701
|
Liao Q, Lam JKW. Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses. Curr Pharm Des 2021; 27:1453-1468. [PMID: 33388013 DOI: 10.2174/1381612826666210101153547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary mycoses are associated with high morbidity and mortality. The current standard treatment by systemic administration is limited by inadequate local bioavailability and systemic toxic effects. Aerosolisation of antifungals is an attractive approach to overcome these problems, but no inhaled antifungal formulation is currently available for the treatment of pulmonary mycoses. Hence, the development of respirable antifungals formulations is of interest and in high demand. In this review, the recent advances in the development of antifungal formulations for pulmonary delivery are discussed, including both nebulised and dry powder formulations. Although the clinical practices of nebulised parenteral amphotericin B and voriconazole formulations (off-label use) are reported to show promising therapeutic effects with few adverse effects, there is no consensus about the dosage regimen (e.g. the dose, frequency, and whether they are used as single or combination therapy). To maximise the benefits of nebulised antifungal therapy, it is important to establish standardised protocol that clearly defines the dose and specifies the device and the administration conditions. Dry powder formulations of antifungal agents such as itraconazole and voriconazole with favourable physicochemical and aerosol properties are developed using various powder engineering technologies, but it is important to consider their suitability for use in patients with compromised lung functions. In addition, more biological studies on the therapeutic efficacy and pharmacokinetic profile are needed to demonstrate their clinical potential.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| |
Collapse
|
702
|
Liu T, Aman A, Ainiwaer M, Ding L, Zhang F, Hu Q, Song Y, Ni Y, Tang X. Evaluation of the anti-biofilm effect of poloxamer-based thermoreversible gel of silver nanoparticles as a potential medication for root canal therapy. Sci Rep 2021; 11:12577. [PMID: 34131273 PMCID: PMC8206346 DOI: 10.1038/s41598-021-92081-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to design silver nanoparticles (AgNPs) poloxamer thermoreversible gel (AgNPs-PL) and investigate whether this gel could provide sustained antibacterial activity against Enterococcus faecalis (E. faecalis) in the root canal. The gels fabricated were characterized in terms of gelatin temperature, particle size, in-vitro Ag+ release, and elemental content. Cytotoxicity of AgNPs-PL on primary human periodontal ligament fibroblasts (HPDLFs) was examined by CCK-8 assay. Characterization of AgNPs-PL gel revealed that it contained particles existing as large clumps/fused aggregates of different shapes, with a mean diameter of 21.624 ± 14.689 nm, exhibited sustained release of Ag+ for 9 days, and non-toxic to HPDLFs at a low dose (4–32 μg/mL) through 24, 48, and 72 h exposures. The antibacterial effect of 16 and 32 μg/mL concentrations of AgNPs-PL was compared with blank poloxamer gel (PL) and calcium hydroxide (CH) using three methods: (I) agar counting plate, (II) scanning electron microscope (SEM) observations, and (III) confocal laser scanning microscope (CLSM) analysis. AgNPs-PL at the two doses above was more effective than PL and CH in removing E. faecalis biofilm at 1, 3, 9 days. Thus, AgNPs-PL exhibits strong activity against E. faecalis and is easy to produce, with a continuous release profile of Ag+. AgNPs-PL gel may be a candidate for a new root canal disinfection.
Collapse
Affiliation(s)
- Ting Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Aerdake Aman
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Muniremu Ainiwaer
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Fei Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xuna Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China. .,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China. .,Department of Endodontology, Nanjing Stomatological Hospital, No. 30 Zhongyang Road, Nanjing, People's Republic of China.
| |
Collapse
|
703
|
Shinde UK, Suryawanshi DG, Amin PD. Development of Gelucire ® 48/16 and TPGS Mixed Micelles and Its Pellet Formulation by Extrusion Spheronization Technique for Dissolution Rate Enhancement of Curcumin. AAPS PharmSciTech 2021; 22:182. [PMID: 34129146 DOI: 10.1208/s12249-021-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.
Collapse
|
704
|
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm 2021; 604:120759. [PMID: 34098053 DOI: 10.1016/j.ijpharm.2021.120759] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Orally drug delivery film has received extensive interest duo to a distinct set of its advantageous properties compared to the traditional orally administered dosages, including faster rate of drug absorption, higher bioavailability and better patient compliance for children and elders with swallowing deficiencies. In particular, its potential capacity of delivering proteins and peptides has further attracted great attention. Lately, tremendous advances have been made in designing and developing both novel mucoadhesive films and orodispersible films to fulfill specific accomplishments of drug delivery. This review aims to summarize those newly developed oral films, discussing their formulation strategies, manufacturing methods as well as advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Mengning He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmeng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ni Yang
- School of Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Wesdon Powder Pharma Coatings Co. Ltd., Ningbo 315042, China.
| |
Collapse
|
705
|
Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24370-24384. [PMID: 34006111 PMCID: PMC9328745 DOI: 10.1021/acsami.0c22140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
- Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
706
|
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm 2021; 602:120591. [PMID: 33845152 DOI: 10.1016/j.ijpharm.2021.120591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive drug delivery systems have attracted widespread attention in recent years since they can control drug release in a spatiotemporal manner and can achieve tunable drug release according to patient's physiological or pathological condition. In this review, we briefly introduce the drug delivery barriers and drug delivery systems in the anterior and posterior segment of eyes, and collect the recent advances in stimuli-responsive drug delivery systems in eyes for controlled drug release in response to exogenous stimuli (ultrasound, magnetic stimulus, electrical stimulus, and light) or endogenous stimuli (enzyme, active oxygen species, temperature, ions, and pH). In addition, the design and mechanisms of the stimuli-responsive drug delivery systems have been summarized in this review, and the advantages and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Xueqi Lin
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingdi Wu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiang Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Wen Xu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
707
|
Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, Wang W, Huang Y, Pan X, Wu C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021; 11:1218-1235. [PMID: 32946043 DOI: 10.1007/s13346-020-00849-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis (MTB) is one of the most threatening pathogens for its latent infection in macrophages. The intracellular MTB isolated itself from drugs and could spread via macrophages. Therefore, a mannose-modified macrophage-targeting solid lipid nanoparticle, MAN-IC-SLN, loading the pH-sensitive prodrug of isoniazid (INH), was designed to treat the latent tuberculosis infection. The surface of SLNs was modified by a synthesized 6-octadecylimino-hexane-1,2,3,4,5-pentanol (MAN-SA) to target macrophages, and the modified SLNs showed a higher cell uptake in macrophages (97.2%) than unmodified SLNs (42.4%). The prodrug, isonicotinic acid octylidene-hydrazide (INH-CHO), was synthesized to achieve the pH-sensitive release of INH in macrophages. The INH-CHO-loaded SLNs exhibited a pH-sensitive release profile and accomplished a higher accumulated release in pH 5.5 media (82.63 ± 2.12%) compared with the release in pH 7.4 media (58.83 ± 3.84%). Mycobacterium smegmatis was used as a substitute for MTB, and the MAN-IC-SLNs showed a fourfold increase of intracellular antibiotic efficacy and enhanced macrophage uptake because of the pH-sensitive degradation of INH-CHO and MAN-SA in SLNs, respectively. For the in vivo antibiotic efficacy test, the SLNs group displayed an 83% decrease of the colony-forming unit while the free INH group only showed a 60% decrease. The study demonstrates that macrophage targeting and pH-sensitive SLNs can be used as a promising platform for the latent tuberculosis infection. Graphical Abstract Table of contents: Macrophage-targeting and pH-sensitive solid lipid nanoparticles (SLN) were administrated to the lung via nebulization. Macrophage targeting was achieved by appropriate particle size and surface mannose modification with synthesized MAN-SA. After being swallowed by macrophages, the prodrug, Isonicotinic acid octylidene-hydrazide (INH-CHO), quickly released isoniazid, which was triggered by the intracellular acid environment. The SLNs exhibited higher intracellular antibiotic efficacy due to their macrophage-targeting and pH-sensitive properties.
