601
|
Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M, Ramasamy R, Surendran SN, Black WC, Pain A, Jiggins FM. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol 2017; 15:16. [PMID: 28241828 PMCID: PMC5329927 DOI: 10.1186/s12915-017-0351-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. RESULTS To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. CONCLUSIONS We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.
Collapse
Affiliation(s)
- Jacob E Crawford
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
- Present Address: Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Joel M Alves
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - William J Palmer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Massamba Sylla
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Sinnathamby N Surendran
- ID-FISH Technology, Palo Alto, CA, 94303, USA
- Department of Zoology, University of Jaffna, Jaffna, Sri Lanka
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
602
|
Wang C, Shikano T, Persat H, Merilä J. Phylogeography and historical introgression in smoothtail nine-spined sticklebacks, Pungitius laevis (Gasterosteiformes: Gasterosteidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
603
|
Massey SE. Strong Amerindian Mitonuclear Discordance in Puerto Rican Genomes Suggests Amerindian Mitochondrial Benefit. Ann Hum Genet 2017; 81:59-77. [DOI: 10.1111/ahg.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Steven E. Massey
- Biology Department; University of Puerto Rico - Rio Piedras; PO Box 23360 San Juan Puerto Rico 00931
| |
Collapse
|
604
|
Tóth JP, Varga Z, Verovnik R, Wahlberg N, Váradi A, Bereczki J. Mito-nuclear discordance helps to reveal the phylogeographic patterns of Melitaea ornata (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
605
|
Alter SE, Munshi-South J, Stiassny MLJ. Genomewide SNP data reveal cryptic phylogeographic structure and microallopatric divergence in a rapids-adapted clade of cichlids from the Congo River. Mol Ecol 2017; 26:1401-1419. [PMID: 28028845 DOI: 10.1111/mec.13973] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
The lower Congo River is a freshwater biodiversity hot spot in Africa characterized by some of the world's largest rapids. However, little is known about the evolutionary forces shaping this diversity, which include numerous endemic fishes. We investigated phylogeographic relationships in Teleogramma, a small clade of rheophilic cichlids, in the context of regional geography and hydrology. Previous studies have been unable to resolve phylogenetic relationships within Teleogramma due to lack of variation in nuclear genes and discrete morphological characters among putative species. To sample more broadly across the genome, we analysed double-digest restriction-associated sequencing (ddRAD) data from 53 individuals across all described species in the genus. We also assessed body shape and mitochondrial variation within and between taxa. Phylogenetic analyses reveal previously unrecognized lineages and instances of microallopatric divergence across as little as ~1.5 km. Species ranges appear to correspond to geographic regions broadly separated by major hydrological and topographic barriers, indicating these features are likely important drivers of diversification. Mitonuclear discordance indicates one or more introgressive hybridization events, but no clear evidence of admixture is present in nuclear genomes, suggesting these events were likely ancient. A survey of female fin patterns hints that previously undetected lineage-specific patterning may be acting to reinforce species cohesion. These analyses highlight the importance of hydrological complexity in generating diversity in certain freshwater systems, as well as the utility of ddRAD-Seq data in understanding diversification processes operating both below and above the species level.
Collapse
Affiliation(s)
- S Elizabeth Alter
- Department of Biology, York College/The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451, USA.,The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.,The Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY, 10504, USA
| | - Melanie L J Stiassny
- The Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA.,Department of Ichthyology, American Museum of Natural History, 79th Street and Central Park West, New York, NY, 10024, USA
| |
Collapse
|
606
|
Ball SE, Bovero S, Sotgiu G, Tessa G, Angelini C, Bielby J, Durrant C, Favelli M, Gazzaniga E, Garner TWJ. Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus. Ecol Evol 2017; 7:1190-1211. [PMID: 28303189 PMCID: PMC5306002 DOI: 10.1002/ece3.2665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/04/2022] Open
Abstract
The identification of historic and contemporary barriers to dispersal is central to the conservation of endangered amphibians, but may be hindered by their complex life history and elusive nature. The complementary information generated by mitochondrial (mtDNA) and microsatellite markers generates a valuable tool in elucidating population structure and the impact of habitat fragmentation. We applied this approach to the study of an endangered montane newt, Euproctus platycephalus. Endemic to the Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease, and climate change. We have demonstrated a clear hierarchy of structure across genetically divergent and spatially distinct subpopulations. Divergence between three main mountain regions dominated genetic partitioning with both markers. Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years ago (Mya), isolating the northern region, and further differentiation between the central and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene severe glacial oscillations. Our findings are consistent with a model of southward range expansion during glacial periods, with postglacial range retraction to montane habitat and subsequent genetic isolation. Microsatellite markers revealed further strong population structure, demonstrating significant divergence within the central region, and partial differentiation within the south. The northern population showed reduced genetic diversity. Discordance between mitochondrial and microsatellite markers at this scale indicated a further complexity of population structure, in keeping with male-biased dispersal and female philopatry. Our study underscores the need to elucidate cryptic population structure in the ecology and conservation strategies for endangered island-restricted amphibians, especially in the context of disease and climate change.
Collapse
Affiliation(s)
- Sarah E. Ball
- Institute of ZoologyThe Zoological Society of LondonLondonUK
| | - Stefano Bovero
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | - Giuseppe Sotgiu
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | - Giulia Tessa
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversita degli Studi di TorinoTorinoItaly
| | - Claudio Angelini
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | - Jon Bielby
- Institute of ZoologyThe Zoological Society of LondonLondonUK
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | | | - Marco Favelli
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | - Enrico Gazzaniga
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| | - Trenton W. J. Garner
- Institute of ZoologyThe Zoological Society of LondonLondonUK
- Zirichiltaggi S. W. C. Non‐profit Association for Wildlife ConservationSassariItaly
| |
Collapse
|
607
|
Barbosa S, Paupério J, Herman JS, Ferreira CM, Pita R, Vale-Gonçalves HM, Cabral JA, Garrido-García JA, Soriguer RC, Beja P, Mira A, Alves PC, Searle JB. Endemic species may have complex histories: within-refugium phylogeography of an endangered Iberian vole. Mol Ecol 2017; 26:951-967. [DOI: 10.1111/mec.13994] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- S. Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Department of Ecology and Evolutionary Biology; Corson Hall, Cornell University; Ithaca NY 14853-2701 USA
| | - J. Paupério
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
| | - J. S. Herman
- Department of Natural Sciences; National Museums Scotland; Chambers Street Edinburgh EH1 1JF UK
| | - C. M. Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
| | - R. Pita
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade de Évora; 7000-890 Évora Portugal
| | - H. M. Vale-Gonçalves
- CITAB, Centro de Investigação e Tecnologias Agroambientais e Biológicas; Universidade de Trás-os-Montes e Alto Douro (UTAD); 5001-801 Vila Real Portugal
| | - J. A. Cabral
- CITAB, Centro de Investigação e Tecnologias Agroambientais e Biológicas; Universidade de Trás-os-Montes e Alto Douro (UTAD); 5001-801 Vila Real Portugal
| | - J. A. Garrido-García
- Estación Biológica de Doñana (CSIC); Avda Américo Vespucio s/n, Isla de la Cartuja 41092 Sevilla Spain
| | - R. C. Soriguer
- Estación Biológica de Doñana (CSIC); Avda Américo Vespucio s/n, Isla de la Cartuja 41092 Sevilla Spain
| | - P. Beja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - A. Mira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade de Évora; 7000-890 Évora Portugal
| | - P. C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM); 13005 Ciudad Real Spain
| | - J. B. Searle
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Department of Ecology and Evolutionary Biology; Corson Hall, Cornell University; Ithaca NY 14853-2701 USA
| |
Collapse
|
608
|
Lumme J, Ziętara MS, Lebedeva D. Ancient and modern genome shuffling: Reticulate mito-nuclear phylogeny of four related allopatric species of Gyrodactylus von Nordmann, 1832 (Monogenea: Gyrodactylidae), ectoparasites on the Eurasian minnow Phoxinus phoxinus (L.) (Cyprinidae). Syst Parasitol 2017; 94:183-200. [PMID: 28130668 DOI: 10.1007/s11230-016-9696-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
Abstract
Phylogenetic analyses including four allopatric species of Gyrodactylus von Nordmann, 1832 on the Eurasian minnow Phoxinus phoxinus (L.) (Cyprinidae) revealed incongruence between the nuclear ITS1-5.8S-ITS2 and mitochondrial cox1 phylogenies due to ancient hybridisation. Gyrodactylus pannonicus Molnár, 1968 was sampled close to its type-locality, the upper reaches of River Tisza, tributary of Danube in the Black Sea Basin. Faunistic search detected three new related species with maximum composite likelihood distances in cox1 between 16.8-23.2% (tentatively 1.3 to 1.8 My of divergence). Gyrodactylus albolacustris n. sp. recorded in the White Sea Basin, eastern Baltic Basin and Mongolia was close to G. pannonicus in the nuclear ITS (divergence of 0.9%), but diverged in cox1 by 19.8%. The Mongolian isolate of G. albolacustris n. sp. diverged from the European isolates in cox1 by 8.9%, suggesting 0.7 My of isolation. The two other new species differed from G. pannonicus by >4% in ITS and some large indels in ITS1, and by >20% in cox1. Gyrodactylus danastriae n. sp. was found in River Strwiąż, a tributary of the River Dniester (Black Sea Basin) and was characterised by smaller size of anchors and by 29-41 bp dimorphic insertion in ITS1. Gyrodactylus botnicus n. sp. is considered endemic in the Baltic Basin, but was also found in the White Sea Basin as a postglacial immigrant, where it had hybridised with G. albolacustris n. sp. in spite of the high divergence in ITS (3.9%) and cox1 (22%). The discordant nuclear and mitochondrial phylogenies revealed an ancient mitochondrial introgression: G. albolacustris n. sp. was derived from a hybridisation combining proto-pannonicus ITS with proto-danastriae mitochondria, perhaps 1.3 My ago. The postglacial hybridisation of G. albolacustris n. sp. (as the donor of mtDNAalb and ITSalb) and G. botnicus n. sp. (donor of the ITSbot) offered a model of shuffling of the genomic components: the process of the homogenisation and stabilisation of nuclear ITS (concerted evolution) and the lineage sorting has hardly begun.
