551
|
Gerbe F, Jay P. Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol 2016; 9:1353-1359. [PMID: 27554294 DOI: 10.1038/mi.2016.68] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023]
Abstract
Epithelial tuft cells (also known as "brush" cells in the airway) were first identified morphologically, almost six decades ago in the trachea and gastro-intestinal tract, but their function remained mysterious until three almost simultaneous reports recently revealed their essential role in the initiation of immune type 2 responses. This is a new and exciting example of cooperation between the epithelial and haematopoietic compartments for the management of enteric parasite infections. Here we review tuft cell functions and markers, and anchors epithelial tuft cells within the current paradigm of type 2 immune responses.
Collapse
Affiliation(s)
- F Gerbe
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - P Jay
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
552
|
Jones JC, Dempsey PJ. Enterocyte progenitors can dedifferentiate to replace lost Lgr5 + intestinal stem cells revealing that many different progenitor populations can regain stemness. Stem Cell Investig 2016; 3:61. [PMID: 27868043 DOI: 10.21037/sci.2016.09.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jennifer C Jones
- Cell Biology, Stem Cell and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter J Dempsey
- Cell Biology, Stem Cell and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Division of Gastroenterology, Hepatology and Nutrition, Dept. of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
553
|
Bassiouni M, Dos Santos A, Avci HX, Löwenheim H, Müller M. Bmi1 Loss in the Organ of Corti Results in p16ink4a Upregulation and Reduced Cell Proliferation of Otic Progenitors In Vitro. PLoS One 2016; 11:e0164579. [PMID: 27755610 PMCID: PMC5068820 DOI: 10.1371/journal.pone.0164579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
The mature mammalian organ of Corti does not regenerate spontaneously after injury, mainly due to the absence of cell proliferation and the depletion of otic progenitors with age. The polycomb gene B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) promotes proliferation and cell cycle progression in several stem cell populations. The cell cycle inhibitor p16ink4a has been previously identified as a downstream target of Bmi1. In this study, we show that Bmi1 is expressed in the developing inner ear. In the organ of Corti, Bmi1 expression is temporally regulated during embryonic and postnatal development. In contrast, p16ink4a expression is not detectable during the same period. Bmi1-deficient mice were used to investigate the role of Bmi1 in cochlear development and otosphere generation. In the absence of Bmi1, the postnatal organ of Corti displayed normal morphology at least until the end of the first postnatal week, suggesting that Bmi1 is not required for the embryonic or early postnatal development of the organ of Corti. However, Bmi1 loss resulted in the reduced sphere-forming capacity of the organ of Corti, accompanied by the decreased cell proliferation of otic progenitors in otosphere cultures. This reduced proliferative capacity was associated with the upregulation of p16ink4ain vitro. Viral vector-mediated overexpression of p16ink4a in wildtype otosphere cultures significantly reduced the number of generated otospheres in vitro. The findings strongly suggest a role for Bmi1 as a promoter of cell proliferation in otic progenitor cells, potentially through the repression of p16ink4a.
Collapse
Affiliation(s)
- Mohamed Bassiouni
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aurélie Dos Santos
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hasan X. Avci
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
554
|
Ohashi W, Kimura S, Iwanaga T, Furusawa Y, Irié T, Izumi H, Watanabe T, Hijikata A, Hara T, Ohara O, Koseki H, Sato T, Robine S, Mori H, Hattori Y, Watarai H, Mishima K, Ohno H, Hase K, Fukada T. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress. PLoS Genet 2016; 12:e1006349. [PMID: 27736879 PMCID: PMC5065117 DOI: 10.1371/journal.pgen.1006349] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. Intestinal epithelium undergoes continuous self-renewal to maintain intestinal homeostasis. Given that dysregulation of zinc flux causes intestinal disorders, appropriate spatiotemporal regulation of zinc in the intracellular compartments should be a prerequisite for the intestinal epithelial self-renewal process. Zinc transporters such as Zrt-Irt-like proteins (ZIPs) are essential to fine-tune intracellular zinc flux. However, the link between specific zinc transporter(s) and intestinal epithelial self-renewal remains to be elucidated. Here, we found that ZIP7 is highly expressed in the intestinal crypts. The finding motivated us to further analyze the role of ZIP7 in intestinal homeostasis. ZIP7 deficiency greatly enhanced ER stress response in proliferative progenitor cells, which induced apoptotic cell death. This abnormality disrupted epithelial proliferation and intestinal stemness. Based on these observations, we reason that ZIP7-dependent zinc transport facilitates the vigorous epithelial proliferation in the intestine by ameliorating ER stress.
Collapse
Affiliation(s)
- Wakana Ohashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tarou Irié
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Hijikata
- Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Toshiro Sato
- Department of Gastroenterology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Sylvie Robine
- Equipe de Morphogenese et Signalisation cellulaires UMR 144 CNRS/Institut Curie, Paris, France
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (KH); (TF)
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
- * E-mail: (KH); (TF)
| |
Collapse
|
555
|
Peng S, Hu GQ. Colorectal cancer stem cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3953-3962. [DOI: 10.11569/wcjd.v24.i28.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, and its initiation, promotion and prognosis are closely related to cancer stem cells (CSCs). CSCs are defined as a minority population of cancer cells with self-renewal ability, multi-lineage differentiation potential and highly aggressive behaviors, which have been identified in many types of cancers including CRC as one of the key mediators driving cancer metastasis and progression. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. Here, we review the current understanding of colorectal CSCs, with an emphasis on candidate markers, biological properties, related signaling pathways, and clinical applications.
Collapse
|
556
|
Koppens MAJ, Bounova G, Gargiulo G, Tanger E, Janssen H, Cornelissen-Steijger P, Blom M, Song JY, Wessels LFA, van Lohuizen M. Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells. Gastroenterology 2016; 151:684-697.e12. [PMID: 27342214 DOI: 10.1053/j.gastro.2016.06.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase). METHODS We performed studies of AhCre;EedLoxP/LoxP (EED knockout) mice and AhCre;Ezh2LoxP/LoxP (EZH2 knockout) mice, which have intestine-specific disruption in EED and EZH2, respectively. Small intestinal crypts were isolated and subsequently cultured to grow organoids. Intestines and organoids were analyzed by immunohistochemical, in situ hybridization, RNA sequence, and chromatin immunoprecipitation methods. RESULTS Intestines of EED knockout mice had massive crypt degeneration and lower numbers of proliferating cells compared with wild-type control mice. Cdkn2a became derepressed and we detected increased levels of P21. We did not observe any differences between EZH2 knockout and control mice. Intestinal crypts from EED knockout mice had signs of aberrant differentiation of uncommitted crypt cells-these differentiated toward the secretory cell lineage. Furthermore, crypts from EED-knockout mice had impaired Wnt signaling and concomitant loss of intestinal stem cells, this phenotype was not reversed upon ectopic stimulation of Wnt and Notch signaling in organoids. Analysis of gene expression patterns from intestinal tissues of EED knockout mice showed dysregulation of several genes involved in Wnt signaling. Wnt signaling was regulated directly by PRC2. CONCLUSIONS In intestinal tissues of mice, PRC2 maintains small intestinal stem cells by promoting proliferation and preventing differentiation in the intestinal stem cell compartment. PRC2 controls gene expression in multiple signaling pathways that regulate intestinal homeostasis. Sequencing data are available in the genomics data repository GEO under reference series GSE81578; RNA sequencing data are available under subseries GSE81576; and ChIP sequencing data are available under subseries GSE81577.
