651
|
Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1996; 384:173-6. [PMID: 8906793 DOI: 10.1038/384173a0] [Citation(s) in RCA: 453] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The proteins Gab1 and the related DOS (for 'daughter of sevenless') each bind to substrates of tyrosine kinases like Grb2 or Corkscrew, and act in signalling pathways downstream of tyrosine kinase receptors. Here we show that Gab1 interacts directly with the c-met-encoded receptor tyrosine kinase but not with a number of other tyrosine kinases from different subfamilies. A newly identified proline-rich domain of Gab1 is responsible for the binding of this protein to the tyrosine-phosphorylated bidentate docking site in c-Met. Expression of Gab1 in epithelial cells is sufficient to induce the c-Met-specific activities, including branching morphogenesis. Thus we have discovered a new phosphotyrosine interaction domain in Gab1 and shown that Gab1 is the substrate of the c-Met receptor tyrosine kinase that mediates epithelial morphogenesis.
Collapse
Affiliation(s)
- K M Weidner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
652
|
Iwazawa T, Shiozaki H, Doki Y, Inoue M, Tamura S, Matsui S, Monden T, Matsumoto K, Nakamura T, Monden M. Primary human fibroblasts induce diverse tumor invasiveness: involvement of HGF as an important paracrine factor. Jpn J Cancer Res 1996; 87:1134-42. [PMID: 9045942 PMCID: PMC5921007 DOI: 10.1111/j.1349-7006.1996.tb03123.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fibroblasts have been considered to play an important role in tumor progression. In order to evaluate the contribution of fibroblasts to tumor invasion, TE2-NS, an esophageal cancer cell line, was cultured on collagen gel containing primary fibroblasts derived from normal esophageal submucosa or cancerous tissues of seven esophageal cancer patients. TE2-NS showed diverse invasiveness into the underlying gel containing fibroblasts, but did not invade the gel not containing fibroblasts. The invasiveness of TE2-NS, which expressed hepatocyte growth factor (HGF) receptor, was well-correlated with the concentration of HGF in conditioned medium. Administration of neutralizing antibody against HGF effectively suppressed the invasion, but application of recombinant HGF without fibroblasts induced little invasion into the gel. Fibroblasts from non-cancerous tissue generally secreted a larger amount of HGF and induced tumor invasion to a greater extent than those from cancer tissue, with large diversity. Interestingly, HGF secretion of fibroblasts from non-cancerous tissue was stimulated by co-culture with TE2-NS in two lines, but not in the other four. These results indicate that HGF is an important paracrine factor which induces tumor cell invasion, and the diversity of HGF production by fibroblasts might suggest different potentiality to induce tumor invasion among patients.
Collapse
Affiliation(s)
- T Iwazawa
- Second Department of Surgery, Biomedical Research Center, Osaka University Medical School, Suita
| | | | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 1996; 122:3627-37. [PMID: 8951078 DOI: 10.1242/dev.122.11.3627] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the metanephric kidney requires the concerted interaction of two tissues, the epithelium of the ureteric duct and the metanephric mesenchyme. Signals from the ureter induce the metanephric mesenchyme to condense and proliferate around the ureter tip, reciprocal signals from the mesenchyme induce the ureter tip to grow and to branch. Wnt genes encode secreted glycoproteins, which are candidate mediators of these signaling events. We have identified three Wnt genes with specific, non-overlapping expression patterns in the metanephric kidney, Wnt-4, Wnt-7b and Wnt-11. Wnt-4 is expressed in the condensing mesenchyme and the comma- and S-shaped bodies. Wnt-7b is expressed in the collecting duct epithelium from 13.5 days post coitum onward. Wnt-1l is first expressed in the nephric duct adjacent to the metanephric blastema prior to the outgrowth of the ureteric bud. Wnt-l1 expression in Danforth's short-tail mice suggests that signaling from the mesenchyme may regulate Wnt-ll activation. During metanephric development, Wnt-11 expression is confined to the tips of the branching ureter. Maintenance of this expression is independent of Wnt-4 signaling and mature mesenchymal elements in the kidney. Moreover, Wnt-ll expression is maintained in recombinants between ureter and lung mesenchyme suggesting that branching morphogenesis and maintenance of Wnt-ll expression are independent of metanephric mesenchyme-specific factors. Interference with proteoglycan synthesis leads to loss of Wnt-ll expression in the ureter tip. We suggest that Wnt-11 acts as an autocrine factor within the ureter epithelium and that its expression is regulated at least in part by proteoglycans.
Collapse
Affiliation(s)
- A Kispert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
654
|
Maina F, Casagranda F, Audero E, Simeone A, Comoglio PM, Klein R, Ponzetto C. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 1996; 87:531-42. [PMID: 8898205 DOI: 10.1016/s0092-8674(00)81372-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) and its receptor, the Met tyrosine kinase, are determinants of placenta, liver, and muscle development. Here, we show that Met function in vivo requires signaling via two carboxy-terminal tyrosines. Mutation of both residues in the mouse genome caused embryonal death, with placenta, liver, and limb muscle defects, mimicking the phenotype of met null mutants. In contrast, disrupting the consensus for Grb2 binding allowed development to proceed to term without affecting placenta and liver but caused a striking reduction in limb muscle coupled to a generalized deficit of secondary fibers. These data show that the requirements for Met signaling vary depending on the tissue and reveal a novel role for HGF/ Met in late myogenesis.
Collapse
Affiliation(s)
- F Maina
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
655
|
Abstract
Growth factors are polypeptides that regulate growth and differentiation of many cell types. Different growth factor families including the epidermal growth factor (EGF)-related ligands, fibroblast growth factors (FGF), transforming growth factor-beta (TGF-beta), insulin-like growth factor (IGF), hepatocyte growth factor/scatter factor (HGF/SF), and platelet-derived growth factor (PDGF) have been shown to be crucial for the regulation of the hair cycle and hair growth. Growth factors and their receptors have been localized to the skin and hair follicles. Their biological activities on cells comprising the hair follicle have been tested in vitro and increasingly in transgenic mice. Herein we review selected important aspects of growth factors with regard to the hair organ, its development, and the hair growth cycle.
Collapse
Affiliation(s)
- D Peus
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
656
|
Uchiyama A, Essner R, Doi F, Nguyen T, Ramming KP, Nakamura T, Morton DL, Hoon DS. Interleukin 4 inhibits hepatocyte growth factor-induced invasion and migration of colon carcinomas. J Cell Biochem 1996; 62:443-53. [PMID: 8891890 DOI: 10.1002/(sici)1097-4644(19960915)62:4%3c443::aid-jcb2%3e3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) is known to have a number of biological properties including promoting tumor progression of human carcinomas. Metastasis involves a number of events that are attributed to induction by paracrine factors such as HGF. Identification of natural inhibitors of these events would allow better control of tumor progression. Recently we demonstrated that interleukin 4 (IL-4) can regulate proliferation of various human carcinoma cell lines. In the present study, we used established human colon carcinoma cell lines and primary colon carcinoma cell cultures to determine if IL-4 could regulate HGF-induced cell proliferation and other events of tumor progression such as MMP (matrix metalloproteinases)-1, -2, and -9 production, cell migration and cell-matrix invasive activity. All colon carcinoma cell lines expressed HGF and IL-4 receptors. IL-4 significantly inhibited HGF-induced proliferation of one cell line. Cell-matrix invasion was significantly enhanced by HGF (0.1-10 ng/ml); IL-4 (1-10 U/ml) significantly inhibited HGF-induced invasion in a dose-dependent manner. IL-4 also inhibited HGF-induced cell-matrix invasion of metastatic colon carcinoma cells and HGF-induced cell migration. HGF enhanced MMP-1, -2, and -9 production by cell lines. This effect could be inhibited by IL-4. These findings indicate that IL-4 is a potent inhibitor of HGF-induced invasion and metastasis-related functions of human colon carcinoma cells.
