551
|
Ohad N, Shichrur K, Yalovsky S. The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. PLANT PHYSIOLOGY 2007; 145:1090-9. [PMID: 18056859 PMCID: PMC2151733 DOI: 10.1104/pp.107.107284] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 05/21/2023]
Affiliation(s)
- Nir Ohad
- Department of Plant Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
552
|
Visualizing circuits and systems using transgenic reporters of neural activity. Curr Opin Neurobiol 2007; 17:567-71. [PMID: 18036810 DOI: 10.1016/j.conb.2007.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/03/2007] [Accepted: 10/07/2007] [Indexed: 01/02/2023]
Abstract
Genetically encoded sensors of neural activity enable visualization of circuit-level function in the central nervous system. Although our understanding of the molecular events that regulate neuronal firing, synaptic function, and plasticity has expanded rapidly over the past 15 years, an appreciation for how cellular changes are functionally integrated at the circuit level has lagged. A new generation of tools that employ fluorescent sensors of neural activity promises unique opportunities to bridge the gap between cellular level and system level analysis. This review will focus on genetically encoded sensors. A primary advantage of these indicators is that they can be nonselectively introduced to large populations of cells using either transgenic-mediated or viral-mediated approaches. This ability removes the nontrivial obstacles of how to get chemical indicators into cells of interest, a problem that has dogged investigators who have been interested in mapping neural function in the intact CNS. Five different types of approaches and their relative utility will be reviewed here: first, reporters of immediate-early gene (IEG) activation using promoters such as c-fos and arc; second, voltage-based sensors, such as GFP-coupled Na+ and K+ channels; third, Cl*-based sensors; fourth, Ca2+-based sensors, such as Camgaroo and the troponin-based TN-L15; and fifth, pH-based sensors, which have been particularly useful for examining synaptic activity of highly convergent afferents in sensory systems in vivo. Particular attention will be paid to reporters of IEG expression, because these tools employ the built-in threshold function that occurs with activation of gene expression, provoking new experimental questions by expanding the timescale of analysis for circuit-level and system-level functional mapping.
Collapse
|
553
|
Qian Z, Fields CJ, Lutz S. Investigating the Structural and Functional Consequences of Circular Permutation on Lipase B fromCandida Antarctica. Chembiochem 2007; 8:1989-96. [PMID: 17876754 DOI: 10.1002/cbic.200700373] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The engineering of lipase B from Candida antarctica (CALB) by circular permutation has yielded over sixty hydrolase variants, and several show significantly improved catalytic performance. Here we report a detailed characterization of ten selected enzyme variants by kinetic and spectroscopic methods to further elucidate the impact of circular permutation on the structure and function of CALB. Our experiments identify lipase variants with up to 175-fold enhanced k(cat)/K(M) values over wild-type. In addition, circular permutation does not change the enzymes' enantiopreference and preserves or even improves their enantioselectivity compared to that of the wild-type enzyme. Finally, our spectroscopic analyses suggest that the structural effects of circular permutation on CALB are mostly local, concentrating on regions near the native and new protein termini. The observed changes in secondary structure and protein thermostability vary among enzyme variants but directly correlate with the locations of the new termini, a first step towards a predictive framework.
Collapse
Affiliation(s)
- Zhen Qian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
554
|
Souslova EA, Chudakov DM. Genetically encoded intracellular sensors based on fluorescent proteins. BIOCHEMISTRY (MOSCOW) 2007; 72:683-97. [PMID: 17680759 DOI: 10.1134/s0006297907070012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Green fluorescent protein from Aequorea victoria and its many homologs are now widely used in basic and applied research. These genetically encoded fluorescent markers can detect localization of cell proteins and organelles in living cells and also cells and tissues in living organisms. Unique instruments and methods for studies of molecular biology of a cell and high throughput drug screenings are based on fluorescent proteins. This review deals with the most intensively evolving directions in this field, the development of genetically encoded sensors. Changes in their spectral properties are used for monitoring of cell enzyme activities or changes in concentrations of particular molecules.
Collapse
Affiliation(s)
- E A Souslova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
555
|
Abstract
Most systems biology approaches involve determining the structure of biological circuits using genomewide "-omic" analyses. Yet imaging offers the unique advantage of watching biological circuits function over time at single-cell resolution in the intact animal. Here, we discuss the power of integrating imaging tools with more conventional -omic approaches to analyze the biological circuits of microorganisms, plants, and animals.
Collapse
Affiliation(s)
- Sean G Megason
- Beckman Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
556
|
Evers TH, Appelhof MAM, de Graaf-Heuvelmans PTHM, Meijer EW, Merkx M. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 2007; 374:411-25. [PMID: 17936298 DOI: 10.1016/j.jmb.2007.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/19/2022]
Abstract
Fluorescent indicators for the real-time imaging of small molecules or metal ions in living cells are invaluable tools for understanding their physiological function. Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) between fluorescent protein domains have important advantages over synthetic probes, but often suffer from a small ratiometric change. Here, we present a new design approach to obtain sensors with a large difference in emission ratio between the bound and unbound states. De novo Zn(II)-binding sites were introduced directly at the surface of both fluorescent domains of a chimera of enhanced cyan and yellow fluorescent protein, connected by a flexible peptide linker. The resulting sensor ZinCh displayed an almost fourfold change in fluorescence emission ratio upon binding of Zn(II). Besides a high affinity for Zn(II), the sensor was shown to be selective over other physiologically relevant metal ions. Its unique biphasic Zn(II)-binding behavior could be attributed to the presence of two distinct Zn(II)-binding sites and allowed ratiometric fluorescent detection of Zn(II) over a concentration range from 10 nM to 1 mM. Size-exclusion chromatography and fluorescence anisotropy were used to provide a detailed picture of the conformational changes associated with each Zn(II)-binding step. The high affinity for Zn(II) was mainly due to a high effective concentration of the fluorescent proteins and could be understood quantitatively by modeling the peptide linker between the fluorescent proteins as a random coil. The strategy of using chelating fluorescent protein chimeras to develop FRET sensor proteins with a high ratiometric change is expected to be more generally applicable, in particular for other metal ions and small molecules.
