551
|
Vila IK, Fretaud M, Vlachakis D, Laguette N, Langevin C. Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives. J Mol Biol 2020; 432:5529-5543. [PMID: 32860771 PMCID: PMC7611023 DOI: 10.1016/j.jmb.2020.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023]
Abstract
Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolic nucleic acids in initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependent type I interferon responses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolic nucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss how in vivo models have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| | - Maxence Fretaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | | |
Collapse
|
552
|
Campisi M, Sundararaman SK, Shelton SE, Knelson EH, Mahadevan NR, Yoshida R, Tani T, Ivanova E, Cañadas I, Osaki T, Lee SWL, Thai T, Han S, Piel BP, Gilhooley S, Paweletz CP, Chiono V, Kamm RD, Kitajima S, Barbie DA. Tumor-Derived cGAMP Regulates Activation of the Vasculature. Front Immunol 2020; 11:2090. [PMID: 33013881 PMCID: PMC7507350 DOI: 10.3389/fimmu.2020.02090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Shriram K. Sundararaman
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Erik H. Knelson
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Ryohei Yoshida
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Tetsuo Tani
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Elena Ivanova
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Israel Cañadas
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Sharon Wei Ling Lee
- Singapore-MIT Alliance for Research & Technology, BioSystems and Micromechanics, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tran Thai
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Saemi Han
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Brandon P. Piel
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Sean Gilhooley
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - David A. Barbie
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
553
|
Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, Reese TA. Reactive oxygen species oxidize STING and suppress interferon production. eLife 2020; 9:e57837. [PMID: 32886065 PMCID: PMC7473769 DOI: 10.7554/elife.57837] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of cellular respiration that can promote oxidative stress and damage cellular proteins and lipids. One canonical role of ROS is to defend the cell against invading bacterial and viral pathogens. Curiously, some viruses, including herpesviruses, thrive despite the induction of ROS, suggesting that ROS are beneficial for the virus. However, the underlying mechanisms remain unclear. Here, we found that ROS impaired interferon response during murine herpesvirus infection and that the inhibition occurred downstream of cytoplasmic DNA sensing. We further demonstrated that ROS suppressed the type I interferon response by oxidizing Cysteine 147 on murine stimulator of interferon genes (STING), an ER-associated protein that mediates interferon response after cytoplasmic DNA sensing. This inhibited STING polymerization and activation of downstream signaling events. These data indicate that redox regulation of Cysteine 147 of mouse STING, which is equivalent to Cysteine 148 of human STING, controls interferon production. Together, our findings reveal that ROS orchestrates anti-viral immune responses, which can be exploited by viruses to evade cellular defenses.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Microbiology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Microbiology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
554
|
Buda G, Valdez RM, Biagioli G, Olivieri FA, Affranchino N, Bouso C, Lotersztein V, Bogunovic D, Bustamante J, Martí MA. Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report. Allergy Asthma Clin Immunol 2020; 16:77. [PMID: 32944031 PMCID: PMC7491304 DOI: 10.1186/s13223-020-00473-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/06/2020] [Indexed: 11/27/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in the ISG15 gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF) ISG15 variants. This case highlights the role of ISG15 as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.
Collapse
Affiliation(s)
- Guadalupe Buda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina.,Bitgenia, Buenos Aires, Argentina
| | - Rita María Valdez
- Hospital Militar Central, Servicio de Genética, Buenos Aires, Argentina
| | - German Biagioli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina.,Bitgenia, Buenos Aires, Argentina
| | - Federico A Olivieri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina
| | | | - Carolina Bouso
- Hospital Juan P. Garrahan, Servicio de Inmunología y Reumatología, Buenos Aires, Argentina
| | | | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, University of Paris, Imagine Institute, Paris, EU France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, EU France
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
555
|
Schnappauf O. [Genetic diagnostics of autoinflammatory diseases]. Z Rheumatol 2020; 79:611-623. [PMID: 32761370 PMCID: PMC7484157 DOI: 10.1007/s00393-020-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autoinflammatory syndromes are characterized by periodic febrile attacks in combination with increased inflammatory markers. The dysregulation of different cellular signaling pathways leads to an excessive immune response, which can in turn promote multisystemic inflammatory processes. Due to overlapping symptoms, variable expressivity and pleiotropy, a purely clinical diagnosis of autoinflammatory diseases is difficult in many cases. Because an early and definitive diagnosis can greatly improve the quality of life of many patients, molecular genetic methods have become an important part of the diagnostic process. With the development of next-generation sequencing (NGS), the genetic diagnosis of patients with autoinflammatory diseases has significantly improved. Considerable progress has not only been made in the genetic characterization of undiagnosed patients, but additionally in identifying numerous new disease-associated genes; however, the plethora of molecular genetic analytical methods makes it difficult to select the method with the highest diagnostic specificity and sensitivity. The NGS technologies have also led to a large increase in the number of identified variants, making the clinical evaluation of these variants more complex. Consensus-driven and standardized molecular diagnostic guidelines, both for the diagnostic process and for the interpretation of the obtained results, have therefore become essential.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, 20892, Bethesda, MD, USA.
| |
Collapse
|
556
|
Uhlorn BL, Gamez ER, Li S, Campos SK. Attenuation of cGAS/STING activity during mitosis. Life Sci Alliance 2020; 3:e201900636. [PMID: 32661021 PMCID: PMC7368095 DOI: 10.26508/lsa.201900636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
The innate immune system recognizes cytosolic DNA associated with microbial infections and cellular stress via the cGAS/STING pathway, leading to activation of phospho-IRF3 and downstream IFN-I and senescence responses. To prevent hyperactivation, cGAS/STING is presumed to be nonresponsive to chromosomal self-DNA during open mitosis, although specific regulatory mechanisms are lacking. Given a role for the Golgi in STING activation, we investigated the state of the cGAS/STING pathway in interphase cells with artificially vesiculated Golgi and in cells arrested in mitosis. We find that whereas cGAS activity is impaired through interaction with mitotic chromosomes, Golgi integrity has little effect on the enzyme's production of cGAMP. In contrast, STING activation in response to either foreign DNA (cGAS-dependent) or exogenous cGAMP is impaired by a vesiculated Golgi. Overall, our data suggest a secondary means for cells to limit potentially harmful cGAS/STING responses during open mitosis via natural Golgi vesiculation.