Collapse
Affiliation(s)
- Martijn A J Koppens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gergana Bounova
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gaetano Gargiulo
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Tanger
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Janssen
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marleen Blom
- Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands; Cancer Genomics Centre Netherlands, Utrecht, The Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Cancer Genomics Centre Netherlands, Utrecht, The Netherlands.
| |
Collapse
|
557
|
Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, Wang Q, Du L, Li Q, Zhao H, Fan F, Liu Q. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis 2016; 7:e2387. [PMID: 27685631 PMCID: PMC5059875 DOI: 10.1038/cddis.2016.276] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
Abstract
The loss of stem cells residing in the base of the intestinal crypt has a key role in radiation-induced intestinal injury. In particular, Lgr5+ intestinal stem cells (ISCs) are indispensable for intestinal regeneration following exposure to radiation. Mesenchymal stem cells (MSCs) have previously been shown to improve intestinal epithelial repair in a mouse model of radiation injury, and, therefore, it was hypothesized that this protective effect is related to Lgr5+ ISCs. In this study, it was found that, following exposure to radiation, transplantation of MSCs improved the survival of the mice, ameliorated intestinal injury and increased the number of regenerating crypts. Furthermore, there was a significant increase in Lgr5+ ISCs and their daughter cells, including Ki67+ transient amplifying cells, Vil1+ enterocytes and lysozyme+ Paneth cells, in response to treatment with MSCs. Crypts isolated from mice treated with MSCs formed a higher number of and larger enteroids than those from the PBS group. MSC transplantation also reduced the number of apoptotic cells within the small intestine at 6 h post-radiation. Interestingly, Wnt3a and active β-catenin protein levels were increased in the small intestines of MSC-treated mice. In addition, intravenous delivery of recombinant mouse Wnt3a after radiation reduced damage in the small intestine and was radioprotective, although not to the same degree as MSC treatment. Our results show that MSCs support the growth of endogenous Lgr5+ ISCs, thus promoting repair of the small intestine following exposure to radiation. The molecular mechanism of action mediating this was found to be related to increased activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Gong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Mengzheng Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zhibo Han
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ping Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qian Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Department of Hematology and Translation Medicine Centre, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Feiyue Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Institute of Laboratory Animal Sciences of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
558
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
559
|
Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, Yu SF, Yee S, Goldenberg D, Fields C, Eastham-Anderson J, Singh M, Vij R, Hongo JA, Firestein R, Schutten M, Flagella K, Polakis P, Polson AG. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med 2016; 7:314ra186. [PMID: 26582901 DOI: 10.1126/scitranslmed.aac7433] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are hypothesized to actively maintain tumors similarly to how their normal counterparts replenish differentiated cell types within tissues, making them an attractive therapeutic target for the treatment of cancer. Because most CSC markers also label normal tissue stem cells, it is unclear how to selectively target them without compromising normal tissue homeostasis. We evaluated a strategy that targets the cell surface leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a well-characterized tissue stem cell and CSC marker, with an antibody conjugated to distinct cytotoxic drugs. One antibody-drug conjugate (ADC) demonstrated potent tumor efficacy and safety in vivo. Furthermore, the ADC decreased tumor size and proliferation, translating to improved survival in a genetically engineered model of intestinal tumorigenesis. These data demonstrate that ADCs can be leveraged to exploit differences between normal and cancer stem cells to successfully target gastrointestinal cancers.
Collapse
Affiliation(s)
- Melissa R Junttila
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Weiguang Mao
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xi Wang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bu-Er Wang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thinh Pham
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Flygare
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shang-Fan Yu
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sharon Yee
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Goldenberg
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Carter Fields
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Mallika Singh
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jo-Anne Hongo
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ron Firestein
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa Schutten
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Flagella
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul Polakis
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrew G Polson
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
560
|
Kim CK, Bialkowska AB, Yang VW. Intestinal stem cell resurgence by enterocyte precursors. Stem Cell Investig 2016; 3:49. [PMID: 27777938 DOI: 10.21037/sci.2016.09.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | | - Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA;; Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
561
|
Hong SN, Dunn JC, Stelzner M, Martín MG. Concise Review: The Potential Use of Intestinal Stem Cells to Treat Patients with Intestinal Failure. Stem Cells Transl Med 2016; 6:666-676. [PMID: 28191783 PMCID: PMC5442796 DOI: 10.5966/sctm.2016-0153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022] Open
Abstract
Intestinal failure is a rare life‐threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell‐based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome‐editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease‐causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large‐animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans. Stem Cells Translational Medicine2017;6:666–676
Collapse
Affiliation(s)
- Sung Noh Hong
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - James C.Y. Dunn
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Matthias Stelzner
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Surgery, Veterans Administration Greater Los Angeles Health System, Los Angeles, California, USA
| | - Martín G. Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
562
|
Facompre ND, Harmeyer KM, Sole X, Kabraji S, Belden Z, Sahu V, Whelan K, Tanaka K, Weinstein GS, Montone KT, Roesch A, Gimotty PA, Herlyn M, Rustgi AK, Nakagawa H, Ramaswamy S, Basu D. JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Res 2016; 76:5538-49. [PMID: 27488530 PMCID: PMC5026599 DOI: 10.1158/0008-5472.can-15-3377] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
Abstract
The degree of heterogeneity among cancer stem cells (CSC) remains ill-defined and may hinder effective anti-CSC therapy. Evaluation of oral cancers for such heterogeneity identified two compartments within the CSC pool. One compartment was detected using a reporter for expression of the H3K4me3 demethylase JARID1B to isolate a JARID1B(high) fraction of cells with stem cell-like function. JARID1B(high) cells expressed oral CSC markers including CD44 and ALDH1 and showed increased PI3K pathway activation. They were distinguished from a fraction in a G0-like cell-cycle state characterized by low reactive oxygen species and suppressed PI3K/AKT signaling. G0-like cells lacked conventional CSC markers but were primed to acquire stem cell-like function by upregulating JARID1B, which directly mediated transition to a state expressing known oral CSC markers. The transition was regulated by PI3K signals acting upstream of JARID1B expression, resulting in PI3K inhibition depleting JARID1B(high) cells but expanding the G0-like subset. These findings define a novel developmental relationship between two cell phenotypes that may jointly contribute to CSC maintenance. Expansion of the G0-like subset during targeted depletion of JARID1B(high) cells implicates it as a candidate therapeutic target within the oral CSC pool. Cancer Res; 76(18); 5538-49. ©2016 AACR.