Collapse
Affiliation(s)
- Toon H Evers
- Laboratory of Macromolecular and Organic Chemistry, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
557
|
Single fluorescent protein-based Ca2+ sensors with increased dynamic range. BMC Biotechnol 2007; 7:37. [PMID: 17603870 PMCID: PMC1931437 DOI: 10.1186/1472-6750-7-37] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background Genetically encoded sensors developed on the basis of green fluorescent protein (GFP)-like proteins are becoming more and more popular instruments for monitoring cellular analytes and enzyme activities in living cells and transgenic organisms. In particular, a number of Ca2+ sensors have been developed, either based on FRET (Fluorescence Resonance Energy Transfer) changes between two GFP-mutants or on the change in fluorescence intensity of a single circularly permuted fluorescent protein (cpFP). Results Here we report significant progress on the development of the latter type of Ca2+ sensors. Derived from the knowledge of previously reported cpFP-based sensors, we generated a set of cpFP-based indicators with different spectral properties and fluorescent responses to changes in Ca2+ concentration. Two variants, named Case12 and Case16, were characterized by particular high brightness and superior dynamic range, up to 12-fold and 16.5-fold increase in green fluorescence between Ca2+-free and Ca2+-saturated forms. We demonstrated the high potential of these sensors on various examples, including monitoring of Ca2+ response to a prolonged glutamate treatment in cortical neurons. Conclusion We believe that expanded dynamic range, high brightness and relatively high pH-stability should make Case12 and Case16 popular research tools both in scientific studies and high throughput screening assays.
Collapse
|
558
|
Palmer AE, Tsien RY. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 2007; 1:1057-65. [PMID: 17406387 DOI: 10.1038/nprot.2006.172] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetically encoded Ca2+ indicators allow researchers to quantitatively measure Ca2+ dynamics in a variety of experimental systems. This protocol summarizes the indicators that are available, and highlights those that are most appropriate for a number of experimental conditions, such as measuring Ca2+ in specific organelles and localizations in mammalian tissue-culture cells. The protocol itself focuses on the use of a cameleon, which is a fluorescence resonance-energy transfer (FRET)-based indicator comprising two fluorescent proteins and two Ca2+-responsive elements (a variant of calmodulin (CaM) and a CaM-binding peptide). This protocol details how to set up and conduct a Ca2+-imaging experiment, accomplish offline data processing (such as background correction) and convert the observed FRET ratio changes to Ca2+ concentrations. Additionally, we highlight some of the challenges in observing organellar Ca2+ and the alternative strategies researchers can employ for effectively calibrating the genetically encoded Ca2+ indicators in these locations. Setting up and conducting an initial calibration of the microscope system is estimated to take approximately 1 week, assuming that all the component parts are readily available. Cell culture and transfection is estimated to take approximately 3 d (from the time of plating cells on imaging dishes). An experiment and calibration will probably take a few hours. Finally, the offline data workup can take approximately 1 d depending on the extent of analysis.
Collapse
Affiliation(s)
- Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.
| | | |
Collapse
|
559
|
Flores-Ramírez G, Rivera M, Morales-Pablos A, Osuna J, Soberón X, Gaytán P. The effect of amino acid deletions and substitutions in the longest loop of GFP. BMC CHEMICAL BIOLOGY 2007; 7:1. [PMID: 17594481 PMCID: PMC1919350 DOI: 10.1186/1472-6769-7-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/26/2007] [Indexed: 11/12/2022]
Abstract
Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure.
Collapse
Affiliation(s)
- Gabriela Flores-Ramírez
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | - Manuel Rivera
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | - Alfredo Morales-Pablos
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | - Joel Osuna
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | - Paul Gaytán
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| |
Collapse
|
560
|
Gianneschi N, Ghadiri M. Design of Molecular Logic Devices Based on a Programmable DNA-Regulated Semisynthetic Enzyme. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
561
|
Akemann W, Dinesh Raj C, Knöpfel T. Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740356fcopeg2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
562
|
Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y. Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res 2007; 58:219-25. [PMID: 17418439 DOI: 10.1016/j.neures.2007.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/08/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Functional multineuron calcium imaging (fMCI) is a large-scale optical recording technique that monitors the spatiotemporal pattern of action potentials, all at once, from large neuron populations. fMCI has unique advantages, including: (i) simultaneous recording from >1000 neurons in a wide area, (ii) single-cell resolution, (iii) identifiable location of neurons and (iv) detection of non-active neurons during the observation period. We review herein the principle, history, utility and limitations of fMCI.
