Collapse
|
5826
|
Abstract
The development of novel synthetic methods remains a cornerstone in simplifying complex molecule synthesis. Progress in the field of transition metal catalysis has enabled new mechanistic strategies to achieve difficult chemical transformations, increased the value of abundant chemical building blocks, and pushed the boundaries of creative and strategic route design to improve step economy in multistep synthesis. Methodologies to introduce an olefin into saturated molecules continue to be essential transformations because of the plethora of reactions available for alkene functionalization. Of particular importance are dehydrogenation reactions adjacent to electron-withdrawing groups such as carbonyls, which advantageously provide activated olefins that can be regioselectively manipulated. Palladium catalysis occupies a central role in the most widely adopted carbonyl dehydrogenation reactions, but limits to the scope of these protocols persist.In this Account, we describe our group's contributions to the area of transition-metal-catalyzed dehydrogenation using palladium catalysis and more sustainable and economical nickel catalysis. These metals are used in conjunction with allyl and aryl halides or pseudohalides that serve as oxidants to access a unique mechanistic approach for one-step α,β-dehydrogenation of various electron-withdrawing groups, including ketones, esters, nitriles, amides, carboxylic acids, and electron-deficient heteroarenes. The pivotal reaction parameters that can be modified to influence reaction efficiency are highlighted, including base and oxidant structure as well as ligand and salt additive effects. This discussion is expected to serve as a guide for troubleshooting challenging dehydrogenation reactions and provide insight for future reaction development in this area.In addition to enabling dehydrogenation reactions, our group's allyl-Pd and -Ni chemistry can be used for C-C and C-X bond-forming reactions, providing novel disconnections with practical applications for expediting multistep synthesis. These transformations include a telescoped process for ketone α,β-vicinal difunctionalization; an oxidative enone β-functionalization, including β-stannylation, β-silylation, and β-alkylation; and an oxidative cycloalkenylation between unstabilized ketone enolates and unactivated alkenes. These bond-forming methodologies broaden the range of transformations accessible from abundant ketone, enone, and alkene moieties. Both the dehydrogenation and C-C and C-X bond-forming methodologies have been implemented in our group's total synthesis campaigns to provide step-efficient synthetic routes toward diverse natural products.Through the lens of multistep synthesis, the utility and robustness of our dehydrogenation and dehydrogenative functionalization methodologies can be better appreciated, and we hope that this Account will inspire practitioners to apply our methodologies to their own synthetic challenges.
Collapse
Affiliation(s)
- David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
5827
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|
5828
|
Bayrakci M, Keskinates M, Yilmaz B. Antibacterial, thermal decomposition and in vitro time release studies of chloramphenicol from novel PLA and PVA nanofiber mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111895. [PMID: 33641898 DOI: 10.1016/j.msec.2021.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
The present investigation is the first report containing design and synthesis of novel calixarene derivatives (6-8) and their inclusion complexes (IC6-IC8) with Chloramphenicol (CAM). After synthesis, the antibiotic CAM, calixarene derivatives (6-8) and their inclusion complexes (IC6-IC8) were successfully incorporated into biodegradable PVA and/or PLA nanofiber skeleton by electrospinning. The obtained electrospun nanofibers were tested and compared for inhibition of bacterial growth towards multiple bacterial species (Escherichia coli, and Bacillus subtilis). Moreover, we evaluated thermal decomposition and release profile of CAM by spectrophotometric methods. The results suggested that CAM can be successfully encapsulated in nanofiber webs by inclusion complexation, and these fibers could be used as a part of new controlled release packaging system for food preservation.
Collapse
Affiliation(s)
- Mevlut Bayrakci
- Karamanoglu Mehmetbey University, Faculty of Engineering, Department of Bioengineering, 70200 Karaman, Turkey.