Collapse
Affiliation(s)
- Brittany L Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
557
|
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020; 146:518-534.e1. [PMID: 32896310 PMCID: PMC7471766 DOI: 10.1016/j.jaci.2020.07.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 presents with a spectrum of clinical manifestations from asymptomatic or mild, self-limited constitutional symptoms to a hyperinflammatory state ("cytokine storm") followed by acute respiratory distress syndrome and death. The objective of this study was to provide an evidence-based review of the associated pathways and potential treatment of the hyperinflammatory state associated with severe acute respiratory syndrome coronavirus 2 infection. Dysregulated immune responses have been reported to occur in a smaller subset of those infected with severe acute respiratory syndrome coronavirus 2, leading to clinical deterioration 7 to 10 days after initial presentation. A hyperinflammatory state referred to as cytokine storm in its severest form has been marked by elevation of IL-6, IL-10, TNF-α, and other cytokines and severe CD4+ and CD8+ T-cell lymphopenia and coagulopathy. Recognition of at-risk patients could permit early institution of aggressive intensive care and antiviral and immune treatment to reduce the complications related to this proinflammatory state. Several reports and ongoing clinical trials provide hope that available immunomodulatory therapies could have therapeutic potential in these severe cases. This review highlights our current state of knowledge of immune mechanisms and targeted immunomodulatory treatment options for the current coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Ana Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia.
| | - Olivia Smibert
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Infectious Diseases, Vanderbilt University Medical Centre, Nashville, Tenn
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia; Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Australia; Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville, Australia
| |
Collapse
|
558
|
Long J, Yang C, Zheng Y, Loughran P, Guang F, Li Y, Liao H, Scott MJ, Tang D, Billiar TR, Deng M. Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. SCIENCE ADVANCES 2020; 6:6/39/eabc5447. [PMID: 32967837 PMCID: PMC7531880 DOI: 10.1126/sciadv.abc5447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Dysregulation of T cell apoptosis contributes to the pathogenesis of acute systemic inflammation-induced immunosuppression, as seen in sepsis and trauma. However, the regulatory mechanisms of T cell apoptosis are unclear. Activation of stimulator of interferon genes (STING) has been shown to induce T cell apoptosis. Notch was previously identified as the top negative regulator of STING in macrophages through a kinase inhibitor library screening. However, how Notch signaling regulates STING activation in T cells is unknown. Here, using a γ-secretase inhibitor to block Notch signaling, we found that Notch protected CD4 T cells from STING-mediated apoptosis during endotoxemia. Mechanistically, Notch intracellular domain (NICD) interacted with STING at the cyclic dinucleotide (CDN) binding domain and competed with CDN to inhibit STING activation. In conclusion, our data reveal a previously unidentified role of Notch in negative regulation of STING-mediated apoptosis in CD4 T cells.
Collapse
Affiliation(s)
- Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenxuan Yang
- Tsinghua University School of Medicine, Beijing, China
- Department of Surgery former visiting research scholar; 10/24/2016 to 7/27/2018, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yawen Zheng
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fu Guang
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
- Department of Surgery former visiting research scholar; 9/1/2018 to 1/31/2020, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
559
|
Ma M, Mazumder S, Kwak H, Adams M, Gregory M. Case Report: Acute Thrombotic Microangiopathy in a Patient with STING-Associated Vasculopathy with Onset in Infancy (SAVI). J Clin Immunol 2020; 40:1111-1115. [PMID: 32860170 DOI: 10.1007/s10875-020-00850-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022]
Abstract
Stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a rare disorder that is associated with extensive inflammation throughout the body due to a high interferon state. Common clinical manifestations of this disorder include chronic lung disease, digital necrosis, recurrent low-grade fevers, and inflammatory skin lesions. However, renal involvement in patients with SAVI has been sparsely documented. We describe a unique case of pediatric SAVI associated with thrombotic microangiopathy (TMA), collapsing focal segmental glomerulosclerosis, interstitial lung disease (from SAVI involvement), and chronic kidney disease. This patient had a substantial hospital course where he developed renal failure. Extensive studies were conducted to exclude all other causes, including infection and possible drug side effects. Ultimately, immunologic evaluation demonstrated normal complement studies, a low ADAMTS13, and presence of ADAMTS13 inhibitor. There was also evidence of thrombocytopenia and schistocytes on peripheral blood smear. Subsequently, the patient was diagnosed with TMA and he was treated with fresh frozen plasma. Repeat immunologic studies confirmed that the TMA had resolved. In addition to describing a novel association between TMA and SAVI, this case also illustrates the challenges associated with optimizing treatment regimens and the importance of clinical vigilance for atypical complications that may arise in patients with SAVI.
Collapse
Affiliation(s)
- Mia Ma
- Wayne State University School of Medicine, Detroit, MI, USA.
- Children's Hospital of Michigan, Detroit, MI, USA.
| | - Samia Mazumder
- Wayne State University School of Medicine, Detroit, MI, USA
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Hannah Kwak
- Children's Hospital of Michigan, Detroit, MI, USA
| | | | | |
Collapse
|
560
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
561
|
Chen JH, Feng DD, Chen YF, Yang CX, Juan CX, Cao Q, Chen X, Liu S, Zhou GP. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. J Cell Mol Med 2020; 24:10478-10492. [PMID: 32812343 PMCID: PMC7521324 DOI: 10.1111/jcmm.15661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
562
|
Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020; 260:118258. [PMID: 32818542 DOI: 10.1016/j.lfs.2020.118258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Inflammation is a sophisticated biological tissue response to both extrinsic and intrinsic stimuli. Although the pathological aspects of inflammation are well appreciated, there are still rooms for understanding the physiological functions of the inflammation. Recent studies have focused on mechanisms, context and the role of physiological inflammation. Besides, there have been progress in the comprehension of commensal microbiota, immunometabolism, cancer and intracellular signaling events' roles that impact on the regulation of inflammation. Despite the fact that inflammatory responses are vital through tissue damage, understanding the mechanisms to turn off the finished or unnecessary inflammation is crucial for restoring homeostasis. Inflammation seems to be a smart process that acts like two edges of a sword, meaning that it has both protective and deleterious consequences. Knowing both edges and the regulation processes will help the future understanding and therapy for various diseases.
Collapse
Affiliation(s)
- M Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran.
| | - A Abbasi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - Z M Hassan
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - N Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Science, Iran
| |
Collapse
|
563
|
Ni G, Ma Z, Wong JP, Zhang Z, Cousins E, Major MB, Damania B. PPP6C Negatively Regulates STING-Dependent Innate Immune Responses. mBio 2020; 11:e01728-20. [PMID: 32753499 PMCID: PMC7407089 DOI: 10.1128/mbio.01728-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Stimulator of interferon genes (STING) is an essential adaptor protein of the innate DNA-sensing signaling pathway, which recognizes genomic DNA from invading pathogens to establish antiviral responses in host cells. STING activity is tightly regulated by several posttranslational modifications, including phosphorylation. However, specifically how the phosphorylation status of STING is modulated by kinases and phosphatases remains to be fully elucidated. In this study, we identified protein phosphatase 6 catalytic subunit (PPP6C) as a binding partner of Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 48 (ORF48), which is a negative regulator of the cyclic GMP-AMP synthase (cGAS)-STING pathway. PPP6C depletion enhances double-stranded DNA (dsDNA)-induced and 5'ppp double-stranded RNA (dsRNA)-induced but not poly(I:C)-induced innate immune responses. PPP6C negatively regulates dsDNA-induced IRF3 activation but not NF-κB activation. Deficiency of PPP6C greatly inhibits the replication of herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) as well as the reactivation of KSHV, due to increased type I interferon production. We further demonstrated that PPP6C interacts with STING and that loss of PPP6C enhances STING phosphorylation. These data demonstrate the important role of PPP6C in regulating STING phosphorylation and activation, which provides an additional mechanism by which the host responds to viral infection.IMPORTANCE Cytosolic DNA, which usually comes from invading microbes, is a dangerous signal to the host. The cGAS-STING pathway is the major player that detects cytosolic DNA and then evokes the innate immune response. As an adaptor protein, STING plays a central role in controlling activation of the cGAS-STING pathway. Although transient activation of STING is essential to trigger the host defense during pathogen invasion, chronic STING activation has been shown to be associated with several autoinflammatory diseases. Here, we report that PPP6C negatively regulates the cGAS-STING pathway by removing STING phosphorylation, which is required for its activation. Dephosphorylation of STING by PPP6C helps prevent the sustained production of STING-dependent cytokines, which would otherwise lead to severe autoimmune disorders. This work provides additional mechanisms on the regulation of STING activity and might facilitate the development of novel therapeutics designed to prevent a variety of autoinflammatory disorders.
