701
|
Jantschko W, Furtmüller PG, Zederbauer M, Jakopitsch C, Obinger C. Kinetics of oxygen binding to ferrous myeloperoxidase. Arch Biochem Biophys 2004; 426:91-7. [PMID: 15130787 DOI: 10.1016/j.abb.2004.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/18/2004] [Indexed: 11/28/2022]
Abstract
Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s(-1) at pH 8 versus 1.4 s(-1) at pH 5). At pH 7.0 and 25 degrees C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1+/-0.1) x 10(4)M(-1)s(-1). The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173+/-12)microM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.
Collapse
Affiliation(s)
- Walter Jantschko
- Metalloprotein Research Group, Division of Biochemistry, Department of Chemistry, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
702
|
Hirche TO, Crouch EC, Espinola M, Brokelman TJ, Mecham RP, DeSilva N, Cooley J, Remold-O'Donnell E, Belaaouaj A. Neutrophil Serine Proteinases Inactivate Surfactant Protein D by Cleaving within a Conserved Subregion of the Carbohydrate Recognition Domain. J Biol Chem 2004; 279:27688-98. [PMID: 15078883 DOI: 10.1074/jbc.m402936200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D) plays important roles in innate immunity including the defense against bacteria, fungi, and respiratory viruses. Because SP-D specifically interacts with neutrophils that infiltrate the lung in response to acute inflammation and infection, we examined the hypothesis that the neutrophil-derived serine proteinases (NSPs): neutrophil elastase, proteinase-3, and cathepsin G degrade SP-D. All three human NSPs specifically cleaved recombinant rat and natural human SP-D dodecamers in a time- and dose-dependent manner, which was reciprocally dependent on calcium concentration. The NSPs generated similar, relatively stable, disulfide cross-linked immunoreactive fragments of approximately 35 kDa (reduced), and sequencing of a major catheptic fragment definitively localized the major sites of cleavage to a highly conserved subregion of the carbohydrate recognition domain. Cleavage markedly reduced the ability of SP-D to promote bacterial aggregation and to bind to yeast mannan in vitro. Incubation of SP-D with isolated murine neutrophils led to the generation of similar fragments, and cleavage was inhibited with synthetic and natural serine proteinase inhibitors. In addition, neutrophils genetically deficient in neutrophil elastase and/or cathepsin G were impaired in their ability to degrade SP-D. Using a mouse model of acute bacterial pneumonia, we observed the accumulation of SP-D at sites of neutrophil infiltration coinciding with the appearance of approximately 35-kDa SP-D fragments in bronchoalveolar lavage fluids. Together, our data suggest that neutrophil-derived serine proteinases cleave SP-D at sites of inflammation with potential deleterious effects on its biological functions.
Collapse
Affiliation(s)
- Tim O Hirche
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
703
|
Björkqvist M, Jurstrand M, Bodin L, Fredlund H, Schollin J. Defective neutrophil oxidative burst in preterm newborns on exposure to coagulase-negative staphylococci. Pediatr Res 2004; 55:966-71. [PMID: 15155865 DOI: 10.1203/01.pdr.0000127018.44938.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neutrophil oxidative burst is a product of the regulated assembly of the multicomponent oxidase enzyme. Our aim was to compare the oxidative burst in term (n = 10) and preterm newborns <31 wk gestational age (n = 10) after stimulation with coagulase-negative staphylococci in vitro. Strains of Streptococcus epidermidis with different invasive and slime-producing properties, one strain of S. haemolyticus, and one strain of group B-streptococcus were investigated. A whole-blood flow cytometric assay using the oxidation of hydroethidine to ethidium bromide was used. The oxidative activity in unstimulated neutrophil granulocytes [polymorphonuclear leukocytes (PMNLs)] was similar in term and preterm newborns, but the preterm newborns showed a significantly lower capacity to up-regulate the oxidative burst intensity after bacterial stimulation (p = 0.004). In the term but not in the preterm group, the oxidative burst intensity after bacterial stimulation correlated with the baseline oxidative burst intensity. After bacterial stimulation, there was a trend toward a greater percentage of activated neutrophils in the term group than in the preterm group, but the difference was less pronounced than that in oxidative burst intensity. Significant differences in oxidative burst response to different bacterial strains were observed (p < 0.001), but the differences could not be correlated exclusively to invasive capacity or slime-producing properties. It is concluded that the baseline oxidative activity is similar in term and preterm PMNLs but that preterm PMNLs have a decreased capacity to increase the oxidative burst in response to bacterial stimulation.
Collapse
Affiliation(s)
- Maria Björkqvist
- Department of Pediatrics, Orebro University Hospital, S-701 85 Orebro, Sweden.
| | | | | | | | | |
Collapse
|
704
|
DeCoursey TE. During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Sci Signal 2004; 2004:pe21. [PMID: 15150421 DOI: 10.1126/stke.2332004pe21] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase enzyme complex, a crucial component of innate immunity, produces superoxide anion (O2-), which is a precursor to many reactive oxygen species. NADPH oxidase produces O2- by transferring electrons from intracellular NADPH across the membrane to extracellular (or phagosomal) oxygen and is thus electrogenic. It is widely believed that electroneutrality is preserved by proton flux through voltage-gated proton channels. A series of recent papers have challenged several key aspects of this view of the "respiratory burst." The most recent study solidifies the proposal that O2- and other reactive oxygen species produced by phagocytes are not toxic to microbes under physiological conditions. Further, an essential role for high-conductance, Ca2+-activated K+ (maxi-K+) channels in microbe killing is proposed. Finally, the results cast doubt on the widely held view that H+ efflux through voltage-gated proton channels (i) is the main mechanism of charge compensation, and (ii) is essential to continuous O2- production by the NADPH oxidase. My analysis of the new data and of a large body of data in the literature indicates that the proposed role of maxi-K+ channels in the respiratory burst is not yet credibly established. H+ efflux through proton channels thus remains the most viable mechanism for charge compensation and continuous O2- production. The important question of the toxicity of reactive oxygen species in phagocytes and in other cells, which has long been simply taken for granted, is a widespread assumption that deserves critical study.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
705
|
Niemann CU, Cowland JB, Klausen P, Askaa J, Calafat J, Borregaard N. Localization of serglycin in human neutrophil granulocytes and their precursors. J Leukoc Biol 2004; 76:406-15. [PMID: 15136585 DOI: 10.1189/jlb.1003502] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Serglycin is a major proteoglycan of hematopoietic cells. It is thought to play a role in the packaging of granule proteins in human neutrophil granulocytes. The presence of serglycin in myeloid cells has been demonstrated only at the transcriptional level. We generated a polyclonal antibody against recombinant human serglycin. Here, we show the localization of serglycin in humans during neutrophil differentiation. Immunocytochemistry revealed serglycin immunoreactivity in the Golgi area of promyelocytes (PM) and myelocytes (MC), as well as in a few band cells and mature neutrophil granulocytes. Granular staining was detected near the Golgi apparatus in some of the PM, and the major part of the cytoplasm was negative. Immunoelectron microscopy showed serglycin immunoreactivity located to the Golgi apparatus and a few immature granules of PM and MC. The decreasing level of serglycin protein during myeloid differentiation coincided with a decrease of mRNA expression, as evaluated by Northern blotting. Subcellular fractions of neutrophil granulocytes were obtained. Serglycin immunoreactivity was detected in the fraction containing Golgi apparatus, plasma membrane, and secretory vesicles by Western blotting and enzyme-linked immunosorbent assay. Serglycin was not detected in subcellular fractions containing primary, secondary, or tertiary granules. Together, these findings indicate that serglycin is located to the Golgi apparatus and a few immature granules during neutrophil differentiation. This is consistent with a function for serglycin in formation of granules in neutrophil granulocytes. Our findings contrast the view that native serglycin is present in mature granules and plays a role in packaging and regulating the activity of proteolytic enzymes there.