| | - Mukaddes Keskinates
- Karamanoglu Mehmetbey University, Faculty of Engineering, Department of Bioengineering, 70200 Karaman, Turkey
| | - Bahar Yilmaz
- Karamanoglu Mehmetbey University, Faculty of Engineering, Department of Bioengineering, 70200 Karaman, Turkey
| |
Collapse
|
5829
|
Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev 2021; 50:2224-2243. [PMID: 33458725 PMCID: PMC8018613 DOI: 10.1039/d0cs01261k] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in our understanding of RNA biology have uncovered crucial roles for RNA in multiple disease states, ranging from viral and bacterial infections to cancer and neurological disorders. As a result, multiple laboratories have become interested in developing drug-like small molecules to target RNA. However, this development comes with multiple unique challenges. For example, RNA is inherently dynamic and has limited chemical diversity. In addition, promiscuous RNA-binding ligands are often identified during screening campaigns. This Tutorial Review overviews important considerations and advancements for generating RNA-targeted small molecules, ranging from fundamental chemistry to promising small molecule examples with demonstrated clinical efficacy. Specifically, we begin by exploring RNA functional classes, structural hierarchy, and dynamics. We then discuss fundamental RNA recognition principles along with methods for small molecule screening and RNA structure determination. Finally, we review unique challenges and emerging solutions from both the RNA and small molecule perspectives for generating RNA-targeted ligands before highlighting a selection of the "Greatest Hits" to date. These molecules target RNA in a variety of diseases, including cancer, neurodegeneration, and viral infection, in cellular and animal model systems. Additionally, we explore the recently FDA-approved small molecule regulator of RNA splicing, risdiplam, for treatment of spinal muscular atrophy. Together, this Tutorial Review showcases the fundamental role of chemical and molecular recognition principles in enhancing our understanding of RNA biology and contributing to the rapidly growing number of RNA-targeted probes and therapeutics. In particular, we hope this widely accessible review will serve as inspiration for aspiring small molecule and/or RNA researchers.
Collapse
Affiliation(s)
- James P Falese
- Duke University School of Medicine, Department of Biochemistry, Durham, North Carolina, USA.
| | - Anita Donlic
- Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, USA
| | - Amanda E Hargrove
- Duke University School of Medicine, Department of Biochemistry, Durham, North Carolina, USA. and Duke University, Department of Chemistry, Durham, North Carolina, USA
| |
Collapse
|
5830
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
5831
|
|
5832
|
Novel PF74-like small molecules targeting the HIV-1 capsid protein: Balance of potency and metabolic stability. Acta Pharm Sin B 2021; 11:810-822. [PMID: 33777683 PMCID: PMC7982424 DOI: 10.1016/j.apsb.2020.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Of all known small molecules targeting human immunodeficiency virus (HIV) capsid protein (CA), PF74 represents by far the best characterized chemotype, due to its ability to confer antiviral phenotypes in both early and late phases of viral replication. However, the prohibitively low metabolic stability renders PF74 a poor antiviral lead. We report herein our medicinal chemistry efforts toward identifying novel and metabolically stable small molecules targeting the PF74 binding site. Specifically, we replaced the inter-domain-interacting, electron-rich indole ring of PF74 with less electron-rich isosteres, including imidazolidine-2,4-dione, pyrimidine-2,4-dione, and benzamide, and identified four potent antiviral compounds (10, 19, 20 and 26) with markedly improved metabolic stability. Compared to PF74, analog 20 exhibited similar submicromolar potency, and much longer (51-fold) half-life in human liver microsomes (HLMs). Molecular docking corroborated that 20 binds to the PF74 binding site, and revealed distinct binding interactions conferred by the benzamide moiety. Collectively, our data support compound 20 as a promising antiviral lead.
Collapse
Key Words
- ART, antiretroviral therapy
- CA, capsid protein
- CACTD, CA C-terminal domain
- CANTD, CA N-terminal domain
- Capsid protein
- HBA, H-bond acceptor
- HBD, H-bond donor
- HIV, human immunodeficiency virus
- HIV-1
- HLM, human liver microsome
- MLM, mouse liver microsome
- Microsomal stability
- PF74
- PK, pharmacokinetic
- SAR, structure‒activity relationship
- TSA, thermal shift assay
Collapse
|
5833
|
Naclerio GA, Abutaleb NS, Alhashimi M, Seleem MN, Sintim HO. N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae. Int J Mol Sci 2021; 22:2427. [PMID: 33671065 PMCID: PMC7957578 DOI: 10.3390/ijms22052427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