Collapse
Affiliation(s)
- Guoxin Ni
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhe Ma
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason P Wong
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhigang Zhang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Cousins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
564
|
Hile GA, Gudjonsson JE, Kahlenberg JM. The influence of interferon on healthy and diseased skin. Cytokine 2020; 132:154605. [PMID: 30527631 PMCID: PMC6551332 DOI: 10.1016/j.cyto.2018.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023]
Abstract
Type I interferons (IFNs) are an immunomodulatory class of cytokines that serve to protect against viral and bacterial infection. In addition, mounting evidence suggests IFNs, particularly type I but also IFNγ, are important to the pathogenesis of autoimmune and inflammatory skin diseases, such as cutaneous lupus erythematosus (CLE). Understanding the role of IFNs is relevant to anti-viral responses in the skin, skin biology, and therapeutics for these IFN-related conditions. Type I IFNs (α and β) are produced by recruited inflammatory cells and by the epidermis itself (IFNκ) and have important roles in autoimmune and inflammatory skin disease. Here, we review the current literature utilizing a PubMed database search using terms [interferon/IFN/type I IFN AND lupus/ cutaneous lupus/CLE/dermatomyositis/Sjogrens/psoriasis/lichen planus/morphea/alopecia areata/vitiligo] with a focus on the role of IFNs in basic keratinocyte biology and their implications in the cutaneous autoimmune and inflammatory diseases: cutaneous lupus erythematosus, dermatomyositis, Sjogren's syndrome, psoriasis, lichen planus, alopecia areata and vitiligo. We provide information about genes and proteins induced by IFNs and how downstream mechanisms relate to clinical disease.
Collapse
Affiliation(s)
- Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
565
|
Rigante D. Phenotype variability of autoinflammatory disorders in the pediatric patient: A pictorial overview. J Evid Based Med 2020; 13:227-245. [PMID: 32627322 DOI: 10.1111/jebm.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Disruption of innate immunity leading to systemic inflammation and multi-organ dysfunction is the basilar footprint of autoinflammatory disorders (AIDs), ranging from rare hereditary monogenic diseases to a large number of common chronic inflammatory conditions in which there is a simultaneous participation of multiple genetic components and environmental factors, sometimes combined with autoimmune phenomena and immunodeficiency. Whatever their molecular mechanism, hereditary AIDs are caused by mutations in regulatory molecules or sensors proteins leading to dysregulated production of proinflammatory cytokines or cytokine-inducing transcription factors, fever, elevation of acute phase reactants, and a portfolio of manifold inflammatory signs which might occur in a stereotyped manner, mostly with overactivity or misactivation of different inflammasomes. Symptoms might overlap in the pediatric patient, obscuring the final diagnosis of AIDs and delaying the most appropriate treatment. Actually, the fast-paced evolution of scientific knowledge has led to recognize or reclassify an overgrowing number of multifactorial diseases, which share the basic pathogenetic mechanisms with AIDs. The wide framework of classic hereditary periodic fevers, AIDs with prominent skin involvement, disorders of the ubiquitin-proteasome system, defects of actin cytoskeleton dynamics, and also idiopathic nonhereditary febrile syndromes occurring in children is herein presented. Interleukin-1 dependence of these diseases or involvement of other predominating molecules is also discussed.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
- Periodic Fever and Rare Diseases Research Centre, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
566
|
Celastrol ameliorates autoimmune disorders in Trex1-deficient mice. Biochem Pharmacol 2020; 178:114090. [DOI: 10.1016/j.bcp.2020.114090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
|
567
|
Hoong BYD, Gan YH, Liu H, Chen ES. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget 2020; 11:2930-2955. [PMID: 32774773 PMCID: PMC7392626 DOI: 10.18632/oncotarget.27673] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs. Its central role in immunosurveillance positions the cGAS-STING pathway as an attractive anti-cancer immunotherapeutic drug target for chemical agonists or vaccine adjuvants and suggests a key node to be targeted in a synthetic lethal approach. We also discuss adaptive mechanisms used by cancer cells to circumvent cGAS-STING signaling and present evidence linking chronic cGAS-STING activation to inflammation-induced carcinogenesis, cautioning against the use of activating the cGAS-STING pathway as an anti-tumor immunotherapy. A deeper mechanistic understanding of the cGAS-STING pathway will aid in the identification of potentially efficacious anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Brandon Yi Da Hoong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- Wong Hock Boon Society, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yunn Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| | - Haiyan Liu
- National University Health System (NUHS), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
568
|
Abstract
STING is essential for control of infections and for tumor immunosurveillance, but can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER), and traffics following stimulation to ERGIC/Golgi where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PI3P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP leading to increased ER PI3P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.
Collapse
|
569
|
Zhang X, Bai XC, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity 2020; 53:43-53. [PMID: 32668227 DOI: 10.1016/j.immuni.2020.05.013] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/29/2023]
Abstract
Besides its role as the blueprint of life, DNA can also alert the cell to the presence of microbial pathogens as well as damaged or malignant cells. A major sensor of DNA that triggers the innate immune response is cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP activates stimulator of interferon genes (STING), which activates a signaling cascade leading to the production of type I interferons and other immune mediators. Recent research has demonstrated an expanding role of the cGAS-cGAMP-STING pathway in many physiological and pathological processes, including host defense against microbial infections, anti-tumor immunity, cellular senescence, autophagy, and autoimmune and inflammatory diseases. Biochemical and structural studies have elucidated the mechanism of signal transduction in the cGAS pathway at the atomic resolution. This review focuses on the structural and mechanistic insights into the roles of cGAS and STING in immunity and diseases revealed by these recent studies.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Zhijian J Chen
- Department of Molecular biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
570
|
Wu J, Dobbs N, Yang K, Yan N. Interferon-Independent Activities of Mammalian STING Mediate Antiviral Response and Tumor Immune Evasion. Immunity 2020; 53:115-126.e5. [PMID: 32640258 PMCID: PMC7365768 DOI: 10.1016/j.immuni.2020.06.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/14/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) response is commonly recognized as the main signaling activity of STING. Here, we generate the Sting1S365A/S365A mutant mouse that precisely ablates IFN-dependent activities while preserving IFN-independent activities of STING. StingS365A/S365A mice protect against HSV-1 infection, despite lacking the STING-mediated IFN response. This challenges the prevailing view and suggests that STING controls HSV-1 infection through IFN-independent activities. Transcriptomic analysis reveals widespread IFN-independent activities of STING in macrophages and T cells, and STING activities in T cells are predominantly IFN independent. In mouse tumor models, T cells in the tumor experience substantial cell death that is in part mediated by IFN-independent activities of STING. We found that the tumor induces STING-mediated cell death in T cells to evade immune control. Our data demonstrate that mammalian STING possesses widespread IFN-independent activities that are important for restricting HSV-1 infection, tumor immune evasion and likely also adaptive immunity.
