701
|
Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021; 697:108659. [PMID: 33144083 PMCID: PMC8638212 DOI: 10.1016/j.abb.2020.108659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming confers cancer cells plasticity and viability under harsh conditions. Such active alterations lead to cell metabolic dependency, which can be exploited as an attractive target in development of effective antitumor therapies. Similar to cancer cells, activated T cells also execute global metabolic reprogramming for their proliferation and effector functions when recruited to the tumor microenvironment (TME). However, the high metabolic activity of rapidly proliferating cancer cells can compete for nutrients with immune cells in the TME, and consequently, suppressing their anti-tumor functions. Thus, therapeutic strategies could aim to restore T cell metabolism and anti-tumor responses in the TME by targeting the metabolic dependence of cancer cells. In this review, we highlight current research progress on metabolic reprogramming and the interplay between cancer cells and immune cells. We also discuss potential therapeutic intervention strategies for targeting metabolic pathways to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianhan Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiyu Wang
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
702
|
Bai X, Jia J, Kang Q, Fu Y, Zhou Y, Zhong Y, Zhang C, Li M. Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Front Cell Dev Biol 2021; 8:605979. [PMID: 33520988 PMCID: PMC7841139 DOI: 10.3389/fcell.2020.605979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.
Collapse
Affiliation(s)
- Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yadong Fu
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
703
|
Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JMW. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021; 13:nu13010199. [PMID: 33435231 PMCID: PMC7828103 DOI: 10.3390/nu13010199] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
Collapse
Affiliation(s)
- Kathrin Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
| | - Leilani Muhardi
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Panam Parikh
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Melissa Basso
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Titis Prawitasari
- Nutrition and Metabolic Diseases Working Group, Indonesian Pediatric Society, Jakarta 10310, Indonesia;
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusomo National Referral Hospital Jakarta, Jakarta 10430, Indonesia
| | - Folake Samuel
- Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
- Laboratory of Toxicological Research and Risk assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Jan M. W. Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-6-53310499
| |
Collapse
|
704
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
705
|
Okubo R, Hasegawa T, Fukuyama K, Shiroyama T, Okada M. Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy. Front Psychiatry 2021; 12:623684. [PMID: 33679481 PMCID: PMC7930824 DOI: 10.3389/fpsyt.2021.623684] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Several mood-stabilizing atypical antipsychotics and antidepressants weakly block serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity to 5-HT7R when compared with other monoamine receptors. To date, we have failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood, or anxiety disorders when compared with conventional mood-stabilizing atypical antipsychotics; however, numerous preclinical findings have indicated the possible potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as the generation of novel therapeutic options that could not be expected with conventional atypical antipsychotics. Traditional experimental techniques, electrophysiology, and microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR) and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R function in the field of psychopharmacology. Accumulating knowledge regarding the pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in the establishment and remodeling of neural development and cytoarchitecture during the early developmental stage to the mature brain, and dysfunction or modulation of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and neurodevelopmental disorders. In this review, to explore candidate novel applications for the treatment of several neuropsychiatric disorders, including mood disorders, schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and intracellular signaling systems, based on preclinical findings.
Collapse
Affiliation(s)
- Ruri Okubo
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Toshiki Hasegawa
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takashi Shiroyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motohiro Okada
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
706
|
Yan X, Yan J, Xiang Q, Wang F, Dai H, Huang K, Fang L, Yao H, Wang L, Zhang W. Fructooligosaccharides protect against OVA-induced food allergy in mice by regulating the Th17/Treg cell balance using tryptophan metabolites. Food Funct 2021; 12:3191-3205. [PMID: 33735338 DOI: 10.1039/d0fo03371e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fructooligosaccharides (FOS) can change gut microbiota composition and play a protective role in food allergy (FA).
