651
|
Isbrucker RA, Guzmán EA, Pitts TP, Wright AE. Early effects of lasonolide a on pancreatic cancer cells. J Pharmacol Exp Ther 2009; 331:733-9. [PMID: 19692635 DOI: 10.1124/jpet.109.155531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lasonolide A, a novel polyketide-derived macrolide, was previously identified from an extract of the marine sponge Forcepia sp. in an assay for protein kinase C (PKC) inhibitors. Cytotoxicity testing and profiling of lasonolide A in the National Cancer Institute (NCI) 60 cell panel screen revealed that it was potent toward a broad range of cell lines and also suggested a unique mechanism of action. Contrary to expected results, we found lasonolide A to be a strong activator of PKC in Panc-1 pancreatic carcinoma cells. Downstream mitogen-activated protein kinases, ERK 1/2 and p38 were also rapidly phosphorylated in response to lasonolide A, as was Akt. Microscopy studies revealed that lasonolide A induced blebbing and contraction of the cells within minutes of exposure, and the eventual loss of adherence. However, membrane integrity was maintained and the effects were reversible if lasonolide A was washed from the cells after their loss of adherence. Pretreatment of cells with a myosin II inhibitor, blebbistatin, slowed the early onset, but did not prevent the morphological effects of lasonolide A. Cells stained for actin filaments showed some reduction in stress fiber structure after lasonolide A exposure; however, it did not affect the polymerization of purified actin in vitro. Bisindolemaleimide, a PKC inhibitor, and wortmannin, a phosphoinositide 3-kinase; inhibitor, did not reduce lasonolide A-induced contraction or blebbing or the activation of mitogen-activated protein kinases, although Akt phosphorylation was prevented by wortmannin pretreatment. Our results indicate that lasonolide A activates multiple signal transduction pathways and suggest that the origin is upstream of PKC.
Collapse
Affiliation(s)
- Richard A Isbrucker
- Harbor Branch Oceanographic Institute at Florida Atlantic University, Center for Marine Biomedical and BiotechnologyResearch, Fort Pierce, Florida 34946, USA
| | | | | | | |
Collapse
|
652
|
Dugina V, Zwaenepoel I, Gabbiani G, Clément S, Chaponnier C. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 2009; 122:2980-8. [PMID: 19638415 DOI: 10.1242/jcs.041970] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Using newly generated monoclonal antibodies, we have compared the distribution of beta- and gamma-cytoplasmic actin in fibroblastic and epithelial cells, in which they play crucial roles during various key cellular processes. Whereas beta-actin is preferentially localized in stress fibers, circular bundles and at cell-cell contacts, suggesting a role in cell attachment and contraction, gamma-actin displays a more versatile organization, according to cell activities. In moving cells, gamma-actin is mainly organized as a meshwork in cortical and lamellipodial structures, suggesting a role in cell motility; in stationary cells, gamma-actin is also recruited into stress fibers. beta-actin-depleted cells become highly spread, display broad protrusions and reduce their stress-fiber content; by contrast, gamma-actin-depleted cells acquire a contractile phenotype with thick actin bundles and shrinked lamellar and lamellipodial structures. Moreover, beta- and gamma-actin depleted fibroblasts exhibit distinct changes in motility compared with their controls, suggesting a specific role for each isoform in cell locomotion. Our results reveal new aspects of beta- and gamma-actin organization that support their functional diversity.
Collapse
Affiliation(s)
- Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
653
|
Xu S, White HD, Offer GW, Yu LC. Stabilization of helical order in the thick filaments by blebbistatin: further evidence of coexisting multiple conformations of myosin. Biophys J 2009; 96:3673-81. [PMID: 19413972 DOI: 10.1016/j.bpj.2009.01.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 01/06/2009] [Accepted: 01/21/2009] [Indexed: 11/25/2022] Open
Abstract
The degree of helical order of the thick filament of mammalian skeletal muscle is highly dependent on temperature and the nature of the ligand. Previously, we showed that there was a close correlation between the conformation of the myosin heads on the surface of the thick filaments and the extent of their helical order. Helical order required the heads to be in the closed conformation. In addition, we showed that, with the same ligand bound at the active site, three conformations of myosin coexisted in equilibrium. Hitherto, however, there was no detectable helical order as measured by x-ray diffraction under the temperatures studied for myosin with MgADP and the nucleotide-free myosin, raising the possibility that the concept of multiple conformations has limited validity. In this study, blebbistatin was used to stabilize the closed conformation of myosin. The degree of helical order is substantially improved with MgATP at low temperature or with MgADP or in the absence of nucleotide. The thermodynamic parameters of the disorder<-->order transition and the characteristics of the ordered array were not significantly altered by binding blebbistatin. The simplest explanation is that the binding of blebbistatin increases the proportion of myosin in the closed conformation from being negligible to substantial. These results provide further evidence for the coexistence of multiple conformations of myosin under a wide range of conditions and for the closed conformation being directly coupled to helical order.
Collapse
Affiliation(s)
- Sengen Xu
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
654
|
Nyholm MK, Abdelilah-Seyfried S, Grinblat Y. A novel genetic mechanism regulates dorsolateral hinge-point formation during zebrafish cranial neurulation. J Cell Sci 2009; 122:2137-48. [PMID: 19470582 DOI: 10.1242/jcs.043471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During neurulation, vertebrate embryos form a neural tube (NT), the rudiment of the central nervous system. In mammals and birds, a key step in cranial NT morphogenesis is dorsolateral hinge-point (DLHP) bending, which requires an apical actomyosin network. The mechanism of DLHP formation is poorly understood, although several essential genes have been identified, among them Zic2, which encodes a zinc-finger transcription factor. We found that DLHP formation in the zebrafish midbrain also requires actomyosin and Zic function. Given this conservation, we used the zebrafish to study how genes encoding Zic proteins regulate DLHP formation. We demonstrate that the ventral zic2a expression border predicts DLHP position. Using morpholino (MO) knockdown, we show zic2a and zic5 are required for apical F-actin and active myosin II localization and junction integrity. Furthermore, myosin II activity can function upstream of junction integrity during DLHP formation, and canonical Wnt signaling, an activator of zic gene transcription, is necessary for apical active myosin II localization, junction integrity and DLHP formation. We conclude that zic genes act downstream of Wnt signaling to control cytoskeletal organization, and possibly adhesion, during neurulation. This study identifies zic2a and zic5 as crucial players in the genetic network linking patterned gene expression to morphogenetic changes during neurulation, and strengthens the utility of the zebrafish midbrain as a NT morphogenesis model.
Collapse
Affiliation(s)
- Molly K Nyholm
- Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
655
|
Kniazeva E, Putnam AJ. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 2009; 297:C179-87. [PMID: 19439531 DOI: 10.1152/ajpcell.00018.2009] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identifying the mechanisms regulating angiogenesis in pathological conditions such as cancer and heart disease is crucial to develop successful therapies. The dependence of angiogenesis on characteristic properties of these conditions, such as alterations in tissue stiffness due to changes in the composition of the extracellular matrix (ECM), may shed light on potential therapeutic strategies. Prior studies have suggested that ECM compliance regulates capillary morphogenesis, but the mechanisms remain unclear. In this study, we hypothesized that ECM density, which influences substrate mechanics, may regulate angiogenesis via a mechanism involving actin-mediated cell-generated forces. To investigate this hypothesis, we utilized an in vitro model of angiogenesis in which endothelial cells coated on microcarrier beads are distributed within a three-dimensional (3-D) fibrin ECM. A monolayer of fibroblasts, which provides pro-angiogenic factors, is cultured on top of the gel. Variations in fibrin gel density, along with a library of pharmacological agents that inhibit forces generated by the actin cytoskeleton, were used to prove the necessity of cell-generated tractional forces in blood vessel formation. Our data demonstrate that cell-generated forces not only play a crucial role in the early sprouting stages of capillary morphogenesis but are also required in the later maintenance stages, and thereby suggest a broader interdependence among tissue stiffness, cell contractile forces, and angiogenesis.