Collapse
Affiliation(s)
- Jaakko Lumme
- Department of Biology, University of Oulu, 90014, Oulu, Finland
| | - Marek S Ziętara
- Department of Molecular Evolution, University of Gdańsk, Wita Stwosza St., 59, 80-308, Gdańsk, Poland
| | - Dar'ya Lebedeva
- Institute of Biology of Karelian Research Center, Pushkinskaya St., 11, Petrozavodsk, Russian Federation, 185910.
| |
Collapse
|
609
|
Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci Rep 2017; 7:40788. [PMID: 28120863 PMCID: PMC5264399 DOI: 10.1038/srep40788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
Introgressive hybridization is an important and widespread evolutionary process, but the relative roles of neutral demography and natural selection in promoting massive introgression are difficult to assess and an important matter of debate. Hares from the Iberian Peninsula provide an appropriate system to study this question. In its northern range, the Iberian hare, Lepus granatensis, shows a northwards gradient of increasing mitochondrial DNA (mtDNA) introgression from the arctic/boreal L. timidus, which it presumably replaced after the last glacial maximum. Here, we asked whether a south-north expansion wave of L. granatensis into L. timidus territory could underlie mtDNA introgression, and whether nuclear genes interacting with mitochondria (“mitonuc” genes) were affected. We extended previous RNA-sequencing and produced a comprehensive annotated transcriptome assembly for L. granatensis. We then genotyped 100 discovered nuclear SNPs in 317 specimens spanning the species range. The distribution of allele frequencies across populations suggests a northwards range expansion, particularly in the region of mtDNA introgression. We found no correlation between variants at 39 mitonuc genes and mtDNA introgression frequency. Whether the nuclear and mitochondrial genomes coevolved will need a thorough investigation of the hundreds of mitonuc genes, but range expansion and species replacement likely promoted massive mtDNA introgression.
Collapse
|
610
|
Poorten TJ, Knapp RA, Rosenblum EB. Population genetic structure of the endangered Sierra Nevada yellow-legged frog (Rana sierrae) in Yosemite National Park based on multi-locus nuclear data from swab samples. CONSERV GENET 2017. [DOI: 10.1007/s10592-016-0923-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
611
|
The genetic characterization of an isolated remnant population of an endangered rodent (Cricetus cricetus L.) using comparative data: implications for conservation. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
612
|
Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 2017; 26:420-430. [DOI: 10.1111/mec.13948] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Fred W. Allendorf
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| |
Collapse
|
613
|
Breusing C, Vrijenhoek RC, Reusch TBH. Widespread introgression in deep-sea hydrothermal vent mussels. BMC Evol Biol 2017; 17:13. [PMID: 28086786 PMCID: PMC5237248 DOI: 10.1186/s12862-016-0862-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022] Open
Abstract
Background The analysis of hybrid zones is crucial for gaining a mechanistic understanding of the process of speciation and the maintenance of species boundaries. Hybrid zones have been studied intensively in terrestrial and shallow-water ecosystems, but very little is known about their occurrence in deep-sea environments. Here we used diagnostic, single nucleotide polymorphisms in combination with one mitochondrial gene to re-examine prior hypotheses about a contact zone involving deep-sea hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis, living along the Mid-Atlantic Ridge. Results Admixture was found to be asymmetric with respect to the parental species, while introgression was more widespread geographically than previously recognized. Admixed individuals with a majority of alleles from one of the parental species were most frequent in habitats corresponding to that species. Mussels found at a geographically intermediate vent field constituted a genetically mixed population that showed no evidence for hybrid incompatibilities, a finding that does not support a previously inferred tension zone model. Conclusions Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0862-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinna Breusing
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany. .,Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA, 95039, USA.
| | - Robert C Vrijenhoek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA, 95039, USA
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
614
|
Gryseels S, Baird SJE, Borremans B, Makundi R, Leirs H, Goüy de Bellocq J. When Viruses Don't Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathog 2017; 13:e1006073. [PMID: 28076397 PMCID: PMC5226678 DOI: 10.1371/journal.ppat.1006073] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023] Open
Abstract
Many emerging infections are RNA virus spillovers from animal reservoirs. Reservoir identification is necessary for predicting the geographic extent of infection risk, but rarely are taxonomic levels below the animal species considered as reservoir, and only key circumstances in nature and methodology allow intrinsic virus-host associations to be distinguished from simple geographic (co-)isolation. We sampled and genetically characterized in detail a contact zone of two subtaxa of the rodent Mastomys natalensis in Tanzania. We find two distinct arenaviruses, Gairo and Morogoro virus, each spatially confined to a single M. natalensis subtaxon, only co-occurring at the contact zone’s centre. Inter-subtaxon hybridization at this centre and a continuum of quality habitat for M. natalensis show that both viruses have the ecological opportunity to spread into the other substaxon’s range, but do not, strongly suggesting host-intrinsic barriers. Such barriers could explain why human cases of another M. natalensis-borne arenavirus, Lassa virus, are limited to West Africa. Reservoirs of zoonotic viruses are usually equated with a particular wildlife species. It is rarely assessed whether genetic groups below the species level may instead represent the actual reservoir, though this would have major implications on estimations of the zoonosis’ spatial distribution. Here we investigate whether geographically and genetically distinct subtaxa of the widespread African rodent Mastomys natalensis carry distinct arenaviruses, by sampling in detail across a contact zone of two of these subtaxa. Ongoing hybridization shows that individuals of the subtaxa are in direct physical contact, in principle allowing viral exchange, yet neither of the two arenaviruses -Gairo and Morogoro virus- were found to have crossed the zone. Such intraspecific genetic barriers to arenavirus spatial spread have important implications for our understanding of the related Lassa arenavirus, a pathogen potentially lethal to humans of which Mastomys natalensis is also the main reservoir. Although Lassa virus appears to infect several secondary hosts, its distribution is restricted to West Africa and matches that of another M. natalensis subtaxon. Our data thus indicates that it is because of M. natalensis intraspecific distinctions that the human Lassa fever endemic area has not expanded to the rest of sub-Saharan Africa.