The Centers for Disease Control and Prevention (CDC) recognizes Neisseria gonorrhoeae as an urgent-threat Gram-negative bacterial pathogen. Additionally, resistance to frontline treatment (dual therapy with azithromycin and ceftriaxone) has led to the emergence of multidrug-resistant N. gonorrhoeae, which has caused a global health crisis. The drug pipeline for N. gonorrhoeae has been severely lacking as new antibacterial agents have not been approved by the FDA in the last twenty years. Thus, there is a need for new chemical entities active against drug-resistant N. gonorrhoeae. Trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides are novel compounds with potent activities against Gram-positive bacterial pathogens. Here, we report the discovery of new N-(1,3,4-oxadiazol-2-yl)benzamides (HSGN-237 and -238) with highly potent activity against N. gonorrhoeae. Additionally, these new compounds were shown to have activity against clinically important Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Listeria monocytogenes (minimum inhibitory concentrations (MICs) as low as 0.25 µg/mL). Both compounds were highly tolerable to human cell lines. Moreover, HSGN-238 showed an outstanding ability to permeate across the gastrointestinal tract, indicating it would have a high systemic absorption if used as an anti-gonococcal therapeutic.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
| |
Collapse
|
5834
|
Zheng Q, Xu H, Wang H, Du WGH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. Sulfur [ 18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. J Am Chem Soc 2021; 143:3753-3763. [PMID: 33630577 DOI: 10.1021/jacs.0c09306] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The lack of efficient [18F]fluorination processes and target-specific organofluorine chemotypes remains the major challenge of fluorine-18 positron emission tomography (PET). We report here an ultrafast isotopic exchange method for the radiosynthesis of novel PET agent aryl [18F]fluorosulfate enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully automated 18F-radiolabeling of 25 structurally and functionally diverse aryl fluorosulfates with excellent radiochemical yield (83-100%, median 98%) and high molar activity (280 GBq μmol-1) at room temperature in 30 s. The purification of radiotracers requires no time-consuming HPLC but rather a simple cartridge filtration. We further demonstrate the imaging application of a rationally designed poly(ADP-ribose) polymerase 1 (PARP1)-targeting aryl [18F]fluorosulfate by probing subcutaneous tumors in vivo.
Collapse
Affiliation(s)
- Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
5835
|
Rotella D, Siekierka J, Bhanot P. Plasmodium falciparum cGMP-Dependent Protein Kinase - A Novel Chemotherapeutic Target. Front Microbiol 2021; 11:610408. [PMID: 33613463 PMCID: PMC7886688 DOI: 10.3389/fmicb.2020.610408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.
Collapse
Affiliation(s)
- David Rotella
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - John Siekierka
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
5836
|
Ferreira RAA, Junior CDOR, Martinez PDG, Koovits PJ, Soares BM, Ferreira LLG, Michelan-Duarte S, Chelucci RC, Andricopulo AD, Galuppo MK, Uliana SRB, Matheeussen A, Caljon G, Maes L, Campbell S, Kratz JM, Mowbray CE, Dias LC. 2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Negl Trop Dis 2021; 15:e0009196. [PMID: 33617566 PMCID: PMC7932521 DOI: 10.1371/journal.pntd.0009196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Leishmaniasis is a major infectious disease with hundreds of thousands of new cases and over 20,000 deaths each year. The current drugs to treat this life-threatening infection have several drawbacks such as toxicity and long treatment regimens. A library of 1.8 million compounds, from which the hits reported here are publicly available, was screened against Leishmania infantum as part of an optimization program; a compound was found with a 2-aminobenzimidazole functionality presenting moderate potency, low metabolic stability and high lipophilicity. Several rounds of synthesis were performed to incorporate chemical groups capable of reducing lipophilicity and clearance, leading to the identification of compounds that are active against different parasite strains and have improved in vitro properties. As a result of this optimization program, a group of compounds was further tested in anticipation of in vivo evaluation. In vivo tests were carried out with compounds 29 (L. infantum IC50: 4.1 μM) and 39 (L. infantum IC50: 0.5 μM) in an acute L. infantum VL mouse model, which showed problems of poor exposure and lack of efficacy, despite the good in vitro potency. Leishmaniasis is a neglected tropical disease affecting millions of people worldwide and, in the case of visceral leishmaniasis (VL), is potentially fatal if untreated. Protozoan parasites of the genus Leishmania spp. are the causative agents of leishmaniasis, which has different clinical manifestations, including the visceral form and a cutaneous form that causes disfiguring skin lesions. The current treatment options are limited either by the length of treatment or toxic side effects. Starting from a promising hit in an in vitro phenotypic screen, hundreds of analogues were synthesized with the aim of finding a molecule capable of killing the parasite whilst causing little or no harm to the patient. The program led to several active compounds with good in vitro activity against L. infantum intracellular amastigotes, however, in vivo data showed low parasiticidal efficacy.
