551
|
Abstract
Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel
in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biochemical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
552
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
553
|
Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 2016; 13:41-50. [PMID: 26716561 DOI: 10.1038/nmeth.3684] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
The simplicity of site-specific genome targeting by type II clustered, regularly interspaced, short palindromic repeat (CRISPR)-Cas9 nucleases, along with their robust activity profile, has changed the landscape of genome editing. These favorable properties have made the CRISPR-Cas9 system the technology of choice for sequence-specific modifications in vertebrate systems. For many applications, whether the focus is on basic science investigations or therapeutic efficacy, activity and precision are important considerations when one is choosing a nuclease platform, target site and delivery method. Here we review recent methods for increasing the activity and accuracy of Cas9 and assessing the extent of off-target cleavage events.
Collapse
Affiliation(s)
- Mehmet Fatih Bolukbasi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ankit Gupta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
554
|
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2253-82. [PMID: 26901595 DOI: 10.1002/smll.201503208] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Indexed: 05/20/2023]
Abstract
"Organ-on-a-chip" systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell-cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ-level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ-on-a-chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof-of-concept studies are also be highlighted.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
555
|
Lu YW, Galbraith L, Herndon JD, Lu YL, Pras-Raves M, Vervaart M, Van Kampen A, Luyf A, Koehler CM, McCaffery JM, Gottlieb E, Vaz FM, Claypool SM. Defining functional classes of Barth syndrome mutation in humans. Hum Mol Genet 2016; 25:1754-70. [PMID: 26908608 PMCID: PMC4986330 DOI: 10.1093/hmg/ddw046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a given BTHS-associated missense mutation impairs TAZ function has only been determined in a yeast model of this human disease. Presently, the detailed characterization of yeast tafazzin harboring individual BTHS mutations at evolutionarily conserved residues has identified seven distinct loss-of-function mechanisms caused by patient-associated missense alleles. However, whether the biochemical consequences associated with individual mutations also occur in the context of human TAZ in a validated mammalian model has not been demonstrated. Here, utilizing newly established monoclonal antibodies capable of detecting endogenous TAZ, we demonstrate that mammalian TAZ, like its yeast counterpart, is localized to the mitochondrion where it adopts an extremely protease-resistant fold, associates non-integrally with intermembrane space-facing membranes and assembles in a range of complexes. Even though multiple isoforms are expressed at the mRNA level, only a single polypeptide that co-migrates with the human isoform lacking exon 5 is expressed in human skin fibroblasts, HEK293 cells, and murine heart and liver mitochondria. Finally, using a new genome-edited mammalian BTHS cell culture model, we demonstrate that the loss-of-function mechanisms for two BTHS alleles that represent two of the seven functional classes of BTHS mutation as originally defined in yeast, are the same when modeled in human TAZ.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Laura Galbraith
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Jenny D Herndon
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1569, USA
| | - Ya-Lin Lu
- Division of Biology and Biomedical Sciences, Graduate School of Arts and Sciences, Washington University, St. Louis, MO 63130-4899, USA
| | - Mia Pras-Raves
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Martin Vervaart
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Antoine Van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands and
| | - Angela Luyf
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands and
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1569, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eyal Gottlieb
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Frederic M Vaz
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases and
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA,
| |
Collapse
|
556
|
Bersini S, Arrigoni C, Lopa S, Bongio M, Martin I, Moretti M. Engineered miniaturized models of musculoskeletal diseases. Drug Discov Today 2016; 21:1429-1436. [PMID: 27132520 DOI: 10.1016/j.drudis.2016.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023]
Abstract
The musculoskeletal system is an incredible machine that protects, supports and moves the human body. However, several diseases can limit its functionality, compromising patient quality of life. Designing novel pathological models would help to clarify the mechanisms driving such diseases, identify new biomarkers and screen potential drug candidates. Miniaturized models in particular can mimic the structure and function of basic tissue units within highly controlled microenvironments, overcoming the limitations of traditional macroscale models and complementing animal studies, which despite being closer to the in vivo situation, are affected by species-specific differences. Here, we discuss the miniaturized models engineered over the past few years to analyze osteochondral and skeletal muscle pathologies, demonstrating how the rationale design of novel systems could provide key insights into the pathological mechanisms behind diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Chiara Arrigoni
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Matilde Bongio
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Ivan Martin
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Fondazione Cardiocentro Ticino, Lugano, Switzerland.
| |
Collapse
|
557
|
Ryan AJ, Brougham CM, Garciarena CD, Kerrigan SW, O'Brien FJ. Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discov Today 2016; 21:1437-1445. [PMID: 27117348 DOI: 10.1016/j.drudis.2016.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
The field of tissue engineering is developing biomimetic biomaterial scaffolds that are showing increasing therapeutic potential for the repair of cardiovascular tissues. However, a major opportunity exists to use them as 3D in vitro models for the study of cardiovascular tissues and disease in addition to drug development and testing. These in vitro models can span the gap between 2D culture and in vivo testing, thus reducing the cost, time, and ethical burden of current approaches. Here, we outline the progress to date and the requirements for the development of ideal in vitro 3D models for blood vessels, heart valves, and myocardial tissue.