Collapse
Affiliation(s)
- Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Research Facility Studenec, Brno, Czech Republic
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Rhodes Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Joëlle Goüy de Bellocq
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Research Facility Studenec, Brno, Czech Republic
| |
Collapse
|
615
|
Senczuk G, Colangelo P, De Simone E, Aloise G, Castiglia R. A combination of long term fragmentation and glacial persistence drove the evolutionary history of the Italian wall lizard Podarcis siculus. BMC Evol Biol 2017; 17:6. [PMID: 28056768 PMCID: PMC5216540 DOI: 10.1186/s12862-016-0847-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current distribution of genetic diversity is the result of a vast array of microevolutionary processes, including short-term demographic and ecological mechanisms and long-term allopatric isolation in response to Quaternary climatic fluctuations. We investigated past processes that drove the population differentiation and spatial genetic distribution of the Italian wall lizard Podarcis siculus by means of sequences of mitochondrial cytb (n = 277 from 115 localities) and nuclear mc1r and β-fibint7genes (n = 262 and n = 91, respectively) from all its distribution range. The pattern emerging from the genetic data was compared with current and past (last glacial maximum) species distribution modeling (SDM). RESULTS We identified seven deeply divergent parapatric clades which presumably remained isolated in different refugia scattered mainly throughout the Tyrrhenian coast. Conversely, the Adriatic coast showed only two haplogroups with low genetic variability. These results appear to agree with the SDM prediction at the last glacial maximum (LGM) indicating a narrow area of habitat suitability along the Tyrrhenian coast and much lower suitability along the Adriatic one. However, the considerable land exposure of the Adriatic coastline favored a glacial colonization of the Balkan Peninsula. CONCLUSIONS Our population-level historical demography showed a common trend consistent with glacial expansions and regional persistence during the last glacial maximum. This complex genetic signature appears to be inconsistent with the expectation of the expansion-contraction model and post-LGM (re)colonizations from southern refugia. Hence it is one of an increasing number of cases in which these assumptions are not met, indicating that long-term fragmentation and pre-LGM events such as glacial persistence were more prominent in shaping genetic variation in this temperate species.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy.
| | - Paolo Colangelo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy.,National Research Council, Institute of Ecosystem Study, Largo Tonnoli 50, 28922, Verbania Pallanza, Italy
| | - Emanuela De Simone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy
| | - Gaetano Aloise
- Museo di Storia Naturale della Calabria e Orto Botanico, Università della Calabria, CAP 87036, Rende, Cosenza, Italy
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma LA SAPIENZA, sede di Anatomia comparata, Rome, Italy
| |
Collapse
|
616
|
Dömel JS, Melzer RR, Harder AM, Mahon AR, Leese F. Nuclear and Mitochondrial Gene Data Support Recent Radiation within the Sea Spider Species Complex Pallenopsis patagonica. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2016.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
617
|
Cordero D, Delgado M, Liu B, Ruesink J, Saavedra C. Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Sci Rep 2017; 7:39745. [PMID: 28045054 PMCID: PMC5206634 DOI: 10.1038/srep39745] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Globally, the Manila clam (Ruditapes philippinarum) stands as the second most important bivalve species in fisheries and aquaculture. Native to the Pacific coast of Asia, it is now well-established in North America and Europe, where its on-going management reflects local economic interests. The historic record of transfers spans the 20th century and suggests sequential movement from Japan to North America, as a hitch-hiker on oysters, and then intentional introduction in Europe, but global genetic data are missing. We have studied mitochondrial DNA and microsatellite markers in nine populations from Asia, North America and Europe. The results from the two types of markers indicated a good concordance of present-day genetic structure with the reported history of clam transfers across continents, and no evidence of relevant concealed introductions from continental Asia in Europe and North America. However, European populations showed a loss of genetic variability and significant genetic differentiation as compared to their American counterparts. Our study shows that in spite of the increasing ease for species to spread out of their native range, in the case of the Manila clam this has not resulted in new invasion waves in the two studied continents.
Collapse
Affiliation(s)
- David Cordero
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Ribera de Cabanes (Castellón), Spain
| | - Marina Delgado
- Instituto de Recerca i Tecnologies Agroalimentaries, Centre de Sant Carles de la Ràpita, Crta. Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita (Tarragona), Spain
| | - Baozhong Liu
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
| | - Jennifer Ruesink
- Department of Biology, University of Washington, BOX 351800, Seattle, Washington 98195-1800, USA
| | - Carlos Saavedra
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Ribera de Cabanes (Castellón), Spain
| |
Collapse
|
618
|
A novel multilocus phylogenetic estimation reveals unrecognized diversity in Asian horned toads, genus Megophrys sensu lato (Anura: Megophryidae). Mol Phylogenet Evol 2017; 106:28-43. [DOI: 10.1016/j.ympev.2016.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
|
619
|
Brown RP, Paterson S, Risse J. Genomic Signatures of Historical Allopatry and Ecological Divergence in an Island Lizard. Genome Biol Evol 2016; 8:3618-3626. [PMID: 28040775 PMCID: PMC5203796 DOI: 10.1093/gbe/evw268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Geographical variation among contiguous populations is frequently attributed to ecological divergence or historical isolation followed by secondary contact. Distinguishing between these effects is key to studies of incipient speciation and could be revealed by different genomic signatures. We used RAD-seq analyses to examine morphologically divergent populations of the endemic lizard (Gallotia galloti) from the volcanic island of Tenerife. Previous analyses have suggested ecological and historical causes to explain the morphological diversity. Analyses of 276,483 single nucleotide polymorphisms (SNPs) from >20 Mbp of the genome revealed one genetically divergent population from Anaga, a region associated with divergent mtDNA lineages in other Tenerife endemics. This population also has a high number of private alleles, and its divergence can be explained by historical isolation. Bayesian outlier analyses identified a small proportion of SNPs as candidates for selection (0.04%) which were strongly differentiated between xeric and mesic habitat types. Individual testing for specific xeric–mesic selection using an alternative approach also supported ecological divergence in a similarly small proportion of SNPs. The study indicates the roles of both historical isolation and ecological divergence in shaping genomic diversity in G. galloti. However, north–south morphological divergence appears solely associated with the latter and likely involves a relatively small proportion of the genome.
Collapse
Affiliation(s)
- Richard P Brown
- School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Steve Paterson
- Department of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Judith Risse
- Department of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
620
|
Bernal MA, Gaither MR, Simison WB, Rocha LA. Introgression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon). Mol Ecol 2016; 26:639-652. [PMID: 27873385 DOI: 10.1111/mec.13937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.
Collapse
Affiliation(s)
- Moisés A Bernal
- Integrative Systems Biology Lab, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia.,Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Michelle R Gaither
- Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.,School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Luiz A Rocha
- Institute for Biodiversity, Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| |
Collapse
|
621
|
Haenel GJ. Introgression of mtDNA inUrosauruslizards: historical and ecological processes. Mol Ecol 2016; 26:606-623. [DOI: 10.1111/mec.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
|
622
|
Hung CM, Drovetski SV, Zink RM. Matching loci surveyed to questions asked in phylogeography. Proc Biol Sci 2016; 283:20152340. [PMID: 26962145 DOI: 10.1098/rspb.2015.2340] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although mitochondrial DNA (mtDNA) has long been used for assessing genetic variation within and between populations, its workhorse role in phylogeography has been criticized owing to its single-locus nature. The only choice for testing mtDNA results is to survey nuclear loci, which brings into contrast the difference in locus effective size and coalescence times. Thus, it remains unclear how erroneous mtDNA-based estimates of species history might be, especially for evolutionary events in the recent past. To test the robustness of mtDNA and nuclear sequences in phylogeography, we provide one of the largest paired comparisons of summary statistics and demographic parameters estimated from mitochondrial, five Z-linked and 10 autosomal genes of 30 avian species co-distributed in the Caucasus and Europe. The results suggest that mtDNA is robust in estimating inter-population divergence but not in intra-population diversity, which is sensitive to population size change. Here, we provide empirical evidence showing that mtDNA was more likely to detect population divergence than any other single locus owing to its smaller Ne and thus faster coalescent time. Therefore, at least in birds, numerous studies that have based their inferences of phylogeographic patterns solely on mtDNA should not be readily dismissed.