Collapse
Affiliation(s)
- Xiumei Yan
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Jingbin Yan
- Department of Ultrasonography
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
- Wenzhou 325000
- China
| | - Qiangwei Xiang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Fanyan Wang
- Department of Pathophysiology
- School of Basic Medical Sciences
- Wenzhou Medical University
- Wenzhou 325000
- China
| | - Huan Dai
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Kaiyu Huang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Lingjuan Fang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Hao Yao
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Lingya Wang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Weixi Zhang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| |
Collapse
|
707
|
Mondanelli G, Volpi C. The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Curr Opin Immunol 2020; 70:1-6. [PMID: 33360496 DOI: 10.1016/j.coi.2020.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Neuroimmune system is nowadays considered as one complex, but unique example of coordination between cellular and molecular networks, only apparently segregated, but strictly collaborating for the maintenance of body integrity. Too often, serotonin and its metabolites have been considered merely as neurotransmitters, when they have multiple effects spreading from the modulation of mood and behavioral processes to the regulation of a wide range of physiologic and pathophysiologic processes in most human organs, not least the immune response. The purpose of this review is to highlight the importance of metabolites generated along the serotonin pathway in the constant dialogue between neuroendocrine and immune systems; moreover, we would like to point out that the molecules produced in the two main routes of tryptophan metabolism are involved in a loop of self-regulation aimed at maintaining the equilibrium between these two metabolic pathways in the neuroimmune system, in both physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
708
|
Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients-A Pilot Randomized Controlled Trial. Metabolites 2020; 11:metabo11010004. [PMID: 33374836 PMCID: PMC7823964 DOI: 10.3390/metabo11010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
The kynurenine (KYN) pathway gains growing research interest concerning the genesis, progression and therapy of solid tumors. Previous studies showed exercise-induced effects on metabolite levels along the KYN pathway. Modulations of the KYN pathway might be involved in the positive impact of exercise on prostate cancer progression and mortality. The objective of this trial was to investigate whether a single-physical exercise alters tryptophan (TRP) metabolism and related inflammatory markers in this population. We conducted a randomized controlled trial with 24 patients suffering from prostate cancer. While the control group remained inactive, the intervention group performed a 30-min aerobic exercise on a bicycle ergometer at 75% of individual VO2peak. Before (t0) and directly after the exercise intervention (t1) KYN, TRP, kynurenic acid, quinolinic acid as well as various inflammation markers (IL6, TNF-α, TGF-β) were measured in blood serum. At baseline, the present sample showed robust correlations between TRP, KYN, quinolinic acid and inflammatory markers. Regarding the exercise intervention, interaction effects for TRP, the KYN/TRP ratio and TGF-β were observed. The results show for the first time that acute physical exercise impacts TRP metabolism in prostate cancer patients. Moreover, baseline associations underline the relationship between inflammation and the KYN pathway in prostate cancer.
Collapse
|
709
|
Di Stadio A, Costantini C, Renga G, Pariano M, Ricci G, Romani L. The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life (Basel) 2020; 10:life10120345. [PMID: 33322584 PMCID: PMC7763594 DOI: 10.3390/life10120345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by variable clinical presentation that ranges from asymptomatic to fatal multi-organ damage. The site of entry and the response of the host to the infection affect the outcomes. The role of the upper airways and the nasal barrier in the prevention of infection is increasingly being recognized. Besides the epithelial lining and the local immune system, the upper airways harbor a community of microorganisms, or microbiota, that takes an active part in mucosal homeostasis and in resistance to infection. However, the role of the upper airway microbiota in COVID-19 is not yet completely understood and likely goes beyond protection from viral entry to include the regulation of the immune response to the infection. Herein, we discuss the hypothesis that restoring endogenous barriers and anti-inflammatory pathways that are defective in COVID-19 patients might represent a valid strategy to reduce infectivity and ameliorate clinical symptomatology.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Department of Otolaryngology, University of Perugia, 06132 Perugia, Italy;
- Correspondence: (A.D.S.); (L.R.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (C.C.); (G.R.); (M.P.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (C.C.); (G.R.); (M.P.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (C.C.); (G.R.); (M.P.)
| | - Giampietro Ricci
- Department of Otolaryngology, University of Perugia, 06132 Perugia, Italy;
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (C.C.); (G.R.); (M.P.)
- Correspondence: (A.D.S.); (L.R.)
| |
Collapse
|
710
|
Qiu YL, Zheng H, Devos A, Selby H, Gevaert O. A meta-learning approach for genomic survival analysis. Nat Commun 2020; 11:6350. [PMID: 33311484 PMCID: PMC7733508 DOI: 10.1038/s41467-020-20167-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
RNA sequencing has emerged as a promising approach in cancer prognosis as sequencing data becomes more easily and affordably accessible. However, it remains challenging to build good predictive models especially when the sample size is limited and the number of features is high, which is a common situation in biomedical settings. To address these limitations, we propose a meta-learning framework based on neural networks for survival analysis and evaluate it in a genomic cancer research setting. We demonstrate that, compared to regular transfer-learning, meta-learning is a significantly more effective paradigm to leverage high-dimensional data that is relevant but not directly related to the problem of interest. Specifically, meta-learning explicitly constructs a model, from abundant data of relevant tasks, to learn a new task with few samples effectively. For the application of predicting cancer survival outcome, we also show that the meta-learning framework with a few samples is able to achieve competitive performance with learning from scratch with a significantly larger number of samples. Finally, we demonstrate that the meta-learning model implicitly prioritizes genes based on their contribution to survival prediction and allows us to identify important pathways in cancer.
Collapse
Affiliation(s)
- Yeping Lina Qiu
- Department of Electrical Engineering, Stanford University, Stanford, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Hong Zheng
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Arnout Devos
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Heather Selby
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, USA.
| |
Collapse
|
711
|
Trepci A, Imbeault S, Wyckelsma VL, Westerblad H, Hermansson S, Andersson DC, Piehl F, Venckunas T, Brazaitis M, Kamandulis S, Brundin L, Erhardt S, Schwieler L. Quantification of Plasma Kynurenine Metabolites Following One Bout of Sprint Interval Exercise. Int J Tryptophan Res 2020; 13:1178646920978241. [PMID: 33354112 PMCID: PMC7734489 DOI: 10.1177/1178646920978241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/04/2020] [Indexed: 01/17/2023] Open
Abstract
The kynurenine pathway of tryptophan degradation produces several neuroactive metabolites suggested to be involved in a wide variety of diseases and disorders, however, technical challenges in reliably detecting these metabolites hampers cross-comparisons. The main objective of this study was to develop an accurate, robust and precise bioanalytical method for simultaneous quantification of ten plasma kynurenine metabolites. As a secondary aim, we applied this method on blood samples taken from healthy subjects conducting 1 session of sprint interval exercise (SIE). It is well accepted that physical exercise is associated with health benefits and reduces risks of psychiatric illness, diabetes, cancer and cardiovascular disease, but also influences the peripheral and central concentrations of kynurenines. In line with this, we found that in healthy old adults (n = 10; mean age 64 years), levels of kynurenine increased 1 hour (P = .03) after SIE, while kynurenic acid (KYNA) concentrations were elevated after 24 hours (P = .02). In contrast, no significant changes after exercise were seen in young adults (n = 10; mean age 24 years). In conclusion, the described method performs well in reliably detecting all the analyzed metabolites in plasma samples. Furthermore, we also detected an age-dependent effect on the degree by which a single intense training session affects kynurenine metabolite levels.
Collapse
Affiliation(s)
- Ada Trepci
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sophie Imbeault
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Victoria L Wyckelsma
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | | | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Cardiology Unit, Heart, Vascular and Neurology Theme; Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Lena Brundin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Psychiatry, Lund, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
712
|
Shi W, Shen L, Zou W, Wang J, Yang J, Wang Y, Liu B, Xie L, Zhu J, Zhang Z. The Gut Microbiome Is Associated With Therapeutic Responses and Toxicities of Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients-A Pilot Study. Front Cell Infect Microbiol 2020; 10:562463. [PMID: 33363048 PMCID: PMC7756020 DOI: 10.3389/fcimb.2020.562463] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Responses to neoadjuvant chemoradiotherapy (nCRT) and therapy-related toxicities in rectal cancer vary among patients. To provide the individualized therapeutic option for each patient, predictive markers of therapeutic responses and toxicities are in critical need. We aimed to identify the association of gut microbiome with and its potential predictive value for therapeutic responses and toxicities. In the present study, we collected fecal microbiome samples from patients with rectal cancer at treatment initiation and just after nCRT. Taxonomic profiling via 16S ribosomal RNA gene sequencing was performed on all samples. Patients were classified as responders versus non-responders. Patients were grouped into no or mild diarrhea and severe diarrhea. STAMP and high-dimensional class comparisons via linear discriminant analysis of effect size (LEfSe) were used to compare the compositional differences between groups. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was utilized to predict differences in metabolic function between groups. Ten patients were classified as responders and 12 patients were classified as non-responders. Fourteen patients experienced no or mild diarrhea and 8 patients experienced severe diarrhea. Several bacteria taxa with significantly different relative abundances before and after nCRT were identified. Similarly, several baseline bacteria taxa and predicted pathways with significantly different relative abundances between responders and non-responders or between patients no or mild diarrhea and severe diarrhea were identified. Specifically, Shuttleworthia was identified as enriched in responders and several bacteria taxa in the Clostridiales order etc. were identified as enriched in non-responders. Pathways including fatty acid metabolism were predicted to be enriched in responders. In addition, Bifidobacterium, Clostridia, and Bacteroides etc. were identified as enriched in patients with no or mild diarrhea. Pathways including primary bile acid biosynthesis were predicted to be enriched in patients with no or mild diarrhea. Together, the microbiota and pathway markers identified in this study may be utilized to predict the therapeutic responses and therapy-related toxicities of nCRT in patients with rectal cancer. More patient data is needed to verify the current findings and the results of metagenomic, metatranscriptomic, and metabolomic analyses will further mine key biomarkers at the compositional and functional level.
Collapse
Affiliation(s)
- Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Wei Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Jingwen Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Jianing Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yuezhu Wang
- Sequencing Department, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China.,School of Public Health, Xinxiang Medical College, Xinxiang, China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
713
|
Ossick MV, Assalin HB, Kiehl IGA, Salustiano ACC, Rocha GZ, Ferrari KL, Linarelli MCB, Degasperi G, Reis LO. Carcinogenesis and Bacillus Calmette-Guérin (BCG) Intravesical Treatment of Non-Muscle-Invasive Bladder Cancer under Tryptophan and Thymine Supplementation. Nutr Cancer 2020; 73:2687-2694. [PMID: 33287590 DOI: 10.1080/01635581.2020.1856389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Evaluate tryptophan and thymine (TT) impact on carcinogenesis and intravesical BCG bladder cancer treatment. METHODS After identification of TT in vitro inhibitory effect in multiple cancer cell cultures, bladder cancer animal model was induced by MNU intravesical instillations and randomized into four groups: Control (n = 9), BCG (n = 9), TT (n = 7), and BCG + TT (n = 8). BCG groups received intravesical 106 CFU BCG in 0.2 ml saline for 6 consecutive weeks and TT groups received 1 g/kg (1:1) of TT via daily gavage. After 15 wk of protocol, animals were euthanized and the urinary bladders submitted to histopathology, immunohistochemistry, and Western blotting. RESULTS Urothelial