Collapse
Affiliation(s)
- Ekaterina Kniazeva
- Dept. of Biomedical Engineering, Univ. of California, Irvine, Irvine, CA 92697-2715, USA
| | | |
Collapse
|
656
|
Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 2009; 136:1977-86. [PMID: 19439495 DOI: 10.1242/dev.030718] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory epithelium of the mammalian cochlea comprises mechanosensory hair cells that are arranged into four ordered rows extending along the length of the cochlear spiral. The factors that regulate the alignment of these rows are unknown. Results presented here demonstrate that cellular patterning within the cochlea, including the formation of ordered rows of hair cells, arises through morphological remodeling that is consistent with the mediolateral component of convergent extension. Non-muscle myosin II is shown to be expressed in a pattern that is consistent with an active role in cellular remodeling within the cochlea, and genetic or pharmacological inhibition of myosin II results in defects in cellular patterning that are consistent with a disruption in convergence and extension. These results identify the first molecule, myosin II, which directly regulates cellular patterning and alignment within the cochlear sensory epithelium. Our results also provide insights into the cellular mechanisms that are required for the formation of highly ordered cellular patterns.
Collapse
Affiliation(s)
- Norio Yamamoto
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
657
|
Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle. J Mol Biol 2009; 390:99-111. [PMID: 19433094 DOI: 10.1016/j.jmb.2009.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
Upon activation of living or skinned vertebrate skeletal muscle fibers, the sixth X-ray layer-line reflection from actin (6th ALL) is known to intensify, without a shift of its peak position along the layer line. Since myosin attachment to actin is expected to shift the peak towards the meridian, this intensification is considered to reflect the structural change of individual actin monomers in the thin filament. Here, we show that the 6th ALL of skinned insect flight muscles (IFMs) is rather weakened upon isometric calcium activation, and its peak shifts away from the meridian. This suggests that the actin monomers in the two types of muscles change their structures in substantially different manners. The changes that occurred in the 6th ALL of IFM were not diminished by lowering the temperature from 20 to 5 degrees C, while active force was greatly reduced. The inclusion of 100 microM blebbistatin (a myosin inhibitor) did not affect the changes either. This suggests that calcium binding to troponin C, rather than myosin binding to actin, causes the structural change of IFM actin.
Collapse
|
658
|
Abstract
A multitude of cellular and subcellular processes depend critically on the mechanical deformability of the cytoplasm. We have recently introduced the method of particle-tracking microrheology, which measures the viscoelastic properties of the cytoplasm locally and with high spatiotemporal resolution. Here we establish the basic principles of particle-tracking microrheology, describing the advantages of this approach over more conventional approaches to cell mechanics. We present basic concepts of molecular mechanics and polymer physics relevant to the microrheological response of cells. Particle-tracking microrheology can probe the mechanical properties of live cells in experimentally difficult, yet more physiological, environments, including cells embedded inside a 3D matrix, adherent cells subjected to shear flows, and cells inside a developing embryo. Particle-tracking microrheology can readily reveal the lost ability of diseased cells to resist shear forces.
Collapse
Affiliation(s)
- Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
659
|
Megalin and nonmuscle myosin heavy chain IIA interact with the adaptor protein Disabled-2 in proximal tubule cells. Kidney Int 2009; 75:1308-1315. [PMID: 19340093 DOI: 10.1038/ki.2009.85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Megalin plays a critical role in the endocytosis of albumin and other filtered low-molecular-weight proteins. Here we studied the interaction between megalin and Disabled-2 (Dab2), an adaptor protein that binds to the cytoplasmic domain of megalin and appears to control its trafficking. We co-immunoprecipitated megalin and Dab2 from cultured proximal tubule cells and identified the proteins by liquid chromatography and tandem mass spectrometry. We found two proteins associated with the megalin/Dab2 complex, nonmuscle myosin heavy chain IIA (NMHC-IIA) and beta-actin. Subcellular fractionation followed by sucrose velocity gradient separation showed that megalin, Dab2, and NMHC-IIA existed as a complex in the same endosomal fractions. In vitro pull-down assays demonstrated that NMHC-IIA was bound to the carboxyl-terminal region of Dab2, but not to megalin's cytoplasmic domain. We then transfected COS-7 cells with plasmids that induced the expression of Dab2, NMHC-IIA, and the megalin minireceptor, a truncated form of megalin. Co-immunoprecipitation studies showed that the minireceptor and NMHC-IIA co-immunoprecipitated only with Dab2. Furthermore, the uptake of (125)I-lactoferrin, an endocytic ligand of megalin, by rat yolk sac-derived megalin-expressing L2 cells was inhibited by blebbistatin, a specific inhibitor of nonmuscle myosin II. Our study shows that NMHC-IIA is functionally linked to megalin by interaction with Dab2 and is likely involved in megalin-mediated endocytosis in proximal tubule cells.
Collapse
|
660
|
Watanabe M, Kobirumaki F, Yumoto M. [Direct regulation of contractile filaments: novel therapeutic strategy for vasospasm treatment]. Nihon Yakurigaku Zasshi 2009; 133:130-3. [PMID: 19282614 DOI: 10.1254/fpj.133.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
661
|
Linari M, Piazzesi G, Lombardi V. The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle. Biophys J 2009; 96:583-92. [PMID: 19167306 DOI: 10.1016/j.bpj.2008.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 09/29/2008] [Indexed: 11/28/2022] Open
Abstract
We use the inhibitor of isometric force of skeletal muscle N-benzyl-p-toluene sulfonamide (BTS) to decrease, in a dose dependent way, the number of myosin motors attached to actin during the steady isometric contraction of single fibers from frog skeletal muscle (4 degrees C, 2.1 microm sarcomere length). In this way we can reduce the strain in the myofilament compliance during the isometric tetanus (T(0)) from 3.54 nm in the control solution (T(0,NR)) to approximately 0.5 nm in 1 microM BTS, where T(0) is reduced to approximately 0.15 T(0,NR). The quick force recovery after a step release (1-3 nm per half-sarcomere) becomes faster with the increase of BTS concentration and the decrease of T(0). The simulation of quick force recovery with a multistate model of force generation, that adapts Huxley and Simmons model to account for both the high stiffness of the myosin motor (approximately 3 pN/nm) and the myofilament compliance, shows that the increase in the rate of quick force recovery by BTS is explained by the reduced strain in the myofilaments, consequent to the decrease in half-sarcomere force. The model estimates that i), for the same half-sarcomere release the state transition kinetics in the myosin motor are five times faster in the absence of filament compliance than in the control; and ii), the rate of force recovery from zero to T(0) is approximately 6000/s in the absence of filament compliance.
Collapse
Affiliation(s)
- M Linari
- Laboratorio di Fisiologia, Dipartimento di Biologia Evoluzionistica, Università di Firenze, Sesto Fiorentino, Firenze, Italy
| | | | | |
Collapse
|
662
|
Programmed subcellular release for studying the dynamics of cell detachment. Nat Methods 2009; 6:211-3. [PMID: 19182793 DOI: 10.1038/nmeth.1299] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/23/2008] [Indexed: 11/08/2022]
Abstract
Cell detachment is central to a broad range of physiopathological changes, but there are no quantitative methods to study this process. Here we report programmed subcellular release, a method for spatially and temporally controlled cellular detachment, and present quantitative results of the detachment dynamics of 3T3 fibroblasts at the subcellular level.