Collapse
Affiliation(s)
- Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sergei V Drovetski
- Division of Birds, National Museum of Natural History, Smithsonian Institution, Washington, DC 20004, USA
| | - Robert M Zink
- Bell Museum and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
623
|
Porretta D, Latrofa MS, Dantas-Torres F, Mastrantonio V, Iatta R, Otranto D, Urbanelli S. Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks. Parasit Vectors 2016; 9:640. [PMID: 27955695 PMCID: PMC5154033 DOI: 10.1186/s13071-016-1909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 11/12/2022] Open
Abstract
Background Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only one intron with conserved position among species. In this study we investigated the exon-intron structure and variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential utility of crt gene as a molecular marker. Methods We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni, R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained were estimated. Results All individuals belonging to the tropical lineage of R. sanguineus (s.l.), R. guilhoni, R. muhsamae, R. turanicus, Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s.l.), showing the occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus (s.l.) being more closely related to each other. Conclusions We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general. Notably, the intron presence/absence polymorphism observed herein can be a candidate study-system to investigate the early stages of intron gain/loss before fixation at species level and some debated questions about intron evolution. Finally, the sequence variation observed supports the suitability of the crt gene for molecular recognition of Rhipicephalus spp. and for phylogenetic studies in association with other markers. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1909-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | - Filipe Dantas-Torres
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.,Department of Immunology, Aggeu Magalhães Research Centre, Oswaldo Cruz Foundation, 50740465, Recife, PE, Brazil
| | | | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
624
|
Hawlitschek O, Morinière J, Lehmann GUC, Lehmann AW, Kropf M, Dunz A, Glaw F, Detcharoen M, Schmidt S, Hausmann A, Szucsich NU, Caetano-Wyler SA, Haszprunar G. DNA barcoding of crickets, katydids and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany and Switzerland. Mol Ecol Resour 2016; 17:1037-1053. [PMID: 27863033 DOI: 10.1111/1755-0998.12638] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
Abstract
We present a DNA barcoding study on the insect order Orthoptera that was generated in collaboration between four barcoding projects in three countries, viz. Barcoding Fauna Bavarica (Germany), German Barcode of Life, Austrian Barcode of Life and Swiss Barcode of Life. Our data set includes 748 COI sequences from 127 of the 162 taxa (78.4%) recorded in the three countries involved. Ninety-three of these 122 species (76.2%, including all Ensifera) can be reliably identified using DNA barcodes. The remaining 26 caeliferan species (families Acrididae and Tetrigidae) form ten clusters that share barcodes among up to five species, in three cases even across different genera, and in six cases even sharing individual barcodes. We discuss incomplete lineage sorting and hybridization as most likely causes of this phenomenon, as the species concerned are phylogenetically young and hybridization has been previously observed. We also highlight the problem of nuclear mitochondrial pseudogenes (numts), a known problem in the barcoding of orthopteran species, and the possibility of Wolbachia infections. Finally, we discuss the possible taxonomic implications of our barcoding results and point out future research directions.
Collapse
Affiliation(s)
- O Hawlitschek
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany.,Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003, Barcelona, Spain
| | - J Morinière
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - G U C Lehmann
- Department of Biology, Behavioural Physiology, Humboldt University Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | - A W Lehmann
- Orthoptera Working Group Brandenburg and Berlin, Friedensallee 37, 14532, Stahnsdorf, Germany
| | - M Kropf
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (BOKU), Gregor Mendel-Str. 33, 1180, Vienna, Austria
| | - A Dunz
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - F Glaw
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - M Detcharoen
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - S Schmidt
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - A Hausmann
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany
| | - N U Szucsich
- 3rd Zoological Dep., Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria
| | - S A Caetano-Wyler
- Université de Genève, Département de Génétique et Evolution, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - G Haszprunar
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstr. 21, 81247, München, Germany.,Department Biology II and GeoBio-Center of Ludwig-Maximilians-Universität München, Groβhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
625
|
Stewart KA, Hudson CM, Lougheed SC. Can alternative mating tactics facilitate introgression across a hybrid zone by circumventing female choice? J Evol Biol 2016; 30:412-421. [DOI: 10.1111/jeb.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023]
Affiliation(s)
- K. A. Stewart
- College of Environmental Science and Engineering; Tongji University; Shanghai China
| | - C. M. Hudson
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| | - S. C. Lougheed
- Department of Biology; Queen's University; Kingston ON Canada
| |
Collapse
|
626
|
Ersmark E, Klütsch CFC, Chan YL, Sinding MHS, Fain SR, Illarionova NA, Oskarsson M, Uhlén M, Zhang YP, Dalén L, Savolainen P. From the Past to the Present: Wolf Phylogeography and Demographic History Based on the Mitochondrial Control Region. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
627
|
Perea S, Vukić J, Šanda R, Doadrio I. Ancient Mitochondrial Capture as Factor Promoting Mitonuclear Discordance in Freshwater Fishes: A Case Study in the Genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLoS One 2016; 11:e0166292. [PMID: 27906993 PMCID: PMC5132402 DOI: 10.1371/journal.pone.0166292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
Hybridization and incomplete lineage sorting are common confounding factors in phylogeny and speciation resulting in mitonuclear disparity. Mitochondrial introgression, a particular case of hybridization, may, in extreme cases, lead to replacement of the mitochondrial genome of one species with that of another (mitochondrial capture). We investigated mitochondrial introgression involving two species of the cyprinid genus Squalius in the western Peloponnese region of Greece using molecular and morphological data. We found evidence of complete mitochondrial introgression of Squalius keadicus into two populations recognized as Squalius peloponensis from the Miras and Pamissos River basins and a divergence of mitochondrial genomes of S. keadicus from the Evrotas basin from that of the introgressed populations dating from the Pleistocene. Secondary contact among basins is a possible factor in connection of the species and the introgression event. Morphological analyses support the hypothesis of mitochondrial introgression, as S. keadicus was different from the other three populations recognized as S. peloponensis, although significant differences were found among the four populations. Isolation by geographical barriers arose during Pleistocene in the western Peloponnese were the source of the evolution of the two reciprocally monophyletic subclades found in the S. keadicus mitochondrial clade, and the morphological differences found among the four populations. Along with the lack of structure in the nuclear genome in the three populations ascribed to S. peloponensis, this suggests an incipient speciation process occurring in these Squalius species in the western Peloponnese.