Collapse
Affiliation(s)
- Alan J Ryan
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Claire M Brougham
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; School of Mechanical and Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
| | - Carolina D Garciarena
- Cardiovascular Infection Research Group, School of Pharmacy & Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy & Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
558
|
Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK. Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B 2016; 4:3534-3543. [PMID: 32263387 DOI: 10.1039/c6tb00324a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pharmaceutical screening based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and multi electrode arrays (MEAs) have been proposed as a complementary method for electrophysiological safety and efficacy assessment in drug discovery and development. Contrary to animal models, these cells offer a human genetic background but, at present, fail to recapitulate the mechanical and structural properties of the native human myocardium. Here, we report that topographical cues on soft micromolded gelatin can coax hiPSC-CMs to form laminar cardiac tissues that resemble the native architecture of the heart. Importantly, using this method we were able to record tissue-level electrophysiological responses with a commercially available MEA setup. To validate this platform, we recorded cardiac field potentials at baseline and after pharmacological interventions with a β-adrenergic agonist (isoproterenol). Further, we tested the ability of our system to predict the response of laminar human cardiac tissues to a cardiotoxic pro-drug (terfenadine) and its non-cardiotoxic metabolite (fexofenadine). Finally, we integrated our platform with microfluidic components to build a heart-on-a-chip system that can be fluidically linked with other organs-on-chips in the future.
Collapse
Affiliation(s)
- Ville J Kujala
- Disease Biophysics Group, Harvard Stem Cell Institute, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, K.K.P. 29 Oxford Street, Pierce Hall Cambridge, MA 02130, USA.
| | | | | | | | | |
Collapse
|
559
|
Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling. Cardiol Res Pract 2016; 2016:3582380. [PMID: 27110425 PMCID: PMC4826691 DOI: 10.1155/2016/3582380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/03/2016] [Indexed: 01/09/2023] Open
Abstract
Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.
Collapse
|
560
|
Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 2016; 13:333-49. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
561
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
562
|
Hsu P, Liu X, Zhang J, Wang HG, Ye JM, Shi Y. Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy 2016; 11:643-52. [PMID: 25919711 DOI: 10.1080/15548627.2015.1023984] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tafazzin (TAZ) is a phospholipid transacylase that catalyzes the remodeling of cardiolipin, a mitochondrial phospholipid required for oxidative phosphorylation. Mutations of TAZ cause Barth syndrome, which is characterized by mitochondrial dysfunction and dilated cardiomyopathy, leading to premature death. However, the molecular mechanisms underlying the cause of mitochondrial dysfunction in Barth syndrome remain poorly understood. Here we investigated the role of TAZ in regulating mitochondrial function and mitophagy. Using primary mouse embryonic fibroblasts (MEFs) with doxycycline-inducible knockdown of Taz, we showed that TAZ deficiency in MEFs caused defective mitophagosome biogenesis, but not other autophagic processes. Consistent with a key role of mitophagy in mitochondria quality control, TAZ deficiency in MEFs also led to impaired oxidative phosphorylation and severe oxidative stress. Together, these findings provide key insights on mitochondrial dysfunction in Barth syndrome, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for this lethal condition.