Collapse
|
663
|
Bhat P, Thorn P. Myosin 2 maintains an open exocytic fusion pore in secretory epithelial cells. Mol Biol Cell 2009; 20:1795-803. [PMID: 19158378 DOI: 10.1091/mbc.e08-10-1048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many studies have implicated F-actin and myosin 2 in the control of regulated secretion. Most recently, evidence suggests a role for the microfilament network in regulating the postfusion events of vesicle dynamics. This is of potential importance as postfusion behavior can influence the loss of vesicle content and may provide a new target for drug therapy. We have investigated the role of myosin 2 in regulating exocytosis in secretory epithelial cells by using novel assays to determine the behavior of the fusion pore in individual granules. We immunolocalize myosin 2A to the apical region of pancreatic acinar cells, suggesting it is this isoform that plays a role in granule exocytosis. We further show myosin 2 phosphorylation increased on cell stimulation, consistent with a regulatory role in secretion. Importantly, in a single-cell, single-granule secretion assay, neither the myosin 2 inhibitor (-)-blebbistatin nor the myosin light chain kinase inhibitor ML-9 had any effect on the numbers of granules stimulated to fuse after cell stimulation. These data indicate that myosin 2, if it has any action on secretion, must be targeting postfusion granule behavior. This interpretation is supported by direct study of fusion pore opening in which we show that (-)-blebbistatin and ML-9 promote fusion pore closure and decrease fusion pore lifetimes. Our work now adds to a growing body of evidence showing that myosin 2 is an essential regulator of postfusion granule behavior. In particular, in the case of the secretory epithelial cells, myosin 2 activity is necessary to maintain fusion pore opening.
Collapse
Affiliation(s)
- Purnima Bhat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | | |
Collapse
|
664
|
Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin. J Muscle Res Cell Motil 2009; 30:17-27. [PMID: 19125340 DOI: 10.1007/s10974-008-9162-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Phosphorylation of skeletal myosin regulatory light chain (RLC) occurs in fatigue and may play a role in the inhibition of shortening velocities observed in vivo. Forces and shortening velocities were measured in permeabilized rabbit psoas fibers with either phosphorylated or dephosphorylated RLCs and in the presence or absence of the myosin inhibitor blebbistatin. Addition of 20 microM blebbistatin decreased tensions by approximately 80% in fibers, independent of phosphorylation. In blebbistatin maximal shortening velocities (V(max)) at 30 degrees C, were decreased by 45% (3.2 +/- 0.34 vs. 5.8 +/- 0.18 lengths/s) in phosphorylated fibers but were not inhibited in dephosphorylated fibers (6.0 +/- 0.30 vs. 5.4 +/- 0.30). In the presence of 20 microM blebbistatin, K(m) for V(max) as a function of [ATP] was lower for phosphorylated fibers than for dephosphorylated fibers (50 +/- 20 vs. 330 +/- 84 microM) indicating that the apparent binding of ATP is stronger in these fibers. Phosphorylation of RLC in situ during fiber preparation or by addition of myosin light chain kinase yielded similar data. RLC phosphorylation inhibited velocity in blebbistatin at both 30 and 10 degrees C, unlike previous reports where RLC phosphorylation only affected shortening velocities at higher temperatures.
Collapse
|
665
|
Taylor J, Chung KH, Figueroa C, Zurawski J, Dickson HM, Brace EJ, Avery AW, Turner DL, Vojtek AB. The scaffold protein POSH regulates axon outgrowth. Mol Biol Cell 2008; 19:5181-92. [PMID: 18829867 PMCID: PMC2592661 DOI: 10.1091/mbc.e08-02-0231] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/28/2008] [Accepted: 09/23/2008] [Indexed: 12/13/2022] Open
Abstract
How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.
Collapse
Affiliation(s)
| | - Kwan-Ho Chung
- Program in Neuroscience, and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | | | | | - David L. Turner
- *Department of Biological Chemistry
- Program in Neuroscience, and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
666
|
Galler S. Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell Motil 2008; 29:73-99. [PMID: 19039672 DOI: 10.1007/s10974-008-9149-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/18/2008] [Indexed: 12/15/2022]
Abstract
The catch state (or 'catch') of molluscan smooth muscles is a passive holding state that occurs after cessation of stimulation. During catch, force and, in particular, resistance to stretch are maintained for long time periods with low (or no) energy consumption at basal intracellular free [Ca2+]. The catch state is initiated by Ca2+-stimulated dephosphorylation of the titin-like protein twitchin and is inhibited by cAMP-dependent phosphorylation of twitchin. In addition, catch is pH sensitive, but the reason for this is unknown. According to a traditional model, catch is due to slower cross-bridge cycles where myosin heads remain longer attached to the actin filaments after force generation, possibly caused by a hindered release of ADP from the myosin heads. However, this model was disproved by recent findings which showed that (i) inhibitors of myosin function, such as vanadate, do not affect catch force; (ii) factors which terminate the catch state do not accelerate myosin head detachment kinetics and (iii) a catch-like high resistance to stretch is still inducible when force development is prevented. Thus, catch probably involves passive linkage structures interconnecting the myofilaments (catch linkages). For example twitchin could (i) tie myosin heads to the thin filaments, (ii) mechanically lock them in a stretch resistant state or (iii) interconnect thick and thin filaments directly. However, it is questionable if these mechanisms are sufficient since twitchin seems to be about 15-times less abundant than myosin. Therefore, in addition, interconnections between thick filaments could exist, which could involve e.g. paramyosin or twitchin. Catch could even involve changes in the compliance of thick filaments. The function of myorod, found specifically in catch muscles in equal abundance with myosin, is not known. The suggestion is made here that catch linkages are present already during active contraction either as ratchet-like elements resisting stretch and not opposing shortening or in some kind of 'standby' mode ready to transform suddenly into the working mode by stretches or after Ca2+ removal following cessation of stimulation.
Collapse
Affiliation(s)
- Stefan Galler
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
667
|
Sun YB, Lou F, Irving M. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol 2008; 587:155-63. [PMID: 19015190 DOI: 10.1113/jphysiol.2008.164707] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Each heartbeat is triggered by a pulse of intracellular calcium ions which bind to troponin on the actin-containing thin filaments of heart muscle cells, initiating a change in filament structure that allows myosin to bind and generate force. We investigated the molecular mechanism of calcium regulation in demembranated trabeculae from rat ventricle using polarized fluorescence from probes on troponin C (TnC). Native TnC was replaced by double-cysteine mutants of human cardiac TnC with bifunctional rhodamine attached along either the C helix, adjacent to the regulatory Ca(2+)-binding site, or the E helix in the IT arm of the troponin complex. Changes in the orientation of both troponin helices had the same steep Ca(2+) dependence as active force production, with a Hill coefficient (n(H)) close to 3, consistent with a single co-operative transition controlled by Ca(2+) binding. Complete inhibition of active force by 25 microM blebbistatin had very little effect on the Ca(2+)-dependent structural changes and in particular did not significantly reduce the value of n(H). Binding of rigor myosin heads to thin filaments following MgATP depletion in the absence of Ca(2+) also changed the orientation of the C and E helices, and addition of Ca(2+) in rigor produced further changes characterized by increased Ca(2+) affinity but with n(H) close to 1. These results show that, although myosin binding can switch on thin filaments in rigor conditions, it does not contribute significantly under physiological conditions. The physiological mechanism of co-operative Ca(2+) regulation of cardiac contractility must therefore be intrinsic to the thin filaments.