Collapse
Affiliation(s)
- Jianjun Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
571
|
Lin B, Berard R, Al Rasheed A, Aladba B, Kranzusch PJ, Henderlight M, Grom A, Kahle D, Torreggiani S, Aue AG, Mitchell J, de Jesus AA, Schulert GS, Goldbach-Mansky R. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J Allergy Clin Immunol 2020; 146:1204-1208.e6. [PMID: 32673614 PMCID: PMC8461559 DOI: 10.1016/j.jaci.2020.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Bin Lin
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Roberta Berard
- Department of Pediatrics, Western University, London, Ontario, Canada
| | - Abdulrahman Al Rasheed
- Division of Rheumatology, Pediatric Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Buthaina Aladba
- Sidra Medical and Research Center, Department of Pediatric Medicine, Division of Rheumatology, Doha, Qatar
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Mass; Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, Mass
| | - Maggie Henderlight
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexi Grom
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dana Kahle
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alexander G Aue
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Jacob Mitchell
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Grant S Schulert
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
572
|
van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev 2020; 297:247-272. [PMID: 32640080 DOI: 10.1111/imr.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
573
|
Papa R, Volpi S, Gattorno M. Monogenetic causes of chilblains, panniculitis and vasculopathy: the Type I interferonopathies. GIORN ITAL DERMAT V 2020; 155:590-598. [PMID: 32618445 DOI: 10.23736/s0392-0488.20.06709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I interferonopathies are a clinically heterogeneous group of inherited disorders of the innate immune system characterized by constitutive activation of the type I interferon signaling pathway. Cutaneous vasculopathy, lipodystrophy, interstitial lung disease and brain calcifications are the typical manifestations characterizing affected patients. The pathogenic mechanism commonly underlying these disorders is the abnormal activation of immune pathways involved in recognition of non-self-oligonucleotides. These natural defenses against virus consent humans to survive the infections. Target therapies capable of inhibiting type I interferon signaling pathway seem effective in these patients, albeit with possible incomplete responses and severe side effects.
Collapse
Affiliation(s)
- Riccardo Papa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetic and Maternal-Infant Sciences, University of Genoa, Genoa, Italy
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy - .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetic and Maternal-Infant Sciences, University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
574
|
ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nat Microbiol 2020; 4:2331-2346. [PMID: 31477895 DOI: 10.1038/s41564-019-0542-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection. Hrd1 interacts directly with the deubiquitinating enzyme Usp15. Unlike the classical function of Hrd1 in endoplasmic reticulum-associated degradation, Usp15 is not degraded but loses its deubiquitinating activity for IκBα deubiquitination, resulting in excessive NF-κB activation. Importantly, Hrd1 deficiency in macrophages protects mice against lipopolysaccharide-induced septic shock, and knockdown of Usp15 in Hrd1-knockout macrophages restores the reduced IL-6 production. This study proposes that there is crosstalk between Hrd1 and TLR4, thereby linking the endoplasmic reticulum-plasma membrane function during bacterial infection.
Collapse
|
575
|
Pulmonary Involvement in a Mouse Model of Sjögren's Syndrome Induced by STING Activation. Int J Mol Sci 2020; 21:ijms21124512. [PMID: 32630417 PMCID: PMC7349948 DOI: 10.3390/ijms21124512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS), a chronic autoimmune disorder affecting multiple organ systems, is characterized by an elevated type I interferon (IFN) response. Activation of Stimulator of Interferon Genes (STING) protein induces type I IFN and in mice, several features of SS, including anti-nuclear antibodies, sialadenitis, and salivary gland dysfunction. Since lung involvement occurs in one-fifth of SS patients, we investigated whether systemic activation of STING also leads to lung inflammation. Lungs from female C57BL/6 mice injected with the STING agonist 5, 6-Dimethylxanthenone-4-acetic acid (DMXAA), were evaluated for acute and chronic inflammatory responses. Within 4h of DMXAA injection, the expression of Ifnb1, Il6, Tnf, Ifng, and Mx1 was significantly upregulated. At 1 and 2 months post-treatment, lungs showed lymphocytic infiltration in the peri-bronchial regions. The lungs from DMXAA treated mice showed an increased expression of multiple chemokines and an increase in lymphatic endothelial cells. Despite STING expression in bronchial epithelium and cells lining the alveolar wall, bone marrow chimeras between STING knockout and wild type mice showed that STING expression in hematopoietic cells was critical for lung inflammation. Our results suggest that activation of the STING pathway might be involved in SS patients with concomitant salivary gland and lung disease.
Collapse
|
576
|
Nathan N, Berdah L, Delestrain C, Sileo C, Clement A. Interstitial lung diseases in children. Presse Med 2020; 49:103909. [PMID: 32563946 DOI: 10.1016/j.lpm.2019.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Interstitial lung disease (ILD) in children (chILD) is a heterogeneous group of rare respiratory disorders that are mostly chronic and associated with high morbidity and mortality. The pathogenesis of the various chILD is complex and the diseases share common features of inflammatory and fibrotic changes of the lung parenchyma that impair gas exchanges. The etiologies of chILD are numerous. In this review, we chose to classify them as ILD related to exposure/environment insults, ILD related to systemic and immunological diseases, ILD related to primary lung parenchyma dysfunctions and ILD specific to infancy. A growing part of the etiologic spectrum of chILD is being attributed to molecular defects. Currently, the main genetic mutations associated with chILD are identified in the surfactant genes SFTPA1, SFTPA2, SFTPB, SFTPC, ABCA3 and NKX2-1. Other genetic contributors include mutations in MARS, CSF2RA and CSF2RB in pulmonary alveolar proteinosis, and mutations in TMEM173 and COPA in specific auto-inflammatory forms of chILD. However, only few genotype-phenotype correlations could be identified so far. Herein, information is provided about the clinical presentation and the diagnosis approach of chILD. Despite improvements in patient management, the therapeutic strategies are still relying mostly on corticosteroids although specific therapies are emerging. Larger longitudinal cohorts of patients are being gathered through ongoing international collaborations to improve disease knowledge and targeted therapies. Thus, it is expected that children with ILD will be able to reach the adulthood transition in a better condition.
Collapse
Affiliation(s)
- Nadia Nathan
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Laura Berdah
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Céline Delestrain
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France
| | - Chiara Sileo
- Radiology department, AP-HP, Trousseau hospital, 75012 Paris, France
| | - Annick Clement
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France.