Collapse
Affiliation(s)
- Carsten Utoft Niemann
- Rigshospitalet, Department of Haematology, Granulocytlaboratoriet, Building 9322, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
706
|
Sadikot RT, Zeng H, Yull FE, Li B, Cheng DS, Kernodle DS, Jansen ED, Contag CH, Segal BH, Holland SM, Blackwell TS, Christman JW. p47phox deficiency impairs NF-kappa B activation and host defense in Pseudomonas pneumonia. THE JOURNAL OF IMMUNOLOGY 2004; 172:1801-8. [PMID: 14734763 DOI: 10.4049/jimmunol.172.3.1801] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the role of redox signaling generated by NADPH oxidase in activation of NF-kappaB and host defense against Pseudomonas aeruginosa pneumonia. Using mice with an NF-kappaB-driven luciferase reporter construct (HIV-LTR/luciferase (HLL)), we found that intratracheal administration of P. aeruginosa resulted in a dose-dependent neutrophilic influx and activation of NF-kappaB. To determine the effects of reactive oxygen species generated by the NADPH oxidase system on activation of NF-kappaB, we crossbred mice deficient in p47(phox) with NF-kappaB reporter mice (p47(phox-/-)HLL). These p47(phox-/-)HLL mice were unable to activate NF-kappaB to the same degree as HLL mice with intact NADPH oxidase following P. aeruginosa infection. In addition, lung TNF-alpha levels were significantly lower in p47(phox-/-)HLL mice compared with HLL mice. Bacterial clearance was impaired in p47(phox-/-)HLL mice. In vitro studies using bone marrow-derived macrophages showed that Toll-like receptor 4 was necessary for NF-kappaB activation following treatment with P. aeruginosa. Additional studies with macrophages from p47(phox-/-) mice confirmed that redox signaling was necessary for maximal Toll-like receptor 4-dependent NF-kappaB activation in this model. These data indicate that the NADPH oxidase-dependent respiratory burst stimulated by Pseudomonas infection contributes to host defense by modulating redox-dependent signaling through the NF-kappaB pathway.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dose-Response Relationship, Immunologic
- Immunity, Innate/genetics
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- NADPH Oxidases/deficiency
- NADPH Oxidases/genetics
- NADPH Oxidases/physiology
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/metabolism
- Pneumonia, Bacterial/microbiology
- Pseudomonas Infections/genetics
- Pseudomonas Infections/immunology
- Pseudomonas Infections/metabolism
- Pseudomonas Infections/microbiology
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptors
Collapse
Affiliation(s)
- Ruxana T Sadikot
- Department of Veterans Affairs and Division of Allergy, Pulmonary and Critical Care, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
707
|
Wolach B, Ashkenazi M, Grossmann R, Gavrieli R, Friedman Z, Bashan N, Roos D. Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel. Pediatr Res 2004; 55:807-13. [PMID: 14973180 DOI: 10.1203/01.pdr.0000120680.47846.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute hemolytic anemia associated with red blood cell (RBC) glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly encountered in the Mediterranean basin. Nevertheless, concomitant clinical evidence of white blood cell G6PD deficiency is extremely rare in Israel. This study sought to assess simultaneously levels of G6PD activity in polymorphonuclear leukocytes (PMN) and in red blood cells (RBC) of patients with G6PD deficiency, including full-term newborn infants. In PMN, the correlation between G6PD activity, hexose monophosphate shunt activity, and superoxide anion release was evaluated. In G6PD-deficient patients, a parallel and significantly decreased G6PD activity was found in neutrophils (range of activity 0-4.5 IU/10(6) PMN) and erythrocytes (range of activity 0-1.8 IU/g Hb), compared with healthy controls (5-23 IU/10(6) PMN and 2.4-6.4 IU/g Hb, respectively). A positive correlation was found in PMN between the levels of G6PD activity, hexose monophosphate (HMP) shunt activity, and superoxide anion release (p < 0.01). Nevertheless, all patients' bactericidal activity of neutrophils remained in the range of healthy controls. Although many episodes of acute hemolytic anemia were recorded, no increased incidence of pyogenic infections was observed in any group of patients investigated. Neutrophil and erythrocyte G6PD levels were re-assessed in some of these patients several times a day. A significant diurnal fluctuation of the enzyme activity was found. It is speculated that the patients produce fluctuating daily quantities of NADPH, sufficient to initiate the neutrophil respiratory burst and to achieve normal bactericidal activity, necessary to prevent the development of microbial infections.
Collapse
Affiliation(s)
- Baruch Wolach
- Deparment of Pediatrics, Central Laboratories and the Laboratory for Leukocyte Function, Meir General Hospital, Sapir Medical Center, Kfar Saba, The Sackler School of Medicine, Tel Aviv University, Israel.
| | | | | | | | | | | | | |
Collapse
|
708
|
Nilsdotter-Augustinsson A, Wilsson A, Larsson J, Stendahl O, Ohman L, Lundqvist-Gustafsson H. Staphylococcus aureus, but not Staphylococcus epidermidis, modulates the oxidative response and induces apoptosis in human neutrophils. APMIS 2004; 112:109-18. [PMID: 15056227 DOI: 10.1111/j.1600-0463.2004.apm1120205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
S. epidermidis is the most common isolate in foreign body infections. The aim of this study was to understand why S. epidermidis causes silent biomaterial infections. In view of the divergent inflammatory responses S. epidermidis and S. aureus cause in patients, we analyzed how they differ when interacting with human neutrophils. Neutrophils interacting with S. epidermidis strains isolated either from granulation tissue covering infected hip prostheses or from normal skin flora were tested by measuring the oxidative response as chemiluminescence and apoptosis as annexin V binding. Different S. aureus strains were tested in parallel. All S. epidermidis tested were unable to modulate the oxidative reaction in response to formyl-methionyl-leucyl-phenylalanine (fMLP) and did not provoke, but rather inhibited, apoptosis. In contrast, some S. aureus strains enhanced the oxidative reaction, and this priming capacity was linked to p38-mitogen-activated-protein-kinase (p38-MAPK) activation and induction of apoptosis. Our results may explain why S. epidermidis is a weak inducer of inflammation compared to S. aureus, and therefore responsible for the indolent and chronic course of S. epidermidis biomaterial infections.
Collapse
Affiliation(s)
- Asa Nilsdotter-Augustinsson
- Division of Infectious Diseases, Department of Molecular and Clinical Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
709
|
Brown GE, Stewart MQ, Bissonnette SA, Elia AEH, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 2004; 279:27059-68. [PMID: 15102856 DOI: 10.1074/jbc.m314258200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to certain cytokines and inflammatory mediators, the activity of the neutrophil NADPH oxidase enzyme is primed for enhanced superoxide production when the cells receive a subsequent oxidase-activating stimulus. The relative role of p38 MAPK in the priming and activation processes is incompletely understood. We have developed a 2-step assay that allows the relative contributions of p38 MAPK activity in priming to be distinguished from those involved in oxidase activation. Using this assay, together with in vitro kinase assays and immunochemical studies, we report that p38 MAPK plays a critical role in TNFalpha priming of the human and porcine NADPH oxidase for superoxide production in response to complement-opsonized zymosan (OpZ), but little, if any, role in neutrophil priming by platelet-activating factor (PAF) for OpZ-dependent responses. The OpZ-mediated activation process per se is independent of p38 MAPK activity, in contrast to oxidase activation by fMLP, where 70% of the response is eliminated by p38 MAPK inhibitors regardless of the priming agent. We further report that incubation of neutrophils with TNFalpha results in the p38 MAPK-dependent phosphorylation of a subpopulation of p47(phox) and p67(phox) molecules, whereas PAF priming results in phosphorylation only of p67(phox). Despite these phosphorylations, TNFalpha priming does not result in significant association of either of these oxidase subunits with neutrophil membranes, demonstrating that the molecular basis for priming does not appear to involve preassembly of the NADPH oxidase holoenzyme/cytochrome complex prior to oxidase activation.