Collapse
Affiliation(s)
- Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | | | | |
Collapse
|
668
|
Surface Plasmon Resonance Monitoring of Cell Monolayer Integrity: Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling. Cell Mol Bioeng 2008; 1:229-239. [PMID: 21052479 DOI: 10.1007/s12195-008-0028-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Morphological changes occurring in individual cells largely influence the physiological functions of various cell layers. The control of barrier function of epithelia and endothelia is a prime example of processes highly dependent on cellular morphology and cell layer integrity. Here, we applied the surface plasmon resonance (SPR) technique to the quantification of cellular activity of an epithelial cell monolayer stimulated by angiotensin II. The analysis of the SPR signal shows reproducible concentration-dependent biphasic responses after cell activation with angiotensin II. Phase-contrast and confocal microscopy imaging was performed to link the SPR signal to molecular and global morphological remodeling. The SPR signal was observed to be in relation with the rapid cell contraction and the subsequent cell spreading observed by phase-contrast microscopy. Additionally, the temporal redistribution of actin, observed by confocal microscopy after angiotensin II stimulation, was also found to be consistent with the SPR signal variation. The modulation of signaling pathways involved in actin-myosin driven cell contraction confirms the direct implication of actin structures in the SPR response. Additionally, we show that the intracellular calcium mobilization associated with angiotensin II stimulation did not produce any significant SPR signal variation. Altogether, our results demonstrate that SPR is a rapid label-free method to study cellular activity and molecular mechanisms implicated in the modulation of the integrity of a cell monolayer in relation to cytoskeleton remodeling with associated cell morphological changes.
Collapse
|
669
|
Real-time monitoring of angiotensin II-induced contractile response and cytoskeleton remodeling in individual cells by atomic force microscopy. Pflugers Arch 2008; 457:1361-72. [DOI: 10.1007/s00424-008-0596-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 09/26/2008] [Indexed: 01/06/2023]
|
670
|
Abstract
Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and non-muscle cells. Calponin is an inhibitor of the actin-activated myosin ATPase. Three isoforms of calponin have been found in the vertebrates. Whereas the role of calponin in regulating smooth muscle contractility has been extensively investigated, the function and regulation of calponin in non-muscle cells is much less understood. Based on recent progresses in the field, this review focuses on the studies of calponin in non-muscle cells, especially its regulation by cytoskeleton tension and function in cell motility. The ongoing research has demonstrated that calponin plays a regulatory role in non-muscle cell motility. Therefore, non-muscle calponin is an attractive target for the control of cell proliferation, migration and phagocytosis, and the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Kai-Chun Wu
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, IL 60201, USA
| | | |
Collapse
|
671
|
Richard JP, Leikina E, Chernomordik LV. Cytoskeleton reorganization in influenza hemagglutinin-initiated syncytium formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:450-7. [PMID: 18976631 DOI: 10.1016/j.bbamem.2008.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
Little is known about the mechanisms of cell-cell fusion in development and diseases and, especially, about fusion stages downstream of an opening of nascent fusion pore(s). Earlier works on different cell-cell fusion reactions have indicated that cytoskeleton plays important role in syncytium formation. However, due to complexity of these reactions and multifaceted contributions of cytoskeleton in cell physiology, it has remained unclear whether cytoskeleton directly drives fusion pore expansion or affects preceding fusion stages. Here we explore cellular reorganization associated with fusion pore expansion in syncytium formation using relatively simple experimental system. Fusion between murine embryonic fibroblasts NIH3T3-based cells is initiated on demand by well-characterized fusogen influenza virus hemagglutinin. We uncouple early fusion stages dependent on protein fusogens from subsequent fusion pore expansion stage and establish that the transition from local fusion to syncytium requires metabolic activity of living cells. Effective syncytium formation for cells with disorganized actin and microtubule cytoskeleton argues against hypothesis that cytoskeleton drives fusion expansion.
Collapse
Affiliation(s)
- Jean-Philippe Richard
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | |
Collapse
|
672
|
Sandquist JC, Means AR. The C-terminal tail region of nonmuscle myosin II directs isoform-specific distribution in migrating cells. Mol Biol Cell 2008; 19:5156-67. [PMID: 18843042 DOI: 10.1091/mbc.e08-05-0533] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nonmuscle myosin II isoforms A and B (hereafter, IIA and IIB) perform unique roles in cell migration, even though both isoforms share the same basic molecular functions. That IIA and IIB assume distinct subcellular distribution in migrating cells suggests that discrete spatiotemporal regulation of each isoform's activity may provide a basis for its unique migratory functions. Here, we make the surprising finding that swapping a small C-terminal portion of the tail between IIA and IIB inverts the distinct distribution of these isoforms in migrating cells. Moreover, swapping this region between isoforms also inverts their specific turnover properties, as assessed by fluorescence recovery after photobleaching and Triton solubility. These data, acquired through the use of chimeras of IIA and IIB, suggest that the C-terminal region of the myosin heavy chain supersedes the distinct motor properties of the two isoforms as the predominant factor directing isoform-specific distribution. Furthermore, our results reveal a correlation between isoform solubility and distribution, leading to the proposal that the C-terminal region regulates isoform distribution by tightly controlling the amount of each isoform that is soluble and therefore available for redistribution into new protrusions.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Department of Pharmacology and Cancer Biology, Duke University Medical Center; Durham, NC 27710, USA
| | | |
Collapse
|
673
|
Zhao FQ, Padrón R, Craig R. Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state. Biophys J 2008; 95:3322-9. [PMID: 18599626 PMCID: PMC2547462 DOI: 10.1529/biophysj.108.137067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/13/2008] [Indexed: 11/18/2022] Open
Abstract
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 microM blebbistatin, disordering was at least 10 times slower. In the M.ADP state, myosin heads are also disordered. When blebbistatin was added to M.ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction.
Collapse
Affiliation(s)
- Fa-Qing Zhao
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, USA
| | | | | |
Collapse
|
674
|
Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood 2008; 112:5122-9. [PMID: 18812466 DOI: 10.1182/blood-2008-06-162024] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukemic B lymphocytes of a large group of unrelated chronic lymphocytic leukemia (CLL) patients express an unmutated heavy chain immunoglobulin variable (V) region encoded by IGHV1-69, IGHD3-16, and IGHJ3 with nearly identical heavy and light chain complementarity-determining region 3 sequences. The likelihood that these patients developed CLL clones with identical antibody V regions randomly is highly improbable and suggests selection by a common antigen. Monoclonal antibodies (mAbs) from this stereotypic subset strongly bind cytoplasmic structures in HEp-2 cells. Therefore, HEp-2 cell extracts were immunoprecipitated with recombinant stereotypic subset-specific CLL mAbs, revealing a major protein band at approximately 225 kDa that was identified by mass spectrometry as nonmuscle myosin heavy chain IIA (MYHIIA). Reactivity of the stereotypic mAbs with MYHIIA was confirmed by Western blot and immunofluorescence colocalization with anti-MYHIIA antibody. Treatments that alter MYHIIA amounts and cytoplasmic localization resulted in a corresponding change in binding to these mAbs. The appearance of MYHIIA on the surface of cells undergoing stress or apoptosis suggests that CLL mAb may generally bind molecules exposed as a consequence of these events. Binding of CLL mAb to MYHIIA could promote the development, survival, and expansion of these leukemic cells.