Collapse
Affiliation(s)
- A Uchiyama
- John Wayne Cancer Institute, Santa Monica, California 90404, USA
| | | | | | | | | | | | | | | |
Collapse
|
657
|
Uchiyama A, Essner R, Doi F, Nguyen T, Ramming KP, Nakamura T, Morton DL, Hoon DS. Interleukin 4 inhibits hepatocyte growth factor-induced invasion and migration of colon carcinomas. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960915)62:4<443::aid-jcb2>3.0.co;2-m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
658
|
Webb CP, Lane K, Dawson AP, Vande Woude GF, Warn RM. C-Met signalling in an HGF/SF-insensitive variant MDCK cell line with constitutive motile/invasive behaviour. J Cell Sci 1996; 109 ( Pt 9):2371-81. [PMID: 8886986 DOI: 10.1242/jcs.109.9.2371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Met protein is a receptor tyrosine kinase for hepatocyte growth factor/scatter factor (HGF/SF), a multifunctional growth factor with mitogenic, motogenic and morphogenic properties. A morphologically altered variant of the MDCK cell line, MDCK-1, spontaneously exhibits a number of features associated with a partial HGF/SF-Met induced phenotype (less adhesive colonies in culture, enhanced invasion and motility, nascent tubule formation), but paradoxically does not respond to HGF/SF treatment. Although the overall cell surface expression and distribution of Met were found to be similar in parental MDCK cells and the MDCK-1 cell line, p145met autophosphorylation (+/ HGF/SF) was significantly reduced in MDCK-1 cells in vitro and in vivo when compared with parental MDCK cells. In contrast, EGF induced cell proliferation and EGF receptor autophosphorylation to similar levels in both cell lines. The basal levels of protein tyrosine phosphorylation were higher in MDCK-1 cells when compared with parental MDCK cells, including that of two prominent proteins with molecular masses of approximately 185 kDa and 220 kDa. Moreover, both p185 and p220 are present and tyrosine phosphorylated in Met immunoprecipitates from MDCK-1 cells (+/-HGF/SF), but not parental MDCK cells. In addition, Met immunocomplexes from MDCK-1 cells exhibited an approximately 3-fold increased tyrosine kinase activity in vitro when compared with MDCK cells, correlating with the higher basal levels of total phosphotyrosine. Treatment of MDCK-1 cells with the tyrosine kinase inhibitor herbimycin A reverted the cell phenotype to a more MDCK-like morphology in culture, with a concomitant reduction in the tyrosine phosphorylation predominantly of p220. Taken together these data suggest that aberrations in Met activity and associated signalling render MDCK-1 cells insensitive to HGF/SF, and may also mediate alterations in MDCK-1 cell behaviour.
Collapse
Affiliation(s)
- C P Webb
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | | | | | | | | |
Collapse
|
659
|
Grumbles RM, Howell DS, Wenger L, Altman RD, Howard GA, Roos BA. Hepatocyte growth factor and its actions in growth plate chondrocytes. Bone 1996; 19:255-61. [PMID: 8873966 DOI: 10.1016/8756-3282(96)00180-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) has been implicated as a paracrine regulator of organogenesis and repair in many tissues. Here we have studied the expression and actions of HGF in intact rachitic rat growth plate and derived cultures of proliferative zone chondrocytes. In vivo and in vitro chondrocytes express HGF mRNA; 1,25(OH)2 has a three-fold maximal stimulatory effect, which can be blocked by H-7, an inhibitor of protein kinase C. Although HGF elaboration and action generally follow a paracrine model, chondrocytes appear capable of both expressing and responding to HGF. mRNA encoding the HGF receptor (c-met) was detected in both growth cartilage and derived chondrocyte cultures. HGF addition to chondrocyte cultures increased collagen II mRNA and alkaline phosphatase enzymatic activity to degrees comparable to that observed for active vitamin D metabolites. Combining HGF and 1,25-D evoked a synergistic response (ninefold) of alkaline phosphatase activity. To assess whether a similar stimulatory effect might be seen with bioactive peptides and HGF, we investigated the effect of HGF pretreatment on acute responses of chondrocytes to synthetic human calcitonin, an anabolic chondrocyte regulator whose skeletal action are mediated principally by cAMP elevation and subsequent protein kinase A activation. CT's maximal activation of protein kinase A was increased by prior HGF treatment from 56% to 78%. In concert, our findings indicate that in addition to HGF's classical paracrine role during skeletal growth, this growth factor may modulate hormonal sensitivity of the chondrocyte during proliferation, differentiation, and/or apoptosis.
Collapse
|
660
|
Yamaguchi K, Nalesnik MA, Michalopoulos GK. Hepatocyte growth factor mRNA in human liver cirrhosis as evidenced by in situ hybridization. Scand J Gastroenterol 1996; 31:921-927. [PMID: 8888442 DOI: 10.3109/00365529609052003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a strong mitogen of hepatocytes, and HGF-producing cells have been reported to be Ito cells or endothelial cells in the sinusoid of the liver. No reports have been published about the localization of HGF mRNA in human liver cirrhosis. METHODS In situ hybridization (ISH) for HGF mRNA was performed in 5 normal liver and 16 human liver cirrhosis specimens, using 1 RNA probe and 3 oligonucleotide probes labeled with 35S. RESULTS A positive signal was obtained in 15 of these cases. In five normal liver specimens, signals of HGF mRNA were not obtainable. In 13 of the 15 cases of liver cirrhosis, HGF mRNA was present in the periphery of the regenerative nodules. This peripheral pattern was seen in regenerative nodules with irregular nodule to septal interfaces. Combined immunohistochemistry and ISH showed that vimentin and CD 68-positive cells consistent with macrophages expressed HGF mRNA in such cases. In three specimens with diffuse signal for HGF mRNA in the hepatic nodules, signals localized to the sinusoidal spaces. HGF mRNA-positive cells were spindled and polygonal in shape, suggesting endothelial, Kupffer, and/or Ito cells of origin. In the diffuse pattern the peripheral margins of the regenerative nodules appeared well-defined. In one case regenerative nodules with both diffuse and peripheral signal patterns were present in the same section. There was no relationship among HGF mRNA, etiology, and macroscopic appearance of liver cirrhosis. CONCLUSIONS HGF gene transcription in human liver cirrhosis nodules may be heterogeneous, probably related to the degree of activity of the regenerative nodules. HGF appears to be produced by the mesenchymal cells, including Ito cells, macrophages (Kupffer cells), and endothelial cells in human liver cirrhosis.
Collapse
Affiliation(s)
- K Yamaguchi
- Division of Transplant Pathology, University of Pittsburgh, School of Medicine, Pennsylvania, USA
| | | | | |
Collapse
|
661
|
Koch AE, Halloran MM, Hosaka S, Shah MR, Haskell CJ, Baker SK, Panos RJ, Haines GK, Bennett GL, Pope RM, Ferrara N. Hepatocyte growth factor. A cytokine mediating endothelial migration in inflammatory arthritis. ARTHRITIS AND RHEUMATISM 1996; 39:1566-75. [PMID: 8814069 DOI: 10.1002/art.1780390917] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Angiogenesis is an integral component of the vasculoproliferative phase of rheumatoid arthritis (RA). Recently, a heparin-binding cytokine termed hepatocyte growth factor (HGF), or scatter factor (due to its ability to disperse cohesive epithelial colonies), was described. We conducted this study to investigate the hypothesis that this cytokine was present in the milieu of the inflamed joint, and that it contributed to the chemotaxis of endothelial cells in the synovial tissue. METHODS We examined synovial fluid, synovial tissue, and peripheral blood from 91 patients with RA and other arthritides. We used 83 total samples in an enzyme-linked immunosorbent assay to quantitate the HGF in synovial fluids and peripheral blood. To determine whether the HGF was biologically active, an epithelial scatter factor assay was performed. Immunohistochemical analysis was used to determine localization in synovial tissues. To define a function for synovial HGF, we preincubated rheumatoid synovial fluids with neutralizing anti-HGF and measured the ability of these synovial fluids to induce endothelial chemotaxis. RESULTS Synovial fluid from patients with RA contained a mean +/- SEM HGF concentration of 2.0 +/- 0.3 ng/ml, while synovial fluid from patients with other arthritides (including inflammatory arthritis) contained 2.4 +/- 0.7 ng/ml HGF. Osteoarthritis (OA) patient samples contained the smallest quantities of synovial fluid HGF at 0.9 +/- 0.1 ng/ml. RA synovial fluid contained significantly more HGF than did RA peripheral blood (1.1 +/- 0.2 ng/ml) (P < 0.05). Rheumatoid synovial fluids induced more scattering of cells than did OA synovial fluids, suggesting a role for this cytokine in rheumatoid joint destruction. Interleukin-1 beta induced expression of rheumatoid synovial tissue fibroblast antigenic HGF and scatter factor activity. Immunohistochemically, HGF, as well as the HGF receptor (the met gene product), localized to significantly more rheumatoid synovial tissue lining cells than normal lining cells (P < 0.05). Both HGF and its receptor immunolocalized to subsynovial macrophages as well. Levels of synovial tissue immunoreactive HGF correlated positively with the number of synovial tissue blood vessels. Anti-HGF neutralized a mean of 24% of the chemotactic activity for endothelial cells found in 10 rheumatoid synovial fluid samples. CONCLUSION These results indicate that synovial HGF may contribute to the vasculoproliferative phase of inflammatory arthritides such as RA, by inducing HGF-mediated synovial neovascularization. These findings point to a newly described role for HGF in the fibroproliferative phase of RA-associated synovitis.