Collapse
Affiliation(s)
- Silvia Perea
- Biodiversity and Evolutionary Group, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal, Madrid, Spain
| | - Jasna Vukić
- Department of Ecology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Radek Šanda
- Department of Zoology, National Museum, Václavské nám, Prague, Czech Republic
| | - Ignacio Doadrio
- Biodiversity and Evolutionary Group, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal, Madrid, Spain
| |
Collapse
|
628
|
Wang C, Agrawal S, Laudien J, Häussermann V, Held C. Discrete phenotypes are not underpinned by genome-wide genetic differentiation in the squat lobster Munida gregaria (Crustacea: Decapoda: Munididae): a multi-marker study covering the Patagonian shelf. BMC Evol Biol 2016; 16:258. [PMID: 27903261 PMCID: PMC5131467 DOI: 10.1186/s12862-016-0836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA barcoding has demonstrated that many discrete phenotypes are in fact genetically distinct (pseudo)cryptic species. Genetically identical, isogenic individuals, however, can also express similarly different phenotypes in response to a trigger condition, e.g. in the environment. This alternative explanation to cryptic speciation often remains untested because it requires considerable effort to reject the hypothesis that the observed underlying genetic homogeneity of the different phenotypes may be trivially caused by too slowly evolving molecular markers. The widespread squat lobster Munida gregaria comprises two discrete ecotypes, gregaria s. str. and subrugosa, which were long regarded as different species due to marked differences in morphological, ecological and behavioral traits. We studied the morphometry and genetics of M. gregaria s. l. and tested (1) whether the phenotypic differences remain stable after continental-scale sampling and inclusion of different life stages, (2) and whether each phenotype is underpinned by a specific genotype. RESULTS A total number of 219 gregaria s. str. and subrugosa individuals from 25 stations encompassing almost entire range in South America were included in morphological and genetic analyses using nine unlinked hypervariable microsatellites and new COI sequences. Results from the PCA and using discriminant functions demonstrated that the morphology of the two forms remains discrete. The mitochondrial data showed a shallow, star-like haplotype network and complete overlap of genetic distances within and among ecotypes. Coalescent-based species delimitation methods, PTP and GMYC, coherently suggested that haplotypes of both ecotypes forms a single species. Although all microsatellite markers possess sufficient genetic variation, AMOVA, PCoA and Bayesian clustering approaches revealed no genetic clusters corresponding to ecotypes or geographic units across the entire South-American distribution. No evidence of isolation-by-distance could be detected for this species in South America. CONCLUSIONS Despite their pronounced bimodal morphologies and different lifestyles, the gregaria s. str. and subrugosa ecotypes form a single, dimorphic species M. gregaria s. l.. Based on adequate geographic coverage and multiple independent polymorphic loci, there is no indication that each phenotype may have a unique genetic basis, leaving phenotypic plasticity or localized genomic islands of speciation as possible explanations.
Collapse
Affiliation(s)
- Chen Wang
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shobhit Agrawal
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Jürgen Laudien
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Vreni Häussermann
- Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brasil 2950, Valparaíso, Chile
- Huinay Scientific Field Station, Huinay, Los Lagos Chile
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
629
|
Choi YJ, Tyagi R, McNulty SN, Rosa BA, Ozersky P, Mafrtin J, Hallsworth-Pepin K, Unnasch TR, Norice CT, Nutman TB, Weil GJ, Fischer PU, Mitreva M. Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont. Nat Microbiol 2016; 2:16207. [PMID: 27869792 PMCID: PMC5512550 DOI: 10.1038/nmicrobiol.2016.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Philip Ozersky
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - John Mafrtin
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Carmelle T. Norice
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
630
|
Li X, Lin L, Cui A, Bai J, Wang X, Xin C, Zhang Z, Yang C, Gao R, Huang Y, Lei F. Taxonomic status and phylogenetic relationship of tits based on mitogenomes and nuclear segments. Mol Phylogenet Evol 2016; 104:14-20. [DOI: 10.1016/j.ympev.2016.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
|
631
|
Molecular phylogeny and patterns of diversification in syngnathid fishes. Mol Phylogenet Evol 2016; 107:388-403. [PMID: 27989632 DOI: 10.1016/j.ympev.2016.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/19/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
The family Syngnathidae is a large and diverse clade of morphologically unique bony fishes, with 57 genera and 300 described species of seahorses, pipefishes, pipehorses, and seadragons. They primarily inhabit shallow coastal waters in temperate and tropical oceans, and are characterized by a fused jaw, male brooding, and extraordinary crypsis. Phylogenetic relationships within the Syngnathidae remain poorly resolved due to lack of generic taxon sampling, few diagnostic morphological characters, and limited molecular data. The phylogenetic placement of the threatened, commercially exploited seahorses remains a topic of intense interest, with conflicting topologies based on morphology and predominantly mitochondrial genetic data. In this study, we integrate eight nuclear and mitochondrial markers and 17 morphological characters to investigate the phylogenetic structure of the family Syngnathidae at the generic level. We include 91 syngnathid species representing 48 of the 57 recognized genera, all major ocean basins, and a broad array of temperate and tropical habitats including rocky and coral reefs, sand and silt, mangroves, seagrass beds, estuaries, and rivers. Maximum likelihood and Bayesian analyses of 5160bp from eight loci produced high congruence among alternate topologies, defining well-supported and sometimes novel clades. We present a hypothesis that confirms a deep phylogenetic split between lineages with trunk- or tail-brood pouch placement, and provides significant new insights into the morphological evolution and biogeography of this highly derived fish clade. Based on the fundamental division between lineages - the tail brooding "Urophori" and the trunk brooding "Gastrophori" - we propose a revision of Syngnathidae classification into only two subfamilies: the Nerophinae and the Syngnathinae. We find support for distinct principal clades within the trunk-brooders and tail-brooders, the latter of which include seahorses, seadragons, independent lineages of pipehorses, and clades that originated in southern Australia and the Western Atlantic. We suggest the seahorse genus Hippocampus is of Indo-Pacific origin and its sister clade is an unexpected grouping of several morphologically disparate Indo-Pacific genera, including the Pacific pygmy pipehorses. Taxonomic revision is required for multiple genera, particularly to reflect deep evolutionary splits in nominal lineages from the Atlantic versus the Indo-Pacific.
Collapse
|
632
|
Jang SJ, Park E, Lee WK, Johnson SB, Vrijenhoek RC, Won YJ. Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries. BMC Evol Biol 2016; 16:235. [PMID: 27793079 PMCID: PMC5084463 DOI: 10.1186/s12862-016-0807-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geographical subdivision of the vent polychaete Alvinella pompejana. DNA sequences from one mitochondrial and eleven nuclear genes were examined in samples collected from ten vent localities that comprise the species’ known range from 23°N latitude on the East Pacific Rise to 38°S latitude on the Pacific Antarctic Ridge. Results Multi-locus genotypes inferred from these sequences clustered the individual worms into three metapopulation segments — the northern East Pacific Rise (NEPR), southern East Pacific Rise (SEPR), and northeastern Pacific Antarctic Ridge (PAR) — separated by the Equator and Easter Microplate boundaries. Genetic diversity estimators were negatively correlated with tectonic spreading rates. Application of the isolation-with-migration (IMa2) model provided information about divergence times and demographic parameters. The PAR and NEPR metapopulation segments were estimated to have split roughly 4.20 million years ago (Mya) (2.42–33.42 Mya, 95 % highest posterior density, (HPD)), followed by splitting of the SEPR and NEPR segments about 0.79 Mya (0.07–6.67 Mya, 95 % HPD). Estimates of gene flow between the neighboring regions were mostly low (2 Nm < 1). Estimates of effective population size decreased with southern latitudes: NEPR > SEPR > PAR. Conclusions Highly effective dispersal capabilities allow A. pompejana to overcome the temporal instability and intermittent distribution of active hydrothermal vents in the eastern Pacific Ocean. Consequently, the species exhibits very high levels of genetic diversity compared with many co-distributed vent annelids and mollusks. Nonetheless, its levels of genetic diversity in partially isolated populations are inversely correlated with tectonic spreading rates. As for many other vent taxa, this pioneering colonizer is similarly affected by local rates of habitat turnover and by major dispersal filters associated with the Equator and the Easter Microplate region. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0807-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sook-Jin Jang
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, South Korea
| | - Eunji Park
- Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| | - Won-Kyung Lee
- Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| | - Shannon B Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039-9644, USA
| | | | - Yong-Jin Won
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, South Korea. .,Division of Ecoscience, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
633
|
Sawyer YE, Cook JA. Phylogeographic structure in long-tailed voles (Rodentia: Arvicolinae) belies the complex Pleistocene history of isolation, divergence, and recolonization of Northwest North America's fauna. Ecol Evol 2016; 6:6633-6647. [PMID: 27777736 PMCID: PMC5058534 DOI: 10.1002/ece3.2393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/24/2022] Open
Abstract
Quaternary climate fluctuations restructured biodiversity across North American high latitudes through repeated episodes of range contraction, population isolation and divergence, and subsequent expansion. Identifying how species responded to changing environmental conditions not only allows us to explore the mode and tempo of evolution in northern taxa, but also provides a basis for forecasting future biotic response across the highly variable topography of western North America. Using a multilocus approach under a Bayesian coalescent framework, we investigated the phylogeography of a wide‐ranging mammal, the long‐tailed vole, Microtus longicaudus. We focused on populations along the North Pacific Coast to refine our understanding of diversification by exploring the potentially compounding roles of multiple glacial refugia and more recent fragmentation of an extensive coastal archipelago. Through a combination of genetic data and species distribution models (SDMs), we found that historical climate variability influenced contemporary genetic structure, with multiple isolated locations of persistence (refugia) producing multiple divergent lineages (Beringian or northern, southeast Alaska or coastal, and southern or continental) during glacial advances. These vole lineages all occur along the North Pacific Coast where the confluence of numerous independent lineages in other species has produced overlapping zones of secondary contact, collectively a suture zone. Finally, we detected high levels of neoendemism due to complex island geography that developed in the last 10,000 years with the rising sea levels of the Holocene.