Collapse
Affiliation(s)
- Glenn E Brown
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02130, USA
| | | | | | | | | | | |
Collapse
|
710
|
Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. THE JOURNAL OF IMMUNOLOGY 2004; 172:989-99. [PMID: 14707072 DOI: 10.4049/jimmunol.172.2.989] [Citation(s) in RCA: 625] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor growth is associated with the accumulation of immature myeloid cells (ImC), which in mice are characterized by the expression of Gr-1 and CD11b markers. These cells suppress Ag-specific CD8+ T cells via direct cell-cell contact. However, the mechanism of immunosuppressive activity of tumor-derived ImC remains unclear. In this study we analyzed the function of ImC isolated from tumor-free control and tumor-bearing mice. Only ImC isolated from tumor-bearing mice, not those from their control counterparts, were able to inhibit the Ag-specific response of CD8+ T cells. ImC obtained from tumor-bearing mice had significantly higher levels of reactive oxygen species (ROS) than ImC isolated from tumor-free animals. Accumulation of H2O2, but not superoxide or NO, was a major contributor to this increased pool of ROS. It appears that arginase activity played an important role in H2O2 accumulation in these cells. Inhibition of ROS in ImC completely abrogated the inhibitory effect of these cells on T cells, indicating that ImC generated in tumor-bearing hosts suppress the CD8+ T cell response via production of ROS. Interaction of ImC with Ag-specific T cells in the presence of specific Ags resulted in a significant increase in ROS production compared with control Ags. That increase was independent of IFN-gamma production by T cells, but was mediated by integrins CD11b, CD18, and CD29. Blocking of these integrins with specific Abs abrogated ROS production and ImC-mediated suppression of CD8+ T cell responses. This study demonstrates a new mechanism of Ag-specific T cell inhibition mediated by ROS produced by ImCs in cancer.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/physiology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Cell Line, Tumor
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/physiology
- Female
- Granulocytes
- Immunosuppression Therapy
- Isoantigens/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myeloid Cells/enzymology
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Transplantation
- Reactive Oxygen Species/metabolism
- Sarcoma, Experimental/enzymology
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/pathology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Sergei Kusmartsev
- H. Lee Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
711
|
Rosenberger CM, Gallo RL, Finlay BB. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 2004; 101:2422-7. [PMID: 14983025 PMCID: PMC356966 DOI: 10.1073/pnas.0304455101] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides have established an important role in the defense against extracellular infections, but the expression of cationic peptides within macrophages as an antibacterial effector mechanism against intracellular pathogens has not been demonstrated. Macrophage expression of the murine cathelicidin-related antimicrobial peptide (CRAMP) was increased after infection by the intracellular pathogen Salmonella typhimurium, and this increase required reactive oxygen intermediates. By using CRAMP-deficient mice or synthetic CRAMP peptide, we found that CRAMP impaired Salmonella cell division in vivo and in vitro, resulting in long filamentous bacteria. This impaired bacterial cell division also depended on intracellular elastase-like serine protease activity, which can proteolytically activate cathelicidins. Macrophage serine protease activity induced filamentation and enhanced the activity of CRAMP in vitro. A peptide-sensitive Salmonella mutant showed enhanced survival within macrophages derived from CRAMP-deficient mice, indicating that Salmonella can sense and respond to cationic peptides in the intracellular environment. Although cationic peptides have been hypothesized to have activity against pathogens within macrophages, this work provides experimental evidence that the antimicrobial arsenal of macrophages includes cathelicidins. These results show that intracellular reactive oxygen intermediates and proteases regulate macrophage CRAMP expression and activity to impair the replication of an intracellular bacterial pathogen, and they highlight the cooperativity between macrophage antibacterial effectors.
Collapse
Affiliation(s)
- Carrie M Rosenberger
- Department of Microbiology and Immunology and Biotechnology Laboratory, University of British Columbia, 237-6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
712
|
Abstract
Primary immunodeficiencies (PIDs) primarily affecting the phagocytes (neutrophils and macrophages) typically predispose patients to infections. However, one of the most clinically important features of these disorders is their relatively narrow spectrum of disease-specific infections. Invasive aspergillosis in the absence of immune suppression is essentially seen only in chronic granulomatous disease; disseminated nontuberculous mycobacterial infection in the absence of immune suppression is seen predominantly in patients with defects of the IFN-gamma/IL-12 axis. In contrast, infections that are relatively common in some of the PIDs affecting the lymphoid system (Pneumocystis jiroveci and Streptococcus pneumoniae) are extremely uncommon in PIDs affecting phagocytes. Therefore careful attention to the microbiology laboratory early in the course of evaluation of a patient with recurrent infections and suspected of having a PID will help steer the workup in the appropriate direction. Over the last few years, there have been major advances in the molecular and cellular understandings of PIDs affecting phagocytes. As the field of PIDs becomes broader and more clinical and molecular definition becomes available, it is increasingly important to be able to identify likely pathways for investigation early in the evaluation. Here we have updated some of the more rapidly evolving aspects of PIDs affecting phagocytes, with a special emphasis on the associated microbiology.
Collapse
|
713
|
Thomas RM, Schmedt C, Novelli M, Choi BK, Skok J, Tarakhovsky A, Roes J. C-terminal SRC kinase controls acute inflammation and granulocyte adhesion. Immunity 2004; 20:181-91. [PMID: 14975240 DOI: 10.1016/s1074-7613(04)00023-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/22/2003] [Accepted: 01/07/2004] [Indexed: 12/31/2022]
Abstract
To establish whether the widely expressed regulator of Src family kinases Csk contributes to the control of acute inflammation in vivo, we inactivated csk in granulocytes by conditional mutagenesis (Cre/loxP). Mutant mice (Csk-GEcre) developed acute multifocal inflammation in skin and lung. Animals were protected from the disease in a microbiologically controlled environment, but remained hypersensitive to LPS-induced shock. Csk-deficient granulocytes showed enhanced spontaneous and ligand-induced degranulation with hyperinduction of integrins. This hyperresponsiveness was associated with hyperadhesion and impaired migratory responses in vitro. Hyperphosphorylation of key signaling proteins such as Syk and Paxillin in mutant granulocytes further supported breakdown of the activation threshold set by Csk. By enforcing the need for ligand engagement Csk thus prevents premature granulocyte recruitment while supporting the motility of stimulated cells through negative regulation of cell adhesion.
Collapse
Affiliation(s)
- Richard M Thomas
- University College London, Department of Immunology and Molecular Pathology, The Windeyer Institute of Medical Sciences, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
714
|
Mallen-St Clair J, Pham CTN, Villalta SA, Caughey GH, Wolters PJ. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004; 113:628-34. [PMID: 14966572 PMCID: PMC338261 DOI: 10.1172/jci19062] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a common, life-threatening disease for which there is little treatment. The cysteine protease dipeptidyl peptidase I (DPPI) activates granule-associated serine proteases, several of which play important roles in host responses to bacterial infection. To examine DPPI's role in sepsis, we compared DPPI(-/-) and DPPI(+/+) mice using the cecal ligation and puncture (CLP) model of septic peritonitis, finding that DPPI(-/-) mice are far more likely to survive sepsis. Outcomes of CLP in mice lacking mast cell DPPI reveal that the absence of DPPI in mast cells, rather than in other cell types, is responsible for the survival advantage. Among several cytokines surveyed in peritoneal fluid and serum, IL-6 is highly and differentially expressed in DPPI(-/-) mice compared with DPPI(+/+) mice. Remarkably, deleting IL-6 expression in DPPI(-/-) mice eliminates the survival advantage. The increase in IL-6 in septic DPPI(-/-) mice, which appears to protect these mice from death, may be related to reduced DPPI-mediated activation of mast cell tryptase and other peptidases, which we show cleave IL-6 in vitro. These results indicate that mast cell DPPI harms the septic host and that DPPI is a novel potential therapeutic target for treatment of sepsis.
Collapse
Affiliation(s)
- Jon Mallen-St Clair
- Department of Medicine and The Cardiovascular Research Institute, University of California, San Francisco, California 94143-0911, USA
| | | | | | | | | |
Collapse
|
715
|
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004; 303:1532-5. [PMID: 15001782 DOI: 10.1126/science.1092385] [Citation(s) in RCA: 6975] [Impact Index Per Article: 332.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
Collapse
Affiliation(s)
- Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
716
|
Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 2004; 427:853-8. [PMID: 14985765 PMCID: PMC2099462 DOI: 10.1038/nature02356] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 01/20/2004] [Indexed: 12/21/2022]
Abstract
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.