Collapse
Affiliation(s)
- A E Koch
- Northwestern University Medical School, Department of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
662
|
Jeffers M, Rong S, Vande Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med (Berl) 1996; 74:505-13. [PMID: 8892055 DOI: 10.1007/bf00204976] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. While HGF/SF-Met signaling clearly plays a role in a variety of normal cellular process, this signaling pathway has also been implicated in the generation and metastatic spread of tumors. This review discusses in detail several model systems that have been developed to investigate the role of HGF/SF-Met signaling in malignancy and describes additional data regarding the expression of these molecules in human tumors. Collectively the findings support a role for this receptor-ligand pair in human malignancy.
Collapse
Affiliation(s)
- M Jeffers
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, MD 21702, USA
| | | | | |
Collapse
|
663
|
Goff JP, Shields DS, Petersen BE, Zajac VF, Michalopoulos GK, Greenberger JS. Synergistic effects of hepatocyte growth factor on human cord blood CD34+ progenitor cells are the result of c-met receptor expression. Stem Cells 1996; 14:592-602. [PMID: 8888500 DOI: 10.1002/stem.140592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic growth factor which, in addition to its mitogenic potency for primary hepatocytes, also has a role in the regulation of cell motility, cell growth and morphogenesis. In the present study, we show that c-met, the high-affinity receptor for HGF, is expressed on human cord blood (CB) CD34+ progenitor cells and CD34+Thy-1+ Lin-(lin-) cells. We have investigated the capacity of HGF to synergize with other growth factors to induce colony formation by CB CD34+ progenitor cells. CD34+ cells were cultured in semisolid medium containing serum with increasing concentrations of GM-CSF, G-CSF, macrophage colony-stimulating factor (M-CSF), stem cell factor (SCF), interleukin 3 (IL-3) and IL-11 alone or in combination with HGF. HGF acted as a potent synergist and enhanced, up to fourfold, colony formation induced by GM-CSF, G-CSF or M-CSF. HGF in combination with SCF, IL-3 or IL-11 did not induce proliferation of colony forming units-granulocyte macrophage (CFU-GM) above control levels. In serum-deprived cultures, HGF was only detectably synergistic with IL-11, and all other culture combinations showed no proliferation. To determine whether the stimulatory effect of IL-11 and the synergistic effect of HGF in the absence of serum could be attributed to the effect of these two cytokines on stem cells, IL-11-stimulated and unstimulated lin- cells were analyzed for expression of c-met. CD34+Thy-1+Lin- cells were positive for c-met, both in the presence and absence of IL-11 stimulation, and Northern analysis indicated that c-met RNA expression was upregulated in response to IL-11 compared to unstimulated controls. These results provide strong evidence for upregulation of the HGF receptor on primitive hematopoietic cells by IL-11, and for the synergistic role of HGF in colony formation by hematopoietic stem cells.
Collapse
Affiliation(s)
- J P Goff
- Department of Radiation Oncology, University of Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
664
|
Sanderson IR, Ezzell RM, Kedinger M, Erlanger M, Xu ZX, Pringault E, Leon-Robine S, Louvard D, Walker WA. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix. Proc Natl Acad Sci U S A 1996; 93:7717-22. [PMID: 8755542 PMCID: PMC38813 DOI: 10.1073/pnas.93.15.7717] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.
Collapse
Affiliation(s)
- I R Sanderson
- Developmental Gastroenterology Laboratory, Harvard Clinical Nutrition Research Center, Massachusetts General Hospital, Boston 02129-2060, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
665
|
Kochhar KS, Iyer AP. Hepatocyte growth factor induces activation of Nck and phospholipase C-gamma in lung carcinoma cells. Cancer Lett 1996; 104:163-9. [PMID: 8665484 DOI: 10.1016/0304-3835(96)04244-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocyte growth factor (HGF), a mesenchyme derived growth factor, promotes cell growth, cell motility, and morphogenesis in a variety of epithelial cells. The diverse responses are transduced across the cell membrane by the met/HGF receptor, a product of c-met protooncogene. The met/HGF receptor recruits a variety of second messenger molecules which relay the diverse intracellular responses of HGF. In this study, we show that HGF autophosphorylates and activates met/HGF receptor. The activated met/HGF receptor then physically associates with and activates phospholipase C-gamma (PLC-gamma). Furthermore, upon ligand stimulation, tyrosine-autophosphorylated met/HGF receptor also activates Nck oncogene product. Taken together, our results suggest that the receptor activation leads to formation of a complex in which PLC-gamma and Nck oncogene product co-exist with the activated met/HGF receptor, and that the Nck oncogene product is an important component of HGF signaling in Calu-1 and A549 cells.
Collapse
Affiliation(s)
- K S Kochhar
- Department of Pathology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
666
|
Matsumoto K, Date K, Shimura H, Nakamura T. Acquisition of invasive phenotype in gallbladder cancer cells via mutual interaction of stromal fibroblasts and cancer cells as mediated by hepatocyte growth factor. Jpn J Cancer Res 1996; 87:702-10. [PMID: 8698619 PMCID: PMC5921157 DOI: 10.1111/j.1349-7006.1996.tb00281.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growth and motility of carcinoma cells are regulated through their interactions with host stromal cells, i.e., tumor-stromal interactions. Hepatocyte growth factor (HGF), a ligand for c-Met tyrosine kinase, is a stromal-derived regulator of growth, motility, and morphogenesis. HGF stimulated proliferation and motility of GB-d1 gallbladder carcinoma cells from a patient with gallbladder cancer. HGF induced in vitro invasion of GB-d1 cells into a collagen gel matrix, and this potent, invasive effect was not seen with epidermal growth factor, transforming growth factor-beta 1, basic fibroblast growth factor, or platelet-derived growth factor. Although GB-d1 did not produce HGF, the cells did produce a factor which enhances HGF production in human skin fibroblasts, and this factor proved to be interleukin-1 beta (IL-1 beta). When GB-d1 cells were co-cultured with fibroblasts such that a collagen gel matrix was layered between the GB-d1 cells and fibroblasts, GB-d1 cells invaded the gel, but invasion of the cells in the co-culture system was inhibited by antibodies against HGF and partially inhibited by antibodies against IL-1 beta. Thus, GB-d1 cell-derived IL-1 beta stimulates HGF production in stromal fibroblasts and HGF up-regulated in the fibroblasts induces invasion of GB-d1 cells. The looped interaction of carcinoma cells and stromal fibroblasts mediated by HGF and a HGF-inducer such as IL-1 beta may be one mechanism which would explain the acquisition of malignant phenotype through tumor-stromal interactions.
Collapse
Affiliation(s)
- K Matsumoto
- Division of Biochemistry, Osaka University Medical School
| | | | | | | |
Collapse
|
667
|
Yang XM, Vogan K, Gros P, Park M. Expression of the met receptor tyrosine kinase in muscle progenitor cells in somites and limbs is absent in Splotch mice. Development 1996; 122:2163-71. [PMID: 8681797 DOI: 10.1242/dev.122.7.2163] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates proliferation, dissociation, migration and morphogenesis of cells in culture. To investigate a possible role for HGF/SF and its receptor, the Met tyrosine kinase, in embryonic development, we have analyzed their expression in mouse embryos from day 7.5 of gestation by whole-mount in situ hybridization. Met expression is first detected in the ventral portion of somites at day 9.25 of gestation (22 somite embryo) at the level of fore limb buds. As somites mature, met expression is detected in caudal somites, and is confined to the lateral and media] tips of the dermomyotome and dermomyotome/myotome respectively. In contrast, HGF/SF is expressed exclusively in the mesodermal core of the limb bud. As the dermomyotome elongates ventrolaterally, the met-expressing cells at the lateral tip appear to detach from the somite, invade the limb bud and localize at the dorsal and ventral limb sides in close proximity to HGF/SF-expressing cells. At later stages, both met- and HGF/SF-expressing cells appear to migrate distally and localize to the digit forming area of the developing hand plate. Met expression in the lateral dermomyotome and limb bud coincides with expression of Pax-3, a marker for migrating muscle precursor cells in the somite and limb. Splotch-2H and Splotch-delayed mice, which harbor mutations in Pax-3, show major disruptions in early limb muscle development. Significantly, no met-expressing cells were observed in the limbs of homozygous Splotch-2H and Splotch-delayed animals, whereas HGF/SF expression was not affected. The restricted expression of met to a sub-population of Pax-3-expressing cells in the lateral tip of the dermomyotome, demonstrates that met represents a unique molecular marker for this migratory cell population. From these observations, together with the biological activities of HGF/SF, we propose that in homozygous Splotch embryos the failure of muscle precursors to migrate into and populate the limb bud results from a loss of met expression in the cells at the ventrolateral edge of the somitic dermomyotome.