Collapse
Affiliation(s)
- Yadéeh E Sawyer
- Department of Biology and Museum of Southwestern Biology University of New Mexico MSC03 2020 Albuquerque New Mexico 87131-0001
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology University of New Mexico MSC03 2020 Albuquerque New Mexico 87131-0001
| |
Collapse
|
634
|
Manthey JD, Tollis M, Lemmon AR, Moriarty Lemmon E, Boissinot S. Diversification in wild populations of the model organism Anolis carolinensis: A genome-wide phylogeographic investigation. Ecol Evol 2016; 6:8115-8125. [PMID: 27891220 PMCID: PMC5108263 DOI: 10.1002/ece3.2547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
Abstract
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.
Collapse
Affiliation(s)
| | - Marc Tollis
- Biodesign Institute Arizona State University Tempe AZ USA
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee FL USA
| | | | | |
Collapse
|
635
|
Sun K, Kimball RT, Liu T, Wei X, Jin L, Jiang T, Lin A, Feng J. The complex evolutionary history of big-eared horseshoe bats (Rhinolophus macrotis complex): insights from genetic, morphological and acoustic data. Sci Rep 2016; 6:35417. [PMID: 27748429 PMCID: PMC5066199 DOI: 10.1038/srep35417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization.
Collapse
Affiliation(s)
- Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xuewen Wei
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
636
|
Multilocus approach reveals an incipient differentiation process in the Stone-curlew, Burhinus oedicnemus around the Mediterranean basin. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0894-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
637
|
Hamilton CA, Lemmon AR, Lemmon EM, Bond JE. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol Biol 2016; 16:212. [PMID: 27733110 PMCID: PMC5062932 DOI: 10.1186/s12862-016-0769-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite considerable effort, progress in spider molecular systematics has lagged behind many other comparable arthropod groups, thereby hindering family-level resolution, classification, and testing of important macroevolutionary hypotheses. Recently, alternative targeted sequence capture techniques have provided molecular systematics a powerful tool for resolving relationships across the Tree of Life. One of these approaches, Anchored Hybrid Enrichment (AHE), is designed to recover hundreds of unique orthologous loci from across the genome, for resolving both shallow and deep-scale evolutionary relationships within non-model systems. Herein we present a modification of the AHE approach that expands its use for application in spiders, with a particular emphasis on the infraorder Mygalomorphae. RESULTS Our aim was to design a set of probes that effectively capture loci informative at a diversity of phylogenetic timescales. Following identification of putative arthropod-wide loci, we utilized homologous transcriptome sequences from 17 species across all spiders to identify exon boundaries. Conserved regions with variable flanking regions were then sought across the tick genome, three published araneomorph spider genomes, and raw genomic reads of two mygalomorph taxa. Following development of the 585 target loci in the Spider Probe Kit, we applied AHE across three taxonomic depths to evaluate performance: deep-level spider family relationships (33 taxa, 327 loci); family and generic relationships within the mygalomorph family Euctenizidae (25 taxa, 403 loci); and species relationships in the North American tarantula genus Aphonopelma (83 taxa, 581 loci). At the deepest level, all three major spider lineages (the Mesothelae, Mygalomorphae, and Araneomorphae) were supported with high bootstrap support. Strong support was also found throughout the Euctenizidae, including generic relationships within the family and species relationships within the genus Aptostichus. As in the Euctenizidae, virtually identical topologies were inferred with high support throughout Aphonopelma. CONCLUSIONS The Spider Probe Kit, the first implementation of AHE methodology in Class Arachnida, holds great promise for gathering the types and quantities of molecular data needed to accelerate an understanding of the spider Tree of Life by providing a mechanism whereby different researchers can confidently and effectively use the same loci for independent projects, yet allowing synthesis of data across independent research groups.
Collapse
Affiliation(s)
- Chris A. Hamilton
- Department of Biological Sciences, Auburn University & Auburn University Museum of Natural History, Auburn, AL USA
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL USA
| | | | - Jason E. Bond
- Department of Biological Sciences, Auburn University & Auburn University Museum of Natural History, Auburn, AL USA
| |
Collapse
|
638
|
Lee YS, Markov N, Argunov A, Voloshina I, Bayarlkhagva D, Kim B, Min M, Lee H, Kim KS. Genetic diversity and phylogeography of Siberian roe deer, Caproulus pygargus, in central and peripheral populations. Ecol Evol 2016; 6:7286-7297. [PMID: 28725397 PMCID: PMC5513270 DOI: 10.1002/ece3.2458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
Current understanding of phylogeographical structure and genetic diversity of Siberian roe deer remains limited mainly due to small sample size and/or low geographical coverage in previous studies. Published data suggest at least two phylogroups: western (Ural Mountains and Western Siberia) and eastern (east from lake Baikal, including the Korean peninsula), but their phylogenetic relationship remains unclear. Combined sequences of cytochrome b (1140 bp) and the mtDNA control region (963 bp) were analyzed from 219 Siberian roe deer from 12 locations in Russia, Mongolia, and South Korea, which cover a large part of its range, to assess genetic diversity and phylogeographical status. Special emphasis was placed on the demographic history and genetic features of central, peripheral, and isolated populations. Results of median-joining network and phylogenetic tree analyses indicate that Siberian roe deer from the Urals to the Pacific Ocean are genetically diverse and that geographical distribution and composition of haplogroups coincide with previously described ranges of the subspecies Capreolus pygargus pygargus and Capreolus pygargus tianschanicus. We found that peripheral populations in the northwestern parts of the species range (Urals), as well as the isolated population from Jeju Island, are genetically distinct from those in the core part of the range, both in terms of genetic diversity and quantitative composition of haplogroups. We also found that northwestern (Urals) and northern (Yakutia) peripheral populations share the same haplogroup and fall into the same phylogenetic clade with the isolated population from Jeju Island. This finding sheds light on the taxonomic status of the Jeju Island population and leads to hypotheses about the discordance of morphological and genetic evolution in isolated populations and specific genetic features of peripheral populations.
Collapse
Affiliation(s)
- Yun Sun Lee
- Conservation Genome Resource Bank for Korean WildlifeCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - Nickolay Markov
- Institute of Plant and Animal Ecology Urals Branch of Russian Academy of SciencesYekaterinburgRussia
| | - Alexander Argunov
- Institute for Biological Problems of Cryolihtozone Siberian Branch of Russian Academy of SciencesYakutskRussia
| | | | - Damdingiin Bayarlkhagva
- Department of Molecular Biology and GeneticsNational University of MongoliaUlaanbaatarMongolia
| | - Baek‐Jun Kim
- Department of Climate and EcologyNational Institute of EcologyMaseo‐myeonSeocheon‐gunChungcheongnam‐doKorea
| | - Mi‐Sook Min
- Conservation Genome Resource Bank for Korean WildlifeCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - Hang Lee
- Conservation Genome Resource Bank for Korean WildlifeCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - Kyung Seok Kim
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
639
|
Guillemin ML, Valero M, Morales Collio K, Pinochet Sanchez R, Henríquez Espinosa M, Silva AX. Microsatellite markers and cytoplasmic sequences reveal contrasting pattern of spatial genetic structure in the red algae species complex Mazzaella laminarioides. JOURNAL OF PHYCOLOGY 2016; 52:806-816. [PMID: 27317474 DOI: 10.1111/jpy.12440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Mazzaella laminarioides is a common haploid-diploid red alga that forms dense beds. This alga has a wide distributional range, covering 3,500 km of the Chilean coast, but is restricted to high rocky intertidal zones. Recently, the existence of three highly divergent genetic lineages was demonstrated for this taxon, and two cytoplasmic markers were used to determine that these lineages are distributed in strict parapatry. Here, using 454 next-generation sequencing, we developed polymorphic microsatellite loci that cross amplify in all three cytoplasmic lineages. Six sites (i.e., two sites within each lineage) were analyzed using nine microsatellite loci. Our work shows that, although substantial cytoplasmic differentiation occurs within M. laminarioides, the microsatellite loci did not retrieve three nuclear genetic clusters as expected. Indeed, while the northernmost and southernmost cytoplasmic lineages form two strongly divergent nuclear groups characterized by diagnostic alleles, the third cytoplasmic lineage did not form a third nuclear independent group. It is possible that inter-lineage gene exchange has occurred, particularly at sites along the contact zone between the different cytoplasmic lineages. This nuclear-cytoplasmic incongruence in M. laminarioides could be explained by incomplete lineage sorting of the nuclear genes or asymmetric introgressive hybridization between the lineages. Finally, highly significant heterozygote deficiencies (suggesting occurrence of intergametophytic selfing) were observed in the three small northernmost sites while the large southernmost sites generally approached panmixia.