Collapse
Key Words
- AdGFP-LC3, recombinant adenovirus expressing GFP tagged MAP1LC3B
- AdTAZ, recombinant adenovirus expressing Myc-tagged TAZ
- BTHS, Barth syndrome
- BafA1, bafilomycin A1
- Barth syndrome
- CCCP, carbonyl cyanide m-chlorophenylhydrazone
- CL, cardiolipin
- Dox, doxycycline
- FCCP, carbonyl cyanide p-triflouromethoxyphenylhydrazone
- LTG, LysoTracker Green
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 beta
- MEF, mouse embryonic fibroblast
- MLCL, monolysocardiolipin
- MTR, MitoTracker Red
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PINK1, PTEN-induced putative kinase 1
- SOD2, superoxide dismutase 2 mitochondrial
- TAZ, tafazzin
- TLCL, tetralinoleoyl-cardiolipin
- autophagy
- cardiolipin
- mitochondrial dysfunction
- mitophagosome
- mitophagy
- tafazzin
Collapse
Affiliation(s)
- Paul Hsu
- a Department of Cellular and Molecular Physiology ; Hershey , PA USA
| | | | | | | | | | | |
Collapse
|
563
|
Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol 2016; 52:84-92. [PMID: 26912118 DOI: 10.1016/j.semcdb.2016.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Aberrations in metabolism contribute to a large number of diseases, such as diabetes, obesity, cancer, and cardiovascular diseases, that have a substantial impact on the mortality rates and quality of life worldwide. However, the mechanisms leading to these changes in metabolic state--and whether they are conserved between diseases--is not well understood. Changes in metabolism similar to those seen in pathological conditions are observed during normal development in a number of different cell types. This provides hope that understanding the mechanism of these metabolic switches in normal development may provide useful insight in correcting them in pathological cases. Here, we focus on the metabolic remodeling observed both in early stage embryonic stem cells and during the maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Rebecca Ellen Kreipke
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jason Wayne Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
564
|
Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. LAB ON A CHIP 2016; 16:599-610. [PMID: 26758922 DOI: 10.1039/c5lc01356a] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the past few years, microfluidic-based technology has developed microscale models recapitulating key physical and biological cues typical of the native myocardium. However, the application of controlled physiological uniaxial cyclic strains on a defined three-dimension cellular environment is not yet possible. Two-dimension mechanical stimulation was particularly investigated, neglecting the complex three-dimensional cell-cell and cell-matrix interactions. For this purpose, we developed a heart-on-a-chip platform, which recapitulates the physiologic mechanical environment experienced by cells in the native myocardium. The device includes an array of hanging posts to confine cell-laden gels, and a pneumatic actuation system to induce homogeneous uniaxial cyclic strains to the 3D cell constructs during culture. The device was used to generate mature and highly functional micro-engineered cardiac tissues (μECTs), from both neonatal rat and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), strongly suggesting the robustness of our engineered cardiac micro-niche. Our results demonstrated that the cyclic strain was effectively highly uniaxial and uniformly transferred to cells in culture. As compared to control, stimulated μECTs showed superior cardiac differentiation, as well as electrical and mechanical coupling, owing to a remarkable increase in junction complexes. Mechanical stimulation also promoted early spontaneous synchronous beating and better contractile capability in response to electric pacing. Pacing analyses of hiPSC-CM constructs upon controlled administration of isoprenaline showed further promising applications of our platform in drug discovery, delivery and toxicology fields. The proposed heart-on-a-chip device represents a relevant step forward in the field, providing a standard functional three-dimensional cardiac model to possibly predict signs of hypertrophic changes in cardiac phenotype by mechanical and biochemical co-stimulation.
Collapse
Affiliation(s)
- Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Chiara Conficconi
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland. and Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Marta Lemme
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland. and Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Emanuele Gaudiello
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Giulia Cerino
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building #21, 20133 Milano, Italy.
| |
Collapse
|
565
|
Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R, Grunau S, Callegari S, Toischer K, Wanders RJ, Hasenfuß G, Brügger B, Guan K, Rehling P. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med 2016; 8:139-54. [PMID: 26697888 PMCID: PMC4734842 DOI: 10.15252/emmm.201505644] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023] Open
Abstract
Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - I-Fen Cheng
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Wozny
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Martina Balleininger
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Reinhold
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Grunau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Ronald Ja Wanders
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
566
|
Saric A, Andreau K, Armand AS, Møller IM, Petit PX. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies. Front Genet 2016; 6:359. [PMID: 26834781 PMCID: PMC4719219 DOI: 10.3389/fgene.2015.00359] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Collapse
Affiliation(s)
- Ana Saric
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-PèresParis, France; Division of Molecular Medicine, Ruđer Bošković InstituteZagreb, Croatia
| | - Karine Andreau
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Anne-Sophie Armand
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
| | - Patrice X Petit
- INSERM U 1124 "Toxicologie, Pharmacologie et Signalisation Cellulaire" and "FR 3567" CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes - Centre Universitaire des Saints-Pères Paris, France
| |
Collapse
|
567
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
568
|
Cashman TJ, Josowitz R, Johnson BV, Gelb BD, Costa KD. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy. PLoS One 2016; 11:e0146697. [PMID: 26784941 PMCID: PMC4718533 DOI: 10.1371/journal.pone.0146697] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new therapeutic approaches for this lethal form of heart disease.
