5851
|
Lossouarn A, Renard PY, Sabot C. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjug Chem 2020; 32:63-72. [PMID: 33232599 DOI: 10.1021/acs.bioconjchem.0c00568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is a promising tool for the discovery of biologically active compounds. It relies on the identification of potent ligands that are covalently assembled by the biological targets themselves from a pool of reagents. Significant effort is devoted to developing new KTGS strategies; however, only a handful of biocompatible reactions are available, which may be insufficient to meet the specificities (stability, dynamics, active site topology, etc.) of a wide range of biological targets with therapeutic potential. This Topical Review proposes a retrospective analysis of existing KTGS ligation tools, in terms of their kinetics and analogy with other biocompatible reactions, and provides new clues to expand the KTGS toolkit. By way of examples, a nonexhaustive selection of such chemical ligation tools belonging to different classes of reactions as promising candidate reactions for KTGS are suggested.
Collapse
Affiliation(s)
- Alexis Lossouarn
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| | - Pierre-Yves Renard
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| | - Cyrille Sabot
- Normandie Université, Centre National de la Recherche Scientifique, UNIROUEN, INSA Rouen, COBRA, UMR 6014 & FR 3038, 76000, Rouen, France
| |
Collapse
|
5852
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Youssif BGM, Tateishi H, Fujita M, Otsuka M, Abdel-Aziz M. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAF V600E kinases. Bioorg Chem 2020; 106:104510. [PMID: 33279248 DOI: 10.1016/j.bioorg.2020.104510] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
New quinoline / chalcone hybrids containing 1,2,4-triazole moiety have been designed, synthesized and their structures elucidated and confirmed by various spectroscopic techniques. The designed compounds showed moderate to good activity on different NCI 60 cell lines in a single-dose assay with a growth inhibition rate ranging from 50% to 94%. Compounds 7b, 7d, 9b, and 9d were the most active compounds in most cancer cell lines with a growth inhibition percent between 77% and 94%. Newly synthesized hybrids were evaluated for their anti-proliferative activity against a panel of four human cancer cell lines. Compounds 7a, 7b, 9a, 9b, and 9d showed promising antiproliferative activities. These compounds were further tested for their inhibitory potency against EGFR and BRAFV600E kinases with erlotinib as a reference drug. The molecular docking study of compounds 7a, 7b, 9a, 9b, and 9d revealed nice fitting into the active site of EGFR and BRAFV600E kinases. Compounds 7b, 9b, and 9d displayed the highest binding affinities and similar binding pattern to those of erlotinib.
Collapse
Affiliation(s)
- Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
5853
|
Yoshihara A, Shimatani M, Sakata M, Takemura C, Senuma W, Hikichi Y, Kai K. Quorum Sensing Inhibition Attenuates the Virulence of the Plant Pathogen Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:3050-3059. [PMID: 33172253 DOI: 10.1021/acschembio.0c00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) cause "bacterial wilt" on a wide range of plant species and thus lead to marked economic losses in agriculture. Quorum sensing (QS), a bacterial cell-cell communication mechanism, controls the virulence of RSSC strains by regulating the production of extracellular polysaccharide (EPS) and secondary metabolites, biofilm formation, and cellular motility. R. solanacearum strain OE1-1 employs (R)-methyl 3-hydroxymyristate (3-OH MAME) as a QS signal, which is synthesized by the PhcB methyltransferase and sensed by the PhcS/PhcRQ two-component system. We describe the design, synthesis, and biological evaluation of inhibitors of the phc QS system. Initial screening of a small set of QS signal analogues revealed that methyl 3-hydroxy-8-phenyloctanoate, named, PQI-1 (phc quorum sensing inhibitor-1), inhibited biofilm formation by strain OE1-1. To improve its inhibitory activity, the derivatives of PQI-1 were synthesized, and their QS inhibition activities were evaluated. PQIs-2-5 evolved from PQI-1 more strongly inhibited not only biofilm formation but also the production of ralfuranone and EPS. Furthermore, RNA-Seq analysis revealed that the PQIs effectively inhibited QS-dependent gene expression and repression in strain OE1-1. On the other hand, the PQIs did not affect the canonical QS systems of the representative reporter bacteria. These antagonists, especially PQI-5, reduced wilting symptoms of the tomato plants infected with strain OE1-1. Taken together, we suggest that targeting the phc QS system has potential for the development of chemicals that protect agricultural crops from bacterial wilt disease.
Collapse
Affiliation(s)
- Ayaka Yoshihara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mika Shimatani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Megumi Sakata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chika Takemura
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Wakana Senuma
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5854
|
Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Int J Mol Sci 2020; 21:E8684. [PMID: 33217901 PMCID: PMC7698797 DOI: 10.3390/ijms21228684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Ivonne Olmedo
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Jennifer Faúndez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| | - José A. Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| |
Collapse
|
5855
|
Moretto J, Pudlo M, Demougeot C. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov Today 2020; 26:138-147. [PMID: 33197620 DOI: 10.1016/j.drudis.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Johnny Moretto
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
| | - Marc Pudlo
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
5856
|
Kulkarni S, Urbahns K, Spangenberg T. Targeted Covalent Inhibitors for the Treatment of Malaria? ACS Infect Dis 2020; 6:2815-2817. [PMID: 33054158 DOI: 10.1021/acsinfecdis.0c00684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. According to the World Health Organization, it is one of the most serious infectious diseases threatening more than 3 billion people worldwide. In recent years, targeted covalent inhibitors (TCIs) have gained a lot of attention and several TCI-based drugs have been approved across different therapeutic areas. For malaria, surprisingly, this approach has not been explored in depth even though lot of advancements have been made in understanding the biology of the parasite. Herein, we present our views on exploring TCIs as a new class of antimalarial agents.