Collapse
Affiliation(s)
- Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mingjun Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weifen Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiangyu Ma
- College of Pharmacy, Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ying Huang
- School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
708
|
|
709
|
Thrivikraman Nair S, Kamalasanan K, Moidu A, Shyamsundar P, Nair LJ, P V. Ethyl cellulose coated sustained release aspirin spherules for treating COVID-19: DOE led rapid optimization using arbitrary interface; applicable for emergency situations. Int J Biol Macromol 2021; 182:1769-1784. [PMID: 34051259 PMCID: PMC8152213 DOI: 10.1016/j.ijbiomac.2021.05.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/21/2023]
Abstract
This work attempts to resolve one of the key issues related to the design and development of sustained-release spherule of aspirin for oral formulations, tailored to treat COVID-19. For that, in the Design of Experiments (DOE) an arbitrary interface, "coating efficiency" (CE) is introduced and scaled the cumulative percentage coating (CPC) to get predictable control over drug release (DR). Subsequently, the granules containing ASP are converted to spherules and then to Ethyl cellulose (EC) Coated spherules (CS) by a novel bed coating during the rolling (BCDR) process. Among spherules, one with 0.35 mm than 0.71 mm shows required properties. The CS has a low 1200 angle by Optical Microscopy (OM), smooth surface without cracks by scanning electron microscopy (SEM), and better flow properties (Angle of repose 29.69 ± 0.780, Carr's index 6.73 ± 2.24%, Hausner's Ratio 1.07 ± 0.03) than granules and spherules. Once certain structure-dependent control over release is attained (EC coated spherules shows 10% reduction in burst release (BR) than uncoated spherules showing a release of 80-91%) the predictability is achieved and Design of space (DOS) by DOE (CE-70.14%and CPC-200% and DR-61.54%) is established. The results of DOE to experimentally validated results were within 20% deviation. The aspirin is changing its crystal structure by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) from Form-I to Form-II showing polymorphism inside the drug reservoir with respect to the process. This CE and CPC approach in DOE can be used for delivery system design of other labile drugs similar to aspirin in emergency situations.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| | - Ashna Moidu
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Pooja Shyamsundar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Lakshmi J Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Venkatesan P
- Department of Pharmacy, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
710
|
Loo S, Kam A, Li BB, Feng N, Wang X, Tam JP. Discovery of Hyperstable Noncanonical Plant-Derived Epidermal Growth Factor Receptor Agonist and Analogs. J Med Chem 2021; 64:7746-7759. [PMID: 34015925 DOI: 10.1021/acs.jmedchem.1c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report the discovery of the first plant-derived and noncanonical epidermal growth factor receptor (EGFR) agonist, the 36-residue bleogen pB1 from Pereskia bleo of the Cactaceae family. We show that bleogen pB1 is a low-affinity EGFR agonist using a suite of chemical, biochemical, cellular, and animal experiments which include incisor eruption and wound-healing mouse models. A focused positional scanning pB1 library of Ala- and d-amino acid scans yielded a high-affinity pB1 analog, [K29k]pB1, with a 60-fold-improved EGFR affinity and mitogenicity. We show that the potency of [K29k]pB1 and the epidermal growth factor (EGF) is comparable in a diabetic mouse wound-healing model. We also show that both bleogen pB1 and [K29k]pB1 are hyperstable, being >100-fold more stable than EGF against proteolytic degradation. Overall, our discovery of a noncanonical proteolytic-resistant EGFR agonist scaffold could open new avenues for developing wound healing and skin regeneration therapeutics and biomaterials.
Collapse
Affiliation(s)
- Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Bin Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nan Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
711
|
Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics 2021; 13:pharmaceutics13050735. [PMID: 34067666 PMCID: PMC8156319 DOI: 10.3390/pharmaceutics13050735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
To reduce the dosage size of amorphous solid dispersion (ASD)-based formulations, it is of interest to devise formulation strategies that allow increased drug loading (DL) without compromising dissolution performance. The aim of this study was to explore how surfactant addition impacts drug release as a function of drug loading from a ternary ASD, using felodipine as a model poorly soluble compound. The addition of 5% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant) to felodipine-polyvinylpyrrolidone/vinyl acetate ASDs was found to facilitate rapid and congruent (i.e., simultaneous) release of drug and polymer at higher DLs relative to binary ASDs (drug and polymer only). For binary ASDs, good release was observed for DLs up to <20% DL; this increased to 35% DL with surfactant. Microstructure evolution in ASD films following exposure to 100% relative humidity was studied using atomic force microscopy coupled with nanoscale infrared imaging. The formation of discrete, spherical drug-rich domains in the presence of surfactant appeared to be linked to systems showing congruent and rapid release of drug and polymer. In contrast, a contiguous drug-rich phase was formed for systems without surfactant at higher DLs. This study supports the addition of surfactant to ASD formulations as a strategy to increase DL without compromising release. Furthermore, insights into the potential role of surfactant in altering ASD release mechanisms are provided.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Oral Formulation Sciences and Technology, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pradnya Bapat
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Dana E. Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Umesh S. Kestur
- Drug Product Development, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, NJ 08903, USA;
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Correspondence: ; Tel.: +1-765-496-6614
| |
Collapse
|
712
|
Leucine enhances the dispersibility of trehalose-containing spray-dried powders on exposure to a high-humidity environment. Int J Pharm 2021; 601:120561. [PMID: 33811968 DOI: 10.1016/j.ijpharm.2021.120561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022]
Abstract
This study investigates the ability of various shell-forming excipients to preserve the dispersibility of dry powder dosage forms, e.g., nasally administered vaccines, upon exposure to a high-humidity environment. Trehalose combinations using leucine, pullulan, or trileucine were selected as the candidate excipient systems, and the powder dispersibility of these systems was compared with that of pure trehalose particles. Scaled-up monodisperse spray drying was used to produce sufficient quantities of uniform-sized particles for powder dispersibility analysis. Particle size, crystallinity, and morphology of the powders before and after exposure to moisture were characterized by an aerodynamic particle sizer, Raman spectroscopy, and scanning electron microscopy, respectively. Three two-component particle systems composed of trehalose/trileucine (97/3 w/w), trehalose/pullulan (70/30 w/w), and trehalose/leucine (70/30 w/w) were first formulated and their dispersibility, characterized as the emitted dose from dry powder inhalers, was then compared with that of trehalose particles. The formulation containing 30% leucine maintained the highest emitted dose (90.3 ± 10%) at a 60 L/min flow rate after 60 min exposure to 90% RH and 25 °C, showing its superior protection against exposure to humidity compared with the other systems. Further investigations under more challenging conditions at a 15 L/min flow rate on the trehalose/leucine system with various compositions (70/30, 80/20, 90/10 w/w) showed that a higher leucine concentration generally provided better protection against moisture and maintained higher powder dispersibility, probably due to higher surface coverage of crystalline leucine and a thicker leucine shell around the particle. The study concludes that leucine may be considered an appropriate shell-forming excipient in the development of dry powder formulations in order to protect the dosage forms against humidity during administration.
Collapse
|
713
|
Jara MO, Warnken ZN, Sahakijpijarn S, Moon C, Maier EY, Christensen DJ, Koleng JJ, Peters JI, Hackman Maier SD, Williams Iii RO. Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J Pharm 2021; 603:120701. [PMID: 33989748 PMCID: PMC8112893 DOI: 10.1016/j.ijpharm.2021.120701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide’s limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Zachary N Warnken
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Sawittree Sahakijpijarn
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Chaeho Moon
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Jay I Peters
- UT- Health San Antonio Department of Medicine, Division of Pulmonary/Critical Care Medicine, San Antonio, TX 78229, USA
| | | | - Robert O Williams Iii
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
714
|
Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11051251. [PMID: 34068834 PMCID: PMC8151913 DOI: 10.3390/nano11051251] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitateko Ibilbidea, 7, 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| | - Lucia Gallego
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| |
Collapse
|
715
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
716
|
Shete A, Nadaf S, Doijad R, Killedar S. Liquid Crystals: Characteristics, Types of Phases and Applications in Drug Delivery. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
717
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
718
|
Zhang Y, Li C, Zhu Q, Liang R, Xie C, Zhang S, Hong Y, Ouyang H. A long-term retaining molecular coating for corneal regeneration. Bioact Mater 2021; 6:4447-4454. [PMID: 33997518 PMCID: PMC8114076 DOI: 10.1016/j.bioactmat.2021.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Corneal injuries will cause corneal surface diseases that may lead to blindness in millions of people worldwide. There is a tremendous need for biomaterials that can promote corneal regeneration with practical feasibility. Here we demonstrate a strategy of a protein coating for corneal injury regeneration. We synthesize an o-nitrosobenzaldehyde group (NB)-modified gelatin (GelNB), which could adhere directly to the corneal surface with covalent bonding to form a thin molecular coating. The molecular coating could avoid rapid clearance and provide a favorable environment for cell migration, thereby effectively accelerating corneal repair and regeneration. The histological structure of the regenerated cornea is more similar to the native cornea. This molecular coating can be used conveniently as an eye drop solution, which makes it a promising strategy for corneal regeneration. A convenient molecular coating strategy is applied for corneal tissue engineering. The new hydrogel shows controllable integration, short gelling time, and a clear gelling mechanism. Gelatin modified with o-nitrosobenzaldehyde groups could exist on the ocular surface and avoid rapid removal. The hydrogel provides a suitable microenvironment for cell migration and corneal regeneration.
Collapse
Affiliation(s)
- Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
719
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
720
|
|
721
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
722
|
Lo JCK, Pan HW, Lam JKW. Inhalable Protein Powder Prepared by Spray-Freeze-Drying Using Hydroxypropyl-β-Cyclodextrin as Excipient. Pharmaceutics 2021; 13:pharmaceutics13050615. [PMID: 33923196 PMCID: PMC8145196 DOI: 10.3390/pharmaceutics13050615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
The prospect of inhaled biologics has garnered particular interest given the benefits of the pulmonary route of administration. Pertinent considerations in producing inhalable dry powders containing biological medicines relate to aerosol performance and protein stability. Spray-freeze-drying (SFD) has emerged as an established method to generate microparticles that can potentially be deposited in the lungs. Here, the SFD conditions and formulation composition were evaluated using bovine serum albumin (BSA) as a model protein and 2-hydroxypropyl-beta-cyclodextrin (HPβCD) as the protein stabilizer. A factorial design analysis was performed to investigate the effects of BSA content, solute concentration of feed solution, and atomization gas flow rate on dispersibility (as an emitted fraction), respirability (as fine particle fraction), particle size, and level of protein aggregation. The atomization gas flow rate was identified as a significant factor in influencing the aerosol performance of the powder formulations and protein aggregation. Nonetheless, high atomization gas flow rate induced aggregation, highlighting the need to further optimize the formulation. Of note, all the formulations exhibited excellent dispersibility, while no fragmentation of BSA occurred, indicating the feasibility of SFD and the promise of HPβCD as an excipient.
Collapse
Affiliation(s)
- Jason C. K. Lo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (J.C.K.L.); (H.W.P.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (J.C.K.L.); (H.W.P.)
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (J.C.K.L.); (H.W.P.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
- Correspondence: ; Tel.: +852-3917-9599
| |
Collapse
|
723
|
Yang L, Wu P, Xu J, Xie D, Wang Z, Wang Q, Chen Y, Li CH, Zhang J, Chen H, Quan G. Development of Apremilast Solid Dispersion Using TPGS and PVPVA with Enhanced Solubility and Bioavailability. AAPS PharmSciTech 2021; 22:142. [PMID: 33893566 DOI: 10.1208/s12249-021-02005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
Apremilast (APST) is an effective inhibitor of phosphodieasterase 4 (PDE4) which is the first oral drug for the treatment of adult patients with active psoriatic arthritis. However, Apremilast's low solubility restricts its dissolution and bioavailability. In this study, APST solid dispersion with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and Poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA) was developed to improve the dissolution and bioavailability of APST by spray drying. A series of TPGS were synthesized to elucidate the effect of the ratio of monoester to diester on solubilizing capacity. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectrophotometry (FT-IR) were used to characterize the solid dispersion, and the results showed that APST was amorphous in solid dispersion. In vitro dissolution study showed that the dissolution rate of solid dispersion in phosphate buffered saline (pH 6.8) was remarkably increased, reaching a release of 90% within 10 min. Moreover, in vivo pharmacokinetics study revealed that the bioavailability of solid dispersion in rats had significant improvement. In particular, its Cmax and AUClast were nearly 22- and 12.9-fold greater as compared to APST form B, respectively. In conclusion, APST solid dispersion with TPGS and PVPVA is an alternative drug delivery system to improve the solubility and oral bioavailability of APST.
Collapse
Affiliation(s)
- Liuhong Yang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Penghui Wu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Jinchao Xu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Dihuan Xie
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Zhongqing Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Qian Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Yong Chen
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China.
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China.
| | - Chuan Hua Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China
| | - Jiaxin Zhang
- College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
724
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
725
|
Pandey M, Choudhury H, binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, Tan CL, Chin WY, Yip KY. Potential of Stimuli-Responsive In Situ Gel System for Sustained Ocular Drug Delivery: Recent Progress and Contemporary Research. Polymers (Basel) 2021; 13:1340. [PMID: 33923900 PMCID: PMC8074213 DOI: 10.3390/polym13081340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022] Open
Abstract
Eyesight is one of the most well-deserved blessings, amid all the five senses in the human body. It captures the raw signals from the outside world to create detailed visual images, granting the ability to witness and gain knowledge about the world. Eyes are exposed directly to the external environment; they are susceptible to the vicissitudes of diseases. The World Health Organization has predicted that the number of individuals affected by eye diseases will rise enormously in the next decades. However, the physical barriers of the eyes and the problems associated with conventional ocular formulations are significant challenges in ophthalmic drug development. This has generated the demand for a sustained ocular drug delivery system, which serves to deliver effective drug concentration at a reduced frequency for consistent therapeutic effect and better patient treatment adherence. Recent advancement in pharmaceutical dosage design has demonstrated that a stimuli-responsive in situ gel system exhibits the favorable characteristics for providing sustained ocular drug delivery and enhanced ocular bioavailability. Stimuli-responsive in situ gels undergo a phase transition (solution-gelation) in response to the ocular environmental temperature, pH, and ions. These stimuli transform the formulation into a gel at the cul de sac to overcome the shortcomings of conventional eye drops, such as rapid nasolacrimal drainage and short contact time with the ocular surface This review highlights the recent successful research outcomes of stimuli-responsive in situ gelling systems in treating in vivo models with glaucoma and various ocular infections. Additionally, it also presents the mechanism, recent development, and safety considerations of stimuli-sensitive in situ gel as the potential sustained ocular delivery system for treating common eye disorders.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila binti Abd Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Jocelyn Sziou Ting Su
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Choo Leey Tan
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Woon Yee Chin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| | - Khar Yee Yip
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (J.S.T.S.); (C.L.T.); (W.Y.C.); (K.Y.Y.)
| |
Collapse
|
726
|
Alhajj N, O'Reilly NJ, Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov Today 2021; 26:2384-2396. [PMID: 33872799 DOI: 10.1016/j.drudis.2021.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
727
|
Paisana MC, Lino PR, Nunes PD, Pinto JF, Henriques J, Paiva AM. Laser diffraction as a powerful tool for amorphous solid dispersion screening and dissolution understanding. Eur J Pharm Sci 2021; 163:105853. [PMID: 33865976 DOI: 10.1016/j.ejps.2021.105853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Biopharmaceutics Classification System (BCS) class II and IV drugs may be formulated as supersaturating drug delivery systems (e.g., amorphous solid dispersions [ASDs]) that can generate a supersaturated drug solution during gastrointestinal (GI) transit. The mechanisms that contribute to increased bioavailability are generally attributed to the increased solubility of the amorphous form, but another mechanism with significant contributions to the improved bioavailability have been recently identified. This mechanism consists on the formation of colloidal species and may further improve the bioavailability several fold beyond that of the amorphous drug alone. These colloidal species occur when the concentration of drug generated in solution exceeds the amorphous solubility during dissolution, resulting in a liquid-liquid phase separation (LLPS). For the appearance of LLPS, the crystallization kinetics needs to be slow relatively to the dissolution process. This work intended to implement an analytical methodology to understand the ability of a drug to form colloidal species in a biorelevant dissolution media. This screening tool was therefore focused on following the colloidal formation and crystallization kinetics of itraconazole (ITZ; model drug from BSC class II) in the presence of hydroxypropyl methylcellulose (HPMC-AS L and HPMC-AS M, which are HPMC-AS with varying ratios of succinoyl:acetyl groups), using a laser diffraction-based methodology. The ability of ITZ to form colloids by a solvent-shift approach was compared with the actual colloidal formation of ITZ amorphous solid dispersions produced by spray-drying. Results indicate that regardless of the used methodology, colloids of ITZ can be detected and monitored. The extension of colloid generation showed to be correlated with the ASD disintegration/dissolution rate, i.e, polymers with faster wettability kinetics led to faster ASD disintegration and colloidal formation. As conclusion, this study showed that laser diffraction could give complementary information about colloidal formation and ASD dissolution profile, showing to be an excellent screening strategy to be applied in the early stage development of amorphous solid dispersions.
Collapse
Affiliation(s)
- Maria C Paisana
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal.
| | - Paulo R Lino
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Patricia D Nunes
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João F Pinto
- iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João Henriques
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Ana Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| |
Collapse
|
728
|
Sun Y, Qin L, Li J, Su J, Song R, Zhang X, Guan J, Mao S. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation. AAPS JOURNAL 2021; 23:55. [PMID: 33856568 DOI: 10.1208/s12248-021-00582-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Dry powder inhaler (DPI) is recognized as the first choice for lung diseases' treatment. However, it lacks a universal way for DPI formulation development. Fine lactose is commonly added in DPIs to improve delivery performance; however, the fine ratio-dependent mechanism is unclear. Therefore, the objective of this study is to explore the influence of fine lactose ratio on DPI powder properties and aerodynamic behavior, and the fine lactose ratio-dependent mechanism involved during powder fluidization and lung deposition. Here salbutamol sulfate was used as a model drug, Lactohale® 206 as coarse carrier, and Lactohale® 300 as fine component; the mixtures were prepared at 1% drug content, with fine content up to 20%. It was shown that with the fine addition, flowability of the mixtures was improved, interaction among particles was increased, and the presence of fines could help to improve DPI's aerosolization performance. When the fines added were less than 3%, the "active site" hypothesis played a leading role. When the added fines were over 3% but less than 10%, fluidization enhancement mechanism was more important. After the added fines reaching 10%, aggregate mechanism started to dominate. However, FPF cannot be further increased once the fines reached 20%. Moreover, the correlations between FPF and dynamic powder parameters were verified in ternary mixtures, and cohesion had a greater impact on FPF than that of flowability. In conclusion, adding lactose fines is an effective way to improve lung deposition of DPI, with the concrete mechanism lactose fine ratio dependent.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jiayi Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ruxiao Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
729
|
Park H, Ha ES, Kim MS. Physicochemical analysis techniques specialized in surface characterization of inhalable dry powders. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
730
|
Yaqoubi S, Chan HK, Nokhodchi A, Dastmalchi S, Alizadeh AA, Barzegar-Jalali M, Adibkia K, Hamishehkar H. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols. Int J Pharm 2021; 602:120568. [PMID: 33812969 DOI: 10.1016/j.ijpharm.2021.120568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Dry powder inhalers (DPI) are widely used systems for pulmonary delivery of therapeutics. The inhalation performance of DPIs is influenced by formulation features, inhaler device and inhalation pattern. The current review presents the affecting factors with great focus on powder characteristics which include particle size, shape, surface, density, hygroscopicity and crystallinity. The properties of a formulation are greatly influenced by a number of physicochemical factors of drug and added excipients. Since available particle engineering techniques result in particles with a set of modifications, it is difficult to distinguish the effect of an individual feature on powder deposition behavior. This necessitates developing a predictive model capable of describing all influential factors on dry powder inhaler delivery. Therefore, in the current study, a model was constructed to correlate the inhaler device properties, inhalation flow rate, particle characteristics and drug/excipient physicochemical properties with the resultant fine particle fraction. The r2 value of established correlation was 0.74 indicating 86% variability in FPF values is explained by the model with the mean absolute errors of 0.22 for the predicted values. The authors believe that this model is capable of predicting the lung deposition pattern of a formulation with an acceptable precision when the type of inhaler device, inhalation flow rate, physicochemical behavior of active and inactive ingredients and the particle characteristics of DPI formulations are considered.
Collapse
Affiliation(s)
- Shadi Yaqoubi
- Faculty of Pharmacy and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
731
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
732
|
Affiliation(s)
- Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
733
|
Wang W, Huang Z, Li Y, Wang W, Shi J, Fu F, Huang Y, Pan X, Wu C. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharm Sin B 2021; 11:1030-1046. [PMID: 33996415 PMCID: PMC8105779 DOI: 10.1016/j.apsb.2020.10.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
When nanoparticles were introduced into the biological media, the protein corona would be formed, which endowed the nanoparticles with new bio-identities. Thus, controlling protein corona formation is critical to in vivo therapeutic effect. Controlling the particle size is the most feasible method during design, and the influence of media pH which varies with disease condition is quite important. The impact of particle size and pH on bovine serum albumin (BSA) corona formation of solid lipid nanoparticles (SLNs) was studied here. The BSA corona formation of SLNs with increasing particle size (120-480 nm) in pH 6.0 and 7.4 was investigated. Multiple techniques were employed for visualization study, conformational structure study and mechanism study, etc. "BSA corona-caused aggregation" of SLN2‒3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4, which significantly affected the secondary structure of BSA and cell uptake of SLNs. The main interaction was driven by van der Waals force plus hydrogen bonding in pH 7.4, while by electrostatic attraction in pH 6.0, and size-dependent adsorption was confirmed. This study provides a systematic insight to the understanding of protein corona formation of SLNs.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanbei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiayu Shi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
734
|
Almurshedi AS, Aljunaidel HA, Alquadeib B, Aldosari BN, Alfagih IM, Almarshidy SS, Eltahir EKD, Mohamoud AZ. Development of Inhalable Nanostructured Lipid Carriers for Ciprofloxacin for Noncystic Fibrosis Bronchiectasis Treatment. Int J Nanomedicine 2021; 16:2405-2417. [PMID: 33814907 PMCID: PMC8012696 DOI: 10.2147/ijn.s286896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 μm. CONCLUSION Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Bushra Alquadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram K D Eltahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amany Z Mohamoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
735
|
Rao MRP, Godbole RV, Borate SG, Mahajan S, Gangwal T. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Drug Dev Ind Pharm 2021; 47:367-376. [PMID: 33492985 DOI: 10.1080/03639045.2021.1879830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Improving solubility and bioavailability of albendazole (ALB). SIGNIFICANCE ALB is a broad-spectrum anthelminthic BCS class II drug with aqueous solubility of solubility of 4.1 mg/l at 25 °C and oral bioavailability of <5%. METHODS ALB nanosuspensions (NSs) were prepared by evaporative antisolvent precipitation using tocopherol polyethylene glycol succinate (TPGS) and polyvinyl pyrrolidone (PVP) as stabilizers and characterized for particle size, polydispersity index, and zeta potential. 32 factorial design was used to investigate effect of stabilizer concentration and speed of stirring on particle size. Concentration of TPGS was varied from 0.03 to 0.05% w/v and PVP K-30 was constant at 0.04% w/v. Stirring speed range was 1000-3000 rpm. Optimized NS was loaded on Espheres and coated with Eudragit S10& L100 and studied for friability, surface morphology and release kinetics. RESULTS Factorial experiments revealed pronounced effect of TPGS on particle size. Optimized batch had particle size of 251 ± 7.2 nm and zeta potential -16.2 ± 2.68 mV. Saturation solubility showed increase of 16-fold in water whereas in phosphate buffer increase was fourfold. ALB-NS secondary coated Espheres released 94.3% drug in 10 h whereas ALB-MS (microsuspension) coated Espheres showed 58% release. A 1.3-fold increase in AUC0-10h was evident. Permeation from ALB-NS coated Espheres was 32% in 60 min while for ALB-MS coated Espheres it was 20%. Permeation increase occurred due to presence of TPGS which acts as a permeation enhancer.
Collapse
Affiliation(s)
| | | | | | | | - Tejal Gangwal
- Pharmaceutics, AISSMS College of Pharmacy, Pune, India
| |
Collapse
|
736
|
Basa B, Jakab G, Kállai-Szabó N, Borbás B, Fülöp V, Balogh E, Antal I. Evaluation of Biodegradable PVA-Based 3D Printed Carriers during Dissolution. MATERIALS 2021; 14:ma14061350. [PMID: 33799585 PMCID: PMC7998734 DOI: 10.3390/ma14061350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
The presence of additive manufacturing, especially 3D printing, has the potential to revolutionize pharmaceutical manufacturing owing to the distinctive capabilities of personalized pharmaceutical manufacturing. This study's aim was to examine the behavior of commonly used polyvinyl alcohol (PVA) under in vitro dissolution conditions. Polylactic acid (PLA) was also used as a comparator. The carriers were designed and fabricated using computer-aided design (CAD). After printing the containers, the behavior of PVA under in vitro simulated biorelevant conditions was monitored by gravimetry and dynamic light scattering (DLS) methods. The results show that in all the dissolution media PVA carriers were dissolved; the particle size was under 300 nm. However, the dissolution rate was different in various dissolution media. In addition to studying the PVA, as drug delivery carriers, the kinetics of drug release were investigated. These dissolution test results accompanied with UV spectrophotometry tracking indirectly determine the possibilities for modifying the output of quality by computer design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - István Antal
- Correspondence: ; Tel.: +36-1-217-0914 (ext. 53016); Fax: +36-1-217-0914
| |
Collapse
|
737
|
Ma X, Chen Y, Jiang S, Zhao X. A Bioassay-Based Approach for the Batch-To-Batch Consistency Evaluation of Xuesaitong Injection on a Zebrafish Thrombosis Model. Front Pharmacol 2021; 12:623533. [PMID: 33762944 PMCID: PMC7982889 DOI: 10.3389/fphar.2021.623533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Quality control of Chinese medicine (CM) is mainly based on chemical testing, which sometimes shows weak correlation to pharmacological effects. Thus, there is a great demand to establish bioactivity-based assays to ensure the quality of CM. The aim of the present study was to establish a bioassay-based approach to evaluate the biological activity of Xuesaitong injection (XST) based on an in vivo zebrafish model. Zebrafish larvae with arachidonic acid (AA)-induced thrombus were applied to evaluate anti-thrombosis effects of XST and explore the potential mechanism of XST. Analysis of major components in normal and abnormal XST samples was performed by high performance liquid chromatography (HPLC). The results indicate that XST could significantly restore heart red blood cells (RBCs) intensity of thrombotic zebrafish in a dose-dependent manner, whilst decreasing RBCs accumulation in the caudal vein. The results were confirmed using a green fluorescence protein (GFP)-labeled zebrafish thrombosis model. Moreover, we could show that XST downregulates the expression of the fibrinogen alpha chain (fga) gene to inhibit the coagulation cascade during the process of thrombosis in zebrafish. Notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rd, which were considered to be the major components of XST, also showed moderate anti-thrombosis efficacy. Further results showed that the zebrafish thrombosis model could efficiently distinguish five abnormal batches of XST from 24 normal batches. Furthermore, the inhibition rates of different batches were correlated with the content level of major components. Our results suggested that the proposed zebrafish thrombosis model could be successfully used to evaluate the batch-to-batch consistency of XST, which provided an alternative way for the quality control of CM.
Collapse
Affiliation(s)
- Xiangwei Ma
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyu Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shumin Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
738
|
Silva DM, Dos Reis LG, Tobin MJ, Vongsvivut J, Traini D, Sencadas V. Co-delivery of inhalable therapies: Controlling active ingredients spatial distribution and temporal release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111831. [PMID: 33641884 DOI: 10.1016/j.msec.2020.111831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The management of respiratory diseases relies on the daily administration of multiple active pharmaceutical ingredients (APIs), leading to a lack of patient compliance and impaired quality of life. The frequency and dosage of the APIs result in increased side effects that further worsens the overall patient condition. Here, the manufacture of polymer-polymer core-shell microparticles for the sequential delivery of multiple APIs by inhalation delivery is reported. The microparticles, composed of biodegradable polymers silk fibroin (shell) and poly(L-lactic acid) (core), incorporating ciprofloxacin in the silk layer and ibuprofen (PLLA core) as the antibiotic and anti-inflammatory model APIs, respectively. The polymer-polymer core-shell structure and the spatial distribution of the APIs have been characterized using cutting-edge synchrotron macro ATR-FTIR technique, which was correlated with the respective API sequential release profiles. The APIs microparticles had a suitable size and aerosol properties for inhalation therapies (≤4.94 ± 0.21μm), with low cytotoxicity and immunogenicity in healthy lung epithelial cells. The APIs compartmentalization obtained by the microparticles not only could inhibit potential actives interactions but can provide modulation of the APIs release profiles via an inhalable single administration.
Collapse
Affiliation(s)
- Dina M Silva
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Larissa Gomes Dos Reis
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
739
|
Applications of synchrotron powder X-ray diffractometry in drug substance and drug product characterization. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
740
|
Douafer H, Andrieu V, Wafo E, Sergent M, Brunel JM. Feasibility of an inhaled antibiotic/adjuvant dry powder combination using an experimental design approach. Int J Pharm 2021; 599:120414. [PMID: 33647405 DOI: 10.1016/j.ijpharm.2021.120414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
The global increase of multidrug resistant bacteria and the lack of new classes of antibiotic especially those targeting Gram-negative pathogens are leaving the clinicians disarmed to treat numerous bacterial infections. Recently, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising investigated solutions to circumvent this problem. In this context, we have recently identified a new polyamino-isoprenyl derivative NV716 able to potentiate, at a very low concentration the activity of doxycycline against resistant P. aeruginosa bacterial strains by increasing its intracellular concentration. In this study we will report an experimental protocol to optimize a dry powder for inhalation ensuring the simultaneous delivery of an antibiotic (doxycycline) and an adjuvant (the polyaminoisoprenyl derivative NV716 since aerosol therapy could allow a rapid drug administration and target the respiratory system by avoiding the first pass effect and minimizing undesirable systemic effects. Thus, an experimental design was carried out permitting to identify the influence of several factors on the aerosolization efficiency of our combination and allowing us to find the right composition and manufacture leading to the best optimization of the simultaneous delivery of the two compounds in the form of an inhalable powder. More precisely, the powders of the two active ingredients were prepared by freeze drying and their aerosolization was improved by the addition of carrier particles of lactose inhalation grade. Under these conditions, the best formulation was defined by combining the optimal factors leading to the best aerodynamic properties' values (the lowest MMAD (Mass Median Aerodynamic Diameter) and the highest FPF (Fraction of Fine Particles)) without even using sophisticated engineering techniques. Finally, our results suggest that these molecules could be successfully delivered at the requested concentration in the lungs and then able to decrease drug consumption as well as increase treatment efficacy.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | - Emmanuel Wafo
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Michelle Sergent
- Aix Marseille Univ, IMBE, UMR CNRS IRD Avignon Université, Site de l'Etoile, Marseille, France
| | | |
Collapse
|
741
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
742
|
Migliore R, Granata G, Rivoli A, Consoli GML, Sgarlata C. Binding Affinity and Driving Forces for the Interaction of Calixarene-Based Micellar Aggregates With Model Antibiotics in Neutral Aqueous Solution. Front Chem 2021; 8:626467. [PMID: 33520941 PMCID: PMC7841070 DOI: 10.3389/fchem.2020.626467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The search for novel surfactants or drug delivery systems able to improve the performance of old-generation antibiotics is a topic of great interest. Self-assembling amphiphilic calix[4]arene derivatives provide well-defined nanostructured systems that exhibit promising features for antibiotics delivery. In this work, we investigated the capability of two micellar polycationic calix[4]arene derivatives to recognize and host ofloxacin, chloramphenicol, or tetracycline in neutral aqueous solution. The formation of the nanoaggregates and the host–guest equilibria were examined by nano-isothermal titration calorimetry, dynamic light scattering, and mono- and bi-dimensional NMR. The thermodynamic characterization revealed that the calix[4]arene-based micellar aggregates are able to effectively entrap the model antibiotics and enabled the determination of both the species and the driving forces for the molecular recognition process. Indeed, the formation of the chloramphenicol–micelle adduct was found to be enthalpy driven, whereas entropy drives the formation of the adducts with both ofloxacin and tetracycline. NMR spectra corroborated ITC data about the positioning of the antibiotics in the calixarene nanoaggregates.
Collapse
Affiliation(s)
- Rossella Migliore
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Catania, Italy
| | - Giuseppe Granata
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Catania, Italy
| | - Andrea Rivoli
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Catania, Italy
| | | | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Catania, Italy
| |
Collapse
|
743
|
Wu L, Wu LP, Wu J, Sun J, He Z, Rodríguez-Rodríguez C, Saatchi K, Dailey LA, Häfeli UO, Cun D, Yang M. Poly(lactide- co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3722-3737. [PMID: 33439616 DOI: 10.1021/acsami.0c21259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulmonary delivery of small interfering RNA (siRNA)-based drugs is promising in treating severe lung disorders characterized by the upregulated expression of disease-causing genes. Previous studies have shown that the sustained siRNA release in vitro can be achieved from polymeric matrix nanoparticles based on poly(lactide-co-glycolide) (PLGA) loaded with lipoplexes (LPXs) composed of cationic lipid and anionic siRNA (lipid-polymer hybrid nanoparticles, LPNs). Yet, the in vivo efficacy, potential for prolonging the pharmacological effect, disposition, and safety of LPNs after pulmonary administration have not been investigated. In this study, siRNA against enhanced green fluorescent protein (EGFP-siRNA) was either assembled with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) to form LPX or co-entrapped with DOTAP in PLGA nanoparticles to form LPNs. The disposition and clearance of LPXs and LPNs in mouse lungs were studied after intratracheal administration by using single-photon emission computed tomography/computed tomography (SPECT/CT) and gamma counting. Fluorescence spectroscopy, Western blot, and confocal laser scanning microscopy were used to evaluate the silencing of the EGFP expression mediated by the LPXs and LPNs after intratracheal administration to transgenic mice expressing the EGFP gene. The in vivo biocompatibility of LPXs and LPNs was investigated by measuring the cytokine level, total cell counts in bronchoalveolar lavage fluid, and observing the lung tissue histology section. The results showed that the silencing of the EGFP expression mediated by LPNs after pulmonary administration was both prolonged and enhanced as compared to LPXs. This may be attributed to the sustained release characteristics of PLGA, and the prolonged retention in the lung tissue of the colloidally more stable LPNs in comparison to LPXs, as indicated by SPECT/CT. The presence of PLGA effectively alleviated the acute inflammatory effect of cationic lipids to the lungs. This study suggests that PLGA-based LPNs may present an effective formulation strategy to mediate sustained gene silencing effects in the lung via pulmonary administration.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Lin-Ping Wu
- Drug Discovery Pipeline, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Jingya Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC V6T 1Z1, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver BC V6T 1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, People's Republic of China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
744
|
Improved Bioavailability and High Photostability of Methotrexate by Spray-Dried Surface-Attached Solid Dispersion with an Aqueous Medium. Pharmaceutics 2021; 13:pharmaceutics13010111. [PMID: 33467157 PMCID: PMC7830624 DOI: 10.3390/pharmaceutics13010111] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Low aqueous solubility and poor bioavailability are major concerns in the development of oral solid-dosage drug forms. In this study, we fabricated surface-attached solid dispersion (SASD) to enhance the solubility, bioavailability, and photostability of methotrexate (MTX), a highly lipophilic and photo-unstable drug. Several MTX-loaded SASD formulations were developed for spray-drying using water as the solvent, and were investigated for their aqueous solubility and dissolution kinetics. An optimized ternary SASD formulation composed of MTX/ sodium carboxymethyl cellulose (Na-CMC)/sodium lauryl sulfate (SLS) at 3/0.5/0.5 (w/w) had 31.78-fold and 1.88-fold higher solubility and dissolution, respectively, than MTX powder. For SASD, the in vivo pharmacokinetic parameters AUC and Cmax were 2.90- and 3.41-fold higher, respectively, than for the MTX powder. Solid-state characterizations by differential scanning calorimetry and X-ray diffraction revealed that MTX exists in its crystalline state within the spray-dried SASD. The MTX-loaded SASD formulation showed few physical changes with photostability testing. Overall, the results indicate that the spray-dried MTX-loaded SASD formulation without organic solvents enhances the solubility and oral bioavailability of MTX without a significant deterioration of its photochemical stability.
Collapse
|
745
|
Guan M, Zeng X, Shi R, Zheng Y, Fan W, Su W. Aerosolization Performance, Antitussive Effect and Local Toxicity of Naringenin-Hydroxypropyl-β-Cyclodextrin Inhalation Solution for Pulmonary Delivery. AAPS PharmSciTech 2021; 22:20. [PMID: 33389225 DOI: 10.1208/s12249-020-01889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
The aim of present study was to evaluate the feasibility of a naringenin-hydroxypropyl-β-cyclodextrin (naringenin-HPβCD) inhalation solution for pulmonary delivery. Naringenin, a flavanone derived from citrus fruits, has been proven to exhibit excellent peripheral antitussive effect. To address the limitation of its poor oral bioavailability and low local concentration in the lung, a naringenin-HPβCD inhalation solution was prepared for pulmonary delivery. The aerosolization performance of formulation was evaluated by next generation impactor (NGI). Both dose-dependent and time-dependent antitussive effects of naringenin-HPβCD inhalation solution on acute cough induced by citric acid in guinea pigs were investigated. In vitro toxicity of naringenin-HPβCD inhalation solution in pulmonary Calu-3 cells was evaluated by MTS assay, and in vivo local toxicity investigation was achieved by assessing bronchoalveolar lavage (BALF) and lung histology after a 7-day inhalation treatment in guinea pigs. Fine particle fraction (FPF) of the formulation was determined as 53.09%. After inhalation treatment of 15 min, naringenin-HPβCD inhalation solution within the studied range of 0.2-3.6 mg/kg could dose-dependently reduce the cough frequency with the antitussive rate of 29.42-39.42%. Naringenin-HPβCD inhalation solution in concentration range of 100-400 μM did not decrease cell viability of Calu-3 cells, and the maximum effective dose (3.6 mg/kg) was non-toxic during the short-term inhalation treatment for guinea pigs. In conclusion, naringenin-HPβCD inhalation solution was capable for nebulization and could provide rapid response with reduced dose for the treatment of cough.
Collapse
|
746
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
747
|
Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. NANO RESEARCH 2021; 14:2067-2089. [PMID: 33456721 PMCID: PMC7796694 DOI: 10.1007/s12274-020-3180-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 05/14/2023]
Abstract
Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
748
|
Chaurasiya B, Zhao YY. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020; 13:pharmaceutics13010031. [PMID: 33379136 PMCID: PMC7824629 DOI: 10.3390/pharmaceutics13010031] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The pulmonary route has long been used for drug administration for both local and systemic treatment. It possesses several advantages, which can be categorized into physiological, i.e., large surface area, thin epithelial membrane, highly vascularized, limited enzymatic activity, and patient convenience, i.e., non-invasive, self-administration over oral and systemic routes of drug administration. However, the formulation of dry powder for pulmonary delivery is often challenging due to restrictions on aerodynamic size and the lung’s lower tolerance capacity in comparison with an oral route of drug administration. Various physicochemical properties of dry powder play a major role in the aerosolization, deposition, and clearance along the respiratory tract. To prepare suitable particles with optimal physicochemical properties for inhalation, various manufacturing methods have been established. The most frequently used industrial methods are milling and spray-drying, while several other alternative methods such as spray-freeze-drying, supercritical fluid, non-wetting templates, inkjet-printing, thin-film freezing, and hot-melt extrusion methods are also utilized. The aim of this review is to provide an overview of the respiratory tract structure, particle deposition patterns, and possible drug-clearance mechanisms from the lungs. This review also includes the physicochemical properties of dry powder, various techniques used for the preparation of dry powders, and factors affecting the clinical efficacy, as well as various challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Birendra Chaurasiya
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, and Department of Medicine (Division of Pulmonary and Critical Care Division), Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-(312)-503-7593
| |
Collapse
|
749
|
Pei W, Huang B, Chen S, Wang L, Xu Y, Niu C. Platelet-Mimicking Drug Delivery Nanoparticles for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020; 15:10151-10167. [PMID: 33363371 PMCID: PMC7754093 DOI: 10.2147/ijn.s285952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Traditional nanoparticle-based drug delivery systems suffer from several limitations, such as easy clearance from blood and inaccurate targeting. MATERIALS AND METHODS Here, we developed platelet membrane-coated nanoparticles (PM-NPs) to improve the precise delivery of drugs to tumor sites and enable a more efficient photothermal therapy (PTT) treatment. RESULTS Mimicking the natural platelet membrane, nanoparticles containing drugs and photothermal agents were not recognized and cleared by the immune system; they could circulate in the blood for a long time and accumulate more efficiently at the tumor site, thus releasing more antitumor drugs and achieving better PTT effects. It is worth mentioning that, in this study, we found that tumors in mice treated with the platelet-mimicking nanoparticles were completely eliminated without recurrence during the observation period (up to 18 days). CONCLUSION This study provides a new strategy to design delivery systems of drugs or photothermal agents, whether in biotherapy or other fields.
Collapse
Affiliation(s)
- Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
750
|
Guedes MDV, Marques MS, Guedes PC, Contri RV, Kulkamp Guerreiro IC. The use of electronic tongue and sensory panel on taste evaluation of pediatric medicines: a systematic review. Pharm Dev Technol 2020; 26:119-137. [PMID: 33274664 DOI: 10.1080/10837450.2020.1860088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The palatability of medications is an essential factor for children's adherence to drug treatment. Several methods for drug taste assessment have been developed. The aim of this review is to explore the literature reports of the main methods for the evaluation of medicines taste, named electronic tongue (e-tongue, in vitro) and human sensory panel. A systematic search was performed up to March 2020 and a total of 88 articles were selected. The e-tongue (57.5%) has been more frequently described than the sensory panel (10.3%), while some articles (32.2%) used both techniques. 74.7% of the articles mentioned 'pediatric', 'paediatric' or 'children' in the text, but only 19.5% developed formulations targeting pediatric audience and sensory testing in children is rarely seen. The e-tongue has predominance of use in the taste evaluation of pediatric medicines probably since it is fast, easy to perform and risk free, besides presenting less imprecise data and no fatigue. The human panel is more realistic, despite its intrinsic variability. In this sense, it is proposed the use of e-tongue as a fast way to select the most promising sample(s) and, after that, the sensory panel should be applied in order to confirm the taste masking.
Collapse
Affiliation(s)
| | - Morgana Souza Marques
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Pablo Cristini Guedes
- Escola de Administração, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Renata Vidor Contri
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|