Collapse
Affiliation(s)
- Naoya Takahashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
563
|
Gianneschi NC, Ghadiri MR. Design of molecular logic devices based on a programmable DNA-regulated semisynthetic enzyme. Angew Chem Int Ed Engl 2007; 46:3955-8. [PMID: 17427900 PMCID: PMC2790070 DOI: 10.1002/anie.200700047] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan C. Gianneschi
- Dr. N. C. Gianneschi, Prof. Dr. M. R. Ghadiri, Departments of Chemistry and Molecular Biology and the, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 (USA), Fax: (+1) 858-784-2798
| | - M. Reza Ghadiri
- Dr. N. C. Gianneschi, Prof. Dr. M. R. Ghadiri, Departments of Chemistry and Molecular Biology and the, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 (USA), Fax: (+1) 858-784-2798, E-mail:
| |
Collapse
|
564
|
Pinton P, Rimessi A, Romagnoli A, Prandini A, Rizzuto R. Biosensors for the detection of calcium and pH. Methods Cell Biol 2007; 80:297-325. [PMID: 17445701 DOI: 10.1016/s0091-679x(06)80015-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, I-44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
565
|
Perez-Jimenez R, Garcia-Manyes S, Ainavarapu SRK, Fernandez JM. Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy. J Biol Chem 2006; 281:40010-4. [PMID: 17082195 DOI: 10.1074/jbc.m609890200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used single molecule force spectroscopy to characterize the mechanical stability of the enhanced yellow fluorescent protein (EYFP) (a mutant form of the green fluorescent protein (GFP)) and two of its circularly permutated variants. In all three constructs, we found two main unfolding peaks; the first corresponds to a transition state placed close to the termini and the second to a transition state placed halfway through the molecule. We attribute the second transition state to the shear rupture of the beta1- and beta6-strands, which we verified by introducing a point mutation in this region. Although both unfolding peaks were observed in all three EYFP variants, their relative frequency of occurrence varied. Our results demonstrated that the mechanical unfolding pathways in EYFP could be deciphered through the use of circular permutation.
Collapse
Affiliation(s)
- Raul Perez-Jimenez
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
566
|
Kotlikoff MI. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J Physiol 2006; 578:55-67. [PMID: 17038427 PMCID: PMC2075121 DOI: 10.1113/jphysiol.2006.120212] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This article reviews genetically encoded Ca2+ indicators (GECIs), with a focus on the use of these novel molecules in the context of understanding complex cell signalling in mammals, in vivo. The review focuses on the advantages and limitations of specific GECI design strategies and the results of experiments in which these molecules have been expressed in transgenic mice, concentrating particularly on recent experiments from our laboratory in which physiological signalling could be monitored in vivo. Finally, newer strategies for effective genetic specification of GECIs are briefly reviewed.
Collapse
Affiliation(s)
- Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA.
| |
Collapse
|
567
|
Du W, Wang Y, Luo Q, Liu BF. Optical molecular imaging for systems biology: from molecule to organism. Anal Bioanal Chem 2006; 386:444-57. [PMID: 16850295 PMCID: PMC1592253 DOI: 10.1007/s00216-006-0541-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/01/2006] [Accepted: 05/09/2006] [Indexed: 11/25/2022]
Abstract
The development of highly efficient analytical methods capable of probing biological systems at system level is an important task that is required in order to meet the requirements of the emerging field of systems biology. Optical molecular imaging (OMI) is a very powerful tool for studying the temporal and spatial dynamics of specific biomolecules and their interactions in real time in vivo. In this article, recent advances in OMI are reviewed extensively, such as the development of molecular probes that make imaging brighter, more stable and more informative (e.g., FPs and semiconductor nanocrystals, also referred to as quantum dots), the development of imaging approaches that provide higher resolution and greater tissue penetration, and applications for measuring biological events from molecule to organism level, including gene expression, protein and subcellular compartment localization, protein activation and interaction, and low-mass molecule dynamics. These advances are of great significance in the field of biological science and could also be applied to disease diagnosis and pharmaceutical screening. Further developments in OMI for systems biology are also proposed.
Collapse
Affiliation(s)
- Wei Du
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ying Wang
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Qingming Luo
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Bi-Feng Liu
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
568
|
Roe MW, Fiekers JF, Philipson LH, Bindokas VP. Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy. Methods Mol Biol 2006; 319:37-66. [PMID: 16719350 DOI: 10.1007/978-1-59259-993-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Calcium (Ca2+) is a fundamentally important component of cellular signal transduction. Dynamic changes in the concentration of Ca2+ ([Ca2+]) in the cytoplasm and within organelles are tightly controlled and regulate a diverse array of biological activities, including fertilization, cell division, gene expression, cellular metabolism, protein biosynthesis, secretion, muscle contraction, intercellular communication, and cell death. Measurement of intracellular [Ca2+] is essential to understanding the role of Ca2+ and for defining the underlying regulatory mechanisms in any cellular process. A broad range of synthetic and biosynthetic fluorescent Ca2+ sensors are available that enable the visualization and quantification of subcellular spatio-temporal [Ca2+] gradients. This chapter describes the application of wide-field digitized video fluorescence microfluorometry and confocal microscopy to quantitatively image Ca2+ in cells with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Michael W Roe
- Department of Medicine, University of Chicago, IL, USA
| | | | | | | |
Collapse
|
569
|
Abstract
In this issue of Chemistry & Biology, Tsien and colleagues describe a new family of highly sensitive genetically encoded calcium biosensors that are not affected by their local environment and can measure calcium concentration over a wide dynamic range.
Collapse
|
570
|
Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. ACTA ACUST UNITED AC 2006; 13:521-30. [PMID: 16720273 DOI: 10.1016/j.chembiol.2006.03.007] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The binding interface of calmodulin and a calmodulin binding peptide were reengineered by computationally designing complementary bumps and holes. This redesign led to the development of sensitive and specific pairs of mutant proteins used to sense Ca(2+) in a second generation of genetically encoded Ca(2+) indicators (cameleons). These cameleons are no longer perturbed by large excesses of native calmodulin, and they display Ca(2+) sensitivities tuned over a 100-fold range (0.6-160 microM). Incorporation of circularly permuted Venus in place of Citrine results in a 3- to 5-fold increase in the dynamic range. These redesigned cameleons show significant improvements over previous versions in the ability to monitor Ca(2+) in the cytoplasm as well as distinct subcellular localizations, such as the plasma membrane of neurons and the mitochondria.