Collapse
Affiliation(s)
- Shashank Kulkarni
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts 01821, United States
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), 1261 Eysins, Switzerland
| | | | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), 1261 Eysins, Switzerland
| |
Collapse
|
5857
|
Ma H, Wang H, Li M, Barreto-de-Souza V, Reinecke BA, Gunta R, Zheng Y, Kang G, Nassehi N, Zhang H, An J, Selley DE, Hauser KF, Zhang Y. Bivalent Ligand Aiming Putative Mu Opioid Receptor and Chemokine Receptor CXCR4 Dimers in Opioid Enhanced HIV-1 Entry. ACS Med Chem Lett 2020; 11:2318-2324. [PMID: 33214847 PMCID: PMC7667867 DOI: 10.1021/acsmedchemlett.0c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
A bivalent compound 1a featuring both a mu opioid receptor (MOR) and a CXCR4 antagonist pharmacophore (naltrexone and IT1t) was designed and synthesized. Further binding and functional studies demonstrated 1a acting as a MOR and a CXCR4 dual antagonist with reasonable binding affinities at both receptors. Furthermore, compound 1a seemed more effective than a combination of IT1t and naltrexone in inhibiting HIV entry at the presence of morphine. Additional molecular modeling results suggested that 1a may bind with the putative MOR-CXCR4 heterodimer to induce its anti-HIV activity. Collectively, bivalent ligand 1a may serve as a promising lead to develop chemical probes targeting the putative MOR-CXCR4 heterodimer in comprehending opioid exacerbated HIV-1 invasion.
Collapse
Affiliation(s)
- Hongguang Ma
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Victor Barreto-de-Souza
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Bethany A. Reinecke
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Rama Gunta
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Guifeng Kang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Huijun Zhang
- Department
of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, 9500 Gilman Drive, Stein Clinical
Research Building, Suite 410, La Jolla, California 92093, United States
| | - Jing An
- Department
of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, 9500 Gilman Drive, Stein Clinical
Research Building, Suite 410, La Jolla, California 92093, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Kurt F. Hauser
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United
States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
5858
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
5859
|
Fang WY, Wang SM, Zhang ZW, Qin HL. Clickable Transformation of Nitriles (RCN) to Oxazolyl Sulfonyl Fluoride Warheads. Org Lett 2020; 22:8904-8909. [PMID: 33164523 DOI: 10.1021/acs.orglett.0c03298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protocol for simple, efficient, and mild synthesis of oxazolyl sulfonyl fluorides was developed through Rh2(OAc)4-catalyzed annulation of methyl-2-diazo-2-(fluorosulfonyl)acetate (MDF) or its ethyl ester derivative with nitriles. This practical method provides a general and direct route to a unique class of highly functionalized oxazolyl-decorated sulfonyl fluoride warheads with great potential in medicinal chemistry, chemical biology, and drug discovery.
Collapse
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Shi-Meng Wang
- School of Life Science, Wuchang University of Technology, Wuhan, 430223, People's Republic of China
| | - Zai-Wei Zhang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, People's Republic of China
| |
Collapse
|
5860
|
Perin N, Hok L, Beč A, Persoons L, Vanstreels E, Daelemans D, Vianello R, Hranjec M. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Eur J Med Chem 2020; 211:113003. [PMID: 33248847 DOI: 10.1016/j.ejmech.2020.113003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
We present the design, synthesis and biological activity of novel N-substituted benzimidazole based acrylonitriles as potential tubulin polymerization inhibitors. Their synthesis was achieved using classical linear organic and microwave assisted techniques, starting from aromatic aldehydes and N-substituted-2-cyanomethylbenzimidazoles. All newly prepared compounds were tested for their antiproliferative activity in vitro on eight human cancer cell lines and one reference non-cancerous assay. N,N-dimethylamino substituted acrylonitriles 30 and 41, bearing N-isobutyl and cyano substituents placed on the benzimidazole nuclei, showed strong and selective antiproliferative activity in the submicromolar range of inhibitory concentrations (IC50 0.2-0.6 μM), while being significantly less toxic than reference systems docetaxel and staurosporine, thus promoting them as lead compounds. Mechanism of action studies demonstrated that two most active compounds inhibited tubulin polymerization. Computational analysis confirmed the suitability of the employed benzimidazole-acrylonitrile skeleton for the binding within the colchicine binding site in tubulin, thus rationalizing the observed antitumor activities, and demonstrated that E-isomers are active substances. It also provided structural determinants affecting both the binding position and the matching affinities, identifying the attached NMe2 group as the most dominant in promoting the binding, which allows ligands to optimize favourable cation∙∙∙π and hydrogen bonding interactions with Lys352.
Collapse
Affiliation(s)
- N Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia
| | - L Hok
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia
| | - L Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - E Vanstreels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - D Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - R Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - M Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia.
| |
Collapse
|
5861
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
5862
|
Sydow D, Schmiel P, Mortier J, Volkamer A. KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination. J Chem Inf Model 2020; 60:6081-6094. [PMID: 33155465 DOI: 10.1021/acs.jcim.0c00839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors. These strategies usually follow a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical space of kinase inhibitors using data-driven fragmentation and recombination. The method builds on available structural kinome data from the KLIFS database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.
Collapse
Affiliation(s)
- Dominique Sydow
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Paula Schmiel
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jérémie Mortier
- Digital Technologies, Computational Molecular Design, Bayer AG, 13342 Berlin, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5863
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5864
|
Denny PW, Kalesh K. How can proteomics overhaul our understanding of Leishmania biology? Expert Rev Proteomics 2020; 17:789-792. [PMID: 33535845 DOI: 10.1080/14789450.2020.1885375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Paul W Denny
- Department of Biosciences, Durham University , Durham, UK
| | | |
Collapse
|
5865
|
Orts J, Riek R. Protein-ligand structure determination with the NMR molecular replacement tool, NMR 2. JOURNAL OF BIOMOLECULAR NMR 2020; 74:633-642. [PMID: 32621003 DOI: 10.1007/s10858-020-00324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
We recently reported on a new method called NMR Molecular Replacement that efficiently derives the structure of a protein-ligand complex at the interaction site. The method was successfully applied to high and low affinity complexes covering ligands from peptides to small molecules. The algorithm used in the NMR Molecular Replacement program has until now not been described in detail. Here, we present a complete description of the NMR Molecular Replacement implementation as well as several new features that further reduce the time required for structure elucidation.
Collapse
Affiliation(s)
- Julien Orts
- Laboratory of Physical Chemistry, ETH, Swiss Federal Institute of Technology, Wolgang-Pauli-Strasse 10, 8093, Zürich, Switzerland.