Collapse
Affiliation(s)
- Nicole D Facompre
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kayla M Harmeyer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xavier Sole
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sheheryar Kabraji
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zachary Belden
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Varun Sahu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly Whelan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Koji Tanaka
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory S Weinstein
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen T Montone
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Phyllis A Gimotty
- Department of Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Anil K Rustgi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sridhar Ramaswamy
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania. The Wistar Institute, Philadelphia, Pennsylvania. VA Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
563
|
Kulkarni S, Wang TC, Guha C. Stromal Progenitor Cells in Mitigation of Non-Hematopoietic Radiation Injuries. CURRENT PATHOBIOLOGY REPORTS 2016; 4:221-230. [PMID: 28462013 DOI: 10.1007/s40139-016-0114-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries. RECENT FINDINGS We have developed stem cell based therapies for the mitigation of acute radiation syndrome (ARS) and radiation-induced gastrointestinal syndrome (RIGS). This is a promising option because of the robustness of standardized isolation and transplantation of stromal cells protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet derived growth factors (PDGF), keratinocyte growth factor (KGF), R-spondins (Rspo), and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases. SUMMARY This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and epithelium, (d) and secrete regenerative and immunomodulatory paracrine signals to control inflammation, ulceration, wound healing and fibrosis.
Collapse
Affiliation(s)
- Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, NY
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, NY
| |
Collapse
|
564
|
Bunched and Madm Function Downstream of Tuberous Sclerosis Complex to Regulate the Growth of Intestinal Stem Cells in Drosophila. Stem Cell Rev Rep 2016; 11:813-25. [PMID: 26323255 PMCID: PMC4653243 DOI: 10.1007/s12015-015-9617-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Drosophila adult midgut contains intestinal stem cells that support homeostasis and repair. We show here that the leucine zipper protein Bunched and the adaptor protein Madm are novel regulators of intestinal stem cells. MARCM mutant clonal analysis and cell type specific RNAi revealed that Bunched and Madm were required within intestinal stem cells for proliferation. Transgenic expression of a tagged Bunched showed a cytoplasmic localization in midgut precursors, and the addition of a nuclear localization signal to Bunched reduced its function to cooperate with Madm to increase intestinal stem cell proliferation. Furthermore, the elevated cell growth and 4EBP phosphorylation phenotypes induced by loss of Tuberous Sclerosis Complex or overexpression of Rheb were suppressed by the loss of Bunched or Madm. Therefore, while the mammalian homolog of Bunched, TSC-22, is able to regulate transcription and suppress cancer cell proliferation, our data suggest the model that Bunched and Madm functionally interact with the TOR pathway in the cytoplasm to regulate the growth and subsequent division of intestinal stem cells.
Collapse
|
565
|
Fessler E, Medema JP. Colorectal Cancer Subtypes: Developmental Origin and Microenvironmental Regulation. Trends Cancer 2016; 2:505-518. [DOI: 10.1016/j.trecan.2016.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
|
566
|
Aghaallaei N, Gruhl F, Schaefer CQ, Wernet T, Weinhardt V, Centanin L, Loosli F, Baumbach T, Wittbrodt J. Identification, visualization and clonal analysis of intestinal stem cells in fish. Development 2016; 143:3470-3480. [PMID: 27578784 PMCID: PMC5087619 DOI: 10.1242/dev.134098] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/08/2016] [Indexed: 01/09/2023]
Abstract
Recently, a stochastic model of symmetrical stem cell division followed by neutral drift has been proposed for intestinal stem cells (ISCs), which has been suggested to represent the predominant mode of stem cell progression in mammals. In contrast, stem cells in the retina of teleost fish show an asymmetric division mode. To address whether the mode of stem cell division follows phylogenetic or ontogenetic routes, we analysed the entire gastrointestinal tract of the teleost medaka (Oryzias latipes). X-ray microcomputed tomography shows a correlation of 3D topography with the functional domains. Analysis of ISCs in proliferation assays and via genetically encoded lineage tracing highlights a stem cell niche in the furrow between the long intestinal folds that is functionally equivalent to mammalian intestinal crypts. Stem cells in this compartment are characterized by the expression of homologs of mammalian ISC markers – sox9, axin2 and lgr5 – emphasizing the evolutionary conservation of the Wnt pathway components in the stem cell niche of the intestine. The stochastic, sparse initial labelling of ISCs ultimately resulted in extended labelled or unlabelled domains originating from single stem cells in the furrow niche, contributing to both homeostasis and growth. Thus, different modes of stem cell division co-evolved within one organism, and in the absence of physical isolation in crypts, ISCs contribute to homeostatic growth. Summary: Adult medaka intestinal stem cells (ISCs) proliferate within a niche functionally equivalent to that in the mammal. Like mammalian ISCs, but unlike medaka retinal stem cells, their mode of division is largely symmetric.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Franziska Gruhl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Colin Q Schaefer
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias Wernet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Venera Weinhardt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Felix Loosli
- Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Tilo Baumbach
- Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
567
|
Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci U S A 2016; 113:E5399-407. [PMID: 27573849 DOI: 10.1073/pnas.1607327113] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5(+) stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5(+) stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4(+) DCS cells promote organoid formation of single Lgr5(+) colon stem cells. DCS cells can be massively produced from Lgr5(+) colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4(+) DCS cells serve as Paneth cell equivalents in the colon crypt niche.
Collapse
|
568
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|
569
|
Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells. Cell Rep 2016; 16:2053-2060. [PMID: 27524622 DOI: 10.1016/j.celrep.2016.07.056] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 01/24/2023] Open
Abstract
Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process.
Collapse
|
570
|
Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 2016; 18:238-45. [PMID: 26911907 DOI: 10.1038/ncb3309] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell replacement in adult organs can be achieved through stem cell differentiation or the replication or transdifferentiation of existing cells. In the adult liver and pancreas, stem cells have been proposed to replace tissue cells, particularly following injury. Here we review how specialized cell types are produced in the adult liver and pancreas. Based on current evidence, we propose that the plasticity of differentiated cells, rather than stem cells, accounts for tissue repair in both organs.