Collapse
Affiliation(s)
- Amy E Palmer
- Department of Pharmacology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
571
|
Wang T, Isoshima T, Miyawaki A, Hara M. Single-molecule interaction between circularly permuted green fluorescent protein and trypsin by total internal reflection fluorescence microscopy. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2006.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
572
|
Allen MD, Zhang J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 2006; 348:716-21. [PMID: 16895723 DOI: 10.1016/j.bbrc.2006.07.136] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/20/2006] [Indexed: 01/17/2023]
Abstract
cAMP-dependent protein kinase (PKA) mediates key cellular processes via compartmentalized activity, and the ability to track its activity in living cells should help increase our understanding of this precise regulation. Here, through systematic testing of new fluorescent proteins, we developed a new FRET-based A-kinase activity reporter (AKAR), AKAR3, with a dynamic range of 31-41%, twice that of predecessors. Visualization of PKA activity at plasma membrane, cytoplasm, nucleus, and mitochondria was achieved. Targeting AKAR3 to outer mitochondrial membrane revealed that basal PKA activity at mitochondria differs from that in the cytoplasm, indicating differential regulation of PKA activity at different subcellular locations.
Collapse
Affiliation(s)
- Michael D Allen
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
573
|
Wright NJD. An in vivo technique for pharmacological manipulation of Drosophila brain during optical recording. J Neurosci Methods 2006; 155:77-80. [PMID: 16497386 DOI: 10.1016/j.jneumeth.2005.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/14/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
Drosophila melanogaster, an established model for genetic manipulation, has recently been used for studying olfactory perception, learning, and memory. Some of these important behavioral phenomena have been dissected with defined mutants, some to a single biochemical lesion, expressed in central brain structures known as the mushroom bodies. A previously introduced preparation used a window in the head capsule through which these structures could be imaged using genetically expressed fluorescent calcium sensors while applying physiological odorant stimuli. Unfortunately, technical constraints prevented direct manipulation of the mushroom bodies with this preparation. I describe here a preparation that will allow, for the first time, the direct pharmacological manipulation of these important structures during imaging in the living adult fly. Responses to discreet applications of acetylcholine were reversibly blocked with tubocurare and reversibly eliminated in calcium-free Ringers. This new technique will significantly enhance the usefulness of the Drosophila model system, allowing a more quantitative examination of the mechanisms involved in olfactory learning and memory.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Department of Biology, Station #33, South Avenue K, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
574
|
Bhat RA, Lahaye T, Panstruga R. The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. PLANT METHODS 2006; 2:12. [PMID: 16800872 PMCID: PMC1523328 DOI: 10.1186/1746-4811-2-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/26/2006] [Indexed: 05/10/2023]
Abstract
Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this review, we address the individual strengths and weaknesses of both approaches and provide an outlook about new directions and possible future developments for both techniques.
Collapse
Affiliation(s)
- Riyaz A Bhat
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
| | | | | |
Collapse
|
575
|
Chiang JJH, Li I, Truong K. Creation of Circularly Permutated Yellow Fluorescent Proteins Using Fluorescence Screening and a Tandem Fusion Template. Biotechnol Lett 2006; 28:471-5. [PMID: 16614928 DOI: 10.1007/s10529-006-0007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/02/2006] [Indexed: 10/24/2022]
Abstract
By experimenting with many different circularly permutated yellow fluorescent protein (cpYFP) variants as acceptors in fluorescence resonance energy transfer based biosensors, the optimal dynamic range can be discovered by sampling the possibilities of relative fluorophore orientations before and after bioactivity. Hence, to facilitate the sampling process, we introduced a new approach to construct a library of cpYFP variants using fluorescence screening and a tandem fusion template. This new approach is rapid because it does not require creating intermediate N- and C-terminal fragments and it allows quick screening for positive colonies by fluorescence. As a demonstration, eleven cpYFP variants were created and eight showed fluorescence. The emission and excitation spectra of these cpYFP variants showed strong similarity to YFP and therefore can be used in replacement.
Collapse
Affiliation(s)
- Jason Jui-Hsuan Chiang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, M5S 3G9, Toronto, Ont., Canada
| | | | | |
Collapse
|
576
|
Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A. In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 2006; 25:4766-78. [PMID: 15888652 PMCID: PMC1464576 DOI: 10.1523/jneurosci.4900-04.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetically encoded fluorescent probes of neural activity represent new promising tools for systems neuroscience. Here, we present a comparative in vivo analysis of 10 different genetically encoded calcium indicators, as well as the pH-sensitive synapto-pHluorin. We analyzed their fluorescence changes in presynaptic boutons of the Drosophila larval neuromuscular junction. Robust neural activity did not result in any or noteworthy fluorescence changes when Flash-Pericam, Camgaroo-1, and Camgaroo-2 were expressed. However, calculated on the raw data, fractional fluorescence changes up to 18% were reported by synapto-pHluorin, Yellow Cameleon 2.0, 2.3, and 3.3, Inverse-Pericam, GCaMP1.3, GCaMP1.6, and the troponin C-based calcium sensor TN-L15. The response characteristics of all of these indicators differed considerably from each other, with GCaMP1.6 reporting high rates of neural activity with the largest and fastest fluorescence changes. However, GCaMP1.6 suffered from photobleaching, whereas the fluorescence signals of the double-chromophore indicators were in general smaller but more photostable and reproducible, with TN-L15 showing the fastest rise of the signals at lower activity rates. We show for GCaMP1.3 and YC3.3 that an expanded range of neural activity evoked fairly linear fluorescence changes and a corresponding linear increase in the signal-to-noise ratio (SNR). The expression level of the indicator biased the signal kinetics and SNR, whereas the signal amplitude was independent. The presented data will be useful for in vivo experiments with respect to the selection of an appropriate indicator, as well as for the correct interpretation of the optical signals.