Collapse
Affiliation(s)
- Jatinder Ahluwalia
- Department of Medicine University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
717
|
van Bruggen R, Anthony E, Fernandez-Borja M, Roos D. Continuous translocation of Rac2 and the NADPH oxidase component p67(phox) during phagocytosis. J Biol Chem 2004; 279:9097-102. [PMID: 14623873 DOI: 10.1074/jbc.m309284200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the translocation of the NADPH oxidase components p67(phox) and Rac2 was studied during phagocytosis in living cells. For this purpose, green fluorescent protein (GFP)-tagged versions of these proteins were expressed in the myeloid cell line PLB-985. First, the correct localization of p67GFP and GFP-Rac2 was shown during phagocytosis of serum-treated zymosan by wild-type PLB-985 cells and PLB-985 X-CGD (chronic granulomatous disease) cells, which lack expression of flavocytochrome b(558). Subsequently, these constructs were used for fluorescence recovery after photobleaching studies to elucidate the turnover of these proteins on the phagosomal membrane. The turnover of p67GFP and GFP-Rac2 proved to be very high, indicating a continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic, free p67GFP and GFP-Rac2. Furthermore, the importance of an intact actin cytoskeleton for correct localization of these proteins was investigated by disrupting the actin cytoskeleton with cytochalasin B. However, cytochalasin B treatment of PLB-985 cells did not alter the localization of p67GFP and GFP-Rac2 once phagocytosis was initiated. In addition, the continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic p67GFP and GFP-Rac2 was still intact in cytochalasin B-treated cells, indicating that the translocation of these proteins does not depend on a rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
718
|
Affiliation(s)
- J David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University Medical School, Atlanta, Georgia 30322, USA.
| |
Collapse
|
719
|
Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L. The Contribution of the Toll-Like/IL-1 Receptor Superfamily to Innate and Adaptive Immunity to Fungal Pathogens In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 172:3059-69. [PMID: 14978111 DOI: 10.4049/jimmunol.172.5.3059] [Citation(s) in RCA: 410] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C. albicans and A. fumigatus in vivo. It was found that 1) the MyD88-dependent pathway is required for resistance to both fungi; 2) the involvement of the MyD88 adapter may occur through signaling by distinct members of the IL-1R/TLR superfamily, including IL-1R, TLR2, TLR4, and TLR9, with the proportional role of the individual receptors varying depending on fungal species, fungal morphotypes, and route of infection; 3) individual TLRs and IL-1R activate specialized antifungal effector functions on neutrophils, which correlates with susceptibility to infection; and 4) MyD88-dependent signaling on dendritic cells is crucial for priming antifungal Th1 responses. Thus, the finding that the innate and adaptive immunities to C. albicans and A. fumigatus require the coordinated action of distinct members of the IL-1R/TLR superfamily acting through MyD88 makes TLR manipulation amenable to the induction of host resistance to fungi.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antifungal Agents/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Aspergillosis/genetics
- Aspergillosis/immunology
- Aspergillus fumigatus/immunology
- Candida albicans/immunology
- Candidiasis/genetics
- Candidiasis/immunology
- Female
- Genetic Predisposition to Disease
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Silvia Bellocchio
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
720
|
Mallen–St. Clair J, Pham CT, Villalta SA, Caughey GH, Wolters PJ. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004. [DOI: 10.1172/jci200419062] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
721
|
Freudenstein-Dan A, Gold D, Fishelson Z. Killing of schistosomes by elastase and hydrogen peroxide: implications for leukocyte-mediated schistosome killing. J Parasitol 2004; 89:1129-35. [PMID: 14740899 DOI: 10.1645/ge-96r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Activated leukocytes participate in immunity to infection by the parasitic blood fluke Schistosoma mansoni. They attach to the surface of schistosomes and secrete schistosomicidal substances. Cationic proteins, hydrolytic enzymes, and oxidants, produced by the leukocytes, have been implicated in the damage to the schistosomes. To examine the possible involvement of elastase in the killing of schistosomes by leukocytes, young and adult stages of S. mansoni were treated in vitro with pancreatic elastase (PE) and neutrophil elastase (NE). Schistosomula, lung-stage schistosomula (LSS), and adult worms (AW) have been found to be sensitive to both PE and NE. Male AW were more sensitive to PE than female AW. The enzymatic activity of elastase is essential for its toxic effect because heat-inactivation and specific elastase inhibitors prevented elastase-mediated schistosome killing. Thus, alpha1-antitrypsin and the chloromethyl ketone (CMK)-derived tetrapeptides Ala-Ala-Pro-Val-CMK and Ala-Ala-Pro-Ala-CMK but not Ala-Ala-Pro-Phe-CMK and Ala-Ala-Pro-Leu-CMK blocked PE caseinolytic and schistosomulicidal activities. As shown previously, schistosomes are also efficiently killed by hydrogen peroxide. LSS appear to be more resistant than AW and early-stage schistosomula to the lytic effects of hydrogen peroxide. Cotreatment experiments with both elastase and hydrogen peroxide indicated that they exert an additive toxic effect and that hydrogen peroxide sensitizes schistosomula to the toxic effect of elastase but not vice versa. These results demonstrate, for the first time, that elastases may be toxic molecules used by neutrophils, eosinophils, and macrophages to kill various developmental stages of S. mansoni.
Collapse
Affiliation(s)
- Ariela Freudenstein-Dan
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
722
|
Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia Promote the Death of Developing Purkinje Cells. Neuron 2004; 41:535-47. [PMID: 14980203 DOI: 10.1016/s0896-6273(04)00069-8] [Citation(s) in RCA: 553] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 10/13/2003] [Accepted: 01/20/2004] [Indexed: 11/17/2022]
Abstract
The loss of neuronal cells, a prominent event in the development of the nervous system, involves regulated triggering of programmed cell death, followed by efficient removal of cell corpses. Professional phagocytes, such as microglia, contribute to the elimination of dead cells. Here we provide evidence that, in addition to their phagocytic activity, microglia promote the death of developing neurons engaged in synaptogenesis. In the developing mouse cerebellum, Purkinje cells die, and 60% of these neurons that already expressed activated caspase-3 were engulfed or contacted by spreading processes emitted by microglial cells. Apoptosis of Purkinje cells in cerebellar slices was strongly reduced by selective elimination of microglia. Superoxide ions produced by microglial respiratory bursts played a major role in this Purkinje cell death. Our study illustrates a mammalian form of engulfment-promoted cell death that links the execution of neuron death to the scavenging of dead cells.
Collapse
Affiliation(s)
- José Luis Marín-Teva
- Biologie des Interactions Neurone-glie, INSERM U.495, IFR 70, UPMC, 47 Bd de l'hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
723
|
Steele C, Marrero L, Swain S, Harmsen AG, Zheng M, Brown GD, Gordon S, Shellito JE, Kolls JK. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. ACTA ACUST UNITED AC 2004; 198:1677-88. [PMID: 14657220 PMCID: PMC2194130 DOI: 10.1084/jem.20030932] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Innate immune mechanisms against Pneumocystis carinii, a frequent cause of pneumonia in immunocompromised individuals, are not well understood. Using both real time polymerase chain reaction as a measure of organism viability and fluorescent deconvolution microscopy, we show that nonopsonic phagocytosis of P. carinii by alveolar macrophages is mediated by the Dectin-1 β-glucan receptor and that the subsequent generation of hydrogen peroxide is involved in alveolar macrophage–mediated killing of P. carinii. The macrophage Dectin-1 β-glucan receptor colocalized with the P. carinii cyst wall. However, blockage of Dectin-1 with high concentrations of anti–Dectin-1 antibody inhibited binding and concomitant killing of P. carinii by alveolar macrophages. Furthermore, RAW 264.7 macrophages overexpressing Dectin-1 bound P. carinii at a higher level than control RAW cells. In the presence of Dectin-1 blockage, killing of opsonized P. carinii could be restored through FcγRII/III receptors. Opsonized P. carinii could also be efficiently killed in the presence of FcγRII/III receptor blockage through Dectin-1–mediated phagocytosis. We further show that Dectin-1 is required for P. carinii–induced macrophage inflammatory protein 2 production by alveolar macrophages. Taken together, these results show that nonopsonic phagocytosis and subsequent killing of P. carinii by alveolar macrophages is dependent upon recognition by the Dectin-1 β-glucan receptor.