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH, Swiss Federal Institute of Technology, Wolgang-Pauli-Strasse 10, 8093, Zürich, Switzerland
| |
Collapse
|
5866
|
Bhardwaj R, Lindinger S, Neuberger A, Nadezhdin KD, Singh AK, Cunha MR, Derler I, Gyimesi G, Reymond JL, Hediger MA, Romanin C, Sobolevsky AI. Inactivation-mimicking block of the epithelial calcium channel TRPV6. SCIENCE ADVANCES 2020; 6:eabe1508. [PMID: 33246965 PMCID: PMC7695471 DOI: 10.1126/sciadv.abe1508] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Epithelial calcium channel TRPV6 plays vital roles in calcium homeostasis, and its dysregulation is implicated in multifactorial diseases, including cancers. Here, we study the molecular mechanism of selective nanomolar-affinity TRPV6 inhibition by (4-phenylcyclohexyl)piperazine derivatives (PCHPDs). We use x-ray crystallography and cryo-electron microscopy to solve the inhibitor-bound structures of TRPV6 and identify two types of inhibitor binding sites in the transmembrane region: (i) modulatory sites between the S1-S4 and pore domains normally occupied by lipids and (ii) the main site in the ion channel pore. Our structural data combined with mutagenesis, functional and computational approaches suggest that PCHPDs plug the open pore of TRPV6 and convert the channel into a nonconducting state, mimicking the action of calmodulin, which causes inactivation of TRPV6 channels under physiological conditions. This mechanism of inhibition explains the high selectivity and potency of PCHPDs and opens up unexplored avenues for the design of future-generation biomimetic drugs.
Collapse
Affiliation(s)
- Rajesh Bhardwaj
- Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Sonja Lindinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Micael R Cunha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
5867
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5868
|
Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules 2020; 25:E5024. [PMID: 33138250 PMCID: PMC7663672 DOI: 10.3390/molecules25215024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria are social organisms able to build complex structures, such as biofilms, that are highly organized surface-associated communities of microorganisms, encased within a self- produced extracellular matrix. Biofilm is commonly associated with many health problems since its formation increases resistance to antibiotics and antimicrobial agents, as in the case of Pseudomonas aeruginosa and Staphylococcus aureus, two human pathogens causing major concern. P. aeruginosa is responsible for severe nosocomial infections, the most frequent of which is ventilator-associated pneumonia, while S. aureus causes several problems, like skin infections, septic arthritis, and endocarditis, to name just a few. Literature data suggest that natural products from plants, bacteria, fungi, and marine organisms have proven to be effective as anti-biofilm agents, inhibiting the formation of the polymer matrix, suppressing cell adhesion and attachment, and decreasing the virulence factors' production, thereby blocking the quorum sensing network. Here, we focus on plant derived chemicals, and provide an updated literature review on the anti-biofilm properties of terpenes, flavonoids, alkaloids, and phenolic compounds. Moreover, whenever information is available, we also report the mechanisms of action.
Collapse
Affiliation(s)
- Francesca Guzzo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Elisabetta Buommino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi 43, I-81100 Caserta, Italy; (F.G.); (M.S.); (A.F.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
5869
|
Teaima MH, Abdelnaby FA, Fadel M, El-Nabarawi MA, Shoueir KR. Synthesis of Biocompatible and Environmentally Nanofibrous Mats Loaded with Moxifloxacin as a Model Drug for Biomedical Applications. Pharmaceutics 2020; 12:E1029. [PMID: 33126627 PMCID: PMC7693921 DOI: 10.3390/pharmaceutics12111029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Biopolymeric chitosan structure (Cs) is rationally investigated owing to its potentiality in pharmaceutical applications. The synthetic routes of biomimetic Cs-based blend electrospun nanofibers were studied. Herein, biocompatible crosslinked electrospun polyvinyl alcohol (PVA)/Cs-reduced gold nanoparticles (Cs(Rg))/β-CD (beta-cyclodextrin) in pure water were fabricated. To this end, supportive PVA as a carrier, Cs bio modifier, and gold reductant and β-CD as smoother, inclusion guest molecule, and capping agent exhibit efficient entrapment of moxifloxacin (Mox) and consequently accelerate release. Besides, PVA/Cs(Rg)/β-CD paves towards controlled drug encapsulation-release affinity, antimicrobial, and for wound dressing. Without losing the nanofiber structure, the webs prolonged stability for particle size and release content up to 96.4%. The synergistic effect of the nanoformulation PVA/Cs(Rg)/β-CD against pathogenic bacteria, fungus, and yeast, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger, posed clear zones up to 53 φmm. Furthermore, a certain combination of PVA/Cs (Rg)/β-CD showed a total antioxidant capacity of 311.10 ± 2.86 mg AAE/g sample. In vitro cytotoxicity assay of HePG2 and MCF-7 NF6 can eradicate 34.8 and 29.3 µg/mL against selected cells.
Collapse
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Fatma A. Abdelnaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Maha Fadel
- Pharmaceutical Nano-Technology Lab., National Institute of Laser Enhanced Sciences, Cairo University, Cairo 11562, Egypt;
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Kamel R. Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5870
|
Juang YP, Liang PH. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020; 25:E4974. [PMID: 33121124 PMCID: PMC7663351 DOI: 10.3390/molecules25214974] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Saponins are amphiphilic molecules consisting of carbohydrate and either triterpenoid or steroid aglycone moieties and are noted for their multiple biological activities-Fungicidal, antimicrobial, antiviral, anti-inflammatory, anticancer, antioxidant and immunomodulatory effects have all been observed. Saponins from natural sources have long been used in herbal and traditional medicines; however, the isolation of complexed saponins from nature is difficult and laborious, due to the scarce amount and structure heterogeneity. Chemical synthesis is considered a powerful tool to expand the structural diversity of saponin, leading to the discovery of promising compounds. This review focuses on recent developments in the structure optimization and biological evaluation of synthetic triterpenoid and steroid saponin derivatives. By summarizing the structure-activity relationship (SAR) results, we hope to provide the direction for future development of saponin-based bioactive compounds.