| |
Collapse
|
577
|
Melki I, Frémond ML. Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Curr Rheumatol Rep 2020; 22:32. [DOI: 10.1007/s11926-020-00909-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
578
|
Yum S, Li M, Chen ZJ. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res 2020; 30:639-648. [PMID: 32541866 PMCID: PMC7395767 DOI: 10.1038/s41422-020-0346-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The discovery of cancer immune surveillance and immunotherapy has opened up a new era of cancer treatment. Immunotherapies modulate a patient’s immune system to specifically eliminate cancer cells; thus, it is considered a very different approach from classic cancer therapies that usually induce DNA damage to cause cell death in a cell-intrinsic manner. However, recent studies have revealed that classic cancer therapies such as radiotherapy and chemotherapy also elicit antitumor immunity, which plays an essential role in their therapeutic efficacy. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the downstream effector Stimulator of Interferon Genes (STING) have been determined to be critical for this interplay. Here, we review the antitumor roles of the cGAS-STING pathway during tumorigenesis, cancer immune surveillance, and cancer therapies. We also highlight classic cancer therapies that elicit antitumor immune responses through cGAS activation.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhijian J Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
579
|
Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol 2020; 21:727-735. [PMID: 32541831 DOI: 10.1038/s41590-020-0699-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/01/2020] [Indexed: 01/02/2023]
Abstract
Stimulator-of-interferon genes (STING) is vital for sensing cytosolic DNA and initiating innate immune responses against microbial infection and tumors. Redox homeostasis is the balance of oxidative and reducing reactions present in all living systems. Yet, how the intracellular redox state controls STING activation is unclear. Here, we show that cellular redox homeostasis maintained by glutathione peroxidase 4 (GPX4) is required for STING activation. GPX4 deficiency enhanced cellular lipid peroxidation and thus specifically inhibited the cGAS-STING pathway. Concordantly, GPX4 deficiency inhibited herpes simplex virus-1 (HSV-1)-induced innate antiviral immune responses and promoted HSV-1 replication in vivo. Mechanistically, GPX4 inactivation increased production of lipid peroxidation, which led to STING carbonylation at C88 and inhibited its trafficking from the endoplasmic reticulum (ER) to the Golgi complex. Thus, cellular stress-induced lipid peroxidation specifically attenuates the STING DNA-sensing pathway, suggesting that GPX4 facilitates STING activation by maintaining redox homeostasis of lipids.
Collapse
|
580
|
Landman SL, Ressing ME, van der Veen AG. Balancing STING in antimicrobial defense and autoinflammation. Cytokine Growth Factor Rev 2020; 55:1-14. [PMID: 32563552 DOI: 10.1016/j.cytogfr.2020.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Rapid detection of microbes is crucial for eliciting an effective immune response. Innate immune receptors survey the intracellular and extracellular environment for signs of a microbial infection. When they detect a pathogen-associated molecular pattern (PAMP), such as viral DNA, they alarm the cell about the ongoing infection. The central signaling hub in sensing of viral DNA is the stimulator of interferon genes (STING). Upon activation, STING induces downstream signaling events that ultimately result in the production of type I interferons (IFN I), important cytokines in antimicrobial defense, in particular towards viruses. In this review, we describe the molecular features of STING, including its upstream sensors and ligands, its sequence and structural conservation, common polymorphisms, and its localization. We further highlight how STING activation requires a careful balance: its activity is essential for antiviral defense, but unwanted activation through mutations or accidental recognition of self-derived DNA causes autoinflammatory diseases. Several mechanisms, such as post-translational modifications, ensure this balance by fine-tuning STING activation. Finally, we discuss how viruses evade detection of their genomes by either exploiting cells that lack a functional DNA sensing pathway as a niche or by interfering with STING activation through viral evasion molecules. Insight into STING's exact mechanisms in health and disease will guide the development of novel clinical interventions for microbial infections, autoinflammatory diseases, and beyond.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Annemarthe G van der Veen
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
581
|
Tansakul M, Thim-Uam A, Saethang T, Makjaroen J, Wongprom B, Pisitkun T, Pisitkun P. Deficiency of STING Promotes Collagen-Specific Antibody Production and B Cell Survival in Collagen-Induced Arthritis. Front Immunol 2020; 11:1101. [PMID: 32582187 PMCID: PMC7283782 DOI: 10.3389/fimmu.2020.01101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The levels of interferon-alpha are high in the serum and synovial fluid of rheumatoid arthritis (RA) patients. Activation of the stimulator of type I interferon genes (STING) mediates the productions of type I interferon and promotes chronic inflammation. STING plays a significant role in autoimmune lupus mice. However, the function of STING in collagen-induced arthritis (CIA) model has never been described. This study aimed to test the function of STING in CIA. The Sting-deficient mice developed arthritis comparable to WT mice. The levels of anti-collagen antibody from Sting-deficient mice were significantly higher than the WT mice. The B cells derived from Sting-deficient mice showed better survival than WT mice in response to the B cell receptor (BCR) stimulation. Activation of STING also induced B cell death, especially in activated B cells. This study demonstrated that the inhibition of STING promotes anti-collagen antibodies and B cell survival, which suggested that STING acts as a negative regulator of B cell function in the CIA model.
Collapse
Affiliation(s)
- Mookmanee Tansakul
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thammakorn Saethang
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
582
|
Selective reactivation of STING signaling to target Merkel cell carcinoma. Proc Natl Acad Sci U S A 2020; 117:13730-13739. [PMID: 32482869 DOI: 10.1073/pnas.1919690117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a lethal skin cancer that metastasizes rapidly. Few effective treatments are available for patients with metastatic MCC. Poor intratumoral T cell infiltration and activation are major barriers that prevent MCC eradication by the immune system. However, the mechanisms that drive the immunologically restrictive tumor microenvironment remain poorly understood. In this study, we discovered that the innate immune regulator stimulator of IFN genes (STING) is completely silenced in MCCs. To reactivate STING in MCC, we developed an application of a human STING mutant, STINGS162A/G230I/Q266I, which we found to be readily stimulated by a mouse STING agonist, DMXAA. This STING molecule was efficiently delivered to MCC cells via an AAV vector. Introducing STINGS162A/G230I/Q266I expression and stimulating its activity by DMXAA in MCC cells reactivates their antitumor inflammatory cytokine/chemokine production. In response to MCC cells with restored STING, cocultured T cells expressing MCPyV-specific T cell receptors (TCRs) show increased cytokine production, migration toward tumor cells, and tumor cell killing. Our study therefore suggests that STING deficiency contributes to the immune suppressive nature of MCCs. More importantly, DMXAA stimulation of STINGS162A/G230I/Q266I causes robust cell death in MCCs as well as several other STING-silenced cancers. Because tumor antigens and DNA released by dying cancer cells have the potential to amplify innate immune response and activate antitumor adaptive responses, our finding indicates that targeted delivery and activation of STINGS162A/G230I/Q266I in tumor cells holds great therapeutic promise for the treatment of MCC and many other STING-deficient cancers.