Collapse
Affiliation(s)
- Chad Steele
- Department of Pediatrics, Division of Pulmonology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
724
|
Sheth PD, Pedersen J, Walls AF, McEuen AR. Inhibition of dipeptidyl peptidase I in the human mast cell line HMC-1: blocked activation of tryptase, but not of the predominant chymotryptic activity. Biochem Pharmacol 2004; 66:2251-62. [PMID: 14609749 DOI: 10.1016/j.bcp.2003.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mast cell proteases tryptase and chymase are synthesised as inactive precursors, but are stored and secreted as active enzymes. The cysteinyl protease dipeptidyl peptidase I (DPPI, cathepsin C) can activate the corresponding proenzymes in cell-free systems, but it is unknown whether it fulfils this role within the intact cell. We, therefore, tested the effect the DPPI-selective inhibitor Gly-Phe diazomethyl ketone (Gly-Phe-CHN(2)) on the tryptic and chymotryptic activity of the human mast cell-like cell line, HMC-1, and monitored any changes in the amount of immunodetectable enzymes by flow cytometry. Culture in Gly-Phe-CHN(2) produced a significant decrease in tryptase activity in cell lysates within 24hr and further decreases during continued culturing to 216 hr with periodic replenishment of Gly-Phe-CHN(2)-containing media. Flow cytometry showed no significant change in the levels of immunoreactive tryptase. In contrast, chymotryptic activity in treated cells did not differ significantly from untreated cells at any time point. Treatment of 216 hr cell lysates with DPPI revealed significant amounts of activatable protryptase in Gly-Phe-CHN(2)-treated cells, but not in controls, whereas activatable prochymotryptic activity was found in both treated and control cells. Chymase was detected immunologically, though small differences in substrate specificity and molecular mass were observed. These results strongly suggest that DPPI plays a role in the activation of tryptase, but not of the predominant chymotryptic activity of HMC-1 cells. As inhibitors of tryptase have proven efficacious in models of allergic disease, these results also indicate that inhibitors of DPPI might provide an additional point of therapeutic control.
Collapse
Affiliation(s)
- Parimal D Sheth
- Immunopharmacology Group, Division of Infection, Immunity and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
725
|
DeCoursey TE. Interactions between NADPH oxidase and voltage-gated proton channels: why electron transport depends on proton transport. FEBS Lett 2004; 555:57-61. [PMID: 14630319 DOI: 10.1016/s0014-5793(03)01103-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Leukocytes kill microbes by producing reactive oxygen species, using a multi-component enzyme complex, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Electrons pass from intracellular NADPH through a redox chain within the enzyme, to reduce extracellular O2 to O2-. Electron flux is electrogenic, and rapidly depolarizes the membrane potential. Excessive depolarization can turn off electron transport by self-inhibition, but this is prevented by proton flux that balances the electron flux. Although the membrane potential depolarizes by approximately 100 mV during the respiratory burst (NADPH oxidase activity), NADPH oxidase activity is independent of voltage in this range, which permits optimal function and prevents self-inhibition.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
726
|
Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. PROGRESS IN BRAIN RESEARCH 2004; 146:41-62. [PMID: 14699955 DOI: 10.1016/s0079-6123(03)46003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of p75 neurotrophin receptor (p75NTR) in mediating cell death is now well characterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75NTR in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-xL), caspase-3, c-jun kinase, and p53 in the p75NTR cell death pathway is discussed and regulatory roles for the p75NTR ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.
Collapse
Affiliation(s)
- E J Coulson
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia.
| | | | | | | | | | | |
Collapse
|
727
|
Abstract
Cathelicidins are small cationic peptides that possess broad-spectrum antimicrobial activity. These gene-encoded 'natural antibiotics' are produced by several mammalian species on epithelial surfaces and within the granules of phagocytic cells. Since their discovery over a decade ago, cathelicidins have been speculated to function within the innate immune system, contributing to a first line of host defense against an array of microorganisms. Consequently, cathelicidins have captured the interest of basic investigators in the diverse fields of cell biology, immunology, protein chemistry and microbiology. A burgeoning body of experimental research now appears to confirm and extend the biological significance of these fascinating molecules. This article reviews the latest advances in the knowledge of cathelicidin antimicrobial peptides, with particular emphasis on their role in defense against invasive bacterial infection and associations with human disease conditions.
Collapse
Affiliation(s)
- Victor Nizet
- Department of Pediatrics, Division of Infectious Diseases University of California, San Diego, La Jolla 92093, USA.
| | | |
Collapse
|
728
|
Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003; 24:677-83. [PMID: 14670934 DOI: 10.1161/01.atv.0000112024.13727.2c] [Citation(s) in RCA: 436] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Reactive oxygen species (ROS) that act as signaling molecules in vascular smooth muscle cells (VSMC) and contribute to growth, hypertrophy, and migration in atherogenesis are produced by multi-subunit NAD(P)H oxidases. Nox1 and Nox4, two homologues to the phagocytic NAD(P)H subunit gp91phox, both generate ROS in VSMC but differ in their response to growth factors. We hypothesize that the opposing functions of Nox1 and Nox4 are reflected in their differential subcellular locations. METHODS AND RESULTS We used immunofluorescence to visualize the NAD(P)H subunits Nox1, Nox4, and p22phox in cultured rat and human VSMC. Optical sectioning using confocal microscopy showed that Nox1 is co-localized with caveolin in punctate patches on the surface and along the cellular margins, whereas Nox4 is co-localized with vinculin in focal adhesions. These immunocytochemical distributions are supported by membrane fractionation experiments. Interestingly, p22phox, a membrane subunit that interacts with the Nox proteins, is found in surface labeling and in focal adhesions in patterns similar to Nox1 and Nox4, respectively. CONCLUSIONS The differential roles of Nox1 and Nox4 in VSMC may be correlated with their differential compartmentalization in specific signaling domains in the membrane and focal adhesions.
Collapse
MESH Headings
- Animals
- Caveolae/enzymology
- Caveolin 1
- Caveolins/analysis
- Cell Division
- Cell Fractionation
- Cells, Cultured/enzymology
- Cells, Cultured/ultrastructure
- Cellular Senescence
- Cytoskeleton/metabolism
- Focal Adhesions/enzymology
- Humans
- Macromolecular Substances
- Male
- Membrane Transport Proteins/analysis
- Microscopy, Confocal
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/ultrastructure
- NADH, NADPH Oxidoreductases/analysis
- NADH, NADPH Oxidoreductases/physiology
- NADPH Dehydrogenase/analysis
- NADPH Oxidase 1
- NADPH Oxidase 4
- NADPH Oxidases/analysis
- NADPH Oxidases/physiology
- Oxidation-Reduction
- Phosphoproteins/analysis
- Protein Subunits
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Vinculin/analysis
Collapse
Affiliation(s)
- Lula L Hilenski
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
729
|
Sutton R, Criddle D, Raraty MGT, Tepikin A, Neoptolemos JP, Petersen OH. Signal transduction, calcium and acute pancreatitis. Pancreatology 2003; 3:497-505. [PMID: 14673201 DOI: 10.1159/000075581] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence consistently suggests that the earliest changes of acute pancreatitis are intracellular, the hallmark of which is premature intracellular activation of digestive zymogens, accompanied by disruption of normal signal transduction and secretion. Principal components of physiological signal transduction include secretagogue-induced activation of G-protein-linked receptors, followed by generation of inositol 1,4,5-trisphosphate, nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose. In response, calcium is released from endoplasmic reticulum terminals within the apical, granular pole of the cell, where calcium signals are usually contained by perigranular mitochondria, in turn responding by increased metabolism. When all three intracellular messengers are administered together, even at threshold concentrations, dramatic potentiation results in sustained, global, cytosolic calcium elevation. Prolonged, global elevation of cytosolic calcium is also induced by hyperstimulation, bile salts, alcohol and fatty acid ethyl esters, and depends on continued calcium entry into the cell. Such abnormal calcium signals induce intracellular activation of digestive enzymes, and of nuclear factor kappaB, as well as the morphological changes of acute pancreatitis. Depletion of endoplasmic reticulum calcium and mitochondrial membrane potential may contribute to further cell injury. This review outlines current understanding of signal transduction in the pancreas, and its application to the pathophysiology of acute pancreatitis.