Collapse
Affiliation(s)
- Timothy J. Cashman
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Rebecca Josowitz
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bryce V. Johnson
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Kevin D. Costa
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
569
|
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96:83-102. [PMID: 26656602 PMCID: PMC4807693 DOI: 10.1016/j.addr.2015.11.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) structure and biochemistry provide cell-instructive cues that promote and regulate tissue growth, function, and repair. From a structural perspective, the ECM is a scaffold that guides the self-assembly of cells into distinct functional tissues. The ECM promotes the interaction between individual cells and between different cell types, and increases the strength and resilience of the tissue in mechanically dynamic environments. From a biochemical perspective, factors regulating cell-ECM adhesion have been described and diverse aspects of cell-ECM interactions in health and disease continue to be clarified. Natural ECMs therefore provide excellent design rules for tissue engineering scaffolds. The design of regenerative three-dimensional (3D) engineered scaffolds is informed by the target ECM structure, chemistry, and mechanics, to encourage cell infiltration and tissue genesis. This can be achieved using nanofibrous scaffolds composed of polymers that simultaneously recapitulate 3D ECM architecture, high-fidelity nanoscale topography, and bio-activity. Their high porosity, structural anisotropy, and bio-activity present unique advantages for engineering 3D anisotropic tissues. Here, we use the heart as a case study and examine the potential of ECM-inspired nanofibrous scaffolds for cardiac tissue engineering. We asked: Do we know enough to build a heart? To answer this question, we tabulated structural and functional properties of myocardial and valvular tissues for use as design criteria, reviewed nanofiber manufacturing platforms and assessed their capabilities to produce scaffolds that meet our design criteria. Our knowledge of the anatomy and physiology of the heart, as well as our ability to create synthetic ECM scaffolds have advanced to the point that valve replacement with nanofibrous scaffolds may be achieved in the short term, while myocardial repair requires further study in vitro and in vivo.
Collapse
Affiliation(s)
- A K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L A MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
570
|
Parsa H, Ronaldson K, Vunjak-Novakovic G. Bioengineering methods for myocardial regeneration. Adv Drug Deliv Rev 2016; 96:195-202. [PMID: 26150344 PMCID: PMC4698189 DOI: 10.1016/j.addr.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
The challenging task of heart regeneration is being pursued in three related directions: derivation of cardiomyocytes from human stem cells, in vitro engineering and maturation of cardiac tissues, and development of methods for controllable cell delivery into the heart. In this review, we focus on tissue engineering methods that recapitulate biophysical signaling found during normal heart development and maturation. We discuss the use of scaffold-bioreactor systems for engineering functional human cardiac tissues, and the methods for delivering stem cells, cardiomyocytes and engineered tissues into the heart.
Collapse
Affiliation(s)
- Hesam Parsa
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Kacey Ronaldson
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
571
|
Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling. Biochim Biophys Acta Gen Subj 2016; 1860:686-93. [PMID: 26779594 DOI: 10.1016/j.bbagen.2016.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs). SCOPE OF REVIEW We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed. MAJOR CONCLUSIONS iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells. GENERAL SIGNIFICANCE Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases.
Collapse
|
572
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
573
|
Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 2016; 96:234-244. [PMID: 26428619 DOI: 10.1016/j.addr.2015.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.
Collapse
Affiliation(s)
- Evangeline Tzatzalos
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Oscar J Abilez
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
- Bio-X Program
- Department of Medicine, Division of Cardiovascular Medicine
| | - Praveen Shukla
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Joseph C Wu
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
- Bio-X Program
- Department of Medicine, Division of Cardiovascular Medicine
| |
Collapse
|
574
|
Kurokawa YK, George SC. Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Adv Drug Deliv Rev 2016; 96:225-33. [PMID: 26212156 PMCID: PMC4869857 DOI: 10.1016/j.addr.2015.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/29/2022]
Abstract
The ability to accurately detect cardiotoxicity has become increasingly important in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes, researchers have explored their use in creating an in vitro drug screening platform. Recently, there has been increasing interest in creating 3D microphysiological models of the heart as a tool to detect cardiotoxic compounds. By recapitulating the complex microenvironment that exists in the native heart, cardiac microphysiological systems have the potential to provide a more accurate pharmacological response compared to current standards in preclinical drug screening. This review aims to provide an overview on the progress made in creating advanced models of the human heart, including the significance and contributions of the various cellular and extracellular components to cardiac function.
Collapse
Affiliation(s)
- Yosuke K Kurokawa
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
575
|
In vitro cardiac tissue models: Current status and future prospects. Adv Drug Deliv Rev 2016; 96:203-13. [PMID: 26428618 DOI: 10.1016/j.addr.2015.09.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Achieving the next phase of potential treatment strategies and better prognostic tools will require a concerted effort from interdisciplinary fields. Biomaterials-based cardiac tissue models are revolutionizing the area of preclinical research and translational applications. The goal of in vitro cardiac tissue modeling is to create physiological functional models of the human myocardium, which is a difficult task due to the complex structure and function of the human heart. This review describes the advances made in area of in vitro cardiac models using biomaterials and bioinspired platforms. The field has progressed extensively in the past decade, and we envision its applications in the areas of drug screening, disease modeling, and precision medicine.
Collapse
|
576
|
Abstract
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.