Collapse
|
675
|
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2008; 314:3264-74. [PMID: 18773891 DOI: 10.1016/j.yexcr.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 01/15/2023]
Abstract
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Collapse
|
676
|
Goeckeler ZM, Bridgman PC, Wysolmerski RB. Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity. Am J Physiol Cell Physiol 2008; 295:C994-1006. [PMID: 18701651 DOI: 10.1152/ajpcell.00318.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cultured confluent endothelial cells exhibit stable basal isometric tone associated with constitutive myosin II regulatory light chain (RLC) phosphorylation. Thrombin treatment causes a rapid increase in isometric tension concomitant with myosin II RLC phosphorylation, actin polymerization, and stress fiber reorganization while inhibitors of myosin light chain kinase (MLCK) and Rho-kinase prevent these responses. These findings suggest a central role for myosin II in the regulation of endothelial cell tension. The present studies examine the effects of blebbistatin, a specific inhibitor of myosin II activity, on basal tone and thrombin-induced tension development. Although blebbistatin treatment abolished basal tension, this was accompanied by an increase in myosin II RLC phosphorylation. The increase in RLC phosphorylation was Ca(2+) dependent and mediated by MLCK. Similarly, blebbistatin inhibited thrombin-induced tension without interfering with the increase in RLC phosphorylation or in F-actin polymerization. Blebbistatin did prevent myosin II filament incorporation and association with polymerizing or reorganized actin filaments leading to the disappearance of stress fibers. Thus the inhibitory effects of blebbistatin on basal tone and induced tension are consistent with a requirement for myosin II activity to maintain stress fiber integrity.
Collapse
Affiliation(s)
- Zoe M Goeckeler
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
677
|
Schramp M, Ying O, Kim TY, Martin GS. ERK5 promotes Src-induced podosome formation by limiting Rho activation. ACTA ACUST UNITED AC 2008; 181:1195-210. [PMID: 18573916 PMCID: PMC2442207 DOI: 10.1083/jcb.200801078] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased Src activity, often associated with tumorigenesis, leads to the formation of invasive adhesions termed podosomes. Podosome formation requires the function of Rho family guanosine triphosphatases and reorganization of the actin cytoskeleton. In addition, Src induces changes in gene expression required for transformation, in part by activating mitogen-activated protein kinase (MAPK) signaling pathways. We sought to determine whether MAPK signaling regulates podosome formation. Unlike extracellular signal–regulated kinase 1/2 (ERK1/2), ERK5 is constitutively activated in Src-transformed fibroblasts. ERK5-deficient cells expressing v-Src exhibited increased RhoA activation and signaling, which lead to cellular retraction and an inability to form podosomes or induce invasion. Addition of the Rho-kinase inhibitor Y27632 to ERK5-deficient cells expressing v-Src led to cellular extension and restored podosome formation. In Src-transformed cells, ERK5 induced the expression of a Rho GTPase-activating protein (RhoGAP), RhoGAP7/DLC-1, via activation of the transcription factor myocyte enhancing factor 2C, and RhoGAP7 expression restored podosome formation in ERK5-deficient cells. We conclude that ERK5 promotes Src-induced podosome formation by inducing RhoGAP7 and thereby limiting Rho activation.
Collapse
Affiliation(s)
- Mark Schramp
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
678
|
Ivanov AI, Hopkins AM, Brown GT, Gerner-Smidt K, Babbin BA, Parkos CA, Nusrat A. Myosin II regulates the shape of three-dimensional intestinal epithelial cysts. J Cell Sci 2008; 121:1803-14. [PMID: 18460584 DOI: 10.1242/jcs.015842] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of luminal organs begins with the formation of spherical cysts composed of a single layer of epithelial cells. Using a model three-dimensional cell culture, this study examines the role of a cytoskeletal motor, myosin II, in cyst formation. Caco-2 and SK-CO15 intestinal epithelial cells were embedded into Matrigel, and myosin II was inhibited by blebbistatin or siRNA-mediated knockdown. Whereas control cells formed spherical cysts with a smooth surface, inhibition of myosin II induced the outgrowth of F-actin-rich surface protrusions. The development of these protrusions was abrogated after inhibition of F-actin polymerization or of phospholipase C (PLC) activity, as well as after overexpression of a dominant-negative ADF/cofilin. Surface protrusions were enriched in microtubules and their formation was prevented by microtubule depolymerization. Myosin II inhibition caused a loss of peripheral F-actin bundles and a submembranous extension of cortical microtubules. Our findings suggest that inhibition of myosin II eliminates the cortical F-actin barrier, allowing microtubules to reach and activate PLC at the plasma membrane. PLC-dependent stimulation of ADF/cofilin creates actin-filament barbed ends and promotes the outgrowth of F-actin-rich protrusions. We conclude that myosin II regulates the spherical shape of epithelial cysts by controlling actin polymerization at the cyst surface.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
679
|
D'ANDREA-WINSLOW L, NOVITSKI AK. Active bleb formation is abated inLytechinus variegatusred spherule coelomocytes after disruption of acto-myosin contractility. Integr Zool 2008; 3:115-22. [DOI: 10.1111/j.1749-4877.2008.00086.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
680
|
Mondal S, Bakthavatsalam D, Steimle P, Gassen B, Rivero F, Noegel AA. Linking Ras to myosin function: RasGEF Q, a Dictyostelium exchange factor for RasB, affects myosin II functions. ACTA ACUST UNITED AC 2008; 181:747-60. [PMID: 18504297 PMCID: PMC2396803 DOI: 10.1083/jcb.200710111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q GEF domain activates RasB, causes enhanced recruitment of MHCK A to the cortex, and leads to cytokinesis defects in suspension, phenocopying cells expressing constitutively active RasB, and myosin-null mutants. RasGEF Q− mutants have defects in cell sorting and slug migration during later stages of development, in addition to cell polarity defects. Furthermore, RasGEF Q− mutants have increased levels of unphosphorylated myosin II, resulting in myosin II overassembly. Collectively, our results suggest that starvation signals through RasGEF Q to activate RasB, which then regulates processes requiring myosin II.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty and Centre for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
681
|
Jung HS, Komatsu S, Ikebe M, Craig R. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 2008; 19:3234-42. [PMID: 18495867 DOI: 10.1091/mbc.e08-02-0206] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intramolecular interaction between myosin heads, blocking key sites involved in actin-binding and ATPase activity, appears to be a critical mechanism for switching off vertebrate smooth-muscle myosin molecules, leading to relaxation. We have tested the hypothesis that this interaction is a general mechanism for switching off myosin II-based motile activity in both muscle and nonmuscle cells. Electron microscopic images of negatively stained myosin II molecules were analyzed by single particle image processing. Molecules from invertebrate striated muscles with phosphorylation-dependent regulation showed head-head interactions in the off-state similar to those in vertebrate smooth muscle. A similar structure was observed in nonmuscle myosin II (also phosphorylation-regulated). Surprisingly, myosins from vertebrate skeletal and cardiac muscle, which are not intrinsically regulated, undergo similar head-head interactions in relaxing conditions. In all of these myosins, we also observe conserved interactions between the 'blocked' myosin head and the myosin tail, which may contribute to the switched-off state. These results suggest that intramolecular head-head and head-tail interactions are a general mechanism both for inducing muscle relaxation and for switching off myosin II-based motile activity in nonmuscle cells. These interactions are broken when myosin is activated.
Collapse
Affiliation(s)
- Hyun Suk Jung
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
682
|
Lucas-Lopez C, Allingham JS, Lebl T, Lawson CPAT, Brenk R, Sellers JR, Rayment I, Westwood NJ. The small molecule tool (S)-(-)-blebbistatin: novel insights of relevance to myosin inhibitor design. Org Biomol Chem 2008; 6:2076-84. [PMID: 18528569 DOI: 10.1039/b801223g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The small molecule blebbistatin is now a front line tool in the study of myosin function. Chemical modification of the tricyclic core of blebbistatin could deliver the next generation of myosin inhibitors and to help address this we report here on the impact of structural changes in the methyl-substituted aromatic ring of blebbistatin on its biological activity. Chemical methods for the preparation of isomeric methyl-containing analogues are reported and a series of co-crystal structures are used to rationalise the observed variations in their biological activity. These studies further support the view that the previously identified binding mode of blebbistatin to Dictyostelium discoideum myosin II is of relevance to its mode of action. A discussion of the role that these observations have on planning the synthesis of focused libraries of blebbistatin analogues is also provided including an assessment of possibilities by computational methods. These studies are ultimately directed at the development of novel myosin inhibitors with improved affinity and different selectivity profiles from blebbistatin itself.