Collapse
Affiliation(s)
| | | | | | - Paul John Koovits
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | | | - Leonardo L. G. Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Mariana K. Galuppo
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo-SP, Brazil
| | - Silvia R. B. Uliana
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo-SP, Brazil
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Simon Campbell
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Jadel M. Kratz
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | - Luiz Carlos Dias
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas-SP, Brazil
- * E-mail:
| |
Collapse
|
5837
|
Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew Chem Int Ed Engl 2021; 60:3956-3960. [PMID: 33197094 DOI: 10.1002/anie.202012229] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Sulfonyl fluorides have widespread applications in many fields. In particular, their unique biological activity has drawn considerable research interest in the context of chemical biology and drug discovery in the past years. Therefore, new and efficient methods for the synthesis of sulfonyl fluorides are highly in demand. In contrast to extensive studies on FSO2 + -type reagents, a radical fluorosulfonylation reaction with a fluorosulfonyl radical (FSO2 . ) remains elusive so far, probably owing to its instability and difficulty in generation. Herein, the development of the first radical fluorosulfonylation of alkenes based on FSO2 radicals generated under photoredox conditions is reported. This radical approach provides a new and general access to alkenyl sulfonyl fluorides, including structures that would otherwise be challenging to synthesize with previously established cross-coupling methods. Moreover, extension to the late-stage fluorosulfonylation of natural products is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Anandkumar Devaraj
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bolun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
5838
|
Hofmann L, Hirsch M, Ruthstein S. Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:2050. [PMID: 33669570 PMCID: PMC7922089 DOI: 10.3390/ijms22042050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.
Collapse
Affiliation(s)
| | | | - Sharon Ruthstein
- Institute of Nanotechnology and Advanced Materials & Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (M.H.)
| |
Collapse
|
5839
|
Babu B, Mack J, Nyokong T. Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Trans 2021; 50:2177-2182. [PMID: 33496304 DOI: 10.1039/d0dt03958f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new readily-synthesized Sn(iv) tetraarylchlorin with thien-2-yl substituents (SnC) has been prepared and fully characterized by various spectroscopic techniques and its photophysical and photochemical properties, such as the singlet oxygen quantum yield (ΦΔ), fluorescence quantum yield (ΦF), triplet lifetime (τT) and photostability, have been evaluated. SnC has an unusually high ΦΔ value of 0.89 in DMF. Studies on the photodynamic activity against MCF-7 breast cancer cells exhibited a very low IC50 value of 0.9 μM and high phototoxicity (dark versus light) indices of >27.8 after irradiation with a 660 nm Thorlabs LED (280 mW cm-2). The results demonstrate that Sn(iv) tetraarylchlorins of this type are suitable candidates for further in-depth PDT studies.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
5840
|
Lence E, González‐Bello C. Bicyclic Boronate β‐Lactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
5841
|
Gao S, Liu Y, Jiang J, Li X, Ye F, Fu Y, Zhao L. Thiram/hydroxypropyl-β-cyclodextrin inclusion complex electrospun nanofibers for a fast dissolving water-based drug delivery system. Colloids Surf B Biointerfaces 2021; 201:111625. [PMID: 33621750 DOI: 10.1016/j.colsurfb.2021.111625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The electrospinning of thiram/hydroxypropyl-β-cyclodextrin inclusion complex nanofiber (thiram/HPβCD-IC-NF) was produced for establishing a quick dissolving water-based drug delivery system. As a dithiocarbamate broad-spectrum fungicide, thiram is insoluble in water. High-concentration HPβCD solutions (180 %, w/v) were applied in thiram/HPβCD systems to implement electrospinning with no extra polymer matrix added. The formation of thiram/HPβCD-IC-NF was identified by Fourier transform infrared spectroscopy, X-ray diffraction as well as nuclear magnetic resonance. Phase solubility study proved HPβCD played a huge role in the improvement in solubility of thiram, and thiram/HPβCD-IC-NF showed an excellent dissolution rate. Scanning electron microscopy was used to examine the configuration of surface of thiram/HPβCD-IC-NF, which exhibited that thiram/HPβCD-IC-NF was uniform and beadless. In addition, thiram/HPβCD-IC-NF exhibited better antifungal activity and thermal stability than pure thiram. In summary, thiram/HPβCD-IC-NF drug delivery system contributed to water solubility, thermal stability and antifungal activity of thiram. It could provide a new idea for the development of new formulations of rapidly dissolving green pesticides, and made efforts to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyu Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China.
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China.