Collapse
Affiliation(s)
- Carmen A Argmann
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
577
|
Aung A, Bhullar IS, Theprungsirikul J, Davey SK, Lim HL, Chiu YJ, Ma X, Dewan S, Lo YH, McCulloch A, Varghese S. 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. LAB ON A CHIP 2016; 16:153-62. [PMID: 26588203 PMCID: PMC4681661 DOI: 10.1039/c5lc00820d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the development of three-dimensional (3D) cardiac microtissues within a microfluidic device with the ability to quantify real-time contractile stress measurements in situ. Using a 3D patterning technology that allows for the precise spatial distribution of cells within the device, we created an array of 3D cardiac microtissues from neonatal mouse cardiomyocytes. We integrated the 3D micropatterning technology with microfluidics to achieve perfused cell-laden structures. The cells were encapsulated within a degradable gelatin methacrylate hydrogel, which was sandwiched between two polyacrylamide hydrogels. The polyacrylamide hydrogels were used as "stress sensors" to acquire the contractile stresses generated by the beating cardiac cells. The cardiac-specific response of the engineered 3D system was examined by exposing it to epinephrine, an adrenergic neurotransmitter known to increase the magnitude and frequency of cardiac contractions. In response to exogenous epinephrine the engineered cardiac tissues exhibited an increased beating frequency and stress magnitude. Such cost-effective and easy-to-adapt 3D cardiac systems with real-time functional readout could be an attractive technological platform for drug discovery and development.
Collapse
Affiliation(s)
- Aereas Aung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Jung G, Fajardo G, Ribeiro AJS, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D. Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J 2015; 30:1464-79. [PMID: 26675706 DOI: 10.1096/fj.15-280982] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used β-adrenergic receptor (β-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), β2-ARs are a primary source of cAMP/PKA signaling. With longer culture, β1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic β-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, β-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of β-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.
Collapse
Affiliation(s)
- Gwanghyun Jung
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Giovanni Fajardo
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Alexandre J S Ribeiro
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Kristina Bezold Kooiker
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Michael Coronado
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Mingming Zhao
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Dong-Qing Hu
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Sushma Reddy
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Kazuki Kodo
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Krishna Sriram
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Paul A Insel
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Joseph C Wu
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Beth L Pruitt
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| | - Daniel Bernstein
- *Division of Cardiology, Department of Pediatrics, Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA; and Departments of Pharmacology and Medicine, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
579
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
580
|
Zou C, Synan MJ, Li J, Xiong S, Manni ML, Liu Y, Chen BB, Zhao Y, Shiva S, Tyurina YY, Jiang J, Lee JS, Das S, Ray A, Ray P, Kagan VE, Mallampalli RK. LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. J Cell Sci 2015; 129:51-64. [PMID: 26604221 DOI: 10.1242/jcs.176701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew J Synan
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Michelle L Manni
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet S Lee
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sudipta Das
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anuradha Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerian E Kagan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
581
|
McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM. The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. Mol Cell 2015; 60:886-98. [PMID: 26698661 DOI: 10.1016/j.molcel.2015.10.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/10/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Abstract
During mitosis, the macromolecular kinetochore complex assembles on the centromere to orchestrate chromosome segregation. The properties and architecture of the 16-subunit Constitutive Centromere-Associated Network (CCAN) that allow it to build a robust platform for kinetochore assembly are poorly understood. Here, we use inducible CRISPR knockouts and biochemical reconstitutions to define the interactions between the human CCAN proteins. We find that the CCAN does not assemble as a linear hierarchy, and instead, each sub-complex requires multiple non-redundant interactions for its localization to centromeres and the structural integrity of the overall assembly. We demonstrate that the CENP-L-N complex plays a crucial role at the core of this assembly through interactions with CENP-C and CENP-H-I-K-M. Finally, we show that the CCAN is remodeled over the cell cycle such that sub-complexes depend on their interactions differentially. Thus, an interdependent meshwork within the CCAN underlies the centromere specificity and stability of the kinetochore.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Tonia Tsinman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
582
|
Abstract
The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.
Collapse
|
583
|
Kagawa Y, Miyahara H, Ota Y, Tsuneda S. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions. Biotechnol Prog 2015; 32:189-97. [PMID: 26558344 DOI: 10.1002/btpr.2202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/28/2015] [Indexed: 01/30/2023]
Abstract
Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design.
Collapse
Affiliation(s)
- Yuki Kagawa
- Inst. for Nanoscience and Nanotechnology, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Hirotaka Miyahara
- Dept. of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Yuri Ota
- Dept. of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Satoshi Tsuneda
- Inst. for Nanoscience and Nanotechnology, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku, Tokyo, 162-8480, Japan.,Dept. of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku, Tokyo, 162-8480, Japan
| |
Collapse
|
584
|
Abstract
Each human genome differs by millions of sequence variants, but which of these differences are important in human biology and disease? Jeffrey Perkel takes a look at the how scientists are identifying and cataloging important genetic variation.