Collapse
Affiliation(s)
- Dierk F Reiff
- Department of Systems and Computational Neuroscience, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
577
|
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 2006; 103:4753-8. [PMID: 16537386 PMCID: PMC1450242 DOI: 10.1073/pnas.0509378103] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca(2+) sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca(2+) transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca(2+) waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo.
Collapse
Affiliation(s)
- Yvonne N. Tallini
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Masamichi Ohkura
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka 882-8508, Japan; Departments of
| | | | - Guangju Ji
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Keiji Imoto
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Robert Doran
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jane Lee
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | | | - Jason Wilson
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Hong-Bo Xin
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Atsushi Sanbe
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - James Gulick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - John Mathai
- **Medicine, University of Pittsburgh School of Medicine, Room S 314 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | | | - Junichi Nakai
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Michael I. Kotlikoff
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
578
|
|
579
|
|
580
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 885] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
581
|
Knöpfel T, Díez-García J, Akemann W. Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 2006; 29:160-6. [PMID: 16443289 DOI: 10.1016/j.tins.2006.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/17/2005] [Accepted: 01/12/2006] [Indexed: 11/25/2022]
Abstract
During the past few decades, optical methods for imaging activity in networks composed of thousands of neurons have been developed. These techniques rely mainly on organic-chemistry-based dyes as indicators of Ca(2+) and membrane potential. However, recently a new generation of probes, genetically encoded fluorescent protein sensors, has emerged for use by physiologists studying the operation of neuronal circuits. We critically review the development of these new probes, and analyze objectives and experimental conditions in which classical probes are likely to prevail and where the fluorescent protein sensors will open paths to previously unexplored territories of functional neuroimaging.
Collapse
Affiliation(s)
- Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan.
| | | | | |
Collapse
|
582
|
Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 2006; 14:2304-14. [PMID: 16131659 PMCID: PMC2253473 DOI: 10.1110/ps.051508105] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A family of genetically-encoded metabolite sensors has been constructed using bacterial periplasmic binding proteins (PBPs) linearly fused to protein fluorophores. The ligand-induced conformational change in a PBP allosterically regulates the relative distance and orientation of a fluorescence resonance energy transfer (FRET)-compatible protein pair. Ligand binding is transduced into a macroscopic FRET observable, providing a reagent for in vitro and in vivo ligand-measurement and visualization. Sensors with a higher FRET signal change are required to expand the dynamic range and allow visualization of subtle analyte changes under high noise conditions. Various observations suggest that factors other than inter-fluorophore separation contribute to FRET transfer efficiency and the resulting ligand-dependent spectral changes. Empirical and rational protein engineering leads to enhanced allosteric linkage between ligand binding and chromophore rearrangement; modifications predicted to decrease chromophore rotational averaging enhance the signal change, emphasizing the importance of the rotational freedom parameter kappa2 to FRET efficiency. Tighter allosteric linkage of the PBP and the fluorophores by linker truncation or by insertion of chromophores into the binding protein at rationally designed sites gave rise to sensors with improved signal change. High-response sensors were obtained with fluorescent proteins attached to the same binding PBP lobe, suggesting that indirect allosteric regulation during the hinge-bending motion is sufficient to give rise to a FRET response. The optimization of sensors for glucose and glutamate, ligands of great clinical interest, provides a general framework for the manipulation of ligand-dependent allosteric signal transduction mechanisms.
Collapse
Affiliation(s)
- Karen Deuschle
- Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
583
|
Abstract
Fluorescence imaging has enabled us to decipher spatiotemporal information coded in complex tissues. Genetically encoded probes that enable fluorescence imaging of excitable cell activity have been constructed by fusing fluorescent proteins to functional proteins that are involved in physiological signaling. The probes are introduced into an intact organism and targeted to specific tissues, cell types, or subcellular compartments, thereby allowing specific signals to be extracted more efficiently than was previously possible. In this primer, I will describe how this approach has met neuroscientists' demands and desires.
Collapse
Affiliation(s)
- Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.
| |
Collapse
|
584
|
Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 2005; 24:79-88. [PMID: 16369541 DOI: 10.1038/nbt1172] [Citation(s) in RCA: 1660] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/25/2005] [Indexed: 11/08/2022]
Abstract
Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP.
Collapse
Affiliation(s)
- Jean-Denis Pédelacq
- Bioscience Division, MS-M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
585
|
Kojima M, Ayabe K, Ueda H. Importance of terminal residues on circularly permutated Escherichia coli alkaline phosphatase with high specific activity. J Biosci Bioeng 2005; 100:197-202. [PMID: 16198264 DOI: 10.1263/jbb.100.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
While the construction of fusion or tagged proteins is a useful method to obtain bifunctional proteins such as enzymes with specific binding activities, the region of the protein amenable to the fusion is limited to either the N- or C-terminus of the polypeptide, which often hampers its utility. Here we propose circular permutation as a method for tethering other protein(s) at a site(s) other than the two termini. As the effect of circular permutation on the activity of practically important proteins remains to be established, Escherichia coli alkaline phosphatase was subjected to circular permutation with its novel termini at the loops near the active site, and the original termini were linked by a flexible linker. While a permutant with the termini at original residues 407 and 408 was not active, a permutant with termini at residues 90 and 94 showed significant activity. Also, the addition of a randomized residue at positions 91 and 93 as well as outer peptide epitopes yielded several mutants with specific activity comparable to the wild-type enzyme with similar outer peptides. In addition, the mutants retained specific binding activity to anti-epitope antibodies, showing their potential utility in competitive immunoassay.