Collapse
Affiliation(s)
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
5871
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
5872
|
Huang Y, Zhang G, Zhao R, Zhang D. Aggregation-Induced Emission Luminogens for Mitochondria-Targeted Cancer Therapy. ChemMedChem 2020; 15:2220-2227. [PMID: 33094568 DOI: 10.1002/cmdc.202000632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/24/2022]
Abstract
The importance of mitochondria in tumorigenesis makes these organelles an ideal target for cancer therapy. In recent years, luminogens with the aggregation-induced emission (AIE) effect have been developed for mitochondrial targeting and cancer treatment. The induction of mitochondrial dysfunction can be an effective pathway of chemotherapy, photodynamic therapy, and combination therapy against cancer. This review focuses on recent progress in the field of AIE luminogens (AIEgens) for cancer theranostics based on mitochondrial targeting and dysfunction. AIEgens for cancer treatment, including chemotherapy, photodynamic therapy, and combination therapy, are summarized herein. Molecular design efforts toward mitochondrial targeting and mitochondria-damaging mechanisms are also discussed. Finally, we discuss the challenges and future directions of development for AIEgens in mitochondria-targeted cancer treatment.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5873
|
Sharma S, Banjare MK, Singh N, Korábečný J, Kuča K, Ghosh KK. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Adv 2020; 10:38873-38883. [PMID: 35518436 PMCID: PMC9057349 DOI: 10.1039/d0ra06323a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the formation of amyloid fibrils is a crucial step in the prevention of the human neurological disorder, Alzheimer's disease (AD). Ionic liquid (IL) mediated interactions are an expedient approach that exhibits inhibition effects on amyloid fibrils. In view of the beneficial role of ILs, in this work we have explored complexation of anti-Alzheimer's drugs (i.e., tacrine and PC-37) and an amino acid-functionalized IL [AIL (4-PyC8)]. Maintaining standard physiological conditions, the binding mechanism, thermo-dynamical properties and binding parameters were studied by employing UV-vis, fluorescence, FTIR, 1H NMR, COSY and NOESY spectroscopy. The present investigation uncovers the fact that the interaction of anti-Alzheimer's drugs with 4-PyC8 is mediated through H-bonding and van der Waals forces. The Benesi-Hildebrand relation was used to evaluate the binding affinity and PC-37 showed the highest binding when complexed with 4-PyC8. FTIR spectra showed absorption bands at 3527.98 cm-1 and 3527.09 cm-1 for the PC-37 + 4-PyC8 system which is quite promising compared to tacrine. 1H-NMR experiments recorded deshielding for tacrine at relatively higher concentrations than PC-37. COSY investigations suggest that anti-Alzheimer's drugs after complexation with 4-PyC8 show a 1 : 1 ratio. The cross-peaks of the NOESY spectra involve correlations between anti-Alzheimer's drugs and AIL protons, indicating complexation between them. The observed results indicate that these complexes are expected to have a possible therapeutic role in reducing/inhibiting amyloid fibrils when incorporated into drug formulations.
Collapse
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| | - Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
- MATS School of Sciences, MATS University Pagaria Complex, Pandri Raipur-492009 C.G. India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University Nerul Navi Mumbai India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| |
Collapse
|
5874
|
Gillis A, Kliewer A, Kelly E, Henderson G, Christie MJ, Schulz S, Canals M. Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends Pharmacol Sci 2020; 41:947-959. [PMID: 33097283 DOI: 10.1016/j.tips.2020.09.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
G protein-biased agonists of the μ-opioid receptor (MOPr) have been proposed as an improved class of opioid analgesics. Recent studies have been unable to reproduce the original experiments in the β-arrestin2-knockout mouse that led to this proposal, and alternative genetic models do not support the G protein-biased MOPr agonist hypothesis. Furthermore, assessment of putatively biased ligands has been confounded by several factors, including assay amplification. As such, the extent to which current lead compounds represent mechanistically novel, extremely G protein-biased agonists is in question, as is the underlying assumption that β-arrestin2 mediates deleterious opioid effects. Addressing these current challenges represents a pressing issue to successfully advance drug development at this receptor and improve upon current opioid analgesics.
Collapse
Affiliation(s)
- Alexander Gillis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Andrea Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Eamonn Kelly
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Macdonald J Christie
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.
| | - Meritxell Canals
- Division of Physiology, Pharmacology, and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
5875
|
Mena-Rejón G, Pérez-Navarro Y, Torres-Romero JC, Vázquez-Carrillo L, Carballo RM, Arreola R, Herrera-España Á, Arana-Argáez V, Quijano-Quiñones R, Fernández-Sánchez JM, Alvarez-Sánchez ME. Antitrichomonal activity and docking analysis of thiazole derivatives as TvMP50 protease inhibitors. Parasitol Res 2020; 120:233-241. [PMID: 33073325 DOI: 10.1007/s00436-020-06931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most prevalent non-viral sexually transmitted infection that affects over 170 million people worldwide. The only type of drug recommended for the therapeutic control of trichomoniasis is the 5-nitroimidazoles, although there have been reports of some undesirable side effects and clinical resistance. Hence, the need for the search for new tricomonicidal agents is necessary. In a previous work, we demonstrated that two 2-amino-4-aryl thiazole derivatives (ATZ-1 and ATZ-2) possess a portent antigiardial effect. In the current paper, we investigated the in vitro antitrichomonal activity of these thiazole compounds. Both ATZ-1 and ATZ-2 reduced the viability and growth of parasites in a dose-dependent manner, with an IC50 value of 0.15 μg/mL and 0.18 μg/mL, respectively. Furthermore, both thiazole compounds were able to decrease the proteolytic activity in T. vaginalis trophozoites compared with untreated parasites. Interestingly, a full proteolytic inhibition profile was observed in the 50-kDa region which was associated with the decreased expression of the gene that codes for the trichomonad protease TvMP50. The docking simulations predicted strong interactions of the thiazole compounds in the TvMP50 protease's active site, suggesting a possible role as protease inhibitors. Our results demonstrate the potential of 2-amino-4-aryl thiazole derivatives as trichomonicidal compounds and could be, mechanistically, involved in the inhibition of key trichomonad proteases.