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5842
|
Antiprotozoal Compounds from Urolepis hecatantha (Asteraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6622894. [PMID: 33628303 PMCID: PMC7895558 DOI: 10.1155/2021/6622894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
The dewaxed dichloromethane extract of Urolepis hecatantha and the compounds isolated from it were tested for their in vitro activity on Trypanosoma cruzi epimastigotes and Leishmania infantum promastigotes. The extract of U. hecatantha showed activity against both parasites with IC50 values of 7 µg/mL and 31 µg/mL, respectively. Fractionation of the dichloromethane extract led to the isolation of euparin, jaceidin, santhemoidin C, and eucannabinolide. The sesquiterpene lactones eucannabinolide and santhemoidin C were active on T. cruzi with IC50 values of 10 ± 2 µM (4.2 µg/mL) and 18 ± 3 µM (7.6 µg/mL), respectively. Euparin and santhemoidin C were the most active on L. infantum with IC50 values of 18 ± 4 µM (3.9 µg/mL) and 19 ± 4 µM (8.0 µg/mL), respectively. Eucannabinolide has also shown drug-like pharmacokinetic and toxicity properties.
Collapse
|
5843
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
5844
|
Development of new combination anti-leishmanial complexes: Triphenyl Sb(V) mono-hydroxy mono-quinolinolates. J Inorg Biochem 2021; 219:111385. [PMID: 33894637 DOI: 10.1016/j.jinorgbio.2021.111385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
In seeking to develop single entity combination anti-Leishmanial complexes six heteropletic organometallic Sb(V) hydroxido quinolinolate complexes of general formula [SbPh3(C9H4NORR')(OH)] have been synthesised and characterised, derived from a series of halide substituted quinolinols (8-hydroxyquinolines). Single crystal X-ray diffraction on all the complexes show a common distorted six-coordinate octahedral environment at the Sb(V) centre, with the aryl groups and nitrogen atom of quinolinolate ligand bonding in the equatorial planes, with the two oxygen atoms (hydroxyl and quinolinolate) occupying the axial plane in an almost linear configuration. Each complex was tested for their anti-promastigote activity and mammalian cytotoxicity and a selectivity indices established. The complexes displayed excellent anti-promastigote activity (IC50: 2.03-3.39 μM) and varied mammalian cytotoxicity (IC50: 12.7-46.9 μM), leading to a selectivity index range of 4.52-16.7. All complexes displayed excellent anti-amastigote activity with a percentage infection range of 2.25%-9.00%. All complexes performed substantially better than the parent quinolinols and comparable carboxylate complexes [SbPh3(O2CRR')2] indicating the synergistic role of the Sb(V) and quinolinol moieties in increasing parasite mortality. Two of the complexes [SbPh3(C9H4NOBr2)(OH)] 4, [SbPh3(C9H4NOI2)(OH)] 5, provide an ideal combination of high selective and good activity towards the leishmanial amastigotes and offer the potential as good lead compounds.
Collapse
|
5845
|
Parrasia S, Rossa A, Varanita T, Checchetto V, De Lorenzi R, Zoratti M, Paradisi C, Ruzza P, Mattarei A, Szabò I, Biasutto L. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors. Pharmaceuticals (Basel) 2021; 14:ph14020129. [PMID: 33562146 PMCID: PMC7914648 DOI: 10.3390/ph14020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48–61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48–61 and Angiopep-2 allowed the delivery of 0.3–0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Tatiana Varanita
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Riccardo De Lorenzi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Paolo Ruzza
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
5846
|
Abstract
![]()
Developing
drugs for the central nervous system (CNS) requires
fine chemical modifications, as a strict balance between size and
lipophilicity is necessary to improve the permeability through the
blood-brain barrier (BBB).
In this context, morpholine and its analogues represent valuable heterocycles,
due to their conformational and physicochemical properties. In fact,
the presence of a weak basic nitrogen atom and of an oxygen atom at
the opposite position provides a peculiar pKa value and a flexible conformation to the ring, thus allowing
it to take part in several lipophilic–hydrophilic interactions,
and to improve blood solubility and brain permeability of the overall
structure. In CNS-active compounds, morpholines are used (1) to enhance
the potency through molecular interactions, (2) to act as a scaffold
directing the appendages in the correct position, and (3) to modulate
pharmacokinetic/pharmacodynamic (PK/PD) properties. In this perspective,
selected morpholine-containing CNS drug candidates are discussed to
reveal the active pharmacophores accountable for the (1) modulation
of receptors involved in mood disorders and pain, (2) bioactivity
toward enzymes and receptors responsible for neurodegenerative diseases,
and (3) inhibition of enzymes involved in the pathology of CNS tumors.