Collapse
Affiliation(s)
- Janel L Kopp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093-0695, USA
| |
Collapse
|
571
|
Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: How they gut it out. Dev Biol 2016; 420:239-250. [PMID: 27521455 DOI: 10.1016/j.ydbio.2016.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract is characterized by a self-renewing epithelium fueled by adult stem cells residing at the bottom of the intestinal crypt and gastric glands. Their activity and proliferation is strongly dependent on complex signaling pathways involving other crypt/gland cells as well as surrounding stromal cells. In recent years organoids are becoming increasingly popular as a new and powerful tool to study developmental or other biological processes. Organoids retain morphological and molecular patterns of the tissue they are derived from, are self-organizing, relatively simple to handle and accessible to genetic engineering. This review focuses on the developmental processes and signaling molecules involved in epithelial homeostasis and how a profound knowledge of these mechanisms allowed the establishment of a three dimensional organoid culture derived from adult gastrointestinal stem cells.
Collapse
Affiliation(s)
- Sebastian R Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniel E Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
572
|
Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochem Cell Biol 2016; 146:539-555. [PMID: 27480259 DOI: 10.1007/s00418-016-1473-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Abstract
A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFβ signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFβ signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.
Collapse
|
573
|
Affiliation(s)
- Pauline K Lund
- Department of Cell Biology and Physiology and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, and Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
574
|
Li N, Nakauka-Ddamba A, Tobias J, Jensen ST, Lengner CJ. Mouse Label-Retaining Cells Are Molecularly and Functionally Distinct From Reserve Intestinal Stem Cells. Gastroenterology 2016; 151:298-310.e7. [PMID: 27237597 PMCID: PMC4961601 DOI: 10.1053/j.gastro.2016.04.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 04/07/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Intestinal homeostasis and regeneration after injury are controlled by 2 different types of cells: slow cycling, injury-resistant reserve intestinal stem cells (ISCs) and actively proliferative ISCs. Putative reserve ISCs have been identified using a variety of methods, including CreER insertions at Hopx or Bmi1 loci in mice and DNA label retention. Label-retaining cells (LRCs) include dormant stem cells in several tissues; in the intestine, LRCs appear to share some properties with reserve ISCs, which can be marked by reporter alleles. We investigated the relationships between these populations. METHODS Studies were performed in Lgr5-EGFP-IRESCreERT2, Bmi1-CreERT2, Hopx-CreERT2, and TRE-H2BGFP::Hopx-CreERT2::lox-stop-lox-tdTomato mice. Intestinal epithelial cell populations were purified; we compared reporter allele-marked reserve ISCs and several LRC populations (marked by H2B-GFP retention) using histologic flow cytometry and functional and single-cell gene expression assays. RESULTS LRCs were dynamic and their cellular composition changed with time. Short-term LRCs had properties of secretory progenitor cells undergoing commitment to the Paneth or enteroendocrine lineages, while retaining some stem cell activity. Long-term LRCs lost stem cell activity and were a homogenous population of terminally differentiated Paneth cells. Reserve ISCs marked with HopxCreER were primarily quiescent (in G0), with inactive Wnt signaling and robust stem cell activity. In contrast, most LRCs were in G1 arrest and expressed genes that are regulated by the Wnt pathway or are in the secretory lineage. CONCLUSIONS LRCs are molecularly and functionally distinct from reporter-marked reserve ISCs. This information provides an important basis for future studies of relationships among ISC populations.
Collapse
Affiliation(s)
- Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104
| | - John Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104
| | - Shane T. Jensen
- Department of Statistics, The Wharton School, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, Department of Cell and Developmental Biology, School of Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, To whom correspondence should be addressed ()
| |
Collapse
|
575
|
Tata PR, Rajagopal J. Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol 2016; 43:46-54. [PMID: 27485353 DOI: 10.1016/j.ceb.2016.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
Cell identity is a fundamental feature of cells. Tissues are often organized into cellular hierarchies characterized by progressive differentiation and developmental commitment. However, it is been historically evident that the cells of many organisms of various phyla, especially in the context of injury, exhibit remarkable plasticity in terms of their ability to convert into other cell types. Recent modern studies, using genetic lineage tracing, have demonstrated that many mature functional cells retain a potential to undergo lineage reversion (dedifferentiation) or to convert into cells of other more distant lineages (transdifferentiation) following injury. Similarly, mimicking progenitor cell transdetermination, stem cells can interconvert. These forms of plasticity may be essential for organismal survival, and are likely part and parcel of regeneration.
Collapse
Affiliation(s)
- Purushothama Rao Tata
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital for Children, Pediatric Pulmonary Medicine, Boston, MA, USA; Division of Otology and Laryngology, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
576
|
Sailaja BS, He XC, Li L. The regulatory niche of intestinal stem cells. J Physiol 2016; 594:4827-36. [PMID: 27060879 DOI: 10.1113/jp271931] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.
Collapse
Affiliation(s)
- Badi Sri Sailaja
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66101, USA
| |
Collapse
|
577
|
Sun Z, Plikus MV, Komarova NL. Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage. PLoS Comput Biol 2016; 12:e1004990. [PMID: 27427948 PMCID: PMC4948767 DOI: 10.1371/journal.pcbi.1004990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/18/2016] [Indexed: 01/16/2023] Open
Abstract
Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical regulatory mechanisms governing tissue turnover, and lends insight into how different control loops influence the stability and variance properties of cell populations. Tissue stability is the basic property of healthy organs, and yet the mechanisms governing the stable, long-term maintenance of cell numbers in tissues are poorly understood. While more and more signaling pathways are being discovered, for the most part it remains unknown how they are being put together by different cell types into complex, nonlinear, hierarchical control networks that, on the one hand, reliably maintain constant cell numbers, and on the other hand, quickly adjust to oversee the robust response to tissue damage. Theoretical approaches can fill the gap by being able to reconstruct the underlying control network, based on the observations about the aspects of cellular dynamics. We argue that while many hypothetical networks may be capable of basic cell lineage maintenance, some are much more efficient from the viewpoint of variance minimization. Thus, we developed a new methodology that can test various control networks for stability, variance, and robustness. In the example of the airway epithelium that we highlight, it turns out that the evolutionary selected, actual architecture coincides with the mathematically optimal solution that minimizes the fluctuations of cell numbers at homeostasis.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center and Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Natalia L. Komarova
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
578
|