Collapse
Affiliation(s)
- X M Yang
- Molecular Oncology Group, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
668
|
Natali PG, Prat M, Nicotra MR, Bigotti A, Olivero M, Comoglio PM, Di Renzo MF. Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 1996; 69:212-7. [PMID: 8682590 DOI: 10.1002/(sici)1097-0215(19960621)69:3<212::aid-ijc11>3.0.co;2-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The c-met oncogene encodes the receptor for hepatocyte growth factor/scatter factor (HGF/SF), a multifunctional cytokine able to mediate morphogenesis as well as mitogenesis, motogenesis and invasiveness of epithelial cells. HGF/SF has been implicated in branching tubulogenesis of the developing kidney and in regeneration after renal injury and nephrectomy. We have examined the expression of the met/HGF receptor in normal human kidney and tissues of the genito-urinary tract, and in 50 kidney neoplasms of different histotypes, using monoclonal antibodies (MAbs) against the met/HGF receptor and immunohistochemistry. In normal kidneys, weak staining restricted to the distal tubules was observed. Transitional cell carcinomas were consistently negative, whereas increased expression at various levels was found in 87% of renal cell carcinomas with different cytological features and histological patterns. Western blot analysis of samples showed that the met/HGF receptor found in the malignant cells exhibits features of the normal receptor. The met/HGF receptor is also overexpressed in a renal cell carcinoma cell line, whose motility is triggered by HGF/SF. Our data suggest that expression of the met/HGF receptor may be involved in the onset and progression of renal cell carcinomas.
Collapse
Affiliation(s)
- P G Natali
- Regina Elena Cancer Research Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
669
|
Liang TJ, Reid AE, Xavier R, Cardiff RD, Wang TC. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 1996; 97:2872-7. [PMID: 8675700 PMCID: PMC507382 DOI: 10.1172/jci118744] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptor tyrosine kinases are important in cell signal transduction and proliferation. Abnormal expression of tyrosine kinases often leads to malignant transformation. C-met is a tyrosine kinase receptor and its ligand is hepatocyte growth factor (HGF). HGF/c-met plays diverse role in regulation of cell growth, shape and movement. Constitutively activated met, such as tpr-met, is a potent oncogene in vitro, but its carcinogenic role in vivo remains unclear. Our study demonstrates that expression of tpr-met leads to development of mammary tumors and other malignancies in transgenic mice, and suggests that deregulated met expression may be involved in mammary carcinogenesis.
Collapse
Affiliation(s)
- T J Liang
- Department of Medicine, Massachusetts General Hospital, Boston 02114, USA.
| | | | | | | | | |
Collapse
|
670
|
Takayama H, La Rochelle WJ, Anver M, Bockman DE, Merlino G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc Natl Acad Sci U S A 1996; 93:5866-71. [PMID: 8650184 PMCID: PMC39153 DOI: 10.1073/pnas.93.12.5866] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.
Collapse
Affiliation(s)
- H Takayama
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
671
|
Török N, Urrutia R, Nakamura T, McNiven MA. Upregulation of molecular motor-encoding genes during hepatocyte growth factor- and epidermal growth factor-induced cell motility. J Cell Physiol 1996; 167:422-33. [PMID: 8655596 DOI: 10.1002/(sici)1097-4652(199606)167:3<422::aid-jcp6>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are known to stimulate the locomotion of epithelial cells in culture. However, the molecular mechanisms which mediate these important changes are poorly understood. Here we have determined the effects of HGF and EGF on hepatocyte morphology, cytoskeletal organization, and the expression of molecular motor-encoding genes. Primary cultures of hepatocytes were treated with 10 ng/ml of HGF or EGF and observed with phase and fluorescence microscopy at 10, 24, and 48 h after treatment. We found that, over time, treated cells spread and became elongated after 24 h of treatment while forming long processes with dramatic alterations in the microtubule and actin cytoskeletons by 48 h. Quantitative Northern blot analysis was performed to measure expression of cytoskeletal-(beta-actin, alpha-tubulin) and molecular motor-(dynein, kinesin, and myosin I alpha and II) encoding genes which may contribute to this change in form. We observed the highest increase in levels of expression for myosin II (3.3-fold), kinesin (2.7-fold), myosin I alpha (2.2-fold), and alpha-tubulin (1.9-fold) after only 2 h of treatment with HGF. In contrast, EGF upregulated the expression of myosin I alpha (2.4-fold), kinesin (1.5-fold), and dynein (1.5-fold) at 10 h. The expression of the beta-actin gene remained constant in HGF-treated cells, while EGF induced a slight upregulation after 10 h of treatment. These results show for the first time that a selective upregulation of molecular motor-encoding genes correlates with alterations in cell shape and motility induced by HGF and EGF.
Collapse
Affiliation(s)
- N Török
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
672
|
Orellana SA, Neff CD, Sweeney WE, Avner ED. Novel Madin Darby canine kidney cell clones exhibit unique phenotypes in response to morphogens. In Vitro Cell Dev Biol Anim 1996; 32:329-39. [PMID: 8842747 DOI: 10.1007/bf02722959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Novel Madin Darby Canine Kidney cell clones were isolated. These cell clones exhibit differential responsiveness to inducers of tubule or cyst formation in collagen gel culture: hepatocyte growth factor or inducers of intracellular cAMP formation, respectively. In gel culture, clone OR93.22.D6 forms cysts and responds with morphological transformation to both hepatocyte growth factor and prostaglandin E1, and is most typical of a previously described cell type except for its higher transepithelial electrical resistance. OR55.25.II20 forms tubules in culture, is unresponsive to hepatocyte growth factor, and forms prostaglandin-induced spherical cysts. OR55.28.V2 forms dense cell spheres under control conditions, is induced to form tubules by hepatocyte growth factor, and is unresponsive to prostaglandin. OR55.29 forms only cysts, and is the only clone to form domes in monolayer culture. Tubule formation induced by hepatocyte growth factor, in all clones except OR55.25.II20, is blocked by a neutralizing antibody. In defined medium, without hepatocyte growth factor or prostaglandin, OR55.25.II20 forms spontaneous tubules. This finding indicates that a tubulogenic serum factor is not responsible for the observed phenotype. Increasing prostaglandin concentrations lead to inhibition of tubule formation and increased cyst formation. This observation suggests that induction of intracellular cAMP formation negatively regulates tubule formation in these cells, and implies that cystogenesis may represent a "default pathway" for impaired tubulogenesis. These observations demonstrate that some facets of renal tubulogenesis may be independent of hepatocyte growth factor, and that care must be exercised when comparing biological studies utilizing different clones.
Collapse
Affiliation(s)
- S A Orellana
- Department of Pediatrics, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
673
|
CHANG H, OKUDA T, NOMURA Y, NAGAO T, NAKAMURA T, KUROKAWA K, KATOH T. Serum hepatocyte growth factor concentration in patients with various degrees of chronic renal failure. Nephrology (Carlton) 1996. [DOI: 10.1111/j.1440-1797.1996.tb00084.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
674
|
Yoshida K, Katayanagi K, Kawamura Y, Saito K, Nakanuma Y. Reestablishment of rabbit gallbladder epithelial cells in collagen gel culture and their alterations by cytochalasin B and transforming growth factor beta-1. A morphologic study. Pathol Res Pract 1996; 192:634-45. [PMID: 8857652 DOI: 10.1016/s0344-0338(96)80119-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously developed a model in which rabbit gall bladder epithelial cells in collagen gels proliferated and formed multicellular spherical cysts after 2 to 4 days. In the present study, we examined in depth the dynamic processes of loss and reestablishment of cell polarity of rabbit gallbladder epithelial cells isolated and cultured in collagen gel. Six hours after being place in culture, the isolated epithelial cells had lost the morphologic features and phenotypic markers inherent in the in vivo gallbladder mucosa, and autophagic vacuoles appeared transiently, reflecting epithelial cell injury, or remodelling, or both. After 12 hours, mucin dots appeared in clumps of epithelial cells and gradually became larger, and the epithelial cell clumps were transformed into multicellular cysts after 1 to 2 days. The luminal surfaces of the mucin dots (intracytoplasmic inclusions or small lumens sealed by several epithelial cells) and multicellular cysts were covered by microvilli and presented profiles of mucus glycoprotein and carbohydrate residues shared with the in vivo gallbladder mucosa. The presence of cellular adhesion structures and the distribution of cellular organelles toward the luminal surface implied the reestablishment of epithelial cell polarity. The addition of cytochalasin B induced many mucin-positive cytoplasmic inclusions covered by microvilli in the epithelial cells of the multicellular cysts, while the addition of transforming growth factor beta 1 promoted maturation of the multicellular cysts. This short term culture is useful for the analysis of the polarity of biliary epithelial cells and for examining disorders in this polarity.