The medicinal chemistry/pharmacological activity of morpholine derivatives
is discussed, in the effort to highlight the importance of morpholine
ring interactions in the active site of different targets, particularly
reporting binding features retrieved from PDB data, when available.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Calugi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5847
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
5848
|
Vlasiou MC, Pafti KS. Screening possible drug molecules for Covid-19. The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking. ACTA ACUST UNITED AC 2021; 18:100157. [PMID: 33553857 PMCID: PMC7846477 DOI: 10.1016/j.comtox.2021.100157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023]
Abstract
We are still facing a Covid-19 pandemic these days and after the aggressively infection control measures taken by the governments in the whole world, there is a need of a rapid pharmaceutical solution in order to control this crisis. The computer aided chemistry and molecular docking is a rapid tool for drug screening and investigation. Moreover, more metal-based drugs are tested daily by research institutes for their antiviral activity. Here, we make use of theoretical studies on previously published biological active complex molecules of vanadium as an example of evaluating possible drug candidates before entering the laboratory. We used DFT calculation studies for structural elucidation and optimization of the molecules and molecular docking studies on several Covid-19 related proteins. Our findings suggest that drug discovery should always be computer -aided. Additionally, it is found that Vtocdea and VXn molecules are seem to be good candidates for further studies as antiviral agents.
Collapse
Affiliation(s)
- Manos C Vlasiou
- Department of Life and Health Sciences, University of Nicosia 46 Makedonitissas Avenue, CY-2417 P.O. Box 24005 Nicosia, Cyprus
| | - Kyriaki S Pafti
- Department of Life and Health Sciences, University of Nicosia 46 Makedonitissas Avenue, CY-2417 P.O. Box 24005 Nicosia, Cyprus
| |
Collapse
|
5849
|
Aydin BO, Anil D, Demir Y. Synthesis of N-alkylated pyrazolo[3,4-d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch Pharm (Weinheim) 2021; 354:e2000330. [PMID: 33502038 DOI: 10.1002/ardp.202000330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/28/2023]
Abstract
Fused pyrimidines, especially pyrazolo[3,4-d]pyrimidines, are among the most preferred building blocks for pharmacology studies, as they exhibit a broad spectrum of biological activity. In this study, new derivatives of pyrazolo[3,4-d]pyrimidine were synthesized by alkylation of the N1 nitrogen atom. We synthesized 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine 2 from commercially available aminopyrazolopyrimidine 1 using N-iodosuccinimide as an iodinating agent. The synthesis of compound 2 started with nucleophilic substitution of 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine with R-X (X: -OMs, -Br, -Cl), affording N-alkylated pyrazolo[3,4-d]pyrimidine. We performed this synthesis using a weak inorganic base and the mild temperature was also used for a two-step procedure to generate N-alkylated pyrazolo[3,4-d]pyrimidine derivatives. Also, all compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and the human carbonic anhydrase (hCA) isoforms I and II, with Ki values in the range of 15.41 ± 1.39-63.03 ± 10.68 nM for AChE, 17.68 ± 1.92-66.27 ± 5.43 nM for hCA I, and 8.41 ± 2.03-28.60 ± 7.32 nM for hCA II. Notably, compound 10 was the most selective and potent CA I inhibitor with a significant selectivity ratio of 26.90.
Collapse
Affiliation(s)
- Busra O Aydin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Derya Anil
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey.,Department of Chemistry and Chemical Process Technologies, Technical Sciences Vocational School, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
5850
|
Madhyastha N, Samantha SK, Dittakavi S, Markose M, Mallurwar SR, Zainuddin M, Mullangi R. Validated HPLC‐MS/MS method for quantitation of AMG 510, a KRAS G12C inhibitor, in mouse plasma and its application to a pharmacokinetic study in mice. Biomed Chromatogr 2021; 35:e5043. [DOI: 10.1002/bmc.5043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Meenu Markose
- Drug Metabolism and Pharmacokinetics Jubilant Biosys Ltd Bangalore India
| | | | - Mohd Zainuddin
- Drug Metabolism and Pharmacokinetics Jubilant Biosys Ltd Bangalore India
| | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics Jubilant Biosys Ltd Bangalore India
| |
Collapse
|