Collapse
Affiliation(s)
- Robert Sutton
- Department of Surgery, University of Liverpool, 5th Floor UCD Block, Royal Liverpool University Hospital, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | | | |
Collapse
|
730
|
Sirota P, Gavrieli R, Wolach B. Overproduction of neutrophil radical oxygen species correlates with negative symptoms in schizophrenic patients: parallel studies on neutrophil chemotaxis, superoxide production and bactericidal activity. Psychiatry Res 2003; 121:123-32. [PMID: 14656447 DOI: 10.1016/s0165-1781(03)00222-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defective neutrophil function in schizophrenic patients has recently been reported. There are several lines of evidence to support the contribution of oxygen free radicals in schizophrenia, including increased lipid peroxidation, fatty acids and alterations in blood levels of anti-oxidant enzymes. Eighteen schizophrenic patients (DSM-IV) and 15 healthy controls were studied. Neutrophil chemotaxis, superoxide production and bactericidal activity were investigated. A statistically significant increase of superoxide anion release was found in schizophrenic patients compared with controls (mean+/-S.E.M., patients: 6.89+/-0.30 nmol O2-/10(6) cells/min, controls: 5.13+/-0.55 nmol O2-/10(6) cells/min). Moreover, a significant positive correlation between superoxide production and negative symptoms as assessed by the Positive and Negative Syndrome Scale was demonstrated. No differences were detected in chemotaxis and phagocytosis between schizophrenic patients and healthy controls. The present findings of a positive correlation between superoxide generation and negative symptoms in schizophrenic patients support the hypothesis that superoxide anion may participate in the pathogenesis of schizophrenia, as an excess of free radicals could contribute to the deterioration phase of the disease. Further studies are required to establish the role of oxidative stress in the ethiopathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Pinkhas Sirota
- Y. Abarbanel Mental Health Center, 15 Keren Kayemet Street, Bat Yam 59100, Israel.
| | | | | |
Collapse
|
731
|
Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2003; 15:456-67. [PMID: 14617819 PMCID: PMC329211 DOI: 10.1091/mbc.e03-03-0179] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Superoxide dismutases (SOD) convert superoxide radicals into less damaging hydrogen peroxide. The opportunistic human pathogen Candida albicans is known to express CuZnSOD (SOD1) and MnSOD (SOD3) in the cytosol and MnSOD (SOD2) in the mitochondria. We identified three additional CuZn-containing superoxide dismutases, SOD4, SOD5, and SOD6, within the sequence of the C. albicans genome. The transcription of SOD5 was up-regulated during the yeast to hyphal transition of C. albicans, and SOD5 was induced when C. albicans cells were challenged with osmotic or with oxidative stresses. SOD5 transcription was also increased when cells were grown on nonfermentable substrates as the only carbon source. The Rim101p transcription factor was required for all inductions observed, whereas the Efg1p transcription factor was specifically needed for serum-modulated expression. Deletion of SOD5 produced a viable mutant strain that showed sensitivity to hydrogen peroxide when cells were grown in nutrient-limited conditions. Sod5p was found to be necessary for the virulence of C. albicans in a mouse model of infection. However, the sod5 mutant strain showed the same resistance to macrophage attack as its parental strain, suggesting that the loss of virulence in not due to an increased sensitivity to macrophage attack.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|
732
|
Cheng G, Lambeth JD. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 2003; 279:4737-42. [PMID: 14617635 DOI: 10.1074/jbc.m305968200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NOXO1 (Nox organizing protein 1) and NOXA1 (Nox activating protein 1) are homologs of p47phox and p67phox. p47phox functions in phagocytes as an essential organizing protein mediating the binding of other regulatory proteins during activation of the phagocyte oxidase, and its translocation to the membrane is triggered upon cell activation by hyperphosphorylation, which relieves autoinhibition of SH3 and PX domains. NOXO1 lacks an autoinhibitory region and phosphorylation sites that are present in p47phox. Co-transfection of Nox1, NOXO1, and NOXA1 reconstitutes ROS (reactive oxygen species) generation in HEK293 cells in the absence of cell stimulation. NOXO1 binds to the phosphatidylinositol (PtdIns) lipids PtdIns 3,5-P2, PtdIns 5-P, and PtdIns 4-P. Unlike p47phox, which is located in the cytosol of resting cells and translocates to the plasma membrane where gp91phox is located, NOXO1 co-localizes with Nox1 in the membranes of resting cells. This localization of NOXO1 is dictated by its PX domain, since this domain but not the remainder of the molecule localizes to membranes. A point mutation in the PX domain of holo-NOXO1 decreases lipid binding resulting in cytosolic localization and also inhibits NOXO1-activation of Nox1. Thus, in transfected HEK293 cells, NOXO1 and NOXA1 activate Nox1 without the need for agonist activation, and this is mediated in part by binding of the NOXO1 PX domain to membrane lipids.
Collapse
Affiliation(s)
- Guangjie Cheng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
733
|
Pantano C, Shrivastava P, McElhinney B, Janssen-Heininger Y. Hydrogen peroxide signaling through tumor necrosis factor receptor 1 leads to selective activation of c-Jun N-terminal kinase. J Biol Chem 2003; 278:44091-6. [PMID: 12939259 DOI: 10.1074/jbc.m308487200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of tumor necrosis factor-alpha (TNFalpha) to its receptor, TNF-R1, results in the activation of inhibitor of kappaB kinase (IKK) and c-Jun N-terminal kinase (JNK) pathways that are coordinately regulated and important in survival and death. We demonstrated previously that in response to hydrogen peroxide (H2O2), the ability of TNFalpha to activate IKK in mouse lung epithelial cells (C10) was inhibited and that H2O2 alone was sufficient to activate JNK and induce cell death. In the current study, we investigated the involvement of TNF-R1 in H2O2-induced JNK activation. In lung fibroblasts from TNF-R1-deficient mice the ability of H2O2 to activate JNK was inhibited compared with fibroblasts from control mice. Additionally, in C10 cells expressing a mutant form of TNF-R1, H2O2-induced JNK activation was also inhibited. Immunoprecipitation of TNF-R1 revealed that in response to H2O2, the adapter proteins, TRADD and TRAF2, and JNK were recruited to the receptor. However, expression of the adaptor protein RIP, which is essential for IKK activation by TNFalpha, was decreased in cells exposed to H2O2, and its chaperone Hsp90 was cleaved. Furthermore, data demonstrating that expression of TRAF2 was not affected by H2O2 and that overexpression of TRAF2 was sufficient to activate JNK provide an explanation for the inability of H2O2 to activate IKK and for the selective activation of JNK by H2O2. Our data demonstrate that oxidative stress interferes with IKK activation while promoting JNK signaling, creating a signaling imbalance that may favor apoptosis.
Collapse
Affiliation(s)
- Cristen Pantano
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
734
|
Abstract
Phagocytosis is central to the microbicidal function of neutrophils. Pathogens are initially engulfed into a plasma membrane-derived vacuole, the phagosome, which proceeds to acquire degradative properties by a complex process termed maturation. In this chapter, we discuss the current knowledge of the molecular mechanisms underlying phagosome formation and maturation in neutrophils.