Collapse
Affiliation(s)
- K Yoshida
- Department of Pathology (II), Kanazawa University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
675
|
Sachs M, Weidner KM, Brinkmann V, Walther I, Obermeier A, Ullrich A, Birchmeier W. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J Biophys Biochem Cytol 1996; 133:1095-1107. [PMID: 8655582 PMCID: PMC2120860 DOI: 10.1083/jcb.133.5.1095] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptor tyrosine kinases play essential roles in morphogenesis and differentiation of epithelia. Here we examined various tyrosine kinase receptors, which are preferentially expressed in epithelia (c-met, c-ros, c-neu, and the keratin growth factor [KGF] receptor), for their capacity to induce cell motility and branching morphogenesis of epithelial cells. We exchanged the ligand-binding domain of these receptors by the ectodomain of trkA and could thus control signaling by the new ligand, NGF. We demonstrate here that the tyrosine kinases of c-met, c-ros, c-neu, the KGF receptor, and trkA, but not the insulin receptor, induced scattering and increased motility of kidney epithelial cells in tissue culture. Mutational analysis suggests that SHC binding is essential for scattering and increased cell motility induced by trkA. The induction of motility in epithelial cells is thus an important feature of various receptor tyrosine kinases, which in vivo play a role in embryogenesis and metastasis. In contrast, only the c-met receptor promoted branching morphogenesis of kidney epithelial cells in three-dimensional matrices, which resemble the formation of tubular epithelia in development. Interestingly, the ability of c-met to induce morphogenesis could be transferred to trkA, when in a novel receptor hybrid COOH-terminal sequences of c-met (including Y14 to Y16) were fused to the trkA kinase domain. These data demonstrate that tubulogenesis of epithelia is a restricted activity of tyrosine kinases, as yet only demonstrated for the c-met receptor. We predict the existence of specific substrates that mediate this morphogenesis signal.
Collapse
Affiliation(s)
- M Sachs
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
676
|
Cioce V, Csaky KG, Chan AM, Bottaro DP, Taylor WG, Jensen R, Aaronson SA, Rubin JS. Hepatocyte growth factor (HGF)/NK1 is a naturally occurring HGF/scatter factor variant with partial agonist/antagonist activity. J Biol Chem 1996; 271:13110-5. [PMID: 8662798 DOI: 10.1074/jbc.271.22.13110] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates cell proliferation, motility, and morphogenesis by activation of its receptor, the c-Met tyrosine kinase. HGF/SF is structurally related to plasminogen, including an amino-terminal hairpin loop, four kringle domains, and a serine protease-like region. A truncated HGF/SF isoform, designated HGF/NK2, which extends through the second kringle domain and behaves as a competitive HGF/SF antagonist, was previously shown to be encoded by an alternative HGF/SF transcript. In this study, we describe a second naturally occurring HGF/SF variant, HGF/NK1, consisting of the HGF/SF amino-terminal sequence and first kringle domain. This product is encoded by a 2-kilobase alternative transcript containing intronic sequence that was contiguous with exon K1b. Analysis of baculovirus-expressed HGF/NK1 revealed that this isoform possesses the heparin binding properties of HGF/SF and modest mitogenic and scattering activity relative to HGF/SF. However, at a 40-fold molar excess, HGF/NK1 inhibited HGF/SF-dependent DNA synthesis. HGF/NK1 stimulated tyrosine phosphorylation of Met, and covalent affinity cross-linking demonstrated a direct HGF/NK1-receptor interaction. These findings establish that the HGF/SF gene encodes multiple alternative products, which include not only a mitogenic agonist (HGF/SF) and a pure antagonist (HGF/NK2) but also a molecule with partial agonist/antagonist properties.
Collapse
Affiliation(s)
- V Cioce
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
677
|
Schwall RH, Chang LY, Godowski PJ, Kahn DW, Hillan KJ, Bauer KD, Zioncheck TF. Heparin induces dimerization and confers proliferative activity onto the hepatocyte growth factor antagonists NK1 and NK2. J Biophys Biochem Cytol 1996; 133:709-18. [PMID: 8636243 PMCID: PMC2120823 DOI: 10.1083/jcb.133.3.709] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a potent epithelial mitogen whose actions are mediated through its receptor, the proto-oncogene c-Met. Two truncated variants of HGF known as NK1 and NK2 have been reported to be competitive inhibitors of HGF binding to c-Met, and to function as HGF antagonists (Lokker, N.A., and P.J. Godowski. 1993. J. Biol. Chem. 268: 17145-17150; Chan, A.M., J.S. Rubin, D.P. Bottaro, D.W. Hirschfield, M. Chedid, and S.A. Aaronson. 1991. Science (Wash. DC). 254:1382-1387). We show here, however, that NK1 acts as a partial agonist in mink lung cells. Interestingly, NK1, which is an HGF antagonist in hepatocytes in normal conditions, was converted to a partial agonist by adding heparin to the culture medium. The interaction of NK1 and heparin was further studied in BaF3 cells, which express little or no cell surface heparan sulfate proteoglycans. In BaF3 cells transfected with a plasmid encoding human c-Met, heparin and NK1 synergized to stimulate DNA synthesis and cell proliferation. There was no effect of heparin on the IL-3 sensitivity of BaF3-hMet cells, and no effect of NK1 plus heparin in control BaF3 cells, indicating that the response was specific and mediated through c-Met. The naturally occurring HGF splice variant NK2 also stimulated DNA synthesis in mink lung cells and exerted a heparin-dependent effect on BaF3-hMet cells, but not on BaF3-neo cells. The activating effect of heparin was mimicked by a variety of sulfated glycosaminoglycans. Mechanistic studies revealed that heparin increased the binding of NK1 to BaF3-hMet cells, stabilized NK1, and induced dimerization of NK1. Based on these studies, we propose that the normal agonist activity of NK1 and NK2 in mink lung cells is due to an activating interaction with an endogenous glycosaminoglycan. Consistent with that model, a large portion of the NK1 binding to mink lung cells could be blocked by heparin. Moreover, a preparation of glycosaminoglycans from the surface of mink lung cells induced dimerization of NK1. These data show that the activity of NK1 and NK2 can be modulated by heparin and other related glycosaminoglycans to induce proliferation in cells expressing c-Met.
Collapse
Affiliation(s)
- R H Schwall
- Genentech, Inc., South San Francisco, California 94080-4990, USA.
| | | | | | | | | | | | | |
Collapse
|
678
|
Medico E, Mongiovi AM, Huff J, Jelinek MA, Follenzi A, Gaudino G, Parsons JT, Comoglio PM. The tyrosine kinase receptors Ron and Sea control "scattering" and morphogenesis of liver progenitor cells in vitro. Mol Biol Cell 1996; 7:495-504. [PMID: 8730094 PMCID: PMC275904 DOI: 10.1091/mbc.7.4.495] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mammalian RON and the avian sea genes encode tyrosine kinase receptors of poorly characterized biological functions. We recently identified macrophage-stimulating protein as the ligand for Ron; no ligand has yet been found for Sea. In this work we investigated the biological response to macrophage-stimulating protein in mouse liver progenitor cells expressing Ron. These cells were also transfected with a chimeric cDNA encoding the cytoplasmic domain of Sea, fused to the extracellular domain of Trk (nerve growth factor receptor). In the presence of nanomolar concentrations of the respective ligands, both receptors induced cell "scattering", extracellular matrix invasion, and DNA synthesis. When liver progenitor cells were grown in a tri-dimensional type-I collagen matrix, ligand-induced stimulation of either Ron or Sea induced sprouting of branched cell cords, evolving into ductular-like tubules. The motogenic, mitogenic, and morphogenic responses were also elicited by triggering the structurally related hepatocyte growth factor receptor (Met) but not epidermal growth factor or platelet-derived growth factor receptors. These data show that Ron, Sea, and Met belong to a receptor subfamily that elicits a distinctive biological response in epithelial cells.