Collapse
Affiliation(s)
- Gonzalo Mena-Rejón
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Julio César Torres-Romero
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Laura Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Rubén M Carballo
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, México
| | - Ángel Herrera-España
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Ramiro Quijano-Quiñones
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Jose Manuel Fernández-Sánchez
- División de Ingeniería en Gestión Empresarial, Tecnológico de Estudios Superiores de Ecatepec, Avenida Tecnológico S/N, Colonia Valle de Anahuac, Ecatepec de Morelos, Estado de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México.
| |
Collapse
|
5876
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
5877
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5878
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
5879
|
Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020; 5:E53. [PMID: 33066431 PMCID: PMC7709684 DOI: 10.3390/biomimetics5040053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chlorophylls, which are chlorin-type photosensitizers, are known as the key building blocks of nature and are fundamental for solar energy metabolism during the photosynthesis process. In this regard, the utilization of bioinspired chlorin analogs as photosensitizers for photodynamic therapy constitutes an evolutionary topic of research. Moreover, carbon nanomaterials have been widely applied in photodynamic therapy protocols due to their optical characteristics, good biocompatibility, and tunable systematic toxicity. Herein, we review the literature related to the applications of chlorin-based photosensitizers that were functionalized onto carbon nanomaterials for photodynamic and photothermal therapies against cancer. Rather than a comprehensive review, we intended to highlight the most important and illustrative examples over the last 10 years.
Collapse
Affiliation(s)
- Lucas D. Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil;
| | | |
Collapse
|
5880
|
Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020; 326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Electrospinning has emerged as most viable approach for the fabrication of nanofibers with several beneficial features that are essential to various applications ranging from environment to biomedicine. The electrospun nanofiber based drug delivery systems have shown tremendous advancements over the controlled and sustained release complemented from their high surface area, tunable porosity, mechanical endurance, offer compatible environment for drug encapsulation, biocompatibility, high drug loading and tailorable release characteristics. The dosage formulation of poorly water-soluble drugs often faces several challenges including complete dissolution with maximum therapeutic efficiency over a short period of time especially through oral administration. In this context, challenges associated with the dosage formulation of poorly-water soluble drugs can be addressed through combining the beneficial features of electrospun nanofibers. This review describes major developments progressed in the preparation of electrospun nanofibers based "fast dissolving" drug delivery systems by employing variety of polymers, drug molecules and encapsulation approaches with primary focus on oral delivery. Furthermore, the review also highlights current scientific challenges and provide an outlook with regard to future prospectus.
Collapse
Affiliation(s)
- Brabu Balusamy
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| | - Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Anitha Senthamizhan
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5881
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
5882
|
Affiliation(s)
- S. A. El‐Sebaey
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al-Azhar University Youssef Abbas street, Nasr City Cairo Egypt
| |
Collapse
|
5883
|
Naclerio GA, Abutaleb NS, Li D, Seleem MN, Sintim HO. Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo. J Med Chem 2020; 63:11934-11944. [PMID: 32960605 DOI: 10.1021/acs.jmedchem.0c01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is the leading cause of healthcare-associated infection in the U.S. and considered an urgent threat by the Centers for Disease Control and Prevention (CDC). Only two antibiotics, vancomycin and fidaxomicin, are FDA-approved for the treatment of C. difficile infection (CDI), but these therapies still suffer from high treatment failure and recurrence. Therefore, new chemical entities to treat CDI are needed. Trifluoromethylthio-containing N-(1,3,4-oxadiazol-2-yl)benzamides displayed very potent activities [sub-μg/mL minimum inhibitory concentration (MIC) values] against Gram-positive bacteria. Here, we report remarkable antibacterial activity enhancement via halogen substitutions, which afforded new anti-C. difficile agents with ultrapotent activities [MICs as low as 0.003 μg/mL (0.007 μM)] that surpassed the activity of vancomycin against C. difficile clinical isolates. The most promising compound in the series, HSGN-218, is nontoxic to mammalian colon cells and is gut-restrictive. In addition, HSGN-218 protected mice from CDI recurrence. Not only does this work provide a potential clinical lead for the development of C. difficile therapeutics but also highlights dramatic drug potency enhancement via halogen substitution.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Daoyi Li
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5884
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
5885
|
Todorov P, Peneva P, Tchekalarova J, Georgieva S, Rangelov M, Todorova N. Structure-activity relationship study on new hemorphin-4 analogues containing steric restricted amino acids moiety for evaluation of their anticonvulsant activity. Amino Acids 2020; 52:1375-1390. [PMID: 33011823 DOI: 10.1007/s00726-020-02898-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
In the present study, several new analogues of hemorphin-4, modified with unnatural conformationally restricted amino acids followed the structure Aaa-Tyr-Xxx-Trp-Thr-NH2, where Aaa is the low-molecular-weight lipophilic adamantyl building block, and Xxx is Ac5c (1-aminocyclopentanecarboxylic acid) or Ac6c (1-aminocyclohexane carboxylic acid) was synthesized, characterized and investigated for anticonvulsant activity in three seizure tests, the maximal electroshock test (MES), 6-Hz psychomotor seizure test and timed intravenous pentylenetetrazole infusion (ivPTZ) test. The acute neurological toxicity was determined using the rota-rod test. The new synthetic neuropeptide analogues were prepared by solid-phase peptide synthesis-Fmoc chemistry and were evaluated in three doses of 1, 3 and 5 µg, respectively, administered intracerebroventricularly in male ICR mice. The physicochemical properties of these peptide analogues were evaluated as pKa and pI values were calculated using potentiometry. The IR spectrum of the compounds was recorded and the characteristic lines of both adamantane moiety and the peptide backbone were registered in the wavelength range from 4000 to 400 cm-1. The hexapeptide Ang IV was used as a positive control. From the six synthesized peptide analogues, the P4-5 was the most active at doses of 1 and 3 µg in the three seizure tests. The order of potency of other peptides was as follows: P4 > P4-3 = P4-4 > P4-2 > Ang IV in MES, P4-4 ≥ P4-1 > P4-3 > P4-2 > P4 > Ang IV in 6-Hz test and P4-4 = P4-3 > P4-2 = P4 > Ang IV in ivPTZ test. None of the peptides displayed neurotoxicity in the rota-rod test. Docking study results suggest that direct H-bonding and ionic interactions between our synthetic ligands and residues, responsible for coordination of Zn2+ along with hydrophobic interactions between our ligands and IRAP active site are the most important for the ligand binding. The results propose that incorporation of adamantane and cycloalkane building blocks in the peptide chain of the hemorphin-4 scaffold is important for the potential high biological activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria.