De Francesco F, Romano M, Zarantonello L, Ruffolo C, Neri D, Bassi N, Giordano A, Zanus G, Ferraro GA, Cillo U. The role of adipose stem cells in inflammatory bowel disease: From biology to novel therapeutic strategies. Cancer Biol Ther 2016; 17:889-98. [PMID: 27414952 DOI: 10.1080/15384047.2016.1210741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel diseases are an increasing phenomenon in western countries and in growing populations. The physiopathology of these conditions is linked to intestinal stem cells homeostasis and regenerative potential in a chronic inflammatory microenvironment. Patients with IBD present an increased risk of developing colorectal cancer (CRC), or colitis associated cancer (CAC). Conventional treatment for IBD target the inflammatory process (and include anti-inflammatory and immunosuppressive drugs) with biological agents emerging as a therapeutic approach for non-responders to traditional therapy. Conventional treatment provides scarce results and present severe complications. The intestinal environment may host incoming stem cells, able to engraft in the epithelial damaged sites and differentiate. Therefore, stem cell therapies represent an emerging alternative in inflammatory bowel diseases, with current investigations on the use of haematopoietic and mesenchymal stem cells, in particular adipose stem cells, apparently fundamental as regenerators and as immune-modulators. Here, we discuss stem cells in intestinal homeostasis and as therapeutic agents for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Francesco De Francesco
- a Multidisciplinary Department of Medical-Surgery and Dental Specialties , School of Medicine and Surgery, Second University of Naples , Italy
| | - Maurizio Romano
- a Multidisciplinary Department of Medical-Surgery and Dental Specialties , School of Medicine and Surgery, Second University of Naples , Italy
| | - Laura Zarantonello
- b Department of Surgery , Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital , Padua , Italy
| | - Cesare Ruffolo
- c Department of Surgery , Regional Center for hpb surgery, Regional Hospital of Treviso , TV , Italy
| | - Daniele Neri
- b Department of Surgery , Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital , Padua , Italy
| | - Nicolò Bassi
- c Department of Surgery , Regional Center for hpb surgery, Regional Hospital of Treviso , TV , Italy
| | - Antonio Giordano
- d Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy.,e Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| | - Giacomo Zanus
- b Department of Surgery , Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital , Padua , Italy
| | - Giuseppe A Ferraro
- a Multidisciplinary Department of Medical-Surgery and Dental Specialties , School of Medicine and Surgery, Second University of Naples , Italy
| | - Umberto Cillo
- b Department of Surgery , Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital , Padua , Italy
| |
Collapse
|
579
|
Li N, Yousefi M, Nakauka-Ddamba A, Tobias JW, Jensen ST, Morrisey EE, Lengner CJ. Heterogeneity in readouts of canonical wnt pathway activity within intestinal crypts. Dev Dyn 2016; 245:822-33. [PMID: 27264700 DOI: 10.1002/dvdy.24423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Canonical Wnt pathway signaling is necessary for maintaining the proliferative capacity of mammalian intestinal crypt base columnar stem cells (CBCs). Furthermore, dysregulation of the Wnt pathway is a major contributor to disease, including oncogenic transformation of the intestinal epithelium. Given the critical importance of this pathway, numerous tools have been used as proxy measures for Wnt pathway activity, yet the relationship between Wnt target gene expression and reporter allele activity within individual cells at the crypt base remains unclear. RESULTS Here, we describe a novel Axin2-CreERT2-tdTomato allele that efficiently marks both Wnt(High) CBCs and radioresistant reserve intestinal stem cells. We analyze the molecular and functional identity of Axin2-CreERT2-tdTomato-marked cells using single cell gene expression profiling and tissue regeneration assays and find that Axin2 reporter activity does not necessarily correlate with expression of Wnt target genes and, furthermore, that Wnt target genes themselves vary in their expression patterns at the crypt base. CONCLUSIONS Wnt target genes and reporter alleles can vary greatly in their cell-type specificity, demonstrating that these proxies cannot be used interchangeably. Furthermore, Axin2-CreERT2-tdTomato is a robust marker of both active and reserve intestinal stem cells and is thus useful for understanding the intestinal stem cell compartment. Developmental Dynamics 245:822-833, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maryam Yousefi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shane T Jensen
- Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
580
|
Sei Y, Feng J, Zhao X, Forbes J, Tang D, Nagashima K, Hanson J, Quezado MM, Hughes MS, Wank SA. Polyclonal Crypt Genesis and Development of Familial Small Intestinal Neuroendocrine Tumors. Gastroenterology 2016; 151:140-51. [PMID: 27003604 PMCID: PMC5578471 DOI: 10.1053/j.gastro.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Joanne Forbes
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Derek Tang
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701
| | - Jeffrey Hanson
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Martha M. Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health
| | - Marybeth S. Hughes
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804,To whom correspondence should be addressed. Stephen A. Wank, M.D., Address: DDB/NIDDK/NIH, 10/9C-101, Bethesda, MD 20892, , Phone: (301) 402-3704
| |
Collapse
|
581
|
Lum L, Chen C. Chemical Disruption of Wnt-dependent Cell Fate Decision-making Mechanisms in Cancer and Regenerative Medicine. Curr Med Chem 2016; 22:4091-103. [PMID: 26310918 DOI: 10.2174/0929867322666150827094015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
Cell-to-cell signaling molecules such as the Wnt proteins that directly influence the expression of cell-type specific transcriptional programs are essential for tissue generation in metazoans. The mechanisms supporting cellular responses to these molecules represent potential points of intervention for directing cell fate outcomes in therapeutic contexts. Small molecules that modulate Wnt-mediated cellular responses have proven to be powerful probes for Wnt protein function in diverse biological settings including cancer, development, and regeneration. Whereas efforts to develop these chemicals as therapeutic agents have dominated conversation, the unprecedented modes-of-action associated with these molecules and their implications for drug development deserve greater examination. In this review, we will discuss how medicinal chemistry efforts focused on first in class small molecules targeting two Wnt pathway components--the polytopic Porcupine (Porcn) acyltransferase and the cytoplasmic Tankyrase (Tnks) poly-ADP-ribosylases--have contributed to our understanding of the druggable genome and expanded the armamentarium of chemicals that can be used to influence cell fate decision-making.
Collapse
Affiliation(s)
| | - C Chen
- Department of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
582
|
Demitrack ES, Samuelson LC. Notch regulation of gastrointestinal stem cells. J Physiol 2016; 594:4791-803. [PMID: 26848053 DOI: 10.1113/jp271667] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract epithelium is continuously replenished by actively cycling stem and progenitor cells. These cell compartments are regulated to balance proliferation and stem cell renewal with differentiation into the various mature cell types to maintain tissue homeostasis. In this topical review we focus on the role of the Notch signalling pathway to regulate GI stem cell function in adult small intestine and stomach. We first present the current view of stem and progenitor cell populations in these tissues and then summarize the studies that have established the Notch pathway as a key regulator of gastric and intestinal stem cell function. Notch signalling has been shown to be a niche factor required for maintenance of GI stem cells in both tissues. In addition, Notch has been described to regulate epithelial cell differentiation. Recent studies have revealed key similarities and differences in how Notch regulates stem cell function in the stomach compared to intestine. We summarize the literature regarding Notch regulation of GI stem cell proliferation and differentiation, highlighting tissue-specific functions to compare and contrast Notch in the stomach and intestine.