Collapse
Affiliation(s)
- Cristina Lucas-Lopez
- School of Chemistry and the Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | | | | | | | | | | | | | | |
Collapse
|
683
|
Tsai RK, Discher DE. Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. ACTA ACUST UNITED AC 2008; 180:989-1003. [PMID: 18332220 PMCID: PMC2265407 DOI: 10.1083/jcb.200708043] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phagocytosis of foreign cells or particles by macrophages is a rapid process that is inefficient when faced with “self” cells that display CD47—although signaling mechanisms in self-recognition have remained largely unknown. With human macrophages, we show the phagocytic synapse at cell contacts involves a basal level of actin-driven phagocytosis that, in the absence of species-specific CD47 signaling, is made more efficient by phospho-activated myosin. We use “foreign” sheep red blood cells (RBCs) together with CD47-blocked, antibody-opsonized human RBCs in order to visualize synaptic accumulation of phosphotyrosine, paxillin, F-actin, and the major motor isoform, nonmuscle myosin-IIA. When CD47 is functional, the macrophage counter-receptor and phosphatase-activator SIRPα localizes to the synapse, suppressing accumulation of phosphotyrosine and myosin without affecting F-actin. On both RBCs and microbeads, human CD47 potently inhibits phagocytosis as does direct inhibition of myosin. CD47–SIRPα interaction initiates a dephosphorylation cascade directed in part at phosphotyrosine in myosin. A point mutation turns off this motor's contribution to phagocytosis, suggesting that self-recognition inhibits contractile engulfment.
Collapse
Affiliation(s)
- Richard K Tsai
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
684
|
Ogut O, Yuen SL, Brozovich FV. Regulation of the smooth muscle contractile phenotype by nonmuscle myosin. J Muscle Res Cell Motil 2008; 28:409-14. [DOI: 10.1007/s10974-008-9132-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/04/2008] [Indexed: 01/15/2023]
|
685
|
Salhia B, Hwang JH, Smith CA, Nakada M, Rutka F, Symons M, Rutka JT. Role of myosin II activity and the regulation of myosin light chain phosphorylation in astrocytomas. ACTA ACUST UNITED AC 2008; 65:12-24. [PMID: 17896341 DOI: 10.1002/cm.20240] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of contractile force mediated by actin-myosin interactions is essential for cell motility. Myosin activity is promoted by phosphorylation of myosin light chain (MLC). MLC phosphorylation in large part is controlled by kinases that are effectors of Rho family GTPases. Accordingly, in this study we examined the effects of ROCK and Rac1 inhibition on MLC phosphorylation in astrocytoma cells. We found that low concentrations of the ROCK inhibitor Y27632 increased the phosphorylation state of the Triton X-100 soluble fraction of MLC, whereas higher concentrations of Y27632 decreased soluble phospho-MLC. These effects of Y27632 were dependent on Rac1. The soluble form of phospho-MLC comprises about 10% of total phospho-MLC in control cells. Interestingly, ROCK inhibition led to a decrease in the phosphorylation state of total MLC, whereas Rac1 inhibition had little effect. Thus, the soluble form of MLC is differentially regulated by ROCK and Rac1 compared with MLC examined in a total cell extract. We also observed that astrocytoma migration is stimulated by low concentrations of the myosin II inhibitor blebbistatin. However, higher concentrations of blebbistatin inhibit migration leading us to believe that migration has a biphasic dependence on myosin II activity. Taken together, our data show that modulation of myosin II activity is important in determining optimal astrocytoma migration. In addition, these findings suggest that there are at least two populations of MLC that are differentially regulated.
Collapse
Affiliation(s)
- Bodour Salhia
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
686
|
Shao C, Novakovic VA, Head JF, Seaton BA, Gilbert GE. Crystal Structure of Lactadherin C2 Domain at 1.7Å Resolution with Mutational and Computational Analyses of Its Membrane-binding Motif. J Biol Chem 2008; 283:7230-41. [DOI: 10.1074/jbc.m705195200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
687
|
Aw S, Adams DS, Qiu D, Levin M. H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 2008; 125:353-72. [PMID: 18160269 PMCID: PMC2346612 DOI: 10.1016/j.mod.2007.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/05/2007] [Accepted: 10/24/2007] [Indexed: 12/23/2022]
Abstract
Consistent laterality is a fascinating problem, and study of the Xenopus embryo has led to molecular characterization of extremely early steps in left-right patterning: bioelectrical signals produced by ion pumps functioning upstream of asymmetric gene expression. Here, we reveal a number of novel aspects of the H+/K+-ATPase module in chick and frog embryos. Maternal H+/K+-ATPase subunits are asymmetrically localized along the left-right, dorso-ventral, and animal-vegetal axes during the first cleavage stages, in a process dependent on cytoskeletal organization. Using a reporter domain fused to molecular motors, we show that the cytoskeleton of the early frog embryo can provide asymmetric, directional information for subcellular transport along all three axes. Moreover, we show that the Kir4.1 potassium channel, while symmetrically expressed in a dynamic fashion during early cleavages, is required for normal LR asymmetry of frog embryos. Thus, Kir4.1 is an ideal candidate for the K+ ion exit path needed to allow the electroneutral H+/K+-ATPase to generate voltage gradients. In the chick embryo, we show that H+/K+-ATPase and Kir4.1 are expressed in the primitive streak, and that the known requirement for H+/K+-ATPase function in chick asymmetry does not function through effects on the circumferential expression pattern of Connexin43. These data provide details crucial for the mechanistic modeling of the physiological events linking subcellular processes to large-scale patterning and suggest a model where the early cytoskeleton sets up asymmetric ion flux along the left-right axis as a system of planar polarity functioning orthogonal to the apical-basal polarity of the early blastomeres.
Collapse
Affiliation(s)
- Sherry Aw
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Dayong Qiu
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| | - Michael Levin
- Center for Regenerative and Developmental Biology Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine 140 The Fenway Boston, MA 02115, U.S.A. Tel. (617) 892−8403 Fax: (617) 892−8597
| |
Collapse
|
688
|
Kabaeva Z, Zhao M, Michele DE. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol 2008; 294:H1667-74. [PMID: 18296569 DOI: 10.1152/ajpheart.01144.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The characterization of cellular phenotypes of heart disorders can be achieved by isolating cardiac myocytes from mouse models or genetically modifying wild-type cells in culture. However, adult mouse cardiac myocytes show extremely low tolerance to isolation and primary culture conditions. Previous studies indicate that 2,3-butanedione monoximine (BDM), a nonspecific excitation-contraction coupling inhibitor, can improve the viability of isolated adult mouse cardiac myocytes. The mechanisms of the beneficial and unwanted nonspecific actions of BDM on cardiac myocytes are not understood. To understand what contributes to murine adult cardiac myocyte stability in primary culture and improve this model system for experimental use, the specific myosin II inhibitor blebbistatin was explored as a media supplement to inhibit mouse myocyte contraction. Enzymatically isolated adult mouse cardiac myocytes were cultured with blebbistatin or BDM as a media supplement. Micromolar concentrations of blebbistatin significantly increased the viability, membrane integrity, and morphology of adult cardiac myocytes compared with cells treated with previously described 10 mM BDM. Cells treated with blebbistatin also showed efficient adenovirus gene transfer and stable transgene expression, and unlike BDM, blebbistatin does not appear to interfere with cell adhesion. Higher concentrations of BDM actually worsened myocyte membrane integrity and transgene expression. Therefore, the specific inhibition of myosin II activity by blebbistatin has significant beneficial effects on the long-term viability of adult mouse cardiac myocytes. Furthermore, the unwanted effects of BDM on adult mouse cardiac myocytes, perhaps due to its nonspecific activities or action as a chemical phosphatase, can be avoided by using blebbistatin.
