701
|
Kaushik P, Anderson JT. Obesity: epigenetic aspects. Biomol Concepts 2017; 7:145-55. [PMID: 27327133 DOI: 10.1515/bmc-2016-0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.
Collapse
|
702
|
Cao B, Camden AJ, Parnell LA, Mysorekar IU. Autophagy regulation of physiological and pathological processes in the female reproductive tract. Am J Reprod Immunol 2017; 77. [PMID: 28194822 DOI: 10.1111/aji.12650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a ubiquitous cell recycling pathway that delivers cytoplasmic constituents to the lysosome and is essential for normal cellular function. Autophagic activity is up-regulated under physiological conditions as well as stressful conditions such as nutrient deprivation, oxidative stress, hypoxia, inflammation, and infection. Thus, it is essential to regard the functional importance of the pathway and its components in a given tissue context. Here we review what is known about the involvement of autophagy process during physiological processes in the female reproductive tract and in pregnancy from preimplantation to oocyte function to placental development, parturition, and postpartum remodeling of the uterus; as well as in pathological and adverse events during these processes.
Collapse
Affiliation(s)
- Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison J Camden
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay A Parnell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
703
|
Wu D, Feng B, Dai Y, Wu X, Chen B, Xu C, Tang Y, Wang K, Zhang S, Wang S, Luo B, Chen Z. Intergenerational Transmission of Enhanced Seizure Susceptibility after Febrile Seizures. EBioMedicine 2017; 17:206-215. [PMID: 28202230 PMCID: PMC5360568 DOI: 10.1016/j.ebiom.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
Environmental exposure early in development plays a role in susceptibility to disease in later life. Here, we demonstrate that prolonged febrile seizures induced by exposure of rat pups to a hyperthermic environment enhance seizure susceptibility not only in these hyperthermia-treated rats but also in their future offspring, even if the offspring never experience febrile seizures. This transgenerational transmission was intensity-dependent and was mainly from mothers to their offspring. The transmission was associated with DNA methylation. Thus, our study supports a "Lamarckian"-like mechanism of pathogenesis and the crucial role of epigenetic factors in neurological conditions.
Collapse
Affiliation(s)
- Dengchang Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunjian Dai
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Wu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangshun Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Wang
- Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihong Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China..
| |
Collapse
|
704
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
705
|
Tian S, Lin XH, Xiong YM, Liu ME, Yu TT, Lv M, Zhao W, Xu GF, Ding GL, Xu CM, Jin M, Feng C, Wu YT, Tan YJ, Gao Q, Zhang J, Li C, Ren J, Jin LY, Chen B, Zhu H, Zhang XY, Chen SC, Liu XM, Liu Y, Zhang JY, Wang L, Zhang P, Chen XJ, Jin L, Chen X, Meng YC, Wu DD, Lin H, Yang Q, Zhou CL, Li XZ, Wang YY, Xiang YQ, Liu ZW, Gao L, Chen LT, Pan HJ, Li R, Zhang FH, Xing LF, Zhu YM, Klausen C, Leung PCK, Li JX, Sun F, Sheng JZ, Huang HF. Prevalence of Prediabetes Risk in Offspring Born to Mothers with Hyperandrogenism. EBioMedicine 2017; 16:275-283. [PMID: 28111236 PMCID: PMC5474435 DOI: 10.1016/j.ebiom.2017.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
Background Excessive androgen exposure during pregnancy has been suggested to induce diabetic phenotypes in offspring in animal models. The aim of this study was to investigate whether pregestational maternal hyperandrogenism in human influenced the glucose metabolism in offspring via epigenetic memory from mother's oocyte to child's somatic cells. Methods Of 1782 reproductive-aged women detected pregestational serum androgen, 1406 were pregnant between 2005 and 2010. Of 1198 women who delivered, 1116 eligible mothers (147 with hyperandrogenism and 969 normal) were recruited. 1216 children (156 children born to mothers with hyperandrogenism and 1060 born to normal mother) were followed up their glycometabolism in mean age of 5 years. Imprinting genes of oocyte from mothers and lymphocytes from children were examined. A pregestational hyperandrogenism rat model was also established. Findings Children born to women with hyperandrogenism showed increased serum fasting glucose and insulin levels, and were more prone to prediabetes (adjusted RR: 3.98 (95%CI 1.16–13.58)). Oocytes from women with hyperandrogenism showed increased insulin-like growth factor 2 (IGF2) expression. Lymphocytes from their children also showed increased IGF2 expression and decreased IGF2 methylation. Treatment of human oocytes with dihydrotestosterone upregulated IGF2 and downregulated DNMT3a levels. In rat, pregestational hyperandrogenism induced diabetic phenotypes and impaired insulin secretion in offspring. In consistent with the findings in human, hyperandrogenism also increased Igf2 expression and decreased DNMT3a in rat oocytes. Importantly, the same altered methylation signatures of Igf2 were identified in the offspring pancreatic islets. Interpretation Pregestational hyperandrogenism may predispose offspring to glucose metabolism disorder via epigenetic oocyte inheritance. Clinical trial registry no.: ChiCTR-OCC-14004537; www.chictr.org. Maternal hyperandrogenism may increase the risks of glucose metabolism disorder and prediabetes in their children. High androgen levels in women may directly increased IGF2 expression and decreased IGF2 methylation in oocytes Intergenerational inheritance of epigenetic alteration could be regarded important in determining development of diabetes.
Hyperandrogenemia can be observed in most patients with polycystic ovarian syndrome that is a common endocrine disorder in women of reproductive age, especially in subfertile women. We found that maternal hyperandrogenism may increase the risks of glucose metabolism disorder and prediabetes in their children. Also, Data from human and rat suggest that this glucose metabolism disorder may be mediated by DNA methylation modifications, and this kind of epigenetic modification may be transmitted from oocytes of mothers to somatic cells of offspring. Hence, intergenerational inheritance of epigenetic alteration should be regarded important in determining development of diabetes in the future.
Collapse
Affiliation(s)
- Shen Tian
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Meng Xiong
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Miao-E Liu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Tian-Tian Yu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Min Lv
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wei Zhao
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Gu-Feng Xu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Guo-Lian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen-Ming Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yan-Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Gao
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China
| | - Jian Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Ren
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lu-Yang Jin
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bin Chen
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hong Zhu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xue-Ying Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Song-Chang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ye Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Yu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiao-Jun Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xi Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Cong Meng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan-Dan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng-Liang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Zhu Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Yu Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Qian Xiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhi-Wei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu-Ting Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong-Jie Pan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fang-Hong Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lan-Feng Xing
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Christian Klausen
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Ju-Xue Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fei Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - He-Feng Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
706
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
707
|
He B, Guo H, Gong Y, Zhao R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology 2017; 87:1-8. [DOI: 10.1016/j.theriogenology.2016.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
|
708
|
Mai Q, Hu X, Yang G, Luo Y, Huang K, Yuan Y, Zhou C. Effect of letrozole on moderate and severe early-onset ovarian hyperstimulation syndrome in high-risk women: a prospective randomized trial. Am J Obstet Gynecol 2017; 216:42.e1-42.e10. [PMID: 27555316 DOI: 10.1016/j.ajog.2016.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/31/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Ovarian hyperstimulation syndrome is an iatrogenic complication of controlled ovarian stimulation. Early ovarian hyperstimulation syndrome occurs during luteal phase of controlled ovarian stimulation within 9 days after human chorionic gonadotropin trigger and reflects an acute consequence of this hormone on the ovaries. Late ovarian hyperstimulation syndrome occurs 10 or more days after human chorionic gonadotropin trigger and reflects increased endogenous human chorionic gonadotropin levels following pregnancy. Human chorionic gonadotropin stimulates granulosa-lutein cells to produce vascular endothelial growth factor messenger RNAs, which in turn raises serum vascular endothelial growth factor concentration and increases vascular permeability in women with ovarian hyperstimulation syndrome. Efforts to reduce the incidence and severity of ovarian hyperstimulation syndrome after oocyte retrieval, and in particular primary prevention efforts, are vital to prevent thrombogenesis and other serious complications. OBJECTIVE The objective of the study was to compare the efficacy of letrozole, an aromatase inhibitor, with aspirin in primary prevention of early ovarian hyperstimulation syndrome and to compare vascular endothelial growth factor levels between groups. STUDY DESIGN Participants in this prospective randomized trial included 238 participants undergoing cryopreservation of the whole embryos after oocyte retrieval with at least 1 of the following high-risk factors for ovarian hyperstimulation syndrome: oocyte retrieval ≥25; estradiol level ≥5000 pg/mL on the day of human chorionic gonadotropin administration; and clinical or ultrasonographic evidence of ovarian hyperstimulation syndrome on the day of oocyte retrieval, such as ultrasonographic evidence of ascites. After human chorionic gonadotropin triggering, experimental (119 cases) and control (119 cases) groups received letrozole and aspirin, respectively, for 5 days. The 5 categories of ovarian hyperstimulation syndrome include no, yes-mild, yes-moderate, yes-severe, and yes-critical. The primary outcome was the incidence and severity of early ovarian hyperstimulation syndrome. The secondary outcome included vascular endothelial growth factor level both on the second and seventh day after the human chorionic gonadotropin trigger, and clinical and laboratory features of ovarian hyperstimulation syndrome symptoms. RESULTS The incidence of ovarian hyperstimulation syndrome was significantly higher in women receiving aspirin, compared with letrozole (90.2% vs 80.4%, P = .044). Moderate and severe ovarian hyperstimulation syndrome was also higher in the aspirin group, 45.1%, compared with the letrozole group, 25.0% (P = .002). Moreover, the duration of luteal phase was shortened in letrozole group compared with aspirin group (8.1 ± 1.1 days vs 10.5 ± 1.9 days, P < .001). The vascular endothelial growth factor level was significantly higher in the letrozole-treated group than aspirin-treated group (0.49 ± 0.26 vs 0.42 ± 0.22, P = .029). CONCLUSION Letrozole was more effective than aspirin in decreasing the incidence of moderate and severe early-onset ovarian hyperstimulation syndrome. Our results indicate that ovarian hyperstimulation syndrome might be caused through a luteolytic effect rather than through modulation of vascular endothelial growth factor, racing by a decline in estradiol and termination of early-onset ovarian hyperstimulation syndrome in advance in high-risk women with cryopreservation of the whole embryos.
Collapse
|
709
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
710
|
Abstract
Epigenetic mechanisms play important roles in properly occurring mammalian oogenesis. One of these mechanisms is DNA methylation adding a methyl group to the fifth carbon atom of the cytosine residues using S-adenosyl-L-methionine as a methyl donor. DNA methylation generally takes place at cytosine-phosphate-guanine (CpG) dinucleotide sites and rarely occurs at cytosine-phosphate-thymine (CpT), cytosine-phosphate-adenine (CpA), or cytosine-phosphate-cytosine sites, known as non-CpG sites. Basically, two different DNA methylation processes are identified: de novo methylation and maintenance methylation. While the de novo methylation functions in methylation of unmethylated DNA strands, maintenance methylation is capable of methylating hemi-methylated DNA strands following DNA replication. Both DNA methylation processes are catalyzed by special DNA methyltransferase (DNMT) enzymes. To date, five different DNMTs have been identified: DNMT1, DNMT3A, DNMT3B, DNMT3L, and DNMT2. In this chapter, we focus particularly on temporal and spatial expression of DNMTs in mammalian oocytes and granulosa cells.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
711
|
Wu Q, Li Z, Huang Y, Qian D, Chen M, Xiao W, Wang B. Oxidative Stress Delays Prometaphase/Metaphase of the First Cleavage in Mouse Zygotes via the MAD2L1-Mediated Spindle Assembly Checkpoint. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2103190. [PMID: 29147457 PMCID: PMC5632912 DOI: 10.1155/2017/2103190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Abstract
In zygotes, DNA damage delays the first cleavage to enable repair. Our previous study found that 0.03 mM hydrogen peroxide (H2O2) was the minimum concentration required for induction of oxidative DNA damage in mouse zygotes and that this represented the most similar situation to the clinical phenomenon. In this study, we quantified the cleavage rates of cells in blastocysts at different developmental stages, followed by immunofluorescence to detect activation of γ-H2A histone family member X (a marker of DNA damage) in zygotes to confirm that oxidative DNA damage was induced in H2O2-treated zygotes. Monitoring H3S10P (phosphorylation of Ser10 on histone H3; a prometaphase/metaphase marker) levels at different hour postinsemination revealed that treatment of zygotes with 0.03 mM H2O2 resulted in a prometaphase/metaphase delay. Furthermore, immunofluorescence staining for mitotic arrest deficient 2-like 1 and the protein kinase TTK, components of the spindle assembly checkpoint (SAC), suggested that this delay possibly involved SAC activation. These studies of the relationships between oxidative stress and SAC can promote the success rate of in vitro fertilization.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
712
|
Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology 2017; 87:276-283. [DOI: 10.1016/j.theriogenology.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 11/20/2022]
|
713
|
Morphokinetic Characteristics and Developmental Potential of In Vitro Cultured Embryos from Natural Cycles in Patients with Poor Ovarian Response. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4286528. [PMID: 28097133 PMCID: PMC5206428 DOI: 10.1155/2016/4286528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
Abstract
Background. Patients with poor ovarian response to ovarian hyperstimulation represent an interesting group for studying the impact of embryo cleavage irregularities on clinical outcome since all embryos, regardless of their quality, are usually transferred to the uterus. The aim of our study was to follow the morphokinetics of fertilized oocytes from natural cycles in poor responders. Methods. Zygotes from 53 cycles were cultured in vitro for 3 days. The morphokinetics of their development and transfer outcomes were retrospectively analyzed for the normally and irregularly cleaved embryos. Results. Of all embryos, 30.2% had single and 20.8% multiple cleavage irregularities with the following prevalence: developmental arrest 30.2%, direct cleavage to more than two cells 24.5%, chaotic cleavage 13.2%, and reverse cleavage 11.3%. These embryos had longer pronuclear phases, first cytokinesis, second embryo cell cycles, and less synchronized divisions. The transfer of normally developing embryos resulted in an implantation rate of 30.8% and a delivery rate of 23.1%, but irregularly cleaved embryos did not implant. Conclusions. The use of time-lapse microscopy in poor responder patients identified embryos with cleavage abnormalities that are related with no or extremely low implantation potential. Gained information about embryo quality is important for counselling patients about their expectations.
Collapse
|
714
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
715
|
Sohrabi M, Roushandeh AM, Alizadeh Z, Vahidinia A, Vahabian M, Hosseini M. Effect of a high fat diet on ovary morphology, in vitro development, in vitro fertilisation rate and oocyte quality in mice. Singapore Med J 2016; 56:573-9. [PMID: 26512150 DOI: 10.11622/smedj.2015085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The aim of this study was to determine the effect of a high-fat diet (HFD) on oocyte maturation and quality in a mouse model. METHODS Female BALB/c mice were allocated to one of the following groups: (a) control group (n = 40), which received a controlled diet; or (b) HFD group (n = 40), which received an HFD for 12 weeks. Sections of the ovary were examined histologically. The number of follicles and corpora lutea were counted. In vitro maturation and in vitro fertilisation (IVF) were assessed in germinal vesicle (GV) and metaphase II (MII) oocytes, respectively. The expression of bone morphogenetic protein 15 (BMP15) and leptin receptor genes in GV and MII oocytes was evaluated using reverse transcription real-time polymerase chain reactions. RESULTS In the HFD group, there was a decreased number of primordial and Graafian follicles, as well as corpora lutea (p < 0.05). The rate of oocyte development to the MII stage was also reduced (p < 0.001). Cumulus expansion was observed more frequently in the control group than the HFD group (p < 0.05). The IVF rate in the HFD group was lower than that in the control group (p < 0.05). In the HFD group, BMP15 and leptin receptor genes were upregulated in the GV stage (p > 0.05) and MII stage (p < 0.05), compared to the control group. CONCLUSION An HFD reduces folliculogenesis in the primordial and Graafian stages, in vitro maturation and in vitro fertilisation rates, as well as oocyte quality in mice.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aliasghar Vahidinia
- Department of Nutrition, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrangiz Vahabian
- Department of English and Persian Literature, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnaz Hosseini
- Anatomical Sciences Department, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
716
|
Desmet KLJ, Van Hoeck V, Gagné D, Fournier E, Thakur A, O'Doherty AM, Walsh CP, Sirard MA, Bols PEJ, Leroy JLMR. Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genomics 2016; 17:1004. [PMID: 27931182 PMCID: PMC5146907 DOI: 10.1186/s12864-016-3366-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
Background Metabolic stress associated with negative energy balance in high producing dairy cattle and obesity in women is a risk factor for decreased fertility. Non-esterified fatty acids (NEFA) are involved in this pathogenesis as they jeopardize oocyte and embryo development. Growing evidence indicates that maternal metabolic disorders can disturb epigenetic programming, such as DNA methylation, in the offspring. Oocyte maturation and early embryo development coincide with methylation changes and both are sensitive to adverse environments. Therefore, we investigated whether elevated NEFA concentrations affect establishment and maintenance of DNA methylation in oocytes and embryos, subsequently altering transcriptomic profiles and developmental competence of resultant blastocysts. Results Bovine oocytes and embryos were exposed to different NEFA concentrations in separate experiments. In the first experiment, oocytes were matured in vitro for 24 h in medium containing: 1) physiological (“BASAL”) concentrations of oleic (OA), palmitic (PA) and stearic (SA) acid or 2) pathophysiological (“HIGH COMBI”) concentrations of OA, PA and SA. In the second experiment, zygotes were cultivated in vitro for 6.5 days under BASAL or HIGH COMBI conditions. Developmental competence was evaluated by assessing cleavage and blastocyst rate. Overall gene expression and DNA methylation of resultant blastocysts were analyzed using microarray. DNA methylation data were re-evaluated by pyrosequencing. HIGH COMBI-exposed oocytes and embryos displayed a lower competence to develop into blastocysts compared to BASAL-exposed counterparts (19.3% compared to 23.2% and 18.2% compared to 25.3%, respectively) (P < 0.05). HIGH COMBI-exposed oocytes and embryos resulted in blastocysts with altered DNA methylation and transcriptomic fingerprints, compared to BASAL-exposed counterparts. Differences in gene expression and methylation were more pronounced after exposure during culture compared to maturation suggesting that zygotes are more susceptible to adverse environments. Main gene networks affected were related to lipid and carbohydrate metabolism, cell death, immune response and metabolic disorders. Conclusions Overall, high variation in methylation between blastocysts made it difficult to draw conclusions concerning methylation of individual genes, although a clear overview of affected pathways was obtained. This may offer clues regarding the high rate of embryonic loss and metabolic diseases during later life observed in offspring from mothers displaying lipolytic disorders.
Collapse
Affiliation(s)
- K L J Desmet
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.
| | - V Van Hoeck
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - D Gagné
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Canada
| | - E Fournier
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Canada
| | - A Thakur
- British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - A M O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - C P Walsh
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - M A Sirard
- Centre de Recherche en Biologie de la Reproduction (CRBR), Département des Sciences Animales, Université Laval, Québec, Canada
| | - P E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - J L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
717
|
Hu MW, Meng TG, Jiang ZZ, Dong MZ, Schatten H, Xu X, Wang ZB, Sun QY. Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity. PLoS Genet 2016; 12:e1006513. [PMID: 27930667 PMCID: PMC5179128 DOI: 10.1371/journal.pgen.1006513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Mammalian oocytes are arrested at prophase of the first meiotic division in the primordial follicle pool for months, even years, after birth depending on species, and only a limited number of oocytes resume meiosis, complete maturation, and ovulate with each reproductive cycle. We recently reported that protein phosphatase 6 (PP6), a member of the PP2A-like subfamily, which accounts for cellular serine/threonine phosphatase activity, functions in completing the second meiosis. Here, we generated mutant mice with a specific deletion of Ppp6c in oocytes from the primordial follicle stage by crossing Ppp6cF/F mice with Gdf9-Cre mice and found that Ppp6cF/F; GCre+ mice are infertile. Depletion of PP6c caused folliculogenesis defects and germ cell loss independent of the traditional AKT/mTOR pathway, but due to persistent phosphorylation of H2AX (a marker of double strand breaks), increased susceptibility to DNA damage and defective DNA repair, which led to massive oocyte elimination and eventually premature ovarian failure (POF). Our findings uncover an important role for PP6 as an indispensable guardian of genomic integrity of the lengthy prophase I oocyte arrest, maintenance of primordial follicle pool, and thus female fertility. Formation of haploid gametes from diploid germ cells requires a specialized reductive cell division known as meiosis. In contrast to male meiosis that takes place continuously, a unique feature of female meiosis in mammals is the long arrest in meiosis I, which lasts up to 50 years in humans. Because the size of the germ cell pool determines the reproductive lifespan of females, it is important to discover mechanisms preserving the germ cell pool during the lengthy meiotic arrest. In this study, we examined the physiological role of a member of the PP2A-like serine/threonine phosphatase subfamily, protein phosphatase 6, in mouse oocytes during ovarian follicular development. This is the first study linking PP6 to the maintenance of the female germ cell pool and fertility. We find PP6 is an indispensable protector of arrested oocytes by safeguarding genomic integrity during their dormancy in the mouse ovary.
Collapse
Affiliation(s)
- Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Zhe Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States of America
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
718
|
Liu C, Li M, Li T, Zhao H, Huang J, Wang Y, Gao Q, Yu Y, Shi Q. ECAT1 is essential for human oocyte maturation and pre-implantation development of the resulting embryos. Sci Rep 2016; 6:38192. [PMID: 27917907 PMCID: PMC5137016 DOI: 10.1038/srep38192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
ECAT1 is a subunit of the subcortical maternal complex that is required for cell cycle progression during pre-implantation embryonic development; however, its exact function remains to be elucidated. Here we investigated the expression of ECAT1 in human ovarian tissue, oocytes and pre-implantation embryos and assessed its function by using RNA interference (RNAi) in oocytes. ECAT1 mRNA was highly expressed in human oocytes and zygotes, as well as in two-cell, four-cell and eight-cell embryos, but declined significantly in morulae and blastocysts. ECAT1 was expressed in the cytoplasm of oocytes and pre-implantation embryos and was localized more specifically in the cortical region than in the inner cytoplasm. RNAi experiments demonstrated that down-regulation of ECAT1 expression not only impaired spindle assembly and reduced maturation and fertilization rates of human oocytes but also decreased the cleavage rate of the resulting zygotes. In conclusion, our study indicates that ECAT1 may play a role in meiotic progression by maintaining the accuracy of spindle assembly in human oocytes, thus promoting oocyte maturation and subsequent development of the embryo.
Collapse
Affiliation(s)
- Changyu Liu
- Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Min Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Tianjie Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jin Huang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yun Wang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qian Gao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
719
|
Kadakol A, Sharma N, Kulkarni YA, Gaikwad AB. Esculetin: A phytochemical endeavor fortifying effect against non-communicable diseases. Biomed Pharmacother 2016; 84:1442-1448. [DOI: 10.1016/j.biopha.2016.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
|
720
|
Affiliation(s)
- Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of
Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Tom A.R. Price
- Institute of Integrative Biology, University of Liverpool, Crown Street,
Liverpool, UK
| |
Collapse
|
721
|
Rojansky R, Cha MY, Chan DC. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 2016; 5. [PMID: 27852436 PMCID: PMC5127638 DOI: 10.7554/elife.17896] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process. DOI:http://dx.doi.org/10.7554/eLife.17896.001 Mitochondria are commonly referred to as the 'powerhouses' of animal cells because these structures provide the majority of the energy in most cells. People inherit their mitochondria from their mother, and not their father. This is because the father's mitochondria, which are delivered by sperm to the egg, are degraded early on when the embryo starts to develop. Previous studies with model organisms, like nematode worms, showed that mitochondria delivered via sperm (also known as 'paternal mitochondria') were delivered to structures called lysosomes and broken down by the enzymes contained within. However, it remained controversial whether this process, named mitophagy, also occurred in mammalian cells, and the molecules involved were unknown. Now, Rojansky et al. have identified key molecules that are essential for the degradation of mitochondria in mouse cells and show that these same molecules are needed to degrade paternal mitochondria in early mouse embryos. These results indicate that paternal mitochondria are indeed degraded by mitophagy in mice. In addition, Rojansky et al. also note that one of the key molecules is a protein called PARKIN, which is mutated in many inherited cases of Parkinson's disease, a major neurodegenerative disorder. Even though these new findings provide a clearer idea as to how paternal mitochondria are degraded, the question of why remains unanswered. As a result, it is likely that this topic will continue to be heavily debated. Nevertheless, having identified the key molecules involved in degrading paternal mitochondria, it may now be possible to address this question more directly – for example by interfering with this process and then examining the consequences. DOI:http://dx.doi.org/10.7554/eLife.17896.002
Collapse
Affiliation(s)
- Rebecca Rojansky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Moon-Yong Cha
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
722
|
Sex-specific associations of low birth weight with adult-onset diabetes and measures of glucose homeostasis: Brazilian Longitudinal Study of Adult Health. Sci Rep 2016; 6:37032. [PMID: 27845438 PMCID: PMC5109479 DOI: 10.1038/srep37032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests sex differences in the early origins of adult metabolic disease, but this has been little investigated in developing countries. We investigated sex-specific associations between low birth weight (LBW; <2.5 kg) and adult-onset diabetes in 12,525 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Diabetes was defined by self-reported information and laboratory measurements. In confounder-adjusted analyses, LBW (vs. 2.5–4 kg) was associated with higher prevalence of diabetes in women (Prevalence Ratio (PR) 1.54, 95% CI: 1.32–1.79), not in men (PR 1.06, 95% CI: 0.91–1.25; Pheterogeneity = 0.003). The association was stronger among participants with maternal diabetes (PR 1.60, 95% CI: 1.35–1.91), than those without (PR 1.15, 95% CI: 0.99–1.32; Pheterogeneity = 0.03). When jointly stratified by sex and maternal diabetes, the association was observed for women with (PR 1.77, 95% CI: 1.37–2.29) and without (PR 1.45, 95% CI: 1.20–1.75) maternal diabetes. In contrast, in men, LBW was associated with diabetes in participants with maternal diabetes (PR 1.45, 95% CI: 1.15–1.83), but not in those without (PR 0.92, 95% CI: 0.74–1.14). These sex-specific findings extended to continuous measures of glucose homeostasis. LBW was associated with higher diabetes prevalence in Brazilian women, and in men with maternal diabetes, suggesting sex-specific intrauterine effects on adult metabolic health.
Collapse
|
723
|
Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine. Sci Rep 2016; 6:36008. [PMID: 27782163 PMCID: PMC5080544 DOI: 10.1038/srep36008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023] Open
Abstract
DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes’ DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes.
Collapse
|
724
|
Abstract
Which mitochondria are inherited across generations? Are transmitted mitochondria functionally silenced to preserve the integrity of their genetic information, or rather are those mitochondria with the highest levels of function (as indicated by membrane potential Δψm) preferentially transmitted? Based on observations of the unusual system of doubly uniparental inheritance of mitochondria and of the common strictly maternal inheritance mode, I formulate a general hypothesis to explain which mitochondria reach the primordial germ cells (PGCs), and how this happens. Several studies indicate that mitochondrial movements are driven by microtubules and that mitochondria with high Δψm are preferentially transported. This can be applied also to the mitochondria that eventually populate embryonic PGCs, so I propose that Δψm may be a trait that allows for the preferential transmission of the most active (and healthy) mitochondria. The topics discussed here are fundamental in cell biology and genetics but remain controversial and a subject of heated debate; I propose an explanation for how a Δψm-dependent mechanism can cause the observed differences in mitochondrial transmission.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
725
|
Cheung OKW, Cheng ASL. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front Genet 2016; 7:168. [PMID: 27703473 PMCID: PMC5029146 DOI: 10.3389/fgene.2016.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.
Collapse
Affiliation(s)
- Otto K-W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Alfred S-L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
726
|
Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility. Sci Rep 2016; 6:33647. [PMID: 27633131 PMCID: PMC5025659 DOI: 10.1038/srep33647] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy (hereafter autophagy) is an evolutionarily highly conserved cellular process that participates in the maintenance of intracellular homeostasis through the degradation of most long-lived proteins and entire organelles. Autophagy participates in some reproductive events; however, there are not reports regarding the role of autophagy in the regulation of sperm physiology. Hence, the aim of this study was to investigate whether autophagy-related proteins are present and functionally active in human spermatozoa. Proteins related to autophagy/mitophagy process (LC3, Atg5, Atg16, Beclin 1, p62, m-TOR, AMPKα 1/2, and PINK1) were present in human spermatozoa. LC3 colocalized with p62 in the middle piece of the spermatozoa. Autophagy activation induced a significant increase in motility and a decrease in PINK1, TOM20 expression and caspase 3/7 activation. In contrast, autophagy inhibition resulted in decreased motility, viability, ATP and intracellular calcium concentration whereas PINK1, TOM20 expression, AMPK phosphorylation and caspase 3/7 activation were significantly increased. In conclusion our results show that autophagy related proteins and upstream regulators are present and functional in human spermatozoa. Modification of mitochondrial proteins expression after autophagy activation/inhibition may be indicating that a specialized form of autophagy named mitophagy may be regulating sperm function such as motility and viability and may be cooperating with apoptosis.
Collapse
|
727
|
Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A 2016; 113:E5261-70. [PMID: 27551072 PMCID: PMC5018771 DOI: 10.1073/pnas.1605844113] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Young-Joo Yi
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211-5300
| |
Collapse
|
728
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
729
|
Sato H, Wheat JC, Steidl U, Ito K. DNMT3A and TET2 in the Pre-Leukemic Phase of Hematopoietic Disorders. Front Oncol 2016; 6:187. [PMID: 27597933 PMCID: PMC4992944 DOI: 10.3389/fonc.2016.00187] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022] Open
Abstract
In recent years, advances in next-generation sequencing (NGS) technology have provided the opportunity to detect putative genetic drivers of disease, particularly cancers, with very high sensitivity. This knowledge has substantially improved our understanding of tumor pathogenesis. In hematological malignancies such as acute myeloid leukemia and myelodysplastic syndromes, pioneering work combining multi-parameter flow cytometry and targeted resequencing in leukemia have clearly shown that different classes of mutations appear to be acquired in particular sequences along the hematopoietic differentiation hierarchy. Moreover, as these mutations can be found in “normal” cells recovered during remission and can be detected at relapse, there is strong evidence for the existence of “pre-leukemic” stem cells (pre-LSC). These cells, while phenotypically normal by flow cytometry, morphology, and functional studies, are speculated to be molecularly poised to transform owing to a limited number of predisposing mutations. Identifying these “pre-leukemic” mutations and how they propagate a pre-malignant state has important implications for understanding the etiology of these disorders and for the development of novel therapeutics. NGS studies have found a substantial enrichment for mutations in epigenetic/chromatin remodeling regulators in pre-LSC, and elegant genetic models have confirmed that these mutations can predispose to a variety of hematological malignancies. In this review, we will discuss the current understanding of pre-leukemic biology in myeloid malignancies, and how mutations in two key epigenetic regulators, DNMT3A and TET2, may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Hanae Sato
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Justin C Wheat
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
730
|
Yovich JL, Alsbjerg B, Conceicao JL, Hinchliffe PM, Keane KN. PIVET rFSH dosing algorithms for individualized controlled ovarian stimulation enables optimized pregnancy productivity rates and avoidance of ovarian hyperstimulation syndrome. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2561-73. [PMID: 27563236 PMCID: PMC4986677 DOI: 10.2147/dddt.s104104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first PIVET algorithm for individualized recombinant follicle stimulating hormone (rFSH) dosing in in vitro fertilization, reported in 2012, was based on age and antral follicle count grading with adjustments for anti-Müllerian hormone level, body mass index, day-2 FSH, and smoking history. In 2007, it was enabled by the introduction of a metered rFSH pen allowing small dosage increments of ~8.3 IU per click. In 2011, a second rFSH pen was introduced allowing more precise dosages of 12.5 IU per click, and both pens with their individual algorithms have been applied continuously at our clinic. The objective of this observational study was to validate the PIVET algorithms pertaining to the two rFSH pens with the aim of collecting ≤15 oocytes and minimizing the risk of ovarian hyperstimulation syndrome. The data set included 2,822 in vitro fertilization stimulations over a 6-year period until April 2014 applying either of the two individualized dosing algorithms and corresponding pens. The main outcome measures were mean oocytes retrieved and resultant embryos designated for transfer or cryopreservation permitted calculation of oocyte and embryo utilization rates. Ensuing pregnancies were tracked until live births, and live birth productivity rates embracing fresh and frozen transfers were calculated. Overall, the results showed that mean oocyte numbers were 10.0 for all women <40 years with 24% requiring rFSH dosages <150 IU. Applying both specific algorithms in our clinic meant that the starting dose was not altered for 79.1% of patients and for 30.1% of those receiving the very lowest rFSH dosages (≤75 IU). Only 0.3% patients were diagnosed with severe ovarian hyperstimulation syndrome, all deemed avoidable due to definable breaches from the protocols. The live birth productivity rates exceeded 50% for women <35 years and was 33.2% for the group aged 35–39 years. Routine use of both algorithms led to only 11.6% of women generating >15 oocytes, significantly lower than recently published data applying conventional dosages (38.2%; P<0.0001). When comparing both specific algorithms to each other, the outcomes were mainly comparable for pregnancy, live birth, and miscarriage rate. However, there were significant differences in relation to number of oocytes retrieved, but the mean for both the algorithms remained well below 15 oocytes. Consequently, application of both these algorithms in our in vitro fertilization clinic allows the use of both the rFSH products, with very similar results, and they can be considered validated on the basis of effectiveness and safety, clearly avoiding ovarian hyperstimulation syndrome.
Collapse
Affiliation(s)
- John L Yovich
- PIVET Medical Centre, Perth; School of Biomedical Science, Curtin Health Innovation Research Institute Bioscience, Curtin University, Perth, WA, Australia
| | - Birgit Alsbjerg
- The Fertility Clinic, Skive Regional Hospital, Skive; Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | | | - Kevin N Keane
- PIVET Medical Centre, Perth; School of Biomedical Science, Curtin Health Innovation Research Institute Bioscience, Curtin University, Perth, WA, Australia
| |
Collapse
|
731
|
Abstract
Ten eleven translocation (TET) genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to the onset and maintenance of these malignancies is largely unknown. In this review, Rasmussen and Helin highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.
Collapse
Affiliation(s)
- Kasper Dindler Rasmussen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
732
|
Galli M, Morgan DO. Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development. Dev Cell 2016; 36:344-52. [PMID: 26859356 DOI: 10.1016/j.devcel.2016.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022]
Abstract
The spindle assembly checkpoint (SAC) delays mitotic progression when chromosomes are not properly attached to microtubules of the mitotic spindle. Cells vary widely in the extent to which they delay mitotic progression upon SAC activation. To explore the mechanisms that determine checkpoint strength in different cells, we systematically measured the mitotic delay induced by microtubule disruption at different stages of embryogenesis in Caenorhabditis elegans. Strikingly, we observed a gradual increase in SAC strength after each round of division. Analysis of mutants that alter cell size or ploidy revealed that SAC strength is determined primarily by cell size and the number of kinetochores. These findings provide clear evidence in vivo that the kinetochore-to-cytoplasm ratio determines the strength of the SAC, providing new insights into why cells exhibit such large variations in their SAC responses.
Collapse
Affiliation(s)
- Matilde Galli
- Department of Physiology and Department of Biochemistry and Biophysics, University of California, 600 16(th) Street, San Francisco, CA 94143, USA.
| | - David O Morgan
- Department of Physiology and Department of Biochemistry and Biophysics, University of California, 600 16(th) Street, San Francisco, CA 94143, USA.
| |
Collapse
|
733
|
Hirata K, Foadi J, Evans G, Hasegawa K, Zeldin OB. Structural Biology with Microfocus Beamlines. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-4-431-56030-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
734
|
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y, Puga A. Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells 2016; 34:2825-2839. [DOI: 10.1002/stem.2456] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Matthew de Gannes
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| |
Collapse
|
735
|
Wang B, Pfeiffer MJ, Drexler HCA, Fuellen G, Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J Proteome Res 2016; 15:2407-21. [PMID: 27225728 DOI: 10.1021/acs.jproteome.5b01083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.
Collapse
Affiliation(s)
- Bingyuan Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine , Bioanalytical Mass Spectrometry Facility, Röntgenstraße 20, 48149 Münster, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
736
|
Velazquez MA, Smith CGC, Smyth NR, Osmond C, Fleming TP. Advanced maternal age causes adverse programming of mouse blastocysts leading to altered growth and impaired cardiometabolic health in post-natal life. Hum Reprod 2016; 31:1970-80. [PMID: 27402911 PMCID: PMC4991661 DOI: 10.1093/humrep/dew177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION Does advanced maternal age (AMA) in mice affect cardiometabolic health during post-natal life in offspring derived from an assisted reproduction technology (ART) procedure? SUMMARY ANSWER Offspring derived from blastocysts collected from aged female mice displayed impaired body weight gain, blood pressure, glucose metabolism and organ allometry during post-natal life compared with offspring derived from blastocysts from young females; since all blastocysts were transferred to normalized young mothers, this effect is independent of maternal pregnancy conditions. WHAT IS KNOWN ALREADY Although studies in mice have shown that AMA can affect body weight and behaviour of offspring derived from natural reproduction, data on the effects of AMA on offspring cardiometabolic health during post-natal development are not available. Given the increasing use of ART to alleviate infertility in women of AMA, it is pivotal to develop ART-AMA models addressing the effects of maternal aging on offspring health. STUDY DESIGN, SIZE, DURATION Blastocysts from old (34-39 weeks) or young (8-9 weeks) C57BL/6 females mated with young CBA males (13-15 weeks) were either subjected to differential cell staining (inner cell mass and trophectoderm) or underwent embryo transfer (ET) into young MF1 surrogates (8-9 weeks) to produce young (Young-ET, 9 litters) and old (Old-ET, 10 litters) embryo-derived offspring. Offspring health monitoring was carried out for 30 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS All animals were fed with standard chow. Blood pressure was measured at post-natal Weeks 9, 15 and 21, and at post-natal Week 30 a glucose tolerance test (GTT) was performed. Two days after the GTT mice were killed for organ allometry. Blastocyst cell allocation variables were evaluated by T-test and developmental data were analysed with a multilevel random effects regression model. MAIN RESULTS AND THE ROLE OF CHANCE The total number of cells in blastocysts from aged mice was decreased (P < 0.05) relative to young mice due to a lower number of cells in the trophectoderm (mean ± SEM: 34.5 ± 2.1 versus 29.6 ± 1.0). Weekly body weight did not differ in male offspring, but an increase in body weight from Week 13 onwards was observed in Old-ET females (final body weight at post-natal Week 30: 38.5 ± 0.8 versus 33.4 ± 0.8 g, P < 0.05). Blood pressure was increased in Old-ET offspring at Weeks 9-15 in males (Week 9: 108.5 ± 3.13 versus 100.8 ± 1.5 mmHg, Week 15: 112.9 ± 3.2 versus 103.4 ± 2.1 mmHg) and Week 15 in females (115.9 ± 3.7 versus 102.8 ± 0.7 mmHg; all P < 0.05 versus Young-ET). The GTT results and organ allometry were not affected in male offspring. In contrast, Old-ET females displayed a greater (P < 0.05) peak glucose concentration at 30 min during the GTT (21.1 ± 0.4 versus 17.8 ± 1.16 mmol/l) and their spleen weight (88.2 ± 2.6 ± 105.1 ± 4.6 mg) and several organ:body weight ratios (g/g × 10(3)) were decreased (P < 0.05 versus Young-ET), including the heart (3.7 ± 0.06 versus 4.4 ± 0.08), lungs (4.4 ± 0.1 versus 5.0 ± 0.1), spleen (2.4 ± 0.06 versus 3.2 ± 0.1) and liver (36.4 ± 0.6 versus 39.1 ± 0.9). LIMITATIONS, REASONS FOR CAUTION Results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models that can produce hypotheses for eventual testing in the target species (i.e. humans). WIDER IMPLICATIONS OF THE FINDINGS Our data show that offspring from mouse embryos from aged mothers can develop altered phenotypes during post-natal development compared with embryos from young mothers. Because all embryos were transferred into young mothers for the duration of pregnancy to normalize the maternal in vivo environment, our findings indicate that adverse programming via AMA is already established at the blastocyst stage. Whilst human embryos display increased aneuploidy compared with mouse, we believe our data have implications for women of AMA undergoing assisted reproduction, including surrogacy programmes. STUDY FUNDING/COMPETING INTERESTS This work was supported through the European Union FP7-CP-FP Epihealth programme (278418) to T.P.F. and the BBSRC (BB/F007450/1) to T.P.F. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK School of Agriculture, Food & Rural Development, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - C G C Smith
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - N R Smyth
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - C Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, UK
| | - T P Fleming
- Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
737
|
Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reprod Toxicol 2016; 62:62-70. [DOI: 10.1016/j.reprotox.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
|
738
|
Hart RJ. Physiological Aspects of Female Fertility: Role of the Environment, Modern Lifestyle, and Genetics. Physiol Rev 2016; 96:873-909. [DOI: 10.1152/physrev.00023.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Across the Western World there is an increasing trend to postpone childbearing. Consequently, the negative influence of age on oocyte quality may lead to a difficulty in conceiving for many couples. Furthermore, lifestyle factors may exacerbate a couple's difficulty in conceiving due mainly to the metabolic influence of obesity; however, the negative impacts of low peripheral body fat, excessive exercise, the increasing prevalence of sexually transmitted diseases, and smoking all have significant negative effects on fertility. Other factors that impede conception are the perceived increasing prevalence of the polycystic ovary syndrome, which is further exacerbated by obesity, and the presence of uterine fibroids and endometriosis (a progressive pelvic inflammatory disorder) which are more prevalent in older women. A tendency for an earlier sexual debut and to have more sexual partners has led to an increase in sexually transmitted diseases. In addition, there are several genetic influences that may limit the number of oocytes within the ovary; consequently, by postponing attempts at childbearing, a limitation of oocyte number may become evident, whereas in previous generations with earlier conception this potentially reduced reproductive life span did not manifest in infertility. Environmental influences on reproduction are under increasing scrutiny. Although firm evidence is lacking however, dioxin exposure may be linked to endometriosis, phthalate exposure may influence ovarian reserve, and bisphenol A may interfere with oocyte development and maturation. However, chemotherapy or radiotherapy is recognized to lead to ovarian damage and predispose the woman to ovarian failure.
Collapse
Affiliation(s)
- Roger J. Hart
- School of Women's and Infants Health, University of Western Australia & Fertility Specialists of Western Australia, Subiaco, Perth Western Australia
| |
Collapse
|
739
|
Ghassabian A, Sundaram R, Wylie A, Bell E, Bello SC, Yeung E. Maternal medical conditions during pregnancy and gross motor development up to age 24 months in the Upstate KIDS study. Dev Med Child Neurol 2016; 58:728-34. [PMID: 26502927 PMCID: PMC4846588 DOI: 10.1111/dmcn.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 11/29/2022]
Abstract
AIM We examined whether children of mothers with a medical condition diagnosed before or during pregnancy took longer to achieve gross motor milestones up to age 24 months. METHOD We obtained information on medical conditions using self-reports, birth certificates, and hospital records in 4909 mothers participating in Upstate KIDS, a population-based birth cohort. Mothers reported on their children's motor milestone achievement at 4, 8, 12, 18, and 24 months of age. RESULTS After adjustment for covariates (including pre-pregnancy body mass index), children of mothers with gestational diabetes took longer to achieve sitting without support (hazard ratio [HR]=0.84, 95% confidence interval [CI] 0.75-0.93), walking with assistance (HR=0.88, 95% CI 0.77-0.98), and walking alone (HR=0.88, 95% CI 0.77-0.99) than children of females with no gestational diabetes. Similar findings emerged for maternal diabetes. Gestational hypertension was associated with a longer time to achieve walking with assistance. These associations did not change after adjustment for gestational age or birthweight. Severe hypertensive disorders of pregnancy were related to a longer time to achieve milestones, but not after adjustment for perinatal factors. INTERPRETATION Children exposed to maternal diabetes, gestational or pre-gestational, may take longer to achieve motor milestones than non-exposed children, independent of maternal obesity.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Epidemiology Branch, Division of Intramural Population Health
Research, Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rajeshwari Sundaram
- Biostatistics and Bioinformatics Branch, Division of Intramural
Population Health Research, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Wylie
- Epidemiology Branch, Division of Intramural Population Health
Research, Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erin Bell
- Department of Environmental Health Sciences, University at Albany
School of Public Health, Albany, NY, USA,Department of Epidemiology and Biostatistics, University at
Albany School of Public Health, Albany, NY, USA
| | - Scott C. Bello
- Developmental Pediatrician, CapitalCare Pediatrics-Troy, Troy,
NY, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Intramural Population Health
Research, Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
740
|
Wen M, Peng L, Hu X, Zhao Y, Liu S, Hong Y. Transcriptional quiescence of paternal mtDNA in cyprinid fish embryos. Sci Rep 2016; 6:28571. [PMID: 27334806 PMCID: PMC4917824 DOI: 10.1038/srep28571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial homoplasmy signifies the existence of identical copies of mitochondrial DNA (mtDNA) and is essential for normal development, as heteroplasmy causes abnormal development and diseases in human. Homoplasmy in many organisms is ensured by maternal mtDNA inheritance through either absence of paternal mtDNA delivery or early elimination of paternal mtDNA. However, whether paternal mtDNA is transcribed has remained unknown. Here we report that paternal mtDNA shows late elimination and transcriptional quiescence in cyprinid fishes. Paternal mtDNA was present in zygotes but absent in larvae and adult organs of goldfish and blunt-snout bream, demonstrating paternal mtDNA delivery and elimination for maternal mtDNA inheritance. Surprisingly, paternal mtDNA remained detectable up to the heartbeat stage, suggesting its late elimination leading to embryonic heteroplasmy up to advanced embryogenesis. Most importantly, we never detected the cytb RNA of paternal mtDNA at all stages when paternal mtDNA was easily detectable, which reveals that paternal mtDNA is transcriptionally quiescent and thus excludes its effect on the development of heteroplasmic embryos. Therefore, paternal mtDNA in cyprinids shows late elimination and transcriptional quiescence. Clearly, transcriptional quiescence of paternal mtDNA represents a new mechanism for maternal mtDNA inheritance and provides implications for treating mitochondrion-associated diseases by mitochondrial transfer or replacement.
Collapse
Affiliation(s)
- Ming Wen
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Liangyue Peng
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xinjiang Hu
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuling Zhao
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Ministry of Education Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
741
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
742
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
743
|
Baran V, Brzakova A, Rehak P, Kovarikova V, Solc P. PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. ZYGOTE 2016; 24:338-45. [PMID: 26174739 DOI: 10.1017/s0967199415000246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.
Collapse
Affiliation(s)
- Vladimir Baran
- Institute of Animal Physiology,Slovak Academy of Sciences,Soltesovej 4,040 01 Kosice,Slovakia
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| | - Pavol Rehak
- Institute of Animal Physiology,Slovak Academy of Sciences,Kosice,Slovakia
| | | | - Petr Solc
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| |
Collapse
|
744
|
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med 2016; 43:59-81. [PMID: 27358824 PMCID: PMC4925870 DOI: 10.5653/cerm.2016.43.2.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/06/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.
Collapse
Affiliation(s)
- Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
| | - Neelam Pathak
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Nirmal Kumar Lohiya
- Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University, Sagar, India
- Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR), Bhopal, India
| |
Collapse
|
745
|
Pankaj PP. Efficacy of Spirulina platensis in improvement of the reproductive performance and easing teratogenicity in hyperglycemic albino mice. Indian J Pharmacol 2016; 47:430-5. [PMID: 26285837 PMCID: PMC4527067 DOI: 10.4103/0253-7613.161271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/20/2014] [Accepted: 06/25/2015] [Indexed: 01/24/2023] Open
Abstract
Objectives: The present study evaluates the therapeutic efficacy of cell suspension of Spirulina platensis (SP) on estrous cycle, fetal development and embryopathy in alloxan (AXN) induced hyperglycemic mice. Materials and Methods: Diabetes was induced by intra-peritoneal administration of AXN. Mice with blood glucose level above 200 mg/dl were divided into Group I (control), Group II (diabetic control), Group III (diabetic control mice fed with SP), and Group IV (control mice fed with SP). Litter counts, estrous cycles, percent survival of litter, and gestation length were recorded. Results: In hyperglycemic mice, a significant (P < 0.05) increase in duration of diestrus (14.48%), estrus (84.21%), and metestrus (164.15%) with concomitant decrease in proestrus phase by 26.13% was recorded when compared with control. Reduction in litter count and survival of litter was 68.67% and 88.38%, respectively, whereas gestation length increased to 14.51% day in diabetic mice, but recovery in these parameters was observed (P < 0.05) when subjected to SP treatment. SP resulted in increased fertility rate from 77.5% to 82.5% and dropped off resorption of the fetus to 33.73% while the survival rate of offspring of diabetic mice went up to 88.89% from 83.61%. Conclusions: These findings suggest that SP is effective in improving the reproductive performance and easing teratogenic effects in diabetic mice and hence warrants further detailed dose-dependent studies to understand its mechanism of action.
Collapse
|
746
|
Lendvai Á, Deutsch MJ, Plösch T, Ensenauer R. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development. Am J Physiol Endocrinol Metab 2016; 310:E797-810. [PMID: 26860983 DOI: 10.1152/ajpendo.00372.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development.
Collapse
Affiliation(s)
- Ágnes Lendvai
- Center for Liver, Digestive, and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuel J Deutsch
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Regina Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Pediatric Cardiology, and Neonatology, Heinrich-Heine-University Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
747
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
748
|
Kappil M, Wright RO, Sanders AP. Developmental Origins of Common Disease: Epigenetic Contributions to Obesity. Annu Rev Genomics Hum Genet 2016; 17:177-92. [PMID: 27216778 DOI: 10.1146/annurev-genom-090314-050057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The perinatal period is a window of susceptibility for later life disease. Recent epigenetic findings are beginning to increase our understanding of the molecular mechanisms that may contribute to the programming of obesity. This review summarizes recent evidence that supports the role of epigenetically mediated early life programming in the later onset of obesity. Establishing such links between environmental exposures and modifiable molecular changes ultimately holds promise to inform interventional efforts toward alleviating the environmentally mediated onset of obesity.
Collapse
Affiliation(s)
- Maya Kappil
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Robert O Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alison P Sanders
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
749
|
Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Health Rep 2016; 2:356-66. [PMID: 26362467 PMCID: PMC4623071 DOI: 10.1007/s40572-015-0067-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Male germ cells require multiple epigenetic reprogramming events during their lifespan to achieve reproductive capacity. An emerging body of compelling data demonstrates that environmental exposures can be embodied within the developing male germ cell as epigenetic marks. In turn, these epigenetic marks can impart information at fertilization to affect the trajectory of offspring health and development. While it is recognized that in utero epigenetic reprogramming of male germ cells is a particularly susceptible window to environmental exposures, other such windows exist during germ cell development. The objective of this review is to discuss epigenetic reprogramming events during male germ cell development and to provide supporting evidence from animal and human studies that during specific periods of development, germ cells are susceptible to environmentally induced epigenetic errors. Moving forward, the nascent field of sperm epigenetics research is likely to advance our understanding of paternal environmental determinants of offspring health and development.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Building I 14th Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East. Hancock, Detroit, MI, 48201, USA.
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 149 Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
750
|
Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin Epigenetics 2016; 8:51. [PMID: 27158277 PMCID: PMC4859994 DOI: 10.1186/s13148-016-0217-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. METHODS Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. RESULTS After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. CONCLUSIONS Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and overweight/obese men. Together with our earlier reports on paternal obesity and epigenetic shifts in the offspring, our studies set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.
Collapse
Affiliation(s)
- Adelheid Soubry
- />Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven University, 3000 Leuven, Belgium
| | - Lisa Guo
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
| | - Zhiqing Huang
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
| | - Cathrine Hoyo
- />Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27633 USA
| | - Stephanie Romanus
- />Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven University, 3000 Leuven, Belgium
| | - Thomas Price
- />Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Fertility, Duke University Medical Center, Durham, NC 27713 USA
| | - Susan K. Murphy
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
- />Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|