Collapse
Affiliation(s)
- Miki Kojima
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
586
|
Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 2005; 90:1790-6. [PMID: 16339891 PMCID: PMC1367327 DOI: 10.1529/biophysj.105.073536] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded calcium biosensors have become valuable tools in cell biology and neuroscience, but some aspects such as signal strength and response kinetics still need improvement. Here we report the generation of a FRET-based calcium biosensor employing troponin C as calcium-binding moiety that is fast, is stable in imaging experiments, and shows a significantly enhanced fluorescence change. These improvements were achieved by engineering magnesium and calcium-binding properties within the C-terminal lobe of troponin C and by the incorporation of circularly permuted variants of the green fluorescent protein. This sensor named TN-XL shows a maximum fractional fluorescence change of 400% in its emission ratio and linear response properties over an expanded calcium regime. When imaged in vivo at presynaptic motoneuron terminals of transgenic fruit flies, TN-XL exhibits highly reproducible fluorescence signals with the fastest rise and decay times of all calcium biosensors known so far.
Collapse
Affiliation(s)
- Marco Mank
- AG Zelluläre Dynamik, Abteilung Neuronale Informationsverarbeitung, Max-Planck-Institut für Neurobiologie 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
587
|
Saab-Rincón G, Mancera E, Montero-Morán G, Sánchez F, Soberón X. Generation of variability by in vivo recombination of halves of a (beta/alpha)8 barrel protein. ACTA ACUST UNITED AC 2005; 22:113-20. [PMID: 16125117 DOI: 10.1016/j.bioeng.2005.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/25/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
Similar to what has been achieved with nucleic acids, directed evolution of proteins would be greatly facilitated by the availability of large libraries and efficient selection methods. So far, host cell transformation efficiency has been a bottleneck, practically limiting libraries to sizes less than 10(9). One way to circumvent this problem has been implemented with antibody systems, where contribution to the binding site is provided by two different polypeptides (light and heavy chains). The central concept is the construction of binary systems in which the gene from the two chains are separated by a cre-lox recombinase recognition site, packaged in a phage, and subsequently introduced, by multiple infection, into a recombinase expressing cell [Sblattero D, Bradbury A. Nat Biotechnol 2000;18(1):75-80]. Here, we describe the development of a system which applies the same concept to a single-domain enzyme, the cytoplasmic (beta/alpha)8 barrel protein phosphoribosyl anthranilate isomerase (PRAI) from E. coli. For that purpose, we identified the site at which a loop containing the recognition sequence for cre-lox recombinase could be inserted yielding a functional enzyme. We evaluated the effect of this insertion on the capability of the engineered gene to complement a trp F-E. coli strain and the efficiency of the system to recover the original sequence from an abundance of non-functional mutant genes.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | |
Collapse
|
588
|
Chudakov DM, Lukyanov S, Lukyanov KA. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 2005; 23:605-13. [PMID: 16269193 DOI: 10.1016/j.tibtech.2005.10.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/21/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria, and its mutant variants, are the only fully genetically encoded fluorescent probes available and they have proved to be excellent tools for labeling living specimens. Since 1999, numerous GFP homologues have been discovered in Anthozoa, Hydrozoa and Copepoda species, demonstrating the broad evolutionary and spectral diversity of this protein family. Mutagenic studies gave rise to diversified and optimized variants of fluorescent proteins, which have never been encountered in nature. This article gives an overview of the GFP-like proteins developed to date and their most common applications to study living specimens using fluorescence microscopy.
Collapse
Affiliation(s)
- Dmitriy M Chudakov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | |
Collapse
|
589
|
Wang T, Nakajima K, Miyawaki A, Hara M. Probing intra-molecular mechanics of single circularly permuted green fluorescent protein with atomic force microscopy. Ultramicroscopy 2005. [DOI: 10.1016/j.ultramic.2005.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
590
|
Lissandron V, Terrin A, Collini M, D'alfonso L, Chirico G, Pantano S, Zaccolo M. Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. J Mol Biol 2005; 354:546-55. [PMID: 16257413 DOI: 10.1016/j.jmb.2005.09.089] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/22/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Förster resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for a variety of intracellular molecular events. Often, however, the poor dynamic range of such reporters prevents detection of subtle but physiologically relevant signals. Here we present a strategy for improving FRET efficiency between donor and acceptor fluorophores in a green fluorescent protein (GFP)-based protein indicator for cAMP. Such indicator is based on protein kinase A (PKA) and was generated by fusion of CFP and YFP to the regulatory and catalytic subunits of PKA, respectively. Our approach to improve FRET efficiency was to perform molecular dynamic simulations and modelling studies of the linker peptide (L11) joining the CFP moiety and the regulatory subunit in order to define its structure and use this information to design an improved linker. We found that L11 contains the X-Y-P-Y-D motif, which adopts a turn-like conformation that is stiffly conserved along the simulation time. Based on this finding, we designed a new linker, L22 in which the YPY motif was doubled in order to generate a stiffer peptide and reduce the mobility of the chromophore within the protein complex, thus favouring CFP/YFP dipole-dipole interaction and improving FRET efficiency. Molecular dynamic simulations of L22 showed, unexpectedly, that the conformational behaviour of L22 was very loose. Based on the analysis of the three principal conformational states visited by L22 during the simulation time, we modified its sequence in order to increase its rigidity. The resulting linker L20 displayed lower flexibility and higher helical content than L22. When inserted in the cAMP indicator, L20 yielded a probe showing almost doubled FRET efficiency and a substantially improved dynamic range.