Collapse
Affiliation(s)
- Zhyldyz Kabaeva
- Dept. of Molecular and Integrative Physiology, University of Michigan, 7623A Medical Science II, Ann Arbor, MI 48109-0622, USA
| | | | | |
Collapse
|
689
|
Wang HH, Tanaka H, Qin X, Zhao T, Ye LH, Okagaki T, Katayama T, Nakamura A, Ishikawa R, Thatcher SE, Wright GL, Kohama K. Blebbistatin inhibits the chemotaxis of vascular smooth muscle cells by disrupting the myosin II-actin interaction. Am J Physiol Heart Circ Physiol 2008; 294:H2060-8. [PMID: 18296570 DOI: 10.1152/ajpheart.00970.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blebbistatin is a myosin II-specific inhibitor. However, the mechanism and tissue specificity of the drug are not well understood. Blebbistatin blocked the chemotaxis of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (IC(50) = 26.1 +/- 0.2 and 27.5 +/- 0.5 microM for GbaSM-4 and A7r5 cells, respectively) and platelet-derived growth factor BB (IC(50) = 32.3 +/- 0.9 and 31.6 +/- 1.3 muM for GbaSM-4 and A7r5 cells, respectively) at similar concentrations. Immunofluorescence and fluorescent resonance energy transfer analysis indicated a blebbistatin-induced disruption of the actin-myosin interaction in VSMCs. Subsequent experiments indicated that blebbistatin inhibited the Mg(2+)-ATPase activity of the unphosphorylated (IC(50) = 12.6 +/- 1.6 and 4.3 +/- 0.5 microM for gizzard and bovine stomach, respectively) and phosphorylated (IC(50) = 15.0 +/- 0.6 microM for gizzard) forms of purified smooth muscle myosin II, suggesting a direct effect on myosin II motor activity. It was further observed that the Mg(2+)-ATPase activities of gizzard myosin II fragments, heavy meromyosin (IC(50) = 14.4 +/- 1.6 microM) and subfragment 1 (IC(50) = 5.5 +/- 0.4 microM), were also inhibited by blebbistatin. Assay by in vitro motility indicated that the inhibitory effect of blebbistatin was reversible. Electron-microscopic evaluation showed that blebbistatin induced a distinct conformational change (i.e., swelling) of the myosin II head. The results suggest that the site of blebbistatin action is within the S1 portion of smooth muscle myosin II.
Collapse
Affiliation(s)
- Hong Hui Wang
- Department of Molecular and Cellular Pharmacology, Faculty of Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Brown JH, Yang Y, Reshetnikova L, Gourinath S, Süveges D, Kardos J, Hóbor F, Reutzel R, Nyitray L, Cohen C. An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. J Mol Biol 2008; 375:1434-43. [PMID: 18155233 PMCID: PMC2665131 DOI: 10.1016/j.jmb.2007.11.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
The N-terminal region of myosin's rod-like subfragment 2 (S2) joins the two heads of this dimeric molecule and is key to its function. Previously, a crystal structure of this predominantly coiled-coil region was determined for a short fragment (51 residues plus a leucine zipper) of the scallop striated muscle myosin isoform. In that study, the N-terminal 10-14 residues were found to be disordered. We have now determined the structure of the same scallop peptide in three additional crystal environments. In each of two of these structures, improved order has allowed visualization of the entire N-terminus in one chain of the dimeric peptide. We have also compared the melting temperatures of this scallop S2 peptide with those of analogous peptides from three other isoforms. Taken together, these experiments, along with examination of sequences, point to a diminished stability of the N-terminal region of S2 in regulated myosins, compared with those myosins whose regulation is thin filament linked. It seems plain that this isoform-specific instability promotes the off-state conformation of the heads in regulated myosins. We also discuss how myosin isoforms with varied thermal stabilities share the basic capacity to transmit force efficiently in order to produce contraction in their on states.
Collapse
Affiliation(s)
- Jerry H. Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Yuting Yang
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - Ludmilla Reshetnikova
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - S. Gourinath
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Fruzsina Hóbor
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Robbie Reutzel
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary
| | - Carolyn Cohen
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110 USA
| |
Collapse
|
691
|
Morin NA, Oakes PW, Hyun YM, Lee D, Chin YE, Chin EY, King MR, Springer TA, Shimaoka M, Tang JX, Reichner JS, Kim M. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. ACTA ACUST UNITED AC 2008; 205:195-205. [PMID: 18195072 PMCID: PMC2234359 DOI: 10.1084/jem.20071543] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precise spatial and temporal regulation of cell adhesion and de-adhesion is critical for dynamic lymphocyte migration. Although a great deal of information has been learned about integrin lymphocyte function–associated antigen (LFA)-1 adhesion, the mechanism that regulates efficient LFA-1 de-adhesion from intercellular adhesion molecule (ICAM)-1 during T lymphocyte migration is unknown. Here, we show that nonmuscle myosin heavy chain IIA (MyH9) is recruited to LFA-1 at the uropod of migrating T lymphocytes, and inhibition of the association of MyH9 with LFA-1 results in extreme uropod elongation, defective tail detachment, and decreased lymphocyte migration on ICAM-1, without affecting LFA-1 activation by chemokine CXCL-12. This defect was reversed by a small molecule antagonist that inhibits both LFA-1 affinity and avidity regulation, but not by an antagonist that inhibits only affinity regulation. Total internal reflection fluorescence microscopy of the contact zone between migrating T lymphocytes and ICAM-1 substrate revealed that inactive LFA-1 is selectively localized to the posterior of polarized T lymphocytes, whereas active LFA-1 is localized to their anterior. Thus, during T lymphocyte migration, uropodal adhesion depends on LFA-1 avidity, where MyH9 serves as a key mechanical link between LFA-1 and the cytoskeleton that is critical for LFA-1 de-adhesion.
Collapse
Affiliation(s)
- Nicole A Morin
- Department of Surgery, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
692
|
Abstract
Cells actively produce contractile forces for a variety of processes including cytokinesis and motility. Contractility is known to rely on myosin II motors which convert chemical energy from ATP hydrolysis into forces on actin filaments. However, the basic physical principles of cell contractility remain poorly understood. We reconstitute contractility in a simplified model system of purified F-actin, muscle myosin II motors, and alpha-actinin cross-linkers. We show that contractility occurs above a threshold motor concentration and within a window of cross-linker concentrations. We also quantify the pore size of the bundled networks and find contractility to occur at a critical distance between the bundles. We propose a simple mechanism of contraction based on myosin filaments pulling neighboring bundles together into an aggregated structure. Observations of this reconstituted system in both bulk and low-dimensional geometries show that the contracting gels pull on and deform their surface with a contractile force of approximately 1 microN, or approximately 100 pN per F-actin bundle. Cytoplasmic extracts contracting in identical environments show a similar behavior and dependence on myosin as the reconstituted system. Our results suggest that cellular contractility can be sensitively regulated by tuning the (local) activity of molecular motors and the cross-linker density and binding affinity.