Collapse
|
583
|
Bush A, Pabary R. Pulmonary alveolarproteinosis in children. Breathe (Sheff) 2020; 16:200001. [PMID: 32684993 PMCID: PMC7341618 DOI: 10.1183/20734735.0001-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term for a wide spectrum of conditions that have a very characteristic appearance on computed tomography. There is outlining of the secondary pulmonary lobules on the background of ground-glass shadowing and pathologically, filling of the alveolar spaces with normal or abnormal surfactant. PAP is rare and the common causes in children are very different from those seen in adults; autoimmune PAP is rare and macrophage blockade not described in children. There are many genetic causes of PAP, the best known of which are mutations in the genes encoding surfactant protein (SP)-B, SP-C, thyroid transcription factor 1, ATP-binding cassette protein 3, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α- and β- chains. PAP may also be a manifestation of rheumatological and metabolic disease, congenital immunodeficiency, and haematological malignancy. Precise diagnosis of the underlying cause is essential in planning treatment, as well as for genetic counselling. The evidence base for treatment is poor. Some forms of PAP respond well to whole-lung lavage, and autoimmune PAP, which is much commoner in adults, responds to inhaled or subcutaneous GM-CSF. Emerging therapies based on studies in murine models of PAP include stem-cell transplantation for GM-CSF receptor mutations. EDUCATIONAL AIMS To understand when to suspect that a child has pulmonary alveolar proteinosis (PAP) and how to confirm that this is the cause of the presentation.To show that PAP is an umbrella term for conditions characterised by alveolar filling by normal or abnormal surfactant, and that this term is the start, not the end, of the diagnostic journey.To review the developmental differences in the spectrum of conditions that may cause PAP, and specifically to understand the differences between causes in adults and children.To discuss when to treat PAP with whole-lung lavage and/or granulocyte-macrophage colony-stimulating factor, and review potential promising new therapies.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - Rishi Pabary
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
584
|
Li M, Shu HB. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response. Protein Cell 2020; 11:584-599. [PMID: 32474700 PMCID: PMC7381519 DOI: 10.1007/s13238-020-00729-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in host defense by sensing cytosolic DNA derived from microbial pathogens or mis-located cellular DNA. Upon DNA binding, cGAS utilizes GTP and ATP as substrates to synthesize cGAMP, leading to MITA-mediated innate immune response. In this study, we identified the phosphatase PPP6C as a negative regulator of cGAS-mediated innate immune response. PPP6C is constitutively associated with cGAS in un-stimulated cells. DNA virus infection causes rapid disassociation of PPP6C from cGAS, resulting in phosphorylation of human cGAS S435 or mouse cGAS S420 in its catalytic pocket. Mutation of this serine residue of cGAS impairs its ability to synthesize cGAMP upon DNA virus infection. In vitro experiments indicate that S420-phosphorylated mcGAS has higher affinity to GTP and enzymatic activity. PPP6C-deficiency promotes innate immune response to DNA virus in various cells. Our findings suggest that PPP6C-mediated dephosphorylation of a catalytic pocket serine residue of cGAS impairs its substrate binding activity and innate immune response, which provides a mechanism for keeping the DNA sensor cGAS inactive in the absence of infection to avoid autoimmune response.
Collapse
Affiliation(s)
- Mi Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
585
|
Siedel H, Roers A, Rösen-Wolff A, Luksch H. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clin Immunol 2020; 216:108466. [PMID: 32470544 DOI: 10.1016/j.clim.2020.108466] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022]
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is an autoimmune disease caused by heterozygous gain of function mutations of STING (stimulator of interferon genes) that had initially been classified as a type I interferonopathy. We recently reported a genetically engineered mouse strain carrying a common SAVI-associated STING mutation. These STING N153S/WT mice reproduce key features of SAVI, including lung inflammation, loss of T cells in spleen and blood, splenomegaly and thymic hypoplasia. Here we show that αβ T lymphocytopenia is due to disrupted T cell development and is associated with impaired T cell activation and a relative increase in γδ T cell numbers. These alterations were not rescued by additional knockout of the type I IFN receptor (IFNAR1). Collectively, our findings consolidate the concept that constitutive STING signalling leads to a SCID-like phenotype in STING N153S/WT mice.
Collapse
Affiliation(s)
- Hannah Siedel
- Department of Pediatrics, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Axel Roers
- Institute of Immunology, Medical Faculty TU Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Hella Luksch
- Department of Pediatrics, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
586
|
Berthelot JM, Lioté F. COVID-19 as a STING disorder with delayed over-secretion of interferon-beta. EBioMedicine 2020; 56:102801. [PMID: 32454408 PMCID: PMC7244443 DOI: 10.1016/j.ebiom.2020.102801] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Department, Nantes University Hospital, Hôtel-Dieu, Place Alexis-Ricordeau, 44093, Nantes Cedex 01, France.
| | - Frédéric Lioté
- Rheumatology Department & Inserm UMR 1132 (centre Viggo Petersen), Hôpital Lariboisière, 2 rue Ambroise Paré, F-75010 Paris, Université de Paris, UFR de Médecine, F-75010 Paris, France
| |
Collapse
|
587
|
Zheng S, Lee PY, Wang J, Wang S, Huang Q, Huang Y, Liu Y, Zhou Q, Li T. Interstitial Lung Disease and Psoriasis in a Child With Aicardi-Goutières Syndrome. Front Immunol 2020; 11:985. [PMID: 32508843 PMCID: PMC7251162 DOI: 10.3389/fimmu.2020.00985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is characterized by progressive neurologic decline, cerebral calcification, and variable manifestations of autoimmunity. Seven subtypes of AGS have been defined and aberrant activation of the type I interferon system is a common theme among these conditions. We describe a 13-year-old boy who presented with an unusual constellation of psoriasis, interstitial lung disease (ILD), and pulmonary hypertension in addition to cerebral calcifications and glomerulonephritis. He was found to have late-onset AGS due to a gain-of-function mutation in IFIH1 and over-activation of the type I interferon pathway was confirmed by RNA sequencing. The majority of his clinical manifestations, including ILD, psoriasis and renal disease improved markedly after treatment with the combination of corticosteroids, cyclophosphamide, and the Janus-kinase inhibitor tofacitinib. This case extends the clinical spectrum of AGS and suggests the need for lung disease screening in patients with AGS.
Collapse
Affiliation(s)
- Shaoling Zheng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shihao Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuqi Liu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
588
|
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21:501-521. [PMID: 32424334 DOI: 10.1038/s41580-020-0244-x] [Citation(s) in RCA: 1179] [Impact Index Per Article: 235.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cGAS-STING signalling axis, comprising the synthase for the second messenger cyclic GMP-AMP (cGAS) and the cyclic GMP-AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS-STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS-STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome-dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid-liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS-STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Veit Hornung
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
589
|
Clarke SLN, Robertson L, Rice GI, Seabra L, Hilliard TN, Crow YJ, Ramanan AV. Type 1 interferonopathy presenting as juvenile idiopathic arthritis with interstitial lung disease: report of a new phenotype. Pediatr Rheumatol Online J 2020; 18:37. [PMID: 32398023 PMCID: PMC7218611 DOI: 10.1186/s12969-020-00425-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND STING-associated vasculopathy with onset in infancy (SAVI) is a type 1 interferonopathy manifesting as a pulmonary and vascular syndrome resulting from gain-of-function mutations in TMEM173, the gene encoding STING. Familial reports in the literature are sparse. CASE PRESENTATION We report a case series of SAVI in a three generation kindred, with a phenotype of interstitial lung disease (ILD) and rheumatoid factor positive polyarticular juvenile idiopathic arthritis (JIA). Current and historical medical records were reviewed for clinical and laboratory information. Whole blood from cases 1 and 2, plus stored appendicectomy tissue from case 3, underwent DNA sequencing of the TMEM173 gene. Peripheral blood RNA was obtained from cases 1 and 2 for functional assessment of the TMEM173 mutation. DNA sequencing identified the same heterozygous TMEM173 mutation (c.463G > A; p.Val155Met) in all three cases, consistent with a diagnosis of the autosomal dominant condition SAVI. Functional assessment of this mutation identified a prominent interferon signature which was confirmed on repeat testing. CONCLUSIONS SAVI presented in this family as ILD with early onset juvenile rheumatoid arthritis. This condition should be considered in all rheumatoid arthritis patients with early-onset ILD and in all JIA patients with ILD.