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756, Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| |
Collapse
|
5886
|
Greed S, Briggs EL, Idiris FIM, White AJP, Lücking U, Bull JA. Synthesis of Highly Enantioenriched Sulfonimidoyl Fluorides and Sulfonimidamides by Stereospecific Sulfur-Fluorine Exchange (SuFEx) Reaction. Chemistry 2020; 26:12533-12538. [PMID: 32428384 PMCID: PMC7590120 DOI: 10.1002/chem.202002265] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 01/12/2023]
Abstract
Sulfonimidamides present exciting opportunities as chiral isosteres of sulfonamides, with potential for additional directional interactions. Here, we present the first modular enantioselective synthesis of sulfonimidamides, including the first stereoselective synthesis of enantioenriched sulfonimidoyl fluorides, and studies on their reactivity. A new route to sulfonimidoyl fluorides is presented from solid bench-stable, N-Boc-sulfinamide (Boc=tert-butyloxycarbonyl) salt building blocks. Enantioenriched arylsulfonimidoyl fluorides are shown to be readily racemised by fluoride ions. Conditions are developed, which trap fluoride and enable the stereospecific reaction of sulfonimidoyl fluorides with primary and secondary amines (100 % es, es=enantiospecificity) generating sulfonimidamides with up to 99 % ee. Aryl and alkyl sulfonimidoyl fluoride reagents are suitable for mild late stage functionalisation reactions, exemplified by coupling with a selection of complex amines in marketed drugs.
Collapse
Affiliation(s)
- Stephanie Greed
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusWood LaneLondonW12 0BZUK
| | - Edward L. Briggs
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusWood LaneLondonW12 0BZUK
| | - Fahima I. M. Idiris
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusWood LaneLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusWood LaneLondonW12 0BZUK
| | - Ulrich Lücking
- Bayer AGPharmaceuticals DivisionDrug DiscoveryMüllerstr. 17813353BerlinGermany
| | - James A. Bull
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusWood LaneLondonW12 0BZUK
| |
Collapse
|
5887
|
Chen C, Yang K. Ruthenium complexes as prospective inhibitors of metallo-β-lactamases to reverse carbapenem resistance. Dalton Trans 2020; 49:14099-14105. [PMID: 32996954 DOI: 10.1039/d0dt02430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The widespread prevalence of metallo-β-lactamase (MβL)-mediated pathogens has seriously caused a loss of efficacy of carbapenem antibacterials, the last resort for the treatment of severe infectious diseases. The development of effective MβL inhibitors is an ideal alternative to restore the efficacy of carbapenems. Here we report that Ru complexes can irreversibly inhibit clinically relevant B1 subclass MβLs (NDM-1, IMP-1 and VIM-2) and potentiate meropenem efficacy against MβL-expressing bacteria in vitro and in a mice infection model. The Cys208 residue at the Zn(ii)-binding site and Met67 residue at the β-hairpin loop of an enzyme active pocket are critical for Ru complexes to inhibit NDM-1, which was verified by enzyme kinetics, thermodynamics, NDM-1-C208A mutation and MALDI-TOF-MS analysis. This study will undoubtedly aid efforts to develop metal-based MβL inhibitors in combination with carbapenems to deal with the clinical crisis of carbapenem-resistant E. coli harboring MβLs.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | | |
Collapse
|
5888
|
Scott JS, Moss TA, Balazs A, Barlaam B, Breed J, Carbajo RJ, Chiarparin E, Davey PRJ, Delpuech O, Fawell S, Fisher DI, Gagrica S, Gangl ET, Grebe T, Greenwood RD, Hande S, Hatoum-Mokdad H, Herlihy K, Hughes S, Hunt TA, Huynh H, Janbon SLM, Johnson T, Kavanagh S, Klinowska T, Lawson M, Lister AS, Marden S, McGinnity DF, Morrow CJ, Nissink JWM, O'Donovan DH, Peng B, Polanski R, Stead DS, Stokes S, Thakur K, Throner SR, Tucker MJ, Varnes J, Wang H, Wilson DM, Wu D, Wu Y, Yang B, Yang W. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem 2020; 63:14530-14559. [PMID: 32910656 DOI: 10.1021/acs.jmedchem.0c01163] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the molecular architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (28). This compound was demonstrated to be a highly potent SERD that showed a pharmacological profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that 28 had favorable physicochemical and preclinical pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clinical trials.