Collapse
Affiliation(s)
- Valentina Lissandron
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
591
|
Yin J, Straight PD, McLoughlin SM, Zhou Z, Lin AJ, Golan DE, Kelleher NL, Kolter R, Walsh CT. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 2005; 102:15815-20. [PMID: 16236721 PMCID: PMC1276090 DOI: 10.1073/pnas.0507705102] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An 11-residue peptide with the sequence DSLEFIASKLA was identified from a genomic library of Bacillus subtilis by phage display as an efficient substrate for Sfp phosphopantetheinyl transferase-catalyzed protein labeling by small molecule-CoA conjugates. We name this peptide the "ybbR tag," because part of its sequence is derived from the ybbR ORF in the B. subtilis genome. The site of Sfp-catalyzed ybbR tag labeling was mapped to the underlined Ser residue, and the ybbR tag was found to have a strong tendency for adopting an alpha-helical conformation in solution. Here we demonstrate that the ybbR tag can be fused to the N or C termini of target proteins or inserted in a flexible loop in the middle of a target protein for site-specific protein labeling by Sfp. The short size of the ybbR tag and its compatibility with various target proteins, the broad substrate specificity of Sfp for labeling the ybbR tag with small-molecule probes of diverse structures, and the high specificity and efficiency of the labeling reaction make Sfp-catalyzed ybbR tag labeling an attractive tool for expanding protein structural and functional diversities by posttranslational modification.
Collapse
Affiliation(s)
- Jun Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Kleinfeld D, Griesbeck O. From art to engineering? The rise of in vivo mammalian electrophysiology via genetically targeted labeling and nonlinear imaging. PLoS Biol 2005; 3:e355. [PMID: 16207078 PMCID: PMC1250306 DOI: 10.1371/journal.pbio.0030355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A convergence of technical advancements in neuroscience has begun to transform mammalian electrophysiology from an art into a precise practice.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California, USA.
| | | |
Collapse
|
593
|
Affiliation(s)
- Johannes A Schmid
- Centre for Biomolecular Medicine and Pharmacology, Medical University Vienna, Waehringerstrasse 13A, 1090 Vienna, Austria.
| | | |
Collapse
|
594
|
Takatsuka K, Ishii TM, Ohmori H. A novel Ca2+ indicator protein using FRET and calpain-sensitive linker. Biochem Biophys Res Commun 2005; 336:316-23. [PMID: 16129417 DOI: 10.1016/j.bbrc.2005.08.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/12/2005] [Indexed: 11/23/2022]
Abstract
Here, we report the properties of a FRET-based calcium indicator protein. We constructed a tandem fusion protein, named F2C, of ECFP and EYFP combined with calpain-sensitive sequences of alpha-spectrin, with N-terminal palmitoylation signal of GAP-43. It was previously reported that calpain cleaved a similar ECFP-EYFP fusion protein linked by a calpain-sensitive sequence of alpha-spectrin (fodrin). Unexpectedly, F2C was not cleaved by calpain, but demonstrated properties of a Ca(2+) indicator when transiently infected in Purkinje cells of rat primary cerebellar culture or in the brainstem neurons infected in vivo using Sindbis virus encoding F2C. The emission ratio of 480nm/535nm was repeatedly increased when the intracellular Ca(2+) concentration ([Ca(2+)](i)) was raised. F2C had a Ca(2+) sensitivity with an apparent dissociation constant (K(d) for Ca(2+)) of 150nM, and demonstrated kinetics that paralleled Fura-2 when [Ca(2+)](i) was measured simultaneously. These properties of F2C are useful to be a Ca(2+) indicator.
Collapse
Affiliation(s)
- Kenji Takatsuka
- Department of Physiology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
595
|
Miesenböck G, Kevrekidis IG. Optical imaging and control of genetically designated neurons in functioning circuits. Annu Rev Neurosci 2005; 28:533-63. [PMID: 16022604 DOI: 10.1146/annurev.neuro.28.051804.101610] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins with engineered sensitivities to light are infiltrating the biological mechanisms by which neurons generate and detect electrochemical signals. Encoded in DNA and active only in genetically specified target cells, these proteins provide selective optical interfaces for observing and controlling signaling by defined groups of neurons in functioning circuits, in vitro and in vivo. Light-emitting sensors of neuronal activity (reporting calcium increase, neurotransmitter release, or membrane depolarization) have begun to reveal how information is represented by neuronal assemblies, and how these representations are transformed during the computations that inform behavior. Light-driven actuators control the electrical activities of central neurons in freely moving animals and establish causal connections between the activation of specific neurons and the expression of particular behaviors. Anchored within mathematical systems and control theory, the combination of finely resolved optical field sensing and finely resolved optical field actuation will open new dimensions for the analysis of the connectivity, dynamics, and plasticity of neuronal circuits, and perhaps even for replacing lost--or designing novel--functionalities.
Collapse
Affiliation(s)
- Gero Miesenböck
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
596
|
Qian Z, Lutz S. Improving the Catalytic Activity of Candida antarctica Lipase B by Circular Permutation. J Am Chem Soc 2005; 127:13466-7. [PMID: 16190688 DOI: 10.1021/ja053932h] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipases (EC 3.1.1.3) play an important role in asymmetric biocatalysis. Tailoring these enzymes to novel, unnatural substrates is one of the primary challenges of protein engineering. We have used circular permutation, the intramolecular relocation of a protein's N- and C-termini, to explore the effects of altered active site accessibility and protein backbone flexibility on the catalytic performance of lipase B from Candida antarctica (CALB). Our combinatorial approach identified 63 unique functional protein permutants of CALB, and kinetic analysis of selected candidates indicated that a majority of enzyme variants either retained or surpassed wild-type CALB activity on a series of standard substrates. Beyond the potential benefits of these tailor-made lipases as new catalysts for unnatural substrates, our study validates circular permutation as a promising general method for lipase engineering.