Collapse
Affiliation(s)
- Elise S Demitrack
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
583
|
Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells. Dev Biol 2016; 416:347-60. [PMID: 27321560 DOI: 10.1016/j.ydbio.2016.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
Abstract
Proliferating intestinal stem cells (ISCs) generate all cell types of the Drosophila midgut, including enterocytes, endocrine cells, and gland cells (e.g., copper cells), throughout the lifetime of the animal. Among the signaling mechanisms controlling the balance between ISC self-renewal and the production of different cell types, Notch (N) plays a pivotal role. In this paper we investigated the emergence of ISCs during metamorphosis and the role of N in this process. Precursors of the Drosophila adult intestinal stem cells (pISCs) can be first detected within the pupal midgut during the first hours after onset of metamorphosis as motile mesenchymal cells. pISCs perform 2-3 rounds of parasynchronous divisions. The first mitosis yields only an increase in pISC number. During the following rounds of mitosis, dividing pISCs give rise to more pISCs, as well as the endocrine cells that populate the midgut of the eclosing fly. Enterocytes do not appear among the pISC progeny until around the time of eclosion. The "proendocrine" gene prospero (pros), expressed from mid-pupal stages onward in pISCs, is responsible to advance the endocrine fate in these cells; following removal of pros, pISCs continue to proliferate, but endocrine cells do not form. Conversely, the onset of N activity that occurs around the stage when pros comes on restricts pros expression among pISCs. Loss of N abrogates proliferation and switches on an endocrine fate among all pISCs. Our results suggest that a switch depending on the activity of N and pros acts at the level of the pISC to decide between continued proliferation and endocrine differentiation.
Collapse
|
584
|
Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol 2016; 594:4837-47. [PMID: 27581568 DOI: 10.1113/jp271754] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Wnt signalling is involved in multiple aspects of embryonic development and adult tissue homeostasis, notably via controlling cellular proliferation and differentiation. Wnt signalling is subject to stringent positive and negative regulation to promote proper development and homeostasis yet avoid aberrant growth. Such multi-layer regulation includes post-translational modification and processing of Wnt proteins themselves, R-spondin (Rspo) amplification of Wnt signalling, diverse receptor families, and intracellular and extracellular antagonists and destruction and transcription complexes. In the gastrointestinal tract, Wnt signalling is crucial for development and renewal of the intestinal epithelium. Intestinal stem cells (ISCs) undergo symmetric division and neutral drift dynamics to renew the intestinal epithelium. Sources of Wnts and Wnt amplifers such as R-spondins are beginning to be elucidated as well as their functional contribution to intestinal homeostasis. In this review we focus on regulation of ISCs and intestinal homeostasis by the Wnt/Rspo pathway, the potential cellular sources of Wnt signalling regulators and highlight potential future areas of study.
Collapse
Affiliation(s)
- Amanda T Mah
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
585
|
Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS One 2016; 11:e0156877. [PMID: 27284979 PMCID: PMC4902192 DOI: 10.1371/journal.pone.0156877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/22/2016] [Indexed: 11/19/2022] Open
Abstract
The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3) is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised.
Collapse
|
586
|
Richmond CA, Shah MS, Carlone DL, Breault DT. An enduring role for quiescent stem cells. Dev Dyn 2016; 245:718-26. [PMID: 27153394 DOI: 10.1002/dvdy.24416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
The intestine's ability to recover from catastrophic injury requires quiescent intestinal stem cells (q-ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q-ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q-ISCs. A comprehensive understanding of these mechanisms would likely lead to targeted new therapies with profound therapeutic implications for patients with gastrointestinal conditions. We briefly review the current state of the literature, highlighting homeostatic mechanisms important for q-ISC regulation, listing key questions in the field, and offer strategies to address them. Developmental Dynamics 245:718-726, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camilla A Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Manasvi S Shah
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | - Diana L Carlone
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
587
|
Abstract
The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease.
Collapse
|
588
|
Nassar D, Blanpain C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:47-76. [DOI: 10.1146/annurev-pathol-012615-044438] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dany Nassar
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
| | - Cédric Blanpain
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
- WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
589
|
Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q, Carmon KS. LGR5-Targeted Antibody-Drug Conjugate Eradicates Gastrointestinal Tumors and Prevents Recurrence. Mol Cancer Ther 2016; 15:1580-90. [PMID: 27207778 DOI: 10.1158/1535-7163.mct-16-0114] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/23/2016] [Indexed: 12/14/2022]
Abstract
Gastrointestinal cancer is one of the leading causes of cancer-related mortality in men and women worldwide. The adult stem cell marker LGR5 (leucine-rich repeat-containing, G protein-coupled receptor 5) is highly expressed in a significant fraction of gastrointestinal tumors of the colon, liver, pancreas, and stomach, relative to normal tissues. LGR5 is located on the cell surface and undergoes rapid, constitutive internalization independent of ligand. Furthermore, LGR5-high cancer cells have been shown to exhibit the properties of tumor-initiating cells or cancer stem cells (CSC). On the basis of these attributes, we generated two LGR5-targeting antibody-drug conjugates (ADC) by tethering the tubulin-inhibiting cytotoxic drug monomethyl auristatin E to a highly specific anti-LGR5 mAb via a protease cleavable or noncleavable chemical linker and compared them in receptor binding, cell internalization, and cytotoxic efficacy in cancer cells. Here, we show that both ADCs bind LGR5 with high specificity and equivalent nanomolar affinity and rapidly internalize to the lysosomes of LGR5-expressing gastrointestinal cancer cells. The anti-LGR5 ADCs effectively induced cytotoxicity in LGR5-high gastrointestinal cancer cells, but not in LGR5-negative or -knockdown cancer cell lines. Overall, we demonstrate that the cleavable ADC exhibited higher potency in vitro and was able to eradicate tumors and prevent recurrence in a xenograft model of colon cancer. These findings provide preclinical evidence for the potential of LGR5-targeting ADCs as effective new therapeutics for the treatment and eradication of gastrointestinal tumors and CSCs with high LGR5 expression. Mol Cancer Ther; 15(7); 1580-90. ©2016 AACR.
Collapse
Affiliation(s)
- Xing Gong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ali Azhdarinia
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sukhen C Ghosh
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Xiong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingyun Liu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Kendra S Carmon
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
590
|
Abstract
Gastric diseases cause considerable worldwide burden. However, the stomach is still poorly understood in terms of the molecular-cellular processes that govern its development and homeostasis. In particular, the complex relationship between the differentiated cell types located within the stomach and the stem and progenitor cells that give rise to them is significantly understudied relative to other organs. In this review, we will highlight the current state of the literature relating to specification of gastric cell lineages from embryogenesis to adulthood. Special emphasis is placed on substantial gaps in knowledge about stomach specification that we think should be tackled to advance the field. For example, it has long been assumed that adult gastric units have a granule-free stem cell that gives rise to all differentiated lineages. Here we will point out that there are also other models that fit all extant data, such as long-lived lineage-committed progenitors that might serve as a source of new cells during homeostasis.