Collapse
Affiliation(s)
- Marie-Laure Guillemin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
- CNRS, Sorbonne Universités, UPMC University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Myriam Valero
- CNRS, Sorbonne Universités, UPMC University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Kennia Morales Collio
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Ramona Pinochet Sanchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Miguel Henríquez Espinosa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Andrea X Silva
- AUSTRAL-omics, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
640
|
Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity (Edinb) 2016; 118:211-220. [PMID: 27649619 PMCID: PMC5315522 DOI: 10.1038/hdy.2016.72] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023] Open
Abstract
Genetic variation shared between closely related species may be due to retention of ancestral polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species with overlapping distributions. To address this issue, we sequenced 33 independent intron loci across the genome of two closely related pine species (Pinus massoniana Lamb. and Pinus hwangshanensis Hisa) from Southeast China. Population structure analyses revealed that the species showed slightly more admixture in parapatric populations than in allopatric populations. Levels of interspecific differentiation were lower in parapatry than in allopatry. Approximate Bayesian computation suggested that the most likely speciation scenario explaining this pattern was a long period of isolation followed by a secondary contact. Ecological niche modeling suggested that a gradual range expansion of P. hwangshanensis during the Pleistocene climatic oscillations could have been the cause of the overlap. Our study therefore suggests that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history. Finally, we discuss the importance of contrasting results from markers with different dynamics of migration, namely nuclear, chloroplast and mitochondrial DNA.
Collapse
|
641
|
Edgington HA, Ingram CM, Taylor DR. Cyto-nuclear discordance suggests complex evolutionary history in the cave-dwelling salamander, Eurycea lucifuga. Ecol Evol 2016; 6:6121-38. [PMID: 27648230 PMCID: PMC5016636 DOI: 10.1002/ece3.2212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 11/12/2022] Open
Abstract
Our understanding of the evolutionary history and ecology of cave‐associated species has been driven historically by studies of morphologically adapted cave‐restricted species. Our understanding of the evolutionary history and ecology of nonrestricted cave species, troglophiles, is limited to a few studies, which present differing accounts of troglophiles’ relationship with the cave habitat, and its impact on population dynamics. Here, we used phylogenetics, demographic statistics, and population genetic methods to study lineage divergence, dates of divergence, and population structure in the Cave Salamander, Eurycea lucifuga, across its range. In order to perform these analyses, we sampled 233 individuals from 49 populations, using sequence data from three gene loci as well as genotyping data from 19 newly designed microsatellite markers. We find, as in many other species studied in a phylogeographic context, discordance between patterns inferred from mitochondrial relationships and those inferred by nuclear markers indicating a complicated evolutionary history in this species. Our results suggest Pleistocene‐based divergence among three main lineages within E. lucifuga corresponding to the western, central, and eastern regions of the range, similar to patterns seen in species separated in multiple refugia during climatic shifts. The conflict between mitochondrial and nuclear patterns is consistent with what we would expect from secondary contact between regional populations following expansion from multiple refugia.
Collapse
Affiliation(s)
- Hilary A Edgington
- Ontario Institute for Cancer Research Toronto ON Canada; Department of Biology University of Virginia Charlottesville Virginia
| | - Colleen M Ingram
- Department of Biology University of Virginia Charlottesville Virginia; Division of Vertebrate Biology American Museum of Natural History New York City New York
| | - Douglas R Taylor
- Department of Biology University of Virginia Charlottesville Virginia
| |
Collapse
|
642
|
Zarza E, Faircloth BC, Tsai WL, Bryson RW, Klicka J, McCormack JE. Hidden histories of gene flow in highland birds revealed with genomic markers. Mol Ecol 2016; 25:5144-5157. [DOI: 10.1111/mec.13813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Eugenia Zarza
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science Louisiana State University Baton Rouge LA 70803 USA
| | - Whitney L.E. Tsai
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Robert W. Bryson
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John E. McCormack
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| |
Collapse
|
643
|
Eyer PA, Leniaud L, Tinaut A, Aron S. Combined hybridization and mitochondrial capture shape complex phylogeographic patterns in hybridogenetic Cataglyphis desert ants. Mol Phylogenet Evol 2016; 105:251-262. [PMID: 27591172 DOI: 10.1016/j.ympev.2016.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
Abstract
Some species of Cataglyphis desert ants have evolved a hybridogenetic mode of reproduction at the social scale. In hybridogenetic populations, two distinct genetic lineages coexist. Non-reproductive offspring (workers) are hybrids of the two lineages, whereas sexual offspring (males and new queens) are produced by parthenogenesis and belong to the mother queen lineage. How this unusual reproductive system affects phylogeographic patterns and speciation processes remains completely unknown to date. Using one mitochondrial and four nuclear genes, we examined the phylogenetic relationships between three species of Cataglyphis (C. hispanica, C. humeya and C. velox) where complex DNA inheritance through social hybridogenesis may challenge phylogenetic inference. Our results bring two important insights. First, our data confirm a hybridogenetic mode of reproduction across the whole distribution range of the species C. hispanica. In contrast, they do not provide support for hybridogenesis in the populations sampled of C. humeya and C. velox. This suggests that these populations are not hybridogenetic, or that hybridogenesis is too recent to result in reciprocally monophyletic lineages on nuclear genes. Second, due to mitochondrial introgression between lineages (Darras and Aron, 2015), the faster-evolving COI marker is not lineage specific, hence, unsuitable to further investigate the segregation of lineages in the species studied. Different mitochondrial haplotypes occur in each locality sampled, resulting in strongly structured populations. This micro-allopatric structure leads to over-splitting species delimitation on mitochondrial gene, as every locality could potentially be considered a putative species; haploweb analyses of nuclear markers, however, yield species delimitations that are consistent with morphology. Overall, this study highlights how social hybridogenesis varies across species and shapes complex phylogeographic patterns.