Collapse
Affiliation(s)
- Zhen Qian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
597
|
Petersen OH, Michalak M, Verkhratsky A. Calcium signalling: Past, present and future. Cell Calcium 2005; 38:161-9. [PMID: 16076488 DOI: 10.1016/j.ceca.2005.06.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ is a universal second messenger controlling a wide variety of cellular reactions and adaptive responses. The initial appreciation of Ca2+ as a universal signalling molecule was based on the work of Sydney Ringer and Lewis Heilbrunn. More recent developments in this field were critically influenced by the invention of the patch clamp technique and the generation of fluorescent Ca2+ indicators. Currently the molecular Ca2+ signalling mechanisms are being worked out and we are beginning to assemble a reasonably complete picture of overall Ca2+ homeostasis. Furthermore, investigations of organellar Ca2+ homeostasis have added complexity to our understanding of Ca2+ signalling. The future of the Ca2+ signalling field lies with detailed investigations of the integrative function in vivo and clarification of the pathology associated with malfunctions of Ca2+ signalling cascades.
Collapse
Affiliation(s)
- Ole H Petersen
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
598
|
Evanko DS, Haydon PG. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 2005; 37:341-8. [PMID: 15755495 DOI: 10.1016/j.ceca.2004.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/29/2004] [Accepted: 04/03/2004] [Indexed: 11/28/2022]
Abstract
Genetically encoded sensors are becoming a powerful tool for investigating cellular signaling pathways and, potentially, signaling in vivo. Many sensors use changes in fluorescence resonance energy transfer (FRET) between donor and acceptor variants of GFP separated by a ligand binding domain sensitive to a particular signaling pathway. Accurate measurements require that sensors be insensitive to extraneous intracellular environmental factors. We have found that the responsiveness of the Ca(2+) sensor, cameleon YC6.1, varies linearly with the resting YFP/CFP emission ratio in the cell. However, cells expressing responsive or non-responsive sensor can easily be segregated by determining a resting YFP/CFP ratio cutoff for the sensor. This environmental sensitivity has been eliminated by replacing EYFP with Venus to produce a new cameleon we have designated VC6.1. Measurements show that VC6.1 has a greater dynamic range than YC6.1 and better environmental resistance. We also show that YC6.1 is inactivated by persistent activation of the IP(3) pathway following expression of constitutively active G(q), while VC6.1 is not. The stability of VC6.1 may make it well suited to studies utilizing mixed cell populations such as those encountered in vivo.
Collapse
Affiliation(s)
- Daniel S Evanko
- Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, Philadelphia, PA 19104-6074, USA
| | | |
Collapse
|
599
|
Díez-García J, Matsushita S, Mutoh H, Nakai J, Ohkura M, Yokoyama J, Dimitrov D, Knöpfel T. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+indicator protein. Eur J Neurosci 2005; 22:627-35. [PMID: 16101744 DOI: 10.1111/j.1460-9568.2005.04250.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically encoded fluorescent Ca2+ indicator proteins (FCIPs) are promising tools to study Ca2+ signaling in large assemblies of nerve cells. Currently, there are few examples of stable transgenic mouse lines that functionally express such sensors in well-defined neuronal cell populations. Here we report the generation and characterization of transgenic mice expressing an FCIP under the 5' regulatory sequences of the Kv3.1 potassium channel promoter. In the cerebellar cortex, expression was restricted to granule cells. We first demonstrated reliable measurements of Ca2+ transients from beams of parallel fibers and compared the FCIP signals with intrinsic autofluorescence signals. We demonstrate that, in a transgenic line that exhibits a high expression level of the FCIP, autofluorescence signals are negligible and stimulation-induced fluorescence transients represent FCIP signals. Using frontal cerebellar slices we imaged antidromic activation of granule cells following electrical stimulation of parallel fibers and orthodromic activation of beams of parallel fibers following electrical stimulation of granule cells. We found that paired pulse-induced presynaptic Ca2+ transients of parallel fibers are not affected by blockade of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- Javier Díez-García
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
600
|
Guntas G, Mansell TJ, Kim JR, Ostermeier M. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 2005; 102:11224-9. [PMID: 16061816 PMCID: PMC1183557 DOI: 10.1073/pnas.0502673102] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an iterative approach for creating protein switches involving the in vitro recombination of two nonhomologous genes. We demonstrate this approach by recombining the genes coding for TEM1 beta-lactamase (BLA) and the Escherichia coli maltose binding protein (MBP) to create a family of MBP-BLA hybrids in which maltose is a positive or negative effector of beta-lactam hydrolysis. Some of these MBP-BLA switches were effectively "on-off" in nature, with maltose altering catalytic activity by as much as 600-fold. The ability of these switches to confer an effector-dependent growth/no growth phenotype to E. coli cells was exploited to rapidly identify, from a library of 4 x 10(6) variants, MBP-BLA switch variants that respond to sucrose as the effector. The transplantation of these mutations into wild-type MBP converted MBP into a "sucrose-binding protein," illustrating the switches potential as a tool to rapidly identify ligand-binding proteins.
Collapse
Affiliation(s)
- Gurkan Guntas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|