Collapse
Affiliation(s)
- Spencer G. Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence Address correspondence to: Jason C. Mills, MD, PhD, Washington University School of Medicine, Box 8124, 660 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-7487.Washington University School of MedicineBox 8124, 660 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
591
|
Srinivasan T, Than EB, Bu P, Tung KL, Chen KY, Augenlicht L, Lipkin SM, Shen X. Notch signalling regulates asymmetric division and inter-conversion between lgr5 and bmi1 expressing intestinal stem cells. Sci Rep 2016; 6:26069. [PMID: 27181744 PMCID: PMC4867651 DOI: 10.1038/srep26069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022] Open
Abstract
Rapidly cycling LGR5+ intestinal stem cells (ISCs) located at the base of crypts are the primary driver of regeneration. Additionally, BMI1 expression is correlated with a slow cycling pool of ISCs located at +4 position. While previous reports have shown interconversion between these two populations following tissue injury, we provide evidence that NOTCH signaling regulates the balance between these two populations and promotes asymmetric division as a mechanism for interconversion in the mouse intestine. In both in vitro and in vivo models, NOTCH suppression reduces the ratio of BMI1+/LGR5+ ISCs while NOTCH stimulation increases this ratio. Furthermore, NOTCH signaling can activate asymmetric division after intestinal inflammation. Overall, these data provide insights into ISC plasticity, demonstrating a direct interconversion mechanism between slow- and fast-cycling ISCs.
Collapse
Affiliation(s)
- Tara Srinivasan
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Elaine Bich Than
- Departments of Medicine, Surgery and Pathology, Weill Cornell Medical College, New York City, New York, 10021, USA
| | - Pengcheng Bu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA.,School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Leonard Augenlicht
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461 USA
| | - Steven M Lipkin
- Departments of Medicine, Surgery and Pathology, Weill Cornell Medical College, New York City, New York, 10021, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA.,School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708 USA
| |
Collapse
|
592
|
Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat Cell Biol 2016; 18:619-31. [PMID: 27183471 PMCID: PMC4884151 DOI: 10.1038/ncb3359] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
The interfollicular epidermis regenerates from heterogeneous basal skin cell populations that divide at different rates. It has previously been presumed that infrequently dividing basal cells known as label-retaining cells (LRCs) are stem cells, whereas non-LRCs are short-lived progenitors. Here we employ the H2B-GFP pulse-chase system in adult mouse skin and find that epidermal LRCs and non-LRCs are molecularly distinct and can be differentiated by Dlx1(CreER) and Slc1a3(CreER) genetic marking, respectively. Long-term lineage tracing and mathematical modelling of H2B-GFP dilution data show that LRCs and non-LRCs constitute two distinct stem cell populations with different patterns of proliferation, differentiation and upward cellular transport. During homeostasis, these populations are enriched in spatially distinct skin territories and can preferentially produce unique differentiated lineages. On wounding or selective killing, they can temporarily replenish each other's territory. These two discrete interfollicular stem cell populations are functionally interchangeable and intrinsically well adapted to thrive in distinct skin environments.
Collapse
|
593
|
Dominguez-Brauer C, Hao Z, Elia AJ, Fortin JM, Nechanitzky R, Brauer PM, Sheng Y, Mana MD, Chio IIC, Haight J, Pollett A, Cairns R, Tworzyanski L, Inoue S, Reardon C, Marques A, Silvester J, Cox MA, Wakeham A, Yilmaz OH, Sabatini DM, van Es JH, Clevers H, Sato T, Mak TW. Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation. Cell Stem Cell 2016; 19:205-216. [PMID: 27184401 DOI: 10.1016/j.stem.2016.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 09/11/2015] [Accepted: 04/14/2016] [Indexed: 11/19/2022]
Abstract
The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Zhenyue Hao
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Andrew J Elia
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Jérôme M Fortin
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Robert Nechanitzky
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | | | - Yi Sheng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Miyeko D Mana
- The David H. Koch Institute of Integrative Cancer Research at MIT, Department of Biology, Cambridge, MA 02139, USA
| | | | - Jillian Haight
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Aaron Pollett
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Robert Cairns
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Leanne Tworzyanski
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Satoshi Inoue
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Colin Reardon
- Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ana Marques
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Jennifer Silvester
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Maureen A Cox
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Omer H Yilmaz
- The David H. Koch Institute of Integrative Cancer Research at MIT, Department of Biology, Cambridge, MA 02139, USA
| | - David M Sabatini
- The David H. Koch Institute of Integrative Cancer Research at MIT, Department of Biology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Broad Institute, and Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Johan H van Es
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Toshiro Sato
- Department of Gastroenterology, School of Medicine, Keio University, 35 Shinanomachi, Shinnjukuku, Tokyo 160-8582, Japan
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
594
|
Aloia L, McKie MA, Huch M. Cellular plasticity in the adult liver and stomach. J Physiol 2016; 594:4815-25. [PMID: 27028579 DOI: 10.1113/jp271769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
Adult tissues maintain function and architecture through robust homeostatic mechanisms mediated by self-renewing cells capable of generating all resident cell types. However, severe injury can challenge the regeneration potential of such a stem/progenitor compartment. Indeed, upon injury adult tissues can exhibit massive cellular plasticity in order to achieve proper tissue regeneration, circumventing an impaired stem/progenitor compartment. Several examples of such plasticity have been reported in both rapidly and slowly self-renewing organs and follow conserved mechanisms. Upon loss of the cellular compartment responsible for maintaining homeostasis, quiescent or slowly proliferating stem/progenitor cells can acquire high proliferation potential and turn into active stem cells, or, alternatively, mature cells can de-differentiate into stem-like cells or re-enter the cell cycle to compensate for the tissue loss. This extensive cellular plasticity acts as a key mechanism to respond to multiple stimuli in a context-dependent manner, enabling tissue regeneration in a robust fashion. In this review cellular plasticity in the adult liver and stomach will be examined, highlighting the diverse cell populations capable of repairing the damaged tissue.