Collapse
Affiliation(s)
- Warren L Lee
- Cell Biology Program, Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G 1X8
| | | | | |
Collapse
|
735
|
Kobayashi SD, Voyich JM, DeLeo FR. Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infect 2003; 5:1337-44. [PMID: 14613777 DOI: 10.1016/j.micinf.2003.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human polymorphonuclear leukocytes (PMNs) are the first line of defense against invading microorganisms and contribute significantly to inflammation. Recent evidence suggests that resolution of neutrophil-mediated inflammation is facilitated by an apoptosis differentiation program, a final stage of transcriptionally regulated PMN maturation that is accelerated significantly by phagocytosis.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
736
|
Abstract
Neutrophils and other phagocytic leukocytes contain a phagocyte NADPH oxidase enzyme that generates superoxide after cell activation. Reactive oxygen species derived from superoxide, together with proteases liberated from the granules, are used to kill ingested microbes. Dysfunction of the phagocyte NADPH oxidase results in chronic granulomatous disease, with life-threatening infections.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research at CLB, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
737
|
McElhinney B, Poynter ME, Shrivastava P, Hazen SL, Janssen-Heininger YMW. Eosinophil peroxidase catalyzes JNK-mediated membrane blebbing in a Rho kinase-dependent manner. J Leukoc Biol 2003; 74:897-907. [PMID: 12960269 DOI: 10.1189/jlb.0103028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophilic influx is characteristic of numerous inflammatory conditions. Eosinophil peroxidase (EPO) is a major enzyme present in eosinophils and upon degranulation, becomes released into the airways of asthmatics. As a result of its cationic nature and its ability to catalyze the formation of highly toxic oxidants, EPO has significant potential to induce cellular injury. The focus of the present study was to determine the cell-signaling events important in EPO-induced death of lung epithelial cells. In the presence of hydrogen peroxide and nitrite (NO2-; hereafter called EPO with substrates), EPO catalyzes the formation of nitrogen dioxide. EPO with substrates induced rapid and sustained activation of c-Jun-NH2-terminal kinase (JNK) and led to cell death, as was evidenced by enhanced mitochondrial depolarization, cytochrome c release, cleavage of caspases 9 and 3, poly-adenosine 5'-diphosphate ribosylation of proteins, the formation of single-stranded DNA, and membrane permeability. Moreover, EPO with substrates caused Rho-associated coiled coil-containing kinase-1-dependent dynamic membrane blebbing. Inhibition of JNK activity in cells expressing a dominant-negative JNK-1 construct (JNK-APF) prevented mitochondrial membrane depolarization and substantially decreased the number of cells blebbing compared with vector controls. The cellular responses to EPO with substrates were independent of whether NO2-, bromide, or thiocyanide was used as substrates. Our findings demonstrate that catalytically active EPO is capable of causing significant damage to lung epithelial cells in vitro and that this involves the activation of JNK.
Collapse
Affiliation(s)
- Brian McElhinney
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
738
|
Moraes TJ, Downey GP. Neutrophil cell signaling in infection: role of phosphatidylinositide 3-kinase. Microbes Infect 2003; 5:1293-8. [PMID: 14613772 DOI: 10.1016/j.micinf.2003.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neutrophils play a pivotal role in the innate immune response to microbial pathogens. They are uniquely suited to this role by virtue of specialized antimicrobial capabilities that include the capacity to sense minute amounts of microbial products and inflammatory mediators, to move to the site of infection, and finally to bind, internalize and kill the pathogens. To optimize host defense capabilities while minimizing damage to host tissues ('collateral damage'), these microbicidal responses must be tightly regulated. Additionally, neutrophils clear inflammatory debris, a process that is necessary for restoration of the native architecture and function of the tissue. This review highlights some recent advances in our knowledge of cell signaling as it pertains to neutrophil function, with specific emphasis on the role of the phosphatidylinositide 3-kinase in antimicrobial function.
Collapse
Affiliation(s)
- Theo J Moraes
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, and Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ont., Canada
| | | |
Collapse
|
739
|
Abstract
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick-borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short-lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria-containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, Room 525A, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | |
Collapse
|
740
|
Ottonello L, Epstein AL, Mancini M, Dapino P, Dallegri F. Monoclonal LYM-1 antibody-dependent cytolysis by human neutrophils exposed to GM-CSF: auto-regulation of target cell attack by cathepsin G. J Leukoc Biol 2003; 75:99-105. [PMID: 14525961 DOI: 10.1189/jlb.0403133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Murine monoclonal antibody (mAb) Lym-1 is an immunoglobulin G2a specific for certain human leukocyte antigen-DR variants expressed on the surface of malignant B cells. It has been proposed for serotherapy in patients with B lymphomas. We have previously shown that mAb Lym-1 synergizes with granulocyte macrophage-colony stimulating factor to promote Raji B-lymphoid cell lysis by human neutrophils via the intervention of neutrophil Fc receptors type II and D-mannose-inhibitable interactions between CD11b-CD18 integrins and CD66b glycoproteins. Here, we provide evidence that the process is oxygen-independent by inference related to the release of primary granules and is regulated by cathepsin G activity. The lysis was indeed reproduced by replacing normal neutrophils with cells from three patients suffering from chronic granulomatous disease, i.e., neutrophils genetically incapable of generating oxidants. Moreover, the lysis was inhibited by the serine protease inhibitor 3,4-dichloroisocoumarin and by Z-glycyl-leucyl-phenyl-chloromethyl ketone (Z-Gly-Leu-Phe-CMK), which blocks cathepsin G. Conversely, the lysis was unaffected by N-methoxysuccinyl-alanyl-alanyl-prolyl-alanyl-CMK (MeOSuc-Ala-Ala-Pro-Ala-CMK; elastase inhibitor) and MeOSuc-Ala-Ala-Pro-valine (Val)-CMK, which inhibits elastase and proteinase 3. The ability of neutrophils, engaged in cytolysis, to release cathepsin G was proved by detecting this enzymatic activity spectrophotometrically and immunocytochemically. Moreover, inhibition of cathepsin G activity by concentrations of Z-Gly-Leu-Phe-CMK, incapable of affecting elastase activity, was found to reduce the release of elastase and myeloperoxidase from neutrophils under conditions similar to those used for cytolytic assays. These findings suggest that neutrophils auto-regulate their lytic efficiency by controlling the exocytosis of primary granules via their cathepsin G activity.
Collapse
Affiliation(s)
- Luciano Ottonello
- Department of Internal Medicine, University of Genoa Medical School, Italy.
| | | | | | | | | |
Collapse
|
741
|
Andrews T, Sullivan KE. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev 2003; 16:597-621. [PMID: 14557288 PMCID: PMC207096 DOI: 10.1128/cmr.16.4.597-621.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Patients with defects in phagocytic function are predisposed to intracellular microorganisms and typically have early dissemination of the infection. Recognition of the underlying disorder and aggressive antimicrobial therapy has been beneficial for the patients. Improved understanding of the pathophysiology has also affected patient management by allowing specific, targeted immunomodulatory intervention. The disorders described in this review are not common but have had a significant impact on our understanding of the role of phagocytic cells in host defense. Conversely, understanding the role of the neutrophil and macrophage in infection has benefited not just the patients described in this review but also other patients with similar disease processes.
Collapse
Affiliation(s)
- Timothy Andrews
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
742
|
Forsberg M, Druid P, Zheng L, Stendahl O, Särndahl E. Activation of Rac2 and Cdc42 on Fc and complement receptor ligation in human neutrophils. J Leukoc Biol 2003; 74:611-9. [PMID: 12960248 DOI: 10.1189/jlb.1102525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phagocytosis is a complex process engaging a concerted action of signal-transduction cascades that leads to ingestion, subsequent phagolysosome fusion, and oxidative activation. We have previously shown that in human neutrophils, C3bi-mediated phagocytosis elicits a significant oxidative response, suggesting that activation of the small GTPase Rac is involved in this process. This is contradictory to macrophages, where only Fc receptor for immunoglobulin G (FcgammaR)-mediated activation is Rac-dependent. The present study shows that engagement of the complement receptor 3 (CR3) and FcgammaR and CR3- and FcgammaR-mediated phagocytosis activates Rac, as well as Cdc42. Furthermore, following receptor-engagement of the CR3 or FcgammaRs, a downstream target of these small GTPases, p21-activated kinase, becomes phosphorylated, and Rac2 is translocated to the membrane fraction. Using the methyltransferase inhibitors N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine, we found that the phagocytic uptake of bacteria was not Rac2- or Cdc42-dependent, whereas the oxidative activation was decreased. In conclusion, our results indicate that in neutrophils, Rac2 and Cdc42 are involved in FcR- and CR3-induced activation and for properly functioning signal transduction involved in the generation of oxygen radicals.