Collapse
Affiliation(s)
- James S Scott
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Moss
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Amber Balazs
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jason Breed
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | | | - Paul R J Davey
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David I Fisher
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | - Eric T Gangl
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Sudhir Hande
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Holia Hatoum-Mokdad
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kara Herlihy
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samantha Hughes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Hunt
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Hoan Huynh
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sophie L M Janbon
- Early Chemical Development, Pharmaceutical Sciences, R&D, Macclesfield, United Kingdom
| | - Tony Johnson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stefan Kavanagh
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mandy Lawson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew S Lister
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stacey Marden
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | | | | | | | | | - Bo Peng
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Radoslaw Polanski
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Darren S Stead
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Stokes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Scott R Throner
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Jeffrey Varnes
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haixia Wang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David M Wilson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | - Ye Wu
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bin Yang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| |
Collapse
|
5889
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
5890
|
Georgiadis D, Ziotopoulou A, Kaloumenou E, Lelis A, Papasava A. The Discovery of Insulin-Regulated Aminopeptidase (IRAP) Inhibitors: A Literature Review. Front Pharmacol 2020; 11:585838. [PMID: 33071797 PMCID: PMC7538644 DOI: 10.3389/fphar.2020.585838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Papasava
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5891
|
Abranches DO, Benfica J, Shimizu S, Coutinho JAP. Solubility Enhancement of Hydrophobic Substances in Water/Cyrene Mixtures: A Computational Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dinis O. Abranches
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jordana Benfica
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - João A. P. Coutinho
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5892
|
Lee JS, Song IH, Shinde PB, Nimse SB. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents. Antioxidants (Basel) 2020; 9:E859. [PMID: 32937775 PMCID: PMC7555118 DOI: 10.3390/antiox9090859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress due to the high levels of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins, DNA) results in acute inflammation. However, without proper intervention, acute inflammation progresses to chronic inflammation and then to several chronic diseases, including cancer, myocardial infarction, cardiovascular diseases, chronic inflammation, atherosclerosis, and more. There has been extensive research on the antioxidants of natural origin. However, there are myriad possibilities for the development of synthetic antioxidants for pharmacological applications. There is an increasing interest in the identification of novel synthetic antioxidants for the modulation of biochemical processes related to ROS. In this regard, derivatives of supramolecules, such as calix[n]arene, resorcinarene, calixtyrosol, calixpyrrole, cucurbit[n]uril, porphyrin etc. are gaining attention for their abilities to scavenge the free radicals. Supramolecular chemistry offers excellent scaffolds for the development of novel antioxidants that can be used to modulate free radical reactions and to improve the disorders related to oxidative stress. This review focuses on the interdisciplinary approach for the design and development of novel synthetic antioxidants based on supramolecular scaffolds, with potentially protective effects against oxidative stress.
Collapse
Affiliation(s)
- Jung-Seop Lee
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| | - In-ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| | - Pramod B. Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India;
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| |
Collapse
|
5893
|
Zeiler MJ, Melander RJ, Melander C. Second-Generation Meridianin Analogues Inhibit the Formation of Mycobacterium smegmatis Biofilms and Sensitize Polymyxin-Resistant Gram-Negative Bacteria to Colistin. ChemMedChem 2020; 15:1672-1679. [PMID: 32662926 DOI: 10.1002/cmdc.202000438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/10/2022]
Abstract
Drug-resistant bacteria are rapidly becoming a significant problem across the globe. One element that factors into this crisis is the role played by bacterial biofilms in the recalcitrance of some infections to the effects of conventional antibiotics. Bacteria within a biofilm are highly tolerant of both antibiotic treatment and host immune responses. Biofilms are implicated in many chronic infections, including tuberculosis, in which they can act as bacterial reservoirs, requiring an arduous antibiotic regimen to eradicate the infection. A separate, compounding problem is that antibiotics once seen as last-resort drugs, such as the polymyxin colistin, are now seeing more frequent usage as resistance to front-line drugs in Gram-negative bacteria becomes more prevalent. The increased use of such antibiotics inevitably leads to an increased frequency of resistance. Drugs that inhibit biofilms and/or act as adjuvants to overcome resistance to existing antibiotics will potentially be an important component of future approaches to antibacterial treatment. We have previously demonstrated that analogues of the meridianin natural product family possess adjuvant and antibiofilm activities. In this study, we explore structural variation of the lead molecule from previous studies, and identify compounds showing both improved biofilm inhibition potency and synergy with colistin.
Collapse
Affiliation(s)
- Michael J Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
5894
|
Biopolymeric films as delivery vehicles for controlled release of hydrocortisone: Promising devices to treat chronic skin diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111074. [DOI: 10.1016/j.msec.2020.111074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
|
5895
|
Stumpfe D, Hu H, Bajorath J. Advances in exploring activity cliffs. J Comput Aided Mol Des 2020; 34:929-942. [PMID: 32367387 PMCID: PMC7367915 DOI: 10.1007/s10822-020-00315-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022]
Abstract
The activity cliff (AC) concept is of comparable relevance for medicinal chemistry and chemoinformatics. An AC is defined as a pair of structurally similar compounds with a large potency difference against a given target. In medicinal chemistry, ACs are of interest because they reveal small chemical changes with large potency effects, a concept referred to as structure-activity relationship (SAR) discontinuity. Computationally, ACs can be systematically identified, going far beyond individual compound series considered during lead optimization. Large-scale analysis of ACs has revealed characteristic features across many different compound activity classes. The way in which the molecular similarity and potency difference criteria have been addressed for defining ACs distinguishes between different generations of ACs and mirrors the evolution of the AC concept. We discuss different stages of this evolutionary path and highlight recent advances in AC research.
Collapse
Affiliation(s)
- Dagmar Stumpfe
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany
| | - Huabin Hu
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany.