Collapse
Affiliation(s)
- Luigi Aloia
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mikel Alexander McKie
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
595
|
Hayakawa Y, Sethi N, Sepulveda AR, Bass AJ, Wang TC. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev Cancer 2016; 16:305-18. [PMID: 27112208 DOI: 10.1038/nrc.2016.24] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over recent decades we have witnessed a shift in the anatomical distribution of gastric cancer (GC), which increasingly originates from the proximal stomach near the junction with the oesophagus. In parallel, there has been a dramatic rise in the incidence of oesophageal adenocarcinoma (OAC) in the lower oesophagus, which is associated with antecedent Barrett oesophagus (BO). In this context, there has been uncertainty regarding the characterization of adenocarcinomas spanning the area from the lower oesophagus to the distal stomach. Most relevant to this discussion is the distinction, if any, between OAC and intestinal-type GC of the proximal stomach. It is therefore timely to review our current understanding of OAC and intestinal-type GC, integrating advances from cell-of-origin studies and comprehensive genomic alteration analyses, ultimately enabling better insight into the relationship between these two cancers.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Antonia R Sepulveda
- Division of Clinical Pathology and Cell Biology, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, 1130 St Nicholas Avenue, New York, New York 10032, USA
| |
Collapse
|
596
|
Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis Model Mech 2016; 9:487-99. [PMID: 27112333 PMCID: PMC4892664 DOI: 10.1242/dmm.024232] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| |
Collapse
|
597
|
Smith NR, Gallagher AC, Wong MH. Defining a stem cell hierarchy in the intestine: markers, caveats and controversies. J Physiol 2016; 594:4781-90. [PMID: 26864260 DOI: 10.1113/jp271651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly- and active-cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly-cycling stem cells self-renew but replenish an active-cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non-conventional alternatives to a linear hierarchy. While these new and potentially paradigm-shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alexandra C Gallagher
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.,OHSU Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
598
|
Espersen MLM, Linnemann D, Christensen IJ, Alamili M, Troelsen JT, Høgdall E. The prognostic value of polycomb group protein B-cell-specific moloney murine leukemia virus insertion site 1 in stage II colon cancer patients. APMIS 2016; 124:541-6. [PMID: 27102362 DOI: 10.1111/apm.12539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/08/2016] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the prognostic value of B-cell-specific moloney murine leukemia virus insertion site 1 (BMI1) protein expression in primary tumors of stage II colon cancer patients. BMI1 protein expression was assessed by immunohistochemistry in a retrospective patient cohort consisting of 144 stage II colon cancer patients. BMI1 expression at the invasive front of the primary tumors correlated with mismatch repair status of the tumors. Furthermore, BMI1 expression at the luminal surface correlated with T-stage, tumor location, and the histological subtypes of the tumors. In a univariate Cox proportional hazard analysis, no statistical significant association between risk of relapse and BMI1 protein expression at the invasive front (HR: 1.12; 95% CI 0.78-1.60; p = 0.53) or at the luminal surface of the tumor (HR: 1.06; 95% CI 0.75-1.48; p = 0.70) was found. Likewise, there was no association between 5-year overall survival and BMI1 expression at the invasive front (HR: 1.12; 95% CI 0.80-1.56; p = 0.46) or at the luminal surface of the tumor (HR: 1.16; 95% CI 0.86-1.60; p = 0.33). In conclusion, BMI1 expression in primary tumors of stage II colon cancer patients could not predict relapse or overall survival of the patients, thus having a limited prognostic value in stage II colon cancer patients.
Collapse
Affiliation(s)
- Maiken L M Espersen
- Department of Pathology, Herlev University Hospital, Herlev, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dorte Linnemann
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Ib J Christensen
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Mahdi Alamili
- Department of Surgery, Køge University Hospital, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|
599
|
A Subpopulation of Label-Retaining Cells of the Kidney Papilla Regenerates Injured Kidney Medullary Tubules. Stem Cell Reports 2016; 6:757-771. [PMID: 27117784 PMCID: PMC4939828 DOI: 10.1016/j.stemcr.2016.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
To determine whether adult kidney papillary label-retaining cells (pLRCs) are specialized precursors, we analyzed their transcription profile. Among genes overexpressed in pLRCs, we selected candidate genes to perform qPCR and immunodetection of their encoded proteins. We found that Zfyve27, which encodes protrudin, identified a subpopulation of pLRCs. With Zfyve27-CreERT2 transgenic and reporter mice we generated bitransgenic animals and performed cell-lineage analysis. Post tamoxifen, Zfyve27-CreERT2 marked cells preferentially located in the upper part of the papilla. These cells were low cycling and did not generate progeny even after long-term observation, thus they did not appear to contribute to kidney homeostasis. However, after kidney injury, but only if severe, they activated a program of proliferation, migration, and morphogenesis generating multiple and long tubular segments. Remarkably these regenerated tubules were located preferentially in the kidney medulla, indicating that repair of injury in the kidney is regionally specified. These results suggest that different parts of the kidney have different progenitor cell pools.
Collapse
|
600
|
Westphalen CB, Takemoto Y, Tanaka T, Macchini M, Jiang Z, Renz BW, Chen X, Ormanns S, Nagar K, Tailor Y, May R, Cho Y, Asfaha S, Worthley DL, Hayakawa Y, Urbanska AM, Quante M, Reichert M, Broyde J, Subramaniam PS, Remotti H, Su GH, Rustgi AK, Friedman RA, Honig B, Califano A, Houchen CW, Olive KP, Wang TC. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell 2016; 18:441-55. [PMID: 27058937 PMCID: PMC4826481 DOI: 10.1016/j.stem.2016.03.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 12/08/2015] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
Abstract
The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation. Accordingly, their loss has detrimental effects after cerulein-induced pancreatitis. Expression of mutant Kras in Dclk1+ cells does not affect their quiescence or longevity. However, experimental pancreatitis converts Kras mutant Dclk1+ cells into potent cancer-initiating cells. As a potential effector of Kras, Dclk1 contributes functionally to the pathogenesis of pancreatic cancer. Taken together, these observations indicate that Dclk1 marks quiescent pancreatic progenitors that are candidates for the origin of pancreatic cancer.
Collapse
Affiliation(s)
- C Benedikt Westphalen
- Department of Internal Medicine III, Hospital of the University of Munich D-81377, Munich, Germany; Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Yoshihiro Takemoto
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Takayuki Tanaka
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Marina Macchini
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA; Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, 40128 Bologna, Italy
| | - Zhengyu Jiang
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Bernhard W Renz
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich D-81377, Munich, Germany; Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaowei Chen
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Steffen Ormanns
- Department of Pathology, Hospital of the University of Munich D-81377, Munich, Germany
| | - Karan Nagar
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Yagnesh Tailor
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Randal May
- Department of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Youngjin Cho
- Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Samuel Asfaha
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Daniel L Worthley
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Yoku Hayakawa
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Aleksandra M Urbanska
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Quante
- Department of Internal Medicine II, Klinikum rechts der Isar II, Technische Universität München, D-81675 Munich, Germany
| | - Maximilian Reichert
- Department of Internal Medicine II, Klinikum rechts der Isar II, Technische Universität München, D-81675 Munich, Germany; Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua Broyde
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Prem S Subramaniam
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Otolaryngology / Head & Neck Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Richard A Friedman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Barry Honig
- Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Otolaryngology / Head & Neck Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Courtney W Houchen
- Department of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Kenneth P Olive
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Timothy C Wang
- Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|