Collapse
Affiliation(s)
- E Medico
- Institute for Cancer Research (I.R.C.C.), University of Torino School of Medicine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
679
|
Sugiyama A, Arakaki R, Ohnishi T, Arakaki N, Daikuhara Y, Takada H. Lipoteichoic acid and interleukin 1 stimulate synergistically production of hepatocyte growth factor (scatter factor) in human gingival fibroblasts in culture. Infect Immun 1996; 64:1426-31. [PMID: 8606111 PMCID: PMC173936 DOI: 10.1128/iai.64.4.1426-1431.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lipoteichoic acids (LTA) from various gram-positive bacteria, including oral streptococci such as Streptococcus sanguis, enhanced the production of hepatocyte growth factor (HGF) (scatter factor) by human gingival fibroblasts in culture, whereas lipopolysaccharides (LPS) from various gram-negative bacteria did not. In contrast, LPS induced interleukin 1 activity in human gingival epithelial cells in culture, while LTA had little effect. LTA and recombinant human interleukin 1 alpha enhanced synergistically the production of HGF/SF in human gingival fibroblast cultures. Recombinant human HGF, in turn, enhanced the proliferation of human gingival epithelial cells in culture.
Collapse
Affiliation(s)
- A Sugiyama
- Department of Microbiology and Immunology, Kagoshima University Dental School, Japan
| | | | | | | | | | | |
Collapse
|
680
|
Tabata MJ, Kim K, Liu JG, Yamashita K, Matsumura T, Kato J, Iwamoto M, Wakisaka S, Matsumoto K, Nakamura T, Kumegawa M, Kurisu K. Hepatocyte growth factor is involved in the morphogenesis of tooth germ in murine molars. Development 1996; 122:1243-51. [PMID: 8620851 DOI: 10.1242/dev.122.4.1243] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patterns of gene expression for hepatocyte growth factor (HGF) and its receptor, c-Met, were revealed in the tooth germ of rat mandibular molars using RT-PCR. In situ hybridization demonstrated that the HGF gene was expressed only in the cells of the dental papilla of the tooth germ in vivo. The characteristic temporospatial distribution of HGF and c-Met during germ development was revealed using immunohistochemical studies in vivo. In order to demonstrate the functional role played by HGF in tooth development, HGF translation arrest by antisense phosphorothioate oligodeoxynucleotide (ODN) was carried out in vitro. In the control experiment, explants of tooth germs from embryonic 14 day mice were cultured in a modification of Trowell's system under serum-free and chemically defined conditions for two weeks. Other explants were cultured with 15mer antisense or sense ODN targeted to the HGF mRNA. Both the control and the sense-treated explants showed normal histological structure, as observed in vivo. On the other hand, antisense-treated explants exhibited an abnormal structure in which the enamel organs were surrounded by a thin layer of dentin and dental papilla, appearing ‘inside-out’ compared to the control and sense-treated explants, although the cytodifferentiation of ameloblasts and odontoblasts was not inhibited. The explants treated with recombinant human HGF combined with antisense ODN showed normal development, indicating that exogenous HGF rescued the explants from the abnormal structure caused by antisense ODN. The findings of a BrdU incorporation experiment suggested that the imbalance between the proliferation activity of the inner enamel epithelium and that of the dental papilla caused by HGF translation arrest results in the abnormal structure of the tooth germ. These results indicate that HGF is involved in the morphogenesis of the murine molar.
Collapse
Affiliation(s)
- M J Tabata
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
681
|
Jeffers M, Rong S, Vande Woude GF. Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 1996; 16:1115-25. [PMID: 8622656 PMCID: PMC231094 DOI: 10.1128/mcb.16.3.1115] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. Although HGF/SF is synthesized by mesenchymal cells and acts predominantly on epithelial cells, we have recently demonstrated that human sarcoma cell lines often inappropriately express high levels of Met and respond mitogenically to HGF/SF. In the present report we show that HGF/SF-Met signalling in the human leiomyosarcoma cell line SK-LMS-1 enhances its in vivo tumorigenicity, an effect for which the mitogenicity of this signalling pathway is likely to play a role. In addition, we found that HGF/SF-Met signalling dramatically induces the in vitro invasiveness and in vivo metastatic potential of these cells. We have studied the molecular basis by which HGFSF-Met signalling mediates the invasive phenotype. A strong correlation has previously been demonstrated between the activation of the urokinase plasminogen activator (uPA) proteolysis network and the acquisition of the invasive-metastatic phenotype, and we show here that HGF/SF-Met signalling significantly increases the protein levels of both uPA and its cellular receptor in SK-LMS-1 cells. This results in elevated levels of cell-associated uPA and enhanced plasmin-generating ability by these cells. These studies couple HGF/SF-Met signalling to the activation of proteases that mediate dissolution of the extracellular matrix-basement membrane, and important property for cellular invasion-metastasis.
Collapse
Affiliation(s)
- M Jeffers
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | |
Collapse
|
682
|
Abstract
Multiple mediators have been implicated in the interactions between the liver and the lungs in various disease states. The best characterized mediator of liver-lung interaction is alpha 1-antitrypsin. Several cytokines and mediators may be involved in the pathogenesis of the hepatopulmonary syndrome and in the cytokine cascades that are activated in systemic inflammatory states such as acute respiratory distress syndrome. Hepatocyte growth factor or scatter factor is a recently described peptide with a broad range of biologic effects that may mediate lung-liver interactions.
Collapse
Affiliation(s)
- R J Panos
- Veterans Administration Lakeside Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
683
|
Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 1996; 132:1133-1149. [PMID: 8601590 PMCID: PMC2120765 DOI: 10.1083/jcb.132.6.1133] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and chronic liver injury.
Collapse
Affiliation(s)
- G D Block
- Department of Pathology, University of Pittsburgh Medical School, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
684
|
Hamanoue M, Takemoto N, Matsumoto K, Nakamura T, Nakajima K, Kohsaka S. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J Neurosci Res 1996; 43:554-64. [PMID: 8833090 DOI: 10.1002/(sici)1097-4547(19960301)43:5<554::aid-jnr5>3.0.co;2-h] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the expression of hepatocyte growth factor (HGF) and its receptor, proto-oncogene c-met, has been demonstrated in the central nervous system (CNS), the function of HGF in the CNS was not fully understood. In the present studies, we determined the effects of HGF on neuronal development in neocortical explant and mesencephalic neurons obtained from embryonic rat brain. HGF clearly enhanced neurite outgrowth in neocortical explants. In the mesencephalic culture, the number of tyrosine hydroxylase (TH)-positive neurons was significantly higher in the HGF-treated wells and the neurites of the TH-positive neurons appear to be more developed. Moreover, the dopamine uptake into mesencephalic neurons was also enhanced by HGF treatment, indicating that HGF promotes the survival and/or maturation of mesencephalic dopaminergic neurons. In both neocortical explants and mesencephalic neurons, c-met autophosphorylation was induced by HGF and MAP kinase activation was also detected in the neocortical explant. Furthermore, Western blot analysis of the cultured CNS cells revealed that HGF was expressed mainly in microglia. These results suggest that HGF from microglia has neurotrophic activity on the CNS neurons and plays significant roles in the development of the CNS.
Collapse
Affiliation(s)
- M Hamanoue
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
685
|
Affiliation(s)
- Y Uehara
- Institute for Liver Research, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
686
|
Taipale J, Keski-Oja J. Hepatocyte growth factor releases epithelial and endothelial cells from growth arrest induced by transforming growth factor-beta1. J Biol Chem 1996; 271:4342-8. [PMID: 8626783 DOI: 10.1074/jbc.271.8.4342] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human lung fibroblasts and Mv1Lu mink lung epithelial cells were used as a model to study the role of extracellular matrix in epithelial-mesenchymal interactions. Extracellular matrices of fibroblasts were found to contain growth promoting activity that reduced the sensitivity of Mv1Lu cells to the growth inhibitory effects of transforming growth factor-beta (TGF-beta). The majority of the activity was identified as hepatocyte growth factor/scatter factor (HGF) by inhibition with specific antibodies and by reconstitution of the effect by recombinant HGF. HGF induced cell proliferation when contact-inhibited Mv1Lu cells were trypsinized and plated in the presence of TGF-beta1. The effect was valid also in assays where Madin-Darby canine kidney epithelial cells or bovine capillary endothelial cells were used. The multiplication of chronically TGF-beta1 inhibited Mv1Lu cells was also induced by HGF. In addition, HGF induced anchorage independent growth of Mv1Lu cells that was refractory to TGF-beta1 growth inhibition. Immunoprecipitation analysis indicated that HGF prevented the suppression of Cdk4 and Cdk2, but not the induction of p21, by TGF-beta1. Since both TGF-beta1 and HGF require proteolysis for activation, the results imply that proteolytic activity of epithelial and endothelial cells directs their responses to signals from mesenchymal-type extracellular matrices, and that during development, matrix-bound growth and invasion promoting and suppressing factors are activated in a coordinated manner.