| |
Collapse
|
5896
|
Gao S, Liu Y, Jiang J, Li X, Zhao L, Fu Y, Ye F. Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. PEST MANAGEMENT SCIENCE 2020; 76:3264-3272. [PMID: 32378331 DOI: 10.1002/ps.5885] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Thiabendazole (TBZ) is a poorly water-soluble benzimidazole fungicide. However, the water solubility of TBZ can be significantly enhanced by inclusion complexation with cyclodextrins. In this study, a thiabendazole/hydroxypropyl-β-cyclodextrin (TBZ/HPβCD) complex was synthesized and electrospinning was performed to produce a TBZ/HPβCD nanofibrous (TBZ/HPβCD-NF) complex that improved water solubility and antifungal activity. RESULTS The formation of TBZ/HPβCD-NF was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance. The morphology of TBZ/HPβCD-NF was studied by scanning electron microscopy. A phase solubility experiment showed that HPβCD exerted a great solubilization effect on TBZ, and TBZ/HPβCD-NF had better antifungal activity compared to that of TBZ alone. CONCLUSIONS In summary, the solid fungicidal nanodispersion prepared in the present study is a new type of formulation that can enhance the water solubility of TBZ. This formulation, which demonstrated potential as a new fast dissolving formulation type with increased efficacy, is expected to be conducive to the sustainable development of agriculture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Jingyu Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Xiaoming Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Lixia Zhao
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5897
|
Hansda S, Ghosh G, Ghosh R. 9-phenyl acridine photosensitizes A375 cells to UVA radiation. Heliyon 2020; 6:e04733. [PMID: 32944667 PMCID: PMC7481570 DOI: 10.1016/j.heliyon.2020.e04733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Acridines are an important class of bioactive molecules having varied uses. Its derivative, 9-phenylacridine (ACPH) had been found to exhibit antitumor activity both in cell lines and in vivo model. Its DNA binding ability and absorbance in the ultraviolet range encouraged us to investigate its role as a photosensitizer with UVA radiation. We investigated the effects of ACPH prior to UVA exposure on in vitro DNA through photo-cleavage assay. Effect of such treatment was also studied in cultured A375 melanoma cells. Endpoints studied included morphological changes, evaluation of cellular viability, scratch assay, intracellular reactive oxygen species (ROS) production, DNA damage, lipid peroxidation, glutathione (GSH) level, autophagy, cell cycle progression, depletion of mitochondrial membrane potential (ΔΨmt), induction of apoptosis and Hoechst dye efflux assay. Our findings indicated that ACPH could sensitize damage to DNA induced by UVA both in vitro and in cells. It could also potentiate cell killing by UVA. It arrested cells in G2/M phase and induced apoptotic death through mitochondria mediated pathway. This sensitization was through enhancement of intracellular ROS. Our findings also indicated that the stem cells side population was reduced on such treatment. The findings are important as it indicates ACPH as a promising photosensitizer and indicates its possible role in photodynamic therapy.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| |
Collapse
|
5898
|
Abdelhameed RM, Darwesh OM, El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3- d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon 2020; 6:e04956. [PMID: 32995633 PMCID: PMC7511821 DOI: 10.1016/j.heliyon.2020.e04956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Combination of arylidene hydrazinyl moiety with pyrido[2,3-d]pyrimidin-4-one skeleton in compounds 7‒26 results in the output of unprecedented anti-microbial agents. Arylidene hydrazinyl based on Pyrido[2,3-d]pyrimidin-4-one analoges 7‒26 prepared by the treatment of [2,3-d]pyrimidin-4-ones 6a,b with various aromatic aldehydes. The antimicrobial action for recently synthesized compounds was considered towards gram positive bacterial species (Staphylococcus aurous ATCC- 47077; Bacillus cereus ATCC-12228), gram negative bacterial species (Escherichia coli ATCC-25922; Salmonella typhi ATCC-15566) and Candida albicans ATCC-10231 as fungal strains. The antimicrobial action expanded by expanding the electron donating group in position 2 and 5 for Pyrido[2,3-d]pyrimidin-4-one core. Derivatives 13, 14, 15, 16 and 12; individually appeared hopeful anti-microbial action towards all strains utilized with inhibition zone higher than that of standard reference drug with lowest MIC.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama M Darwesh
- Department of Agricultural Microbiology, Agricultural Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
5899
|
Yu W, Zhen W, Zhang Q, Li Y, Luo H, He J, Liu Y. Porphyrin-Based Metal-Organic Framework Compounds as Promising Nanomedicines in Photodynamic Therapy. ChemMedChem 2020; 15:1766-1775. [PMID: 32715651 DOI: 10.1002/cmdc.202000353] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 12/24/2022]
Abstract
Porphyrin photosensitizers are widely used in photodynamic therapy (PDT) because of their unique diagnostic and therapeutic functions. However, many factors such as poor water solubility and instability of porphyrin compounds have limited their clinical application. Metal-organic frameworks (MOFs) have the beneficial characteristics of versatility, high porosity, and excellent biocompatibility. Porphyrin-MOF nanomaterials have attracted the attention of researchers because MOFs can effectively suppress the quenching caused by the self-aggregation of porphyrin compounds and promote drug delivery. This article reviews the latest applications of porphyrin-MOF nanomedicine in type II photodynamic therapy by increasing tumour cell oxygen concentration, depleting tumour cell functional molecules and releasing signal molecules. Current potential limitations and future applications are also emphasized and discussed herein.
Collapse
Affiliation(s)
- Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Wenqiang Zhen
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yanchun Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Hongyu Luo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, China
| |
Collapse
|
5900
|
Milunović MNM, Palamarciuc O, Sirbu A, Shova S, Dumitrescu D, Dvoranová D, Rapta P, Petrasheuskaya TV, Enyedy EA, Spengler G, Ilic M, Sitte HH, Lubec G, Arion VB. Insight into the Anticancer Activity of Copper(II) 5-Methylenetrimethylammonium-Thiosemicarbazonates and Their Interaction with Organic Cation Transporters. Biomolecules 2020; 10:E1213. [PMID: 32825480 PMCID: PMC7565988 DOI: 10.3390/biom10091213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
A series of four water-soluble salicylaldehyde thiosemicarbazones with a positively charged trimethylammonium moiety ([H2LR]Cl, R = H, Me, Et, Ph) and four copper(II) complexes [Cu(HLR)Cl]Cl (1-4) were synthesised with the aim to study (i) their antiproliferative activity in cancer cells and, (ii) for the first time for thiosemicarbazones, the interaction with membrane transport proteins, specifically organic cation transporters OCT1-3. The compounds were comprehensively characterised by analytical, spectroscopic and X-ray diffraction methods. The highest cytotoxic effect was observed in the neuroblastoma cell line SH-5YSY after 24 h exposure and follows the rank order: 3 > 2 > 4 > cisplatin > 1 >>[H2LR]Cl. The copper(II) complexes showed marked interaction with OCT1-3, comparable to that of well-known OCT inhibitors (decynium 22, prazosin and corticosterone) in the cell-based radiotracer uptake assays. The work paves the way for the development of more potent and selective anticancer drugs and/or OCT inhibitors.
Collapse
Affiliation(s)
- Miljan N. M. Milunović
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Oleg Palamarciuc
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova; (O.P.); (A.S.)
| | - Angela Sirbu
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova; (O.P.); (A.S.)
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi, Romania;
| | - Dan Dumitrescu
- Elettra—Sincrotrone Trieste S.C.p.A, Strada Statale 14—km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy;
| | - Dana Dvoranová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Tatsiana V. Petrasheuskaya
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (T.V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (T.V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Neuroproteomics, Paracelsus Private Medical University, 5020 Salzburg, Austria;
| | - Harald H. Sitte
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Gert Lubec
- Neuroproteomics, Paracelsus Private Medical University, 5020 Salzburg, Austria;
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|