Collapse
Affiliation(s)
- P A Eyer
- Evolutionary Biology & Ecology, CP 160/12, Université Libre de Bruxelles, 50, av. F.D. Roosevelt, B-1050 Brussels, Belgium.
| | - L Leniaud
- Evolutionary Biology & Ecology, CP 160/12, Université Libre de Bruxelles, 50, av. F.D. Roosevelt, B-1050 Brussels, Belgium
| | - A Tinaut
- Department of Animal Biology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - S Aron
- Evolutionary Biology & Ecology, CP 160/12, Université Libre de Bruxelles, 50, av. F.D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
644
|
McLean BS, Jackson DJ, Cook JA. Rapid divergence and gene flow at high latitudes shape the history of Holarctic ground squirrels (Urocitellus). Mol Phylogenet Evol 2016; 102:174-88. [DOI: 10.1016/j.ympev.2016.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
|
645
|
Winker K. An examination of species limits in the Aulacorhynchus "prasinus" toucanet complex (Aves: Ramphastidae). PeerJ 2016; 4:e2381. [PMID: 27635345 PMCID: PMC5012271 DOI: 10.7717/peerj.2381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/30/2016] [Indexed: 11/20/2022] Open
Abstract
The number of species recognized in Aulacorhynchus toucanets has varied tremendously over the past century. Revisors seem to disagree on whether head and bill coloration are useful indicators of species limits, especially in the A. "prasinus" complex. Using morphometrics, I tested the hypothesis that the major color-based subspecific groups of A. "prasinus" sensu lato are simply "cookie-cutter" (i.e., morphologically nearly identical) toucanets with different head and bill colorations. Univariate and multivariate analyses show that they are not simply morphological replicates of different colors: a complex array of morphometric similarities and dissimilarities occur between the major subspecific groups, and these variations differ between the sexes. Latitude and longitude had a small but significant association with female (but not male) PC1 and PC2. Hybridization and intergradation were also considered using plumage and bill characters as a surrogate to infer gene flow. Hybridization as indicated by phenotype appears to be substantial between A. "p." cyanolaemus and A. "p." atrogularis and nonexistent between other major groups, although from genetic evidence it is likely rare between A. "p." albivitta and A. "p." cyanolaemus. The congruence and complexities of the morphological and color changes occurring among these groups suggest that ecological adaptation (through natural selection) and social selection have co-occurred among these groups and that species limits are involved. Further, hybridization is not evident at key places, despite in many cases (hypothetical) opportunity for gene flow. Consequently, I recommend that this complex be recognized as comprising five biological species: A. wagleri, prasinus, caeruleogularis, albivitta, and atrogularis. Four of these also have valid subspecies within them, and additional work may eventually support elevation of some of these subspecies to full species. Species limits in South America especially need more study.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks
| |
Collapse
|
646
|
Bertola LD, Jongbloed H, van der Gaag KJ, de Knijff P, Yamaguchi N, Hooghiemstra H, Bauer H, Henschel P, White PA, Driscoll CA, Tende T, Ottosson U, Saidu Y, Vrieling K, de Iongh HH. Phylogeographic Patterns in Africa and High Resolution Delineation of Genetic Clades in the Lion (Panthera leo). Sci Rep 2016; 6:30807. [PMID: 27488946 PMCID: PMC4973251 DOI: 10.1038/srep30807] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
Comparative phylogeography of African savannah mammals shows a congruent pattern in which populations in West/Central Africa are distinct from populations in East/Southern Africa. However, for the lion, all African populations are currently classified as a single subspecies (Panthera leo leo), while the only remaining population in Asia is considered to be distinct (Panthera leo persica). This distinction is disputed both by morphological and genetic data. In this study we introduce the lion as a model for African phylogeography. Analyses of mtDNA sequences reveal six supported clades and a strongly supported ancestral dichotomy with northern populations (West Africa, Central Africa, North Africa/Asia) on one branch, and southern populations (North East Africa, East/Southern Africa and South West Africa) on the other. We review taxonomies and phylogenies of other large savannah mammals, illustrating that similar clades are found in other species. The described phylogeographic pattern is considered in relation to large scale environmental changes in Africa over the past 300,000 years, attributable to climate. Refugial areas, predicted by climate envelope models, further confirm the observed pattern. We support the revision of current lion taxonomy, as recognition of a northern and a southern subspecies is more parsimonious with the evolutionary history of the lion.
Collapse
Affiliation(s)
- L D Bertola
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - H Jongbloed
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - K J van der Gaag
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - P de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - N Yamaguchi
- Qatar University, Department of Biological and Environmental Sciences, College of Arts and Sciences, PO Box 2713, Doha, Qatar
| | - H Hooghiemstra
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - H Bauer
- WildCRU, Recanati-Kaplan Centre, University of Oxford. Tubney House, Abingdon Road, OX13 5QL, UK
| | - P Henschel
- Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA
| | - P A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - C A Driscoll
- Wildlife Institute of India, Dehradun 248001, Uttarakhand, India
| | - T Tende
- A. P. Leventis Ornithological Research Institute, P.O. Box 13404 Jos, Nigeria
| | - U Ottosson
- A. P. Leventis Ornithological Research Institute, P.O. Box 13404 Jos, Nigeria
| | - Y Saidu
- Nigeria National Park Service, PMB 0258 Garki-Abuja, Nigeria
| | - K Vrieling
- Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - H H de Iongh
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,University of Antwerp, Department Biology, Evolutionary Ecology Group, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
647
|
Ottenburghs J, Megens HJ, Kraus RH, Madsen O, van Hooft P, van Wieren SE, Crooijmans RP, Ydenberg RC, Groenen MA, Prins HH. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Mol Phylogenet Evol 2016; 101:303-313. [DOI: 10.1016/j.ympev.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
|
648
|
Piwczyński M, Pabijan M, Grzywacz A, Glinkowski W, Bereś PK, Buszko J. High regional genetic diversity and lack of host-specificity in Ostrinia nubilalis (Lepidoptera: Crambidae) as revealed by mtDNA variation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:512-521. [PMID: 27019346 DOI: 10.1017/s0007485316000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The European corn borer (Ostrinia nubilalis) infests a wide array of host plants and is considered one of the most serious pests of maize in Europe. Recent studies suggest that individuals feeding on maize in Europe should be referred to O. nubilalis (sensu nov.), while those infesting dicots as Ostrinia scapulalis (sensu nov.). We test if the clear genetic distinctiveness among individuals of O. nubilalis living on maize vs. dicots is tracked by mitochondrial DNA (mtDNA). We used fragments of COI and COII genes of 32 individuals traditionally recognized as O. nubilalis collected on three host plants, maize, mugwort and hop, growing in different parts of Poland. In addition, we reconstructed the mtDNA phylogeny of Ostrinia species based on our data and sequences retrieved from GenBank to assess host and/or biogeographic patterns. We also compared haplotype variation found in Poland (east-central Europe) with other regions (Anatolia, Eastern Europe, Balkans, Far East, North America). Our study showed high mtDNA diversity of O. nubilalis in Poland in comparison with other regions and revealed rare haplotypes likely of Asian origin. We did not find distinct mtDNA haplotypes in larvae feeding on maize vs. dicotyledonous plants. Phylogenetic analyses showed an apparent lack of mtDNA divergence among putatively distinct lineages belonging to the O. nubilalis group as identical haplotypes are shared by Asian and European individuals. We argue that human-mediated dispersal, hybridization and sporadic host jumps are likely responsible for the lack of a geographic pattern in mtDNA variation.
Collapse
Affiliation(s)
- M Piwczyński
- Chair of Ecology and Biogeography,Nicolaus Copernicus University in Toruń,Lwowska 1,PL-87-100 Toruń,Poland
| | - M Pabijan
- Department of Comparative Anatomy,Institute of Zoology,Jagiellonian University,Gronostajowa 9,30-387 Kraków,Poland
| | - A Grzywacz
- Chair of Ecology and Biogeography,Nicolaus Copernicus University in Toruń,Lwowska 1,PL-87-100 Toruń,Poland
| | - W Glinkowski
- Chair of Ecology and Biogeography,Nicolaus Copernicus University in Toruń,Lwowska 1,PL-87-100 Toruń,Poland
| | - P K Bereś
- Institute of Plant Protection - National Research Institute,Regional Experimental Station,Langiewicza 28,35-101 Rzeszów,Poland
| | - J Buszko
- Chair of Ecology and Biogeography,Nicolaus Copernicus University in Toruń,Lwowska 1,PL-87-100 Toruń,Poland
| |
Collapse
|
649
|
Ortiz D, Francke OF. Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Mol Phylogenet Evol 2016; 101:176-193. [DOI: 10.1016/j.ympev.2016.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/07/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
|
650
|
Hill GE. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol 2016; 6:5831-42. [PMID: 27547358 PMCID: PMC4983595 DOI: 10.1002/ece3.2338] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population-specific mitonuclear coadaptations create between-population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department Biological ScienceAuburn University331 Funchess HallAuburnAlabama36849‐5414
| |
Collapse
|