Collapse
Affiliation(s)
- J Taipale
- Department of Virology, Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
687
|
Miyazawa K, Shimomura T, Kitamura N. Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J Biol Chem 1996; 271:3615-8. [PMID: 8631970 DOI: 10.1074/jbc.271.7.3615] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen, motogen, and morphogen for epithelial cells in vitro. It appears likely that HGF participates in tissue regeneration following hepatic and renal injury in vivo. The activity of HGF is localized to the injured tissues by a proteolytic activation system; HGF remains as an inactive single-chain form in the normal state and is converted to an active heterodimeric form in response to tissue injury. A protease responsible for this conversion is induced in the injured liver, but it has not yet been identified. We have previously purified and characterized HGF activator (HGFA), a serum-derived serine protease that efficiently activates single-chain HGF in vitro. In this study, we found that the HGF-converting activity in the injured liver was inhibited by an anti-HGFA antibody. We also found that the active form of HGFA was generated exclusively in the injured tissues. Thus, it appears likely that HGFA is the key enzyme that regulates the activity of HGF in the injured tissues. We also analyzed the heparin binding properties of the precursor and mature forms of HGFA. HGFA had a weak affinity for heparin near the physiological salt concentration in its precursor form but acquired a strong affinity for heparin upon activation that is linked to blood coagulation. This property may ensure the local action of this enzyme at the site of tissue injury.
Collapse
Affiliation(s)
- K Miyazawa
- Institute for Liver Research, Kansai Medical University, Moriguchi, Osaka 570, Japan
| | | | | |
Collapse
|
688
|
Abstract
A variety of cell adhesion mechanisms underlie the way that cells are organized in tissues. Stable cell interactions are needed to maintain the structural integrity of tissues, and dynamic changes in cell adhesion participate in the morphogenesis of developing tissues. Stable interactions actually require active adhesion mechanisms that are very similar to those involved in tissue dynamics. Adhesion mechanisms are highly regulated during tissue morphogenesis and are intimately related to the processes of cell motility and cell migration. In particular, the cadherins and the integrins have been implicated in the control of cell movement. Cadherin mediated cell compaction and cellular rearrangements may be analogous to integrin-mediated cell spreading and motility on the ECM. Regulation of cell adhesion can occur at several levels, including affinity modulation, clustering, and coordinated interactions with the actin cytoskeleton. Structural studies have begun to provide a picture of how the binding properties of adhesion receptors themselves might be regulated. However, regulation of tissue morphogenesis requires complex interactions between the adhesion receptors, the cytoskeleton, and networks of signaling pathways. Signals generated locally by the adhesion receptors themselves are involved in the regulation of cell adhesion. These regulatory pathways are also influenced by extrinsic signals arising from the classic growth factor receptors. Furthermore, signals generated locally be adhesion junctions can interact with classic signal transduction pathways to help control cell growth and differentiation. This coupling between physical adhesion and developmental signaling provides a mechanism to tightly integrate physical aspects of tissue morphogenesis with cell growth and differentiation, a coordination that is essential to achieve the intricate patterns of cells in tissues.
Collapse
Affiliation(s)
- B M Gumbiner
- Cellular Biochemistry and Biophysics Program Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
689
|
Eagles G, Warn A, Ball RY, Baillie-Johnson H, Arakaki N, Daikuhara Y, Warn RM. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br J Cancer 1996; 73:377-81. [PMID: 8562345 PMCID: PMC2074438 DOI: 10.1038/bjc.1996.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pleural effusion samples were obtained from 55 patients with malignant disease, including patients with primary lung cancers and those with a variety of other tumours metastatic to the pleura. The effusions were assayed for the presence of hepatocyte growth factor/scatter factor (HGF/SF), by both ELISA and bioassay. The presence of malignant cells in the effusions was also assessed. Detectable amounts of the factor, as judged by both criteria, were found in over 90% of all the effusions, including those from patients with a wide variety of carcinomas and also lymphomas. A wide range of HGF/SF levels were found for all tumour classes, some effusions containing high levels above 4 ng ml-1. It is concluded that tumours within the pleura and adjacent lung tissue are usually exposed to biologically significant levels of HGF/SF.
Collapse
Affiliation(s)
- G Eagles
- School of Biology, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
690
|
Maier JA, Mariotti M, Albini A, Comi P, Prat M, Comogilio PM, Soria MR. Over-expression of hepatocyte growth factor in human Kaposi's sarcoma. Int J Cancer 1996; 65:168-72. [PMID: 8567112 DOI: 10.1002/(sici)1097-0215(19960117)65:2<168::aid-ijc7>3.0.co;2-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kaposi's sarcoma is a highly vascularized multifocal tumor which frequently appears as a complication of HIV infection. It has been suggested that a disorder in the cytokine network may contribute to the development of the disease. We examined the expression of several cytokines in human sporadic Kaposi's-sarcoma specimens, as well as in spindle cells cultured from human lesions, and consistently found high levels of expression of hepatocyte growth factor (HGF). In addition, human lesion-derived spindle cells synthesize and secrete biologically active hepatocyte growth factor and express the hepatocyte-growth-factor receptor (c-MET). Moreover, elevated levels of transforming growth factor beta 1 (TGF beta 1) mRNA were found in lesions of human sporadic Kaposi's sarcoma and in lesion-derived spindle cells which also over-express urokinase. Since HGF, TGF beta 1 and urokinase are all involved in capillary-vessel organization, dysregulation of these interacting agents may play a role in the initiation and/or progression of Kaposi's sarcoma, stimulating the growth of spindle cells and recruiting endothelial cells into the lesion.
Collapse
Affiliation(s)
- J A Maier
- Department of Biological and Technological Research-Dibit, San Raffaele Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
691
|
Yamaguchi K, Nalesnik MA, Michalopoulos GK. Expression of HGF mRNA in human rejecting kidney as evidenced by in situ hybridization. UROLOGICAL RESEARCH 1996; 24:349-354. [PMID: 9008328 DOI: 10.1007/bf00389792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In situ hybridization was performed to demonstrate hepatocyte growth factor (HGF) mRNA in two patients with normal kidney and in 23 patients with allograft nephrectomy. In situ hybridization was combined with immunohistochemistry to identify HGF-producing cells. In the two patients with normal kidney, no HGF mRNA was obtainable. In 15 of the 23 allograft patients, signals of HGF mRNA were detectable. In six of these 15 patients, the signals were present mainly at the medullocortex junction, and in the other nine patients at the cortex and/or medulla. Strong and frequent signals were present in gland-like structures in 15 cases. Some scattered signals were also present in the fibrosed glomeruli in five cases, in the thickened intimas of large arteries in three cases, and in the arterial muscle coats of two cases. Combined immunohistochemistry and in situ hybridization showed that HGF mRNA-positive cells in gland-like arrangements were also positive for cytokeratin and negative for factor VIII. Cells with HGF mRNA signal and located in the arterial media were also positive for actin. These findings suggest that HGF mRNA is transcribed both in the urinary tubular epithelium and in the mesenchymal cells (fibroblasts, and smooth muscle cells in chronic vascular rejection and endothelial cells and/or mesangial cells in transplant glomerulopathy) in human rejecting kidney.