Collapse
Affiliation(s)
- S. L. N. Clarke
- grid.415172.40000 0004 0399 4960Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, BS2 8BJ UK ,grid.5337.20000 0004 1936 7603MRC Integrative Epidemiology Unit & School of Population Health Sciences, University of Bristol, Bristol, UK
| | - L. Robertson
- grid.413628.a0000 0004 0400 0454Department of Rheumatology, Derriford Hospital, Plymouth, UK
| | - G. I. Rice
- grid.5379.80000000121662407Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - L. Seabra
- grid.412134.10000 0004 0593 9113Paris Descartes University, Sorbonne-Paris-Cité, Laboratory of Neurogenetics & Neuroinflammation Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - T. N. Hilliard
- grid.415172.40000 0004 0399 4960Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, UK
| | - Y. J. Crow
- grid.412134.10000 0004 0593 9113Paris Descartes University, Sorbonne-Paris-Cité, Laboratory of Neurogenetics & Neuroinflammation Institut Imagine, Hôpital Necker Enfants Malades, Paris, France ,grid.4305.20000 0004 1936 7988Centre for Genomic and Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - A. V. Ramanan
- grid.415172.40000 0004 0399 4960Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, BS2 8BJ UK ,grid.5337.20000 0004 1936 7603School of Translation Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
590
|
Iwasaki Y, Takeshima Y, Fujio K. Basic mechanism of immune system activation by mitochondria. Immunol Med 2020; 43:142-147. [PMID: 32393116 DOI: 10.1080/25785826.2020.1756609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Almost 160 years after the discovery of mitochondria, they are known for their production of energy and are called "the powerhouse of the cell". Recently, immune-metabolism has been revealed as a key factor controlling immune cell proliferation and differentiation. Resting lymphocytes generate energy through oxidative phosphorylation and fatty acid oxidation, whereas activated lymphocytes rapidly shift to glycolysis. Oxidative phosphorylation (OXPHOS) as well as mitochondrial reactive oxygen species (mtROS) generated through the electron transport chain (ETC) are involved in many immune cell functions. Moreover, mitochondria are dynamic organelles that can provide immunogenic molecules, such as mitochondrial DNA (mtDNA) resulting in innate immune system activation. Here, we describe the role of mitochondria in immune system regulation, highlighting metabolism-dependent and other immunogenic aspects.
Collapse
Affiliation(s)
- Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Takeshima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
591
|
Borie R, Kannengiesser C, Dupin C, Debray MP, Cazes A, Crestani B. Impact of genetic factors on fibrosing interstitial lung diseases. Incidence and clinical presentation in adults. Presse Med 2020; 49:104024. [PMID: 32437840 DOI: 10.1016/j.lpm.2020.104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
At least 10% of patients with pulmonary fibrosis, whether idiopathic or secondary, present heritable pulmonary fibrosis suspected on familial aggregation of pulmonary fibrosis, specific syndromes or early age of diagnosis. Approximately 30% of those patients have an identified mutation mostly in telomere related genes (TRG) more rarely in surfactant homeostasis or other genes. TRG mutation may be associated with hematological and hepatic diseases that may worsen after lung transplantation requiring a specific care and adapted immunosuppression. Surfactant genes mutations are usually associated with ground-glass opacities and cysts on CT scan and may improve with steroids, hydroxychloroquine or azithromycin. Moreover relatives should benefit from a genetic analysis associated with a clinical evaluation according to the gene involved. Genetics of pulmonary fibrosis raise specific problems from diagnosis, therapy or genetic counseling varying from one gene to another.
Collapse
Affiliation(s)
- Raphael Borie
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France.
| | - Caroline Kannengiesser
- Unité 1152, Inserm, laboratoire de génétique, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| | - Clairelyne Dupin
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| | - Marie-Pierre Debray
- Unité 1152, Inserm, service de radiologie, hôpital Bichat, AP-HP, 75018 Paris, France
| | - Aurélie Cazes
- Inserm, unité 1152, service d'antomopathologie, université Paris Diderot, hôpital Bichat, AP-HP, 75018 Paris, France
| | - Bruno Crestani
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| |
Collapse
|
592
|
Klinische Symptomatik autoinflammatorischer Erkrankungen. Hautarzt 2020; 71:342-358. [DOI: 10.1007/s00105-020-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
593
|
Ergun SL, Li L. Structural Insights into STING Signaling. Trends Cell Biol 2020; 30:399-407. [DOI: 10.1016/j.tcb.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
|
594
|
Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Front Immunol 2020; 11:615. [PMID: 32411126 PMCID: PMC7198750 DOI: 10.3389/fimmu.2020.00615] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Double-stranded DNA (dsDNA) sensor cyclic-GMP-AMP synthase (cGAS) along with the downstream stimulator of interferon genes (STING) acting as essential immune-surveillance mediators have become hot topics of research. The intrinsic function of the cGAS-STING pathway facilitates type-I interferon (IFN) inflammatory signaling responses and other cellular processes such as autophagy, cell survival, senescence. cGAS-STING pathway interplays with other innate immune pathways, by which it participates in regulating infection, inflammatory disease, and cancer. The therapeutic approaches targeting this pathway show promise for future translation into clinical applications. Here, we present a review of the important previous works and recent advances regarding the cGAS-STING pathway, and provide a comprehensive understanding of the modulatory pattern of the cGAS-STING pathway under multifarious pathologic states.
Collapse
Affiliation(s)
- Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
595
|
Nishikomori R, Izawa K, Kambe N, Ohara O, Yasumi T. Low-frequency mosaicism in cryopyrin-associated periodic fever syndrome: mosaicism in systemic autoinflammatory diseases. Int Immunol 2020; 31:649-655. [PMID: 31185077 DOI: 10.1093/intimm/dxz047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Autoinflammatory disease is an 'inborn error of immunity', resulting in systemic inflammation. Cryopyrin-associated periodic syndrome (CAPS) is a prototypical autoinflammatory disease caused by gain-of-function mutations in the NLRP3 (NLR family pyrin domain containing 3) gene; these mutations activate the NLRP3 inflammasome, resulting in overproduction of IL-1β. The first case of CAPS caused by somatic NLRP3 mosaicism was reported in 2005 after identification of variant small peaks by Sanger sequencing. An international collaborative study revealed that the majority of mutation-negative CAPS cases are due to low-level NLRP3 mosaicism, suggesting that central nervous system involvement in somatic mosaicism patients is milder than in genotype-matched heterozygous patients. Recent advances in next-generation sequencing have expanded the number of NLRP3 somatic mosaicism cases and identified a new entity called 'late-onset CAPS with myeloid-specific NLRP3 mosaicism'; however, no mosaic-specific clinical features have been identified/confirmed yet. With respect to NLRP3 mosaicism in CAPS, a prospective longitudinal study on the variant genotype, its allele frequency and its tissue distribution (along with a comprehensive clinical phenotype) would provide better understanding of NLRP3 mosaicism, resulting in more appropriate patient care and genetic counseling.
Collapse
Affiliation(s)
- Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotomo Kambe
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| | - Osamu Ohara
- Deparment of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
596
|
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D'Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y, Burns CJ, Wicks IP, Miner JJ, Kile BT, Masters SL, De Nardo D. TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep 2020; 31:107492. [PMID: 32268090 DOI: 10.1016/j.celrep.2020.03.056] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.