Collapse
|
585
|
Bedada FB, Wheelwright M, Metzger JM. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1829-38. [PMID: 26578113 DOI: 10.1016/j.bbamcr.2015.11.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Fikru B Bedada
- Department of Integrative Biology and Physiology, University of Minnesota Medical School Minneapolis, MN 55455, USA
| | - Matthew Wheelwright
- Department of Integrative Biology and Physiology, University of Minnesota Medical School Minneapolis, MN 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School Minneapolis, MN 55455, USA.
| |
Collapse
|
586
|
Poleganov MA, Eminli S, Beissert T, Herz S, Moon JI, Goldmann J, Beyer A, Heck R, Burkhart I, Barea Roldan D, Türeci Ö, Yi K, Hamilton B, Sahin U. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Hum Gene Ther 2015; 26:751-66. [DOI: 10.1089/hum.2015.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marco Alexander Poleganov
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie Herz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johanna Goldmann
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Arianne Beyer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Rosario Heck
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Burkhart
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Diana Barea Roldan
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kevin Yi
- Stemgent, Cambridge, Massachusetts
| | | | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
587
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
588
|
Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG, Atsma DE, Passier R, Mummery CL. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function. Cell Rep 2015; 13:733-745. [PMID: 26489474 PMCID: PMC4644234 DOI: 10.1016/j.celrep.2015.09.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/31/2015] [Accepted: 09/05/2015] [Indexed: 12/23/2022] Open
Abstract
Maximizing baseline function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is essential for their effective application in models of cardiac toxicity and disease. Here, we aimed to identify factors that would promote an adequate level of function to permit robust single-cell contractility measurements in a human induced pluripotent stem cell (hiPSC) model of hypertrophic cardiomyopathy (HCM). A simple screen revealed the collaborative effects of thyroid hormone, IGF-1 and the glucocorticoid analog dexamethasone on the electrophysiology, bioenergetics, and contractile force generation of hPSC-CMs. In this optimized condition, hiPSC-CMs with mutations in MYBPC3, a gene encoding myosin-binding protein C, which, when mutated, causes HCM, showed significantly lower contractile force generation than controls. This was recapitulated by direct knockdown of MYBPC3 in control hPSC-CMs, supporting a mechanism of haploinsufficiency. Modeling this disease in vitro using human cells is an important step toward identifying therapeutic interventions for HCM.
Collapse
Affiliation(s)
- Matthew J Birket
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Marcelo C Ribeiro
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Dorien Ward
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ana Rita Leitoguinho
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Vera van de Pol
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Cheryl Dambrot
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
589
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
590
|
Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells 2015; 34:13-26. [DOI: 10.1002/stem.2196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
- Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente, P.O.Box 217; Enschede The Netherlands
| |
Collapse
|
591
|
Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology. Stem Cells Transl Med 2015; 4:1352-68. [PMID: 26450425 DOI: 10.5966/sctm.2015-0095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. SIGNIFICANCE Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently attracted much attention in biology including stem cell research. These microplatforms and the future directions of stem cell microenvironment are described.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaeho Lim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
592
|
Campbell KA, Terzic A, Nelson TJ. Induced pluripotent stem cells for cardiovascular disease: from product-focused disease modeling to process-focused disease discovery. Regen Med 2015; 10:773-83. [PMID: 26439809 DOI: 10.2217/rme.15.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Induced pluripotent stem (iPS) cell technology offers an unprecedented opportunity to study patient-specific disease. This biotechnology platform enables recapitulation of individualized disease signatures in a dish through differentiation of patient-derived iPS cells. Beyond disease modeling, the in vitro process of differentiation toward genuine patient tissue offers a blueprint to inform disease etiology and molecular pathogenesis. Here, we highlight recent advances in patient-specific cardiac disease modeling and outline the future promise of iPS cell-based disease discovery applications.
Collapse
Affiliation(s)
- Katherine A Campbell
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.,Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Timothy J Nelson
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.,Center for Transplantation & Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
593
|
Feaster TK, Cadar AG, Wang L, Williams CH, Chun YW, Hempel JE, Bloodworth N, Merryman WD, Lim CC, Wu JC, Knollmann BC, Hong CC. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2015; 117:995-1000. [PMID: 26429802 DOI: 10.1161/circresaha.115.307580] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/01/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. OBJECTIVE To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. METHODS AND RESULTS Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). CONCLUSIONS The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.