Collapse
Affiliation(s)
- K Yamaguchi
- Division of Transplant Pathology, University of Pittsburgh, School of Medicine, PA 15213, USA
| | | | | |
Collapse
|
692
|
Andermarcher E, Surani MA, Gherardi E. Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. DEVELOPMENTAL GENETICS 1996; 18:254-66. [PMID: 8631159 DOI: 10.1002/(sici)1520-6408(1996)18:3<254::aid-dvg6>3.0.co;2-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early experiments with cells in culture and recent targeting experiments have confirmed that the mesenchyme-derived growth factor hepatocyte growth factor/scatter factor (HGF/SF) is a paracrine agent that regulates the development of several epithelial and myogenic precursor cells during organogenesis. Here, we report the expression pattern of HGF/SF and its receptor, the product of the proto-oncogene c-met, during gastrulation and early organogenesis in mouse embryo. During gastrulation, the expression of HGF/SF and c-met overlaps. Initially the two genes are expressed in the endoderm and in the mesoderm along the rostro-intermediate part of the primitive streak and, later, in the node and in the notochord. Neither HGF/SF nor c-met is expressed in the ectodermal layer throughout gastrulation. During early organogenesis, overlapping expression of HGF/SF and c-met is found in heart, condensing somites and neural crest cells. However, a second and distinct pattern of expression, characterized by the presence of the ligand in mesenchymal tissues and the receptor in the surrounding ectoderm, is seen in the bronchial arches and in the limb buds. At 13 days postcoitum (d.p.c.), only this second pattern of expression is observed in differentiated somites and several major organs (i.e., lungs, liver, and gut). The expression of the HGF/SF and c-met genes throughout embryogenesis suggests a shift from an autocrine to a paracrine signaling system. The shift takes place in early organogenesis and implies different roles of HGF/SF in development. During gastrulation, HGF/SF may affect the fate of migrating mesodermal cells and may play a role in axis determination, whereas during organogenesis, the expression patterns of HGF/SF and its receptor reflect the recently established roles in the growth of certain epithelia and the migration of specific myogenic precursor cells.
Collapse
Affiliation(s)
- E Andermarcher
- ICRF Cell Interactions Laboratory, Cambridge University Medical School, MRC Centre, UK
| | | | | |
Collapse
|
693
|
Birchmeier W, Behrens J, Weidner KM, Hülsken J, Birchmeier C. Epithelial differentiation and the control of metastasis in carcinomas. Curr Top Microbiol Immunol 1996; 213 ( Pt 2):117-35. [PMID: 9053287 DOI: 10.1007/978-3-642-61109-4_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- W Birchmeier
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
694
|
Abstract
Pulmonary neuroendocrine cells produce bioactive peptides such as gastrin-releasing peptide (GRP) at high levels in developing fetal lung. The role of GRP and other peptides in promoting branching morphogenesis, cell proliferation, and cell differentiation during lung organogenesis is reviewed. Possible roles for bioactive peptides derived from these cells in the pathophysiology of perinatal lung disorders are discussed.
Collapse
|
695
|
Wadsworth P, Bottaro DP. Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:225-36. [PMID: 8913643 DOI: 10.1002/(sici)1097-0169(1996)35:3<225::aid-cm5>3.0.co;2-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
696
|
Ushiro S, Ono M, Izumi H, Kohno K, Taniguchi N, Higashiyama S, Kuwano M. Heparin-binding epidermal growth factor-like growth factor: p91 activation induction of plasminogen activator/inhibitor, and tubular morphogenesis in human microvascular endothelial cells. Jpn J Cancer Res 1996; 87:68-77. [PMID: 8609052 PMCID: PMC5920984 DOI: 10.1111/j.1349-7006.1996.tb00202.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) stimulates cell migration, proliferation and the formation of tube-like structures of human microvascular endothelial cells in culture. Heparin-binding EGF-like growth factor(HB-EGF), which shows 35% homology with EGF/TGF-alpha, is a member of the EGF family, and it is ubiquitous in many tissues and organs. We examined whether or not HB-EGF induced angiogenic responses in human microvascular endothelial cells. HB-EGF inhibited the binding of (125) I-EGF to the EGF receptor and induced autophosphorylation of the receptor on endothelial cells. Exogenous HB-EGF induced the loss of more than 70% of the EGF receptor from the cell surface within 30 min, with similar kinetics to that of EGF. The level of c-fos mRNA markedly increased at 30 min in response to HB-EGF as well as EGF. A gel shift assay demonstrated the activation of the transcription factor p91 by HB-EGF and EGF. This factor directly interacts with EGF receptor and mediates the activation of c-fos gene promoter. HB-EGF enhanced the mRNA expression of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) mRNA. However, the enhancement of t-PA and PAI-1 by HB-EGF was less than that by EGF. Heparitinase/chlorate, which digests the heparan sulfate proteoglycan of the endothelial cell surface, restored both t-PA and PAI-1 mRNA levels in response to HB-EGF in a manner similar to that by EGF. HB-EGF at 10 ng/ml developed tube-like structures in type I collagen gel at similar levels to that of EGF at 10 ng/ml, suggesting that HB-EGF is also a potent angiogenic factor in the model system for angiogenesis. The tubulogenesis activity of HB-EGF is discussed in relation to the expression of the t-PA and PAI-1 genes.
Collapse
Affiliation(s)
- S Ushiro
- Department of Biochemistry, Kyushu University School of Medicine
| | | | | | | | | | | | | |
Collapse
|
697
|
Roletto F, Galvani AP, Cristiani C, Valsasina B, Landonio A, Bertolero F. Basic fibroblast growth factor stimulates hepatocyte growth factor/scatter factor secretion by human mesenchymal cells. J Cell Physiol 1996; 166:105-11. [PMID: 8557758 DOI: 10.1002/(sici)1097-4652(199601)166:1<105::aid-jcp12>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing.
Collapse
Affiliation(s)
- F Roletto
- Pharmacia Biopharmaceuticals-BioScience Center, Nerviano, Italy
| | | | | | | | | | | |
Collapse
|
698
|
Abstract
The corneal epithelium is known to have a rapid self-renewing capacity. The major advance in the field of corneal epithelial cell biology in the last decade is the establishment of the location of corneal epithelial stem cells at the limbus, i.e., the junctional zone between the cornea and the conjunctiva. This concept has helped explain several experimental and clinical paradoxes, produced a number of important clinical applications, and spawned many other research studies. This unique enrichment of epithelial stem cells at a site anatomically separated from their transient amplifying cells makes the ocular surface an ideal model to study the regulation of epithelial stem cells. The present review includes data from more recent studies and lays out other areas for future investigation, especially with respect to the role of apoptosis and cytokine dialogue between limbal epithelial stem cells and their stromal microenvironment.
Collapse
Affiliation(s)
- S C Tseng
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| |
Collapse
|
699
|
Isaac DD, Andrew DJ. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev 1996; 10:103-17. [PMID: 8557189 DOI: 10.1101/gad.10.1.103] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The trachealess (trh) gene of Drosophila is required for embryonic tube formation. In trh mutants, tube-forming cells of the salivary gland, trachea, and filzkörper fail to invaginate to form tubes and remain on the embryo surface. We identified a P-element insertion that disrupts trh function and used the insert to clone and characterize trh. trh is expressed in the salivary duct, trachea, and filzköper primordia, and expression persists in these cells throughout embryogenesis. trh expression in the salivary duct is controlled by the homeotic gene, Sex combs reduced (Scr), and by another salivary gland gene, fork head (fkh). trh is homologous to two transcription factors: the human hypoxia-inducible factor-1 alpha and the Drosophila Single-minded protein.
Collapse
Affiliation(s)
- D D Isaac
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
700
|
Hino M, Inaba M, Goto H, Nishizawa Y, Tatsumi N, Nishino T, Morii H. Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells. Br J Cancer 1996; 73:119-23. [PMID: 8554973 PMCID: PMC2074290 DOI: 10.1038/bjc.1996.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hepatocyte growth factor (HGF) has been known as a multiple function factor, which also stimulates early haematopoiesis. In this study, we found that HGF was expressed at both the RNA and protein levels in acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML). In patients with AML (n = 20) and CML (n = 5), bone marrow plasma HGF concentrations were 20.44 +/- 6.26 (mean +/- s.e.) ng ml-1 and 7.17 +/- 0.53 ng ml-1 respectively. These were significantly higher (P < 0.01) than the value for normal subjects (n = 26): mean 0.92 +/- 0.09 ng ml-1. Constitutive HGF production was observed in freshly prepared leukaemic blast cells from three patients with high HGF levels of bone marrow plasma. Expression of HGF mRNA was correlated with bone marrow plasma HGF levels. After complete remission was obtained in six patients, bone marrow plasma HGF levels were significantly decreased. In contrast, the HGF mRNA was less abundantly expressed in acute lymphoid leukaemia (ALL). In patients with ALL (n = 5), bone marrow plasma HGF concentration (0.69 +/- 0.14 ng ml-1) remained low within the value for normal subjects. These results suggest that some populations of myeloid lineage cells have the ability to produce HGF.
Collapse
Affiliation(s)
- M Hino
- Second Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|