Collapse
Affiliation(s)
- Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tahnee L Saunders
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amber M Smith
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian B D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Jonathan J Miner
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Health and Medical Sciences Faculty Office, University of Adelaide, Adelaide, SA 5005, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
597
|
Matsumoto M, Takeda Y, Seya T. Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opin Biol Ther 2020; 20:937-946. [PMID: 32223572 DOI: 10.1080/14712598.2020.1749260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Activation of innate immune system is a key step to develop anti-tumor immunity. Antigen-presenting dendritic cells (DCs) cross-present tumor-associated antigens to cytotoxic CD8+ T cells (CTLs). Signaling from pattern-recognition receptors (PRRs) in DCs is required to induce tumor-specific CTLs. AREAS COVERED This review summarizes the properties of PRRs expressed by antigen-presenting DCs, especially TLR3, and provides the recent knowledge of their function in anti-tumor immunity. We also summarize the characteristics of newly-developed TLR3-specific agonist, ARNAX, which efficiently primes DCs to induce anti-tumor immunity without systemic inflammation in mice. EXPERT OPINION In cancer immunotherapy, the induction of tumor-specific CTLs is significant for tumor regression and to augment the efficacy of PD-1/PD-L1 blockade. Non-inflammatory TLR3 adjuvant ARNAX that can induce tumor-specific CTLs without inducing inflammation benefits cancer immunotherapy. Development of appropriate protocols for ARNAX vaccine therapy would be useful to overcome the PD-1/PD-L1 blockade resistance.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan.,Nebuta Research Institute for Life Sciences, Aomori University , Aomori, Japan
| | - Yohei Takeda
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan.,Nebuta Research Institute for Life Sciences, Aomori University , Aomori, Japan
| |
Collapse
|
598
|
Kacar M, Pathak S, Savic S. Hereditary systemic autoinflammatory diseases and Schnitzler's syndrome. Rheumatology (Oxford) 2020; 58:vi31-vi43. [PMID: 31769858 PMCID: PMC6878846 DOI: 10.1093/rheumatology/kez448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
The systemic autoinflammatory diseases are disorders of the innate immune system distinguished by severe inflammation resulting from dysregulation of the innate immune system. Hereditary fever syndromes, such as FMF, TNF receptor-associated periodic syndrome, cryopyrin-associated periodic syndromes and mevalonate kinase deficiency, were the first group of systemic autoinflammatory diseases for which a genetic basis was established, between 1999 and 2001. Currently according to the latest report of the international union of immunological societies, 37 separate monogenic disorders were classified as autoinflammatory. In addition to the abovementioned monogenic conditions, we describe Schnitzler's syndrome, a well-defined, acquired autoinflammatory condition without a clear genetic basis. For the purposes of this review, we discuss several conditions defined by the latest consensus process as systemic autoinflammatory diseases. We focus on those disorders where recent studies have contributed to further phenotypic characterization or had an impact on clinical management.
Collapse
Affiliation(s)
- Mark Kacar
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Shelly Pathak
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| |
Collapse
|
599
|
Schnappauf O, Aksentijevich I. Current and future advances in genetic testing in systemic autoinflammatory diseases. Rheumatology (Oxford) 2020; 58:vi44-vi55. [PMID: 31769854 PMCID: PMC6878845 DOI: 10.1093/rheumatology/kez294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are a group of inflammatory disorders caused by dysregulation in the innate immune system that leads to enhanced immune responses. The clinical diagnosis of SAIDs can be difficult since individually these are rare diseases with considerable phenotypic overlap. Most SAIDs have a strong genetic background, but environmental and epigenetic influences can modulate the clinical phenotype. Molecular diagnosis has become essential for confirmation of clinical diagnosis. To date there are over 30 genes and a variety of modes of inheritance that have been associated with monogenic SAIDs. Mutations in the same gene can lead to very distinct phenotypes and can have different inheritance patterns. In addition, somatic mutations have been reported in several of these conditions. New genetic testing methods and databases are being developed to facilitate the molecular diagnosis of SAIDs, which is of major importance for treatment, prognosis and genetic counselling. The aim of this review is to summarize the latest advances in genetic testing for SAIDs and discuss potential obstacles that might arise during the molecular diagnosis of SAIDs.
Collapse
Affiliation(s)
- Oskar Schnappauf
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
600
|
Kim H, Gunter-Rahman F, McGrath JA, Lee E, de Jesus AA, Targoff IN, Huang Y, O'Hanlon TP, Tsai WL, Gadina M, Miller FW, Goldbach-Mansky R, Rider LG. Expression of interferon-regulated genes in juvenile dermatomyositis versus Mendelian autoinflammatory interferonopathies. Arthritis Res Ther 2020; 22:69. [PMID: 32252809 PMCID: PMC7137415 DOI: 10.1186/s13075-020-02160-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Juvenile dermatomyositis (JDM) is a systemic autoimmune disease with a prominent interferon (IFN) signature, but the pathogenesis of JDM and the etiology of its IFN signature remain unknown. The Mendelian autoinflammatory interferonopathies, Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and Elevated temperature (CANDLE) and STING-Associated Vasculopathy with onset in Infancy (SAVI), are caused by genetic mutations and have extremely elevated IFN signatures thought to drive pathology. The phenotypic overlap of some clinical features of CANDLE and SAVI with JDM led to the comparison of a standardized interferon-regulated gene score (IRG-S) in JDM and myositis-specific autoantibody (MSA) JDM subgroups, with CANDLE and SAVI. Methods A peripheral 28-component IRG-S assessed by NanoString™ in 57 JDM patients subtyped by MSA was compared with IRG-S in healthy controls (HC) and CANDLE/SAVI patients. Principal component analysis (PCA) was performed, and individual genes were evaluated for their contribution to the score. IRG-S were correlated with disease assessments and patient characteristics. Results IRG-S in JDM patients were significantly higher than in HC but lower than in CANDLE or SAVI. JDM IRG-S overlapped more with SAVI than CANDLE by PCA. Among MSA groups, anti-MDA5 autoantibody-positive patients’ IRG-S overlapped most with SAVI. The IFI27 proportion was significantly higher in SAVI and CANDLE than JDM, but IFIT1 contributed more to IRG-S in JDM. Overall, the contribution of individual interferon-regulated genes (IRG) in JDM was more similar to SAVI. IRG-S correlated moderately with JDM disease activity measures (rs = 0.33–0.47) and more strongly with skin activity (rs = 0.58–0.79) in anti-TIF1 autoantibody-positive patients. Weakness and joint disease activity (multinomial OR 0.91 and 3.3) were the best predictors of high IRG-S. Conclusions Our findings demonstrate peripheral IRG expression in JDM overlaps with monogenic interferonopathies, particularly SAVI, and correlates with disease activity. Anti-MDA5 autoantibody-positive JDM IRG-S were notably more similar to SAVI. This may reflect both a shared IFN signature, which is driven by IFN-β and STING pathways in SAVI, as well as the shared phenotype of vasculopathy in SAVI and JDM, particularly in anti-MDA5 autoantibody-positive JDM, and indicate potential therapeutic targets for JDM.
Collapse
Affiliation(s)
- Hanna Kim
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA.
| | - Fatima Gunter-Rahman
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | | | - Esther Lee
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ira N Targoff
- VA Medical Center, University of Oklahoma Health Sciences Center, and Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yan Huang
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Terrance P O'Hanlon
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - Wanxia L Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| |
Collapse
|