Collapse
|
693
|
Syriani E, Gomez-Cabrero A, Bosch M, Moya A, Abad E, Gual A, Gasull X, Morales M. Profilin induces lamellipodia by growth factor-independent mechanism. FASEB J 2008; 22:1581-96. [PMID: 18184720 DOI: 10.1096/fj.06-7654com] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Profilin has been implicated in cell motility and in a variety of cellular processes, such as membrane extension, endocytosis, and formation of focal complexes. In vivo, profilin replenish the pool of ATP-actin monomers by increasing the rate of nucleotide exchange of ADP-actin for ATP-actin, promoting the incorporation of new actin monomers at the barbed end of actin filaments. For this report, we generated a membrane-permeable version of profilin I (PTD4-PfnI) for the alteration of intracellular profilin levels taking advantage of the protein transduction technique. We show that profilin I induces lamellipodia formation independently of growth factor presence in primary bovine trabecular meshwork (BTM) cells. The effects are time- and concentration-dependent and specific to the profilin I isoform. Profilin II, the neuronal isoform, failed to extend lamellipodia in the same degree as profilin I. H133S, a mutation in the polyproline binding domain, showed a reduced ability to induce lamellipodia. H199E, mutation in the actin binding domain failed to induce membrane spreading and inhibit fetal bovine serum (FBS) -induced lamellipodia extension. Incubation with a synthetic polyproline domain peptide (GP5)3, fused to a transduction domain, abolished lamellipodia induction by profilin or FBS. Time-lapse microscopy confirmed the effects of profilin on lamellipodia extension with a higher spreading velocity than FBS. PTD4-Pfn I was found in the inner lamellipodia domain, at the membrane leading edge where it colocalizes with endogenous profilin. While FBS-induced lamellipodia formation activates Rac1, PTD4-Pfn I stimulation did not induce Rac1 activation. We propose a role of profilin I favoring lamellipodia formation by a mechanism downstream of growth factor.
Collapse
Affiliation(s)
- Enrique Syriani
- IDIBAPS-Department of Physiological Sciences I, Facultad de Medicina-University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
694
|
Haviv L, Gillo D, Backouche F, Bernheim-Groswasser A. A Cytoskeletal Demolition Worker: Myosin II Acts as an Actin Depolymerization Agent. J Mol Biol 2008; 375:325-30. [DOI: 10.1016/j.jmb.2007.09.066] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
695
|
Sosunov EA, Anyukhovsky EP, Rosen MR. Altered ventricular stretch contributes to initiation of cardiac memory. Heart Rhythm 2008; 5:106-13. [DOI: 10.1016/j.hrthm.2007.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/07/2007] [Indexed: 11/24/2022]
|
696
|
DePina AS, Wöllert T, Langford GM. Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. ACTA ACUST UNITED AC 2007; 64:739-55. [PMID: 17630664 DOI: 10.1002/cm.20219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonmuscle myosin II (Myo2) has been shown to associate with membranes of the trans-Golgi network and to be involved in Golgi to ER retrograde protein transport. Here, we provide evidence that Myo2 not only associates with membranes but functions to transport vesicles on actin filaments (AFs). We used extracts from unactivated clam oocytes for these studies. AFs assembled spontaneously in these extracts and myosin-dependent vesicle transport was observed upon activation. In addition, actin bundles formed and moved relative to each other at an average speed of 0.30 microm/s. Motion analysis revealed that vesicles moved on the spontaneously assembled AFs at speeds greater than 1 microm/s. The motor on these vesicles was identified as a member of the nonmuscle Myo2 family based on sequence determination by Edman chemistry. Vesicles in these extracts were purified by sucrose gradient centrifugation and movement was reconstituted in vitro using skeletal muscle actin coated coverslips. When peripheral membrane proteins of vesicles including Myo2 were removed by salt stripping or when extracts were treated with an antibody specific to clam oocyte nonmuscle Myo2, vesicle movement was inhibited. Blebbistatin, a Myo2 specific inhibitor, also blocked vesicle movement. Myo2 light chain kinase activity was found to be essential for vesicle movement and sliding of actin bundles. Together, our data provide direct evidence that nonmuscle Myo2 is involved in actin-dependent vesicle transport in clam oocytes.
Collapse
Affiliation(s)
- Ana S DePina
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | | | |
Collapse
|
697
|
Holt JP, Bottomly K, Mooseker MS. Assessment of myosin II, Va, VI and VIIa loss of function on endocytosis and endocytic vesicle motility in bone marrow-derived dendritic cells. ACTA ACUST UNITED AC 2007; 64:756-66. [PMID: 17615572 DOI: 10.1002/cm.20220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An essential feature of dendritic cell immune surveillance is endocytic sampling of the environment for non-self antigens primarily via macropinocytosis and phagocytosis. The role of several members of the myosin family of actin based molecular motors in dendritic cell endocytosis and endocytic vesicle movement was assessed through analysis of dendritic cells derived from mice with functionally null myosin mutations. These include the dilute (myosin Va), Snell's waltzer (myosin VI) and shaker-1 (myosin VIIa) mouse lines. Non muscle myosin II function was assessed by treatment with the inhibitor, blebbistatin. Flow cytometric analysis of dextran uptake by dendritic cells revealed that macropinocytosis was enhanced in Snell's waltzer dendritic cells while shaker-1 and blebbistatin-treated cells were comparable to controls. Comparison of fluid phase uptake using pH insensitive versus pH sensitive fluorescent dextrans revealed that in dilute cells rates of uptake were normal but endosomal acidification was accelerated. Phagocytosis, as quantified by uptake of E. coli, was normal in dilute while dendritic cells from Snell's waltzer, shaker-1 and blebbistatin treated cells exhibited decreased uptake. Microtubule mediated movements of dextran-or transferrin-tagged endocytic vesicles were significantly faster in dendritic cells lacking myosin Va. Loss of myosin II, VI or VIIa function had no significant effects on rates of endocytic vesicle movement.
Collapse
Affiliation(s)
- Jeffrey P Holt
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
698
|
Salbreux G, Joanny JF, Prost J, Pullarkat P. Shape oscillations of non-adhering fibroblast cells. Phys Biol 2007; 4:268-84. [DOI: 10.1088/1478-3975/4/4/004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
699
|
Blebbistatin: use as inhibitor of muscle contraction. Pflugers Arch 2007; 455:995-1005. [DOI: 10.1007/s00424-007-0375-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
|
700
|
Basile JR, Gavard J, Gutkind JS. Plexin-B1 Utilizes RhoA and Rho Kinase to Promote the Integrin-dependent Activation of Akt and ERK and Endothelial Cell Motility. J Biol Chem 2007; 282:34888-95. [PMID: 17855350 DOI: 10.1074/jbc.m705467200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The semaphorins are a family of proteins originally identified as axon-guiding molecules in the developing nervous system that have been recently shown to regulate many cellular functions, including motility, in a variety of cell types. We have previously shown that in endothelial cells Semaphorin 4D acts through its receptor, Plexin-B1, to elicit a pro-angiogenic phenotype that involves the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Here we show through the use of a receptor chimeric approach, Plexin-B1 mutants, and dominant negative and pharmacological inhibitors that this response is dependent upon the activation of RhoA and its downstream target, Rho kinase (ROK). Indeed, we demonstrate that in endothelial cells, Semaphorin 4D promotes the formation of focal adhesion complexes, stress fibers, and the phosphorylation of myosin light chain, a response that was abolished by the use of ROK inhibitors and absent from cells expressing Plexin-B1 mutant constructs incapable of signaling to RhoA. Stress fiber polymerization and contraction are in turn necessary for RhoA-dependent pro-angiogenic signaling through Plexin-B1. Furthermore, we observed that in endothelial cells Plexin-B1 promotes the integrin-mediated activation of Pyk2, resulting in the stimulation of PI3K, Akt, and ERK. These findings provide evidence that Plexin-B1 promotes endothelial cell motility through RhoA and ROK by regulating the integrin-dependent signaling networks that result in the activation of PI3K and Akt.
Collapse
Affiliation(s)
- John R Basile
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|