Collapse
Affiliation(s)
- Tromondae K Feaster
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Adrian G Cadar
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Lili Wang
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Charles H Williams
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Young Wook Chun
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Jonathan E Hempel
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Nathaniel Bloodworth
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - W David Merryman
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Chee Chew Lim
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Joseph C Wu
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.)
| | - Björn C Knollmann
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.).
| | - Charles C Hong
- From the Departments of Pharmacology (T.K.F.), Cardiovascular Medicine (Y.W.C., J.E.H., C.C.L., C.C.H.), and Department of Medicine, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Oates Institute for Experimental Therapeutics (L.W., B.C.K.), Department of Molecular Physiology and Biophysics (A.G.C.), Vanderbilt University School of Medicine, Nashville, TN; Departments of Cell and Developmental Biology (C.H.W.) and Biomedical Engineering (N.B., W.D.M.), Vanderbilt University, Nashville, TN; Research Medicine, Veterans Affairs TVHS, Nashville, TN (C.C.H.); and Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology and Department of Radiology, Stanford University School of Medicine, CA (J.C.W.).
| |
Collapse
|
594
|
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 2015; 112:12705-10. [PMID: 26417073 DOI: 10.1073/pnas.1508073112] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.
Collapse
|
595
|
Gaspard GJ, McMaster CR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem Phys Lipids 2015; 193:1-10. [PMID: 26415690 DOI: 10.1016/j.chemphyslip.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
Cardiolipin (CL) is a phospholipid with many unique characteristics. CL is synthesized in the mitochondria and resides almost exclusively within the mitochondrial inner membrane. Unlike most phospholipids that have two fatty acyl chains, CL possesses four fatty acyl chains resulting in unique biophysical characteristics that impact several biological processes including membrane fission and fusion. In addition, several proteins directly bind CL including proteins within the electron transport chain, the ADP/ATP carrier, and proteins that mediate mitophagy. Tafazzin is an enzyme that remodels saturated fatty acyl chains within CL to unsaturated fatty acyl chains, loss of function mutations in the TAZ gene encoding tafazzin are causal for the inherited cardiomyopathy Barth syndrome. Cells from Barth syndrome patients as well as several models of Barth have reduced mitochondrial functions including impaired electron transport chain function and increased reactive oxygen species (ROS) production. Mitochondria in cells from Barth syndrome patients, as well as several model organism mimics of Barth syndrome, are large and lack cristae consistent with the recently described role of CL participating in the generation of mitochondrial membrane contact sites. Cells with an inactive TAZ gene have also been shown to have a decreased capacity to undergo mitophagy when faced with stresses such as increased ROS or decreased mitochondrial quality control. This review describes CL metabolism and how defects in CL metabolism cause Barth syndrome, the etiology of Barth syndrome, and known modifiers of Barth syndrome phenotypes some of which could be explored for their amelioration of Barth syndrome in higher organisms.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R McMaster
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
596
|
Broom AJ, Ambroso J, Brunori G, Burns AK, Armitage JR, Francis I, Gandhi M, Peterson RA, Gant TW, Boobis AR, Lyon JJ. Effects of mid-respiratory chain inhibition on mitochondrial function in vitro and in vivo. Toxicol Res (Camb) 2015; 5:136-150. [PMID: 29780577 PMCID: PMC5941817 DOI: 10.1039/c5tx00197h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023] Open
Abstract
Schematic showing the toxicological and adaptive effects of drug-induced respiratory chain inhibition in vivo; also highlighting unanticipated differences from observations made in vitro (in red).
Relating the in vitro mitochondrial effects of drug candidates to likely in vivo outcomes remains challenging. Better understanding of this relationship, alongside improved methods to assess mitochondrial dysfunction in vivo, would both guide safer drug candidate selection and better support discovery programmes targeting mitochondria for pharmacological intervention. The aim of this study was to profile the in vivo effects of a compound with suspected complex III electron transport chain (ETC) inhibitory activity (GSK932121A) at doses associated with clinical signs, and relate findings back to in vitro data with the same compound. Control liver mitochondria or HepG2 cells were treated in vitro with GSK932121A to assess mitochondrial effects on both calcium retention capacity (CRC) and oxygen consumption rate (OCR) respectively. The same assessments were then performed on liver mitochondria isolated from Crl:CD(SD) rats, 5 hours following intraperitoneal (IP) administration of GSK932121A. Lactate/pyruvate assessment, hepatic microscopy, blood gas analysis, glutathione profiling and transcriptomics were used to characterise the acute toxicity. In vivo, GSK932121A caused hypothermia, increased levels of hepatocellular oxidative stress and a metabolic shift in energy production, resulting in an increased lactate/pyruvate ratio, liver steatosis and glycogen depletion, together with gene expression changes indicative of a fasted state. As would be expected of an ETC inhibitor, GSK932121A reduced the CRC of liver mitochondria isolated from naive control animals and the OCR of HepG2 cells when treated directly in vitro. In contrast, mitochondria isolated from animals treated with GSK932121A in vivo unexpectedly showed an increase in CRC and basal OCR. Whilst seemingly contradictory, these differences likely reflect an adapted state in vivo resulting from the initial insult in combination with compensatory changes made by the tissue to maintain energy production. Only the initial, unconfounded, response is observable in vitro. These findings improve current understanding of the toxicological and molecular consequences of ETC inhibition. Furthermore, this work highlights key differences in the way that mitochondrial perturbation is manifest in vivo versus in vitro in terms of functional endpoints and helps guide endpoint selection for future studies with potential mitochondrial toxicants or drugs designed to modulate mitochondrial function for therapeutic benefit.
Collapse
Affiliation(s)
- Ashley J Broom
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345.,Imperial College London , Hammersmith Campus , London , W12 0NN , UK
| | - Jeffrey Ambroso
- GlaxoSmithKline , Safety Assessment , Research Triangle Park , North Carolina , USA
| | - Gino Brunori
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Angie K Burns
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - James R Armitage
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Ian Francis
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Mitul Gandhi
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| | - Richard A Peterson
- GlaxoSmithKline , Safety Assessment , Research Triangle Park , North Carolina , USA
| | - Timothy W Gant
- Public Health England , Harwell Science and Innovation Campus , Oxfordshire , OX11 0RQ , UK
| | - Alan R Boobis
- Imperial College London , Hammersmith Campus , London , W12 0NN , UK
| | - Jonathan J Lyon
- GlaxoSmithKline , Safety Assessment , Ware , SG12 0DP , UK . ; Tel: +44 (0) 1992502345
| |
Collapse
|
597
|
Tang S, Xie M, Cao N, Ding S. Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. J Med Chem 2015; 59:2-15. [PMID: 26322868 DOI: 10.1021/acs.jmedchem.5b00789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This manuscript will review recent developments in modeling a variety of diseases (including their cellular phenotypes) with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Shibing Tang
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Min Xie
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Nan Cao
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Sheng Ding
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| |
Collapse
|
598
|
Macadangdang J, Guan X, Smith AS, Lucero R, Czerniecki S, Childers MK, Mack DL, Kim DH. Nanopatterned Human iPSC-based Model of a Dystrophin-Null Cardiomyopathic Phenotype. Cell Mol Bioeng 2015; 8:320-332. [PMID: 26366230 PMCID: PMC4564135 DOI: 10.1007/s12195-015-0413-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer unprecedented opportunities to study inherited heart conditions in vitro, but are phenotypically immature, limiting their ability to effectively model adult-onset diseases. Cardiomyopathy is becoming the leading cause of death in patients with Duchenne muscular dystrophy (DMD), but the pathogenesis of this disease phenotype is not fully understood. Therefore, we aimed to test whether biomimetic nanotopography could further stratify the disease phenotype of DMD hiPSC-CMs to create more translationally relevant cardiomyocytes for disease modeling applications. We found that anisotropic nanotopography was necessary to distinguish structural differences between normal and DMD hiPSC-CMs, as these differences were masked on conventional flat substrates. DMD hiPSC-CMs exhibited a diminished structural and functional response to the underlying nanotopography compared to normal cardiomyocytes at both the macroscopic and subcellular levels. This blunted response may be due to a lower level of actin cytoskeleton turnover as measured by fluorescence recovery after photobleaching. Taken together these data suggest that DMD hiPSC-CMs are less adaptable to changes in their extracellular environment, and highlight the utility of nanotopographic substrates for effectively stratifying normal and structural cardiac disease phenotypes in vitro.
Collapse
Affiliation(s)
- Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Xuan Guan
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alec S.T. Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Rachel Lucero
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Stefan Czerniecki
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Martin K. Childers
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David L. Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
599
|
Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 2015; 117:80-8. [PMID: 26089365 DOI: 10.1161/circresaha.117.305365] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disease models are essential for understanding cardiovascular disease pathogenesis and developing new therapeutics. The human induced pluripotent stem cell (iPSC) technology has generated significant enthusiasm for its potential application in basic and translational cardiac research. Patient-specific iPSC-derived cardiomyocytes offer an attractive experimental platform to model cardiovascular diseases, study the earliest stages of human development, accelerate predictive drug toxicology tests, and advance potential regenerative therapies. Harnessing the power of iPSC-derived cardiomyocytes could eliminate confounding species-specific and interpersonal variations and ultimately pave the way for the development of personalized medicine for cardiovascular diseases. However, the predictive power of iPSC-derived cardiomyocytes as a valuable model is contingent on comprehensive and rigorous molecular and functional characterization.
Collapse
Affiliation(s)
- Ioannis Karakikes
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA.
| | - Mohamed Ameen
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA
| | - Vittavat Termglinchan
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (I.K., M.A., V.T., J.C.W.), Department of Medicine, Division of Cardiovascular Medicine (I.K., V.T., J.C.W.), and Institute of Stem Cell Biology and Regenerative Medicine (J.C.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
600
|
Qian T, Shusta EV, Palecek SP. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells. Curr Opin Genet Dev 2015; 34:54-60. [PMID: 26313850 DOI: 10.1016/j.gde.2015.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| |
Collapse
|