Collapse
Affiliation(s)
- Maria Forsberg
- Department of Cell Biology, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
743
|
Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 2003; 100:11007-12. [PMID: 12958213 PMCID: PMC196917 DOI: 10.1073/pnas.1834481100] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcriptional profiles of yeast cells that have been phagocytosed by either human neutrophils or monocytes were compared by using whole genome arrays. After phagocytosis by neutrophils, both Saccharomyces cerevisiae and Candida albicans respond by inducing genes of the methionine and arginine pathways. Neither of these pathways is induced upon phagocytosis by monocytes. Both fungi show a similar induction of these pathways when transferred from amino acid-rich medium to amino acid-deficient medium. These data suggest that the internal phagosome of the neutrophil is an amino acid-deficient environment.
Collapse
Affiliation(s)
- Ifat Rubin-Bejerano
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
744
|
Mahalingam R, Fedoroff N. Stress response, cell death and signalling: the many faces of reactive oxygen species. PHYSIOLOGIA PLANTARUM 2003; 119:56-68. [PMID: 0 DOI: 10.1034/j.1399-3054.2003.00156.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
745
|
Garmendia J, Beuzón CR, Ruiz-Albert J, Holden DW. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2385-2396. [PMID: 12949164 DOI: 10.1099/mic.0.26397-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The type III secretion system (TTSS) encoded by Salmonella typhimurium pathogenicity island 2 (SPI-2) is expressed after bacterial entry into host cells. The SPI-2 TTSS secretes the translocon components SseBCD, which translocate across the vacuolar membrane a number of effector proteins whose action is required for intracellular bacterial replication. Several of these effectors, including SifA and SifB, are encoded outside SPI-2. The two-component regulatory system SsrA-SsrB, encoded within SPI-2, controls the expression of components of the SPI-2 TTSS apparatus as well as its translocated effectors. The expression of SsrA-B is in turn regulated by the OmpR-EnvZ two-component system, by direct binding of OmpR to the ssrAB promoter. Several environmental signals have been shown to induce in vitro expression of genes regulated by the SsrA-B or OmpR-EnvZ systems. In this work, immunoblotting and flow cytometry were used to analyse the roles of SsrA-B and OmpR-EnvZ in coupling different environmental signals to changes in expression of a SPI-2 TTSS translocon component (SseB) and two effector genes (sifA and sifB). Using single and double mutant strains the relative contribution of each regulatory system to the response generated by low osmolarity, acidic pH or the absence of Ca2+ was determined. SsrA-B was found to be essential for the induction of SPI-2 gene expression in response to each of these individual signals. OmpR-EnvZ was found to play a minor role in sensing these signals and to require a functional SsrA-B system to mediate their effect on SPI-2 TTSS gene expression.
Collapse
Affiliation(s)
- Junkal Garmendia
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Carmen R Beuzón
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Javier Ruiz-Albert
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W Holden
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
746
|
Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM. The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 2003; 71:4304-12. [PMID: 12874306 PMCID: PMC166043 DOI: 10.1128/iai.71.8.4304-4312.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system.
Collapse
Affiliation(s)
- Samuel Katzif
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
747
|
Deicher R, Ziai F, Cohen G, Müllner M, Hörl WH. High-dose parenteral iron sucrose depresses neutrophil intracellular killing capacity. Kidney Int 2003; 64:728-36. [PMID: 12846772 DOI: 10.1046/j.1523-1755.2003.00125.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Iron is essential for the formation of hemoglobin. During long-term treatment with human recombinant erythropoietin (rhEPO), the majority of end-stage renal disease (ESRD) patients will not respond adequately to rhEPO unless substituted with intravenous iron. However, concern exists about possible detrimental effects of parenteral iron on cellular host defense and iron-mediated increments of oxidative stress. METHODS We analyzed phagocytic functions of polymorphonuclear leukocytes (PMN) isolated from 20 ESRD patients on peritoneal dialysis in response to 300 mg of iron sucrose or placebo administered intravenously over two hours in a randomized, double-blind manner. We evaluated Fc gamma R-dependent phagocytosis and killing (primary outcome variable) of opsonized Escherichia coli, Fc gamma R-dependent oxidative burst capacity, and complement receptor 3 (CR3, Mac1, CD11b/CD18)/tumor necrosis factor alpha (TNFalpha)-mediated release of bactericidal lactoferrin before, during, one hour, and two days after administration. RESULTS The absolute count and the percentage of E. coli killed by PMN of iron sucrose-treated peritoneal dialysis patients decreased significantly over time in comparison to placebo-treated patients (F = 3.48, df = 4, P = 0.008; F = 3.99, df = 4, P = 0.006, respectively). All secondary outcome variables were not different between both groups over time. CONCLUSIONS Killing capacity of PMN isolated from ESRD patients decreases in response to high-dose parenteral iron sucrose, possibly in part explaining reported higher hospitalization rates and lower survival rates of dialysis patients receiving frequent and high-dose parenteral iron.
Collapse
Affiliation(s)
- Robert Deicher
- Universitätsklinik für Innere Medizin III, Klinische Abteilung für Nephrologie und Dialyse, Allgemeines Krankenhaus der Stadt Wien, Vienna, Austria.
| | | | | | | | | |
Collapse
|
748
|
Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW. Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol 2003; 52:643-651. [PMID: 12867557 PMCID: PMC2635949 DOI: 10.1099/jmm.0.05181-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During phagocytosis, neutrophils undergo a burst of respiration in which oxygen is reduced to superoxide (O(-)(2)), which dismutates to form H(2)O(2). Myeloperoxidase (MPO) is discharged from the cytoplasmic granules into the phagosome following particle ingestion. It is thought to utilize H(2)O(2) to oxidize halides, which then react with and kill ingested microbes. Recent studies have provided new information as to the concentration of O(-)(2) and proteins, and the pH, within the vacuole. This study was conducted to examine the antimicrobial effect of O(-)(2), H(2)O(2) and hypochlorous acid under these conditions and it was found that the previously described bactericidal effect of these agents was reversed in the presence of granule proteins or MPO. To establish which cellular proteins were iodinated by MPO, cellular proteins and bacterial proteins, iodinated in neutrophils phagocytosing bacteria in the presence of (125)I, were separated by 2D gel electrophoresis. Iodinated spots were detected by autoradiography and the oxidized proteins were identified by MS. The targets of these iodination reactions were largely those of the host cell rather than those of the engulfed microbe.
Collapse
Affiliation(s)
- Emer P. Reeves
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| | - Markus Nagl
- Institute of Hygiene and Social Medicine, Leopold-Franzens-University of Innsbruck, A-6010 Innsbruck, Austria
| | | | - Anthony W. Segal
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
749
|
Abstract
Positional cloning of susceptibility genes in complex diseases like rheumatoid arthritis in humans is hampered by aspects like genetic heterogeneity and environmental variations, while genetic studies in animal models contain several advantages. With animal models, the environment can be controlled, the genetic complexity of the disease is minimized and the disease onset can be predicted, which simplify diagnosis and characterization. We use pristane-induced arthritis in rats to investigate the inheritance of arthritis. Until now, we have identified 15 loci that significantly predispose rats to the development of arthritis. One of these arthritis loci has been isolated and confirmed to be caused by a polymorphism in the Ncf1 gene. In this review, we outline the methods used to identify Ncf1 as one single susceptibility gene in a complex puzzle of inherited factors that render susceptibility to a complex autoimmune disorder like arthritis.
Collapse
Affiliation(s)
- P Olofsson
- Section for Medical Inflammation Research, Lund University, Sölvegatan 19, S-22184 Lund, Sweden
| | | |
Collapse
|
750
|
Quesada I, Chin WC, Verdugo P. ATP-independent luminal oscillations and release of Ca2+ and H+ from mast cell secretory granules: implications for signal transduction. Biophys J 2003; 85:963-70. [PMID: 12885643 PMCID: PMC1303217 DOI: 10.1016/s0006-3495(03)74535-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.
Collapse
Affiliation(s)
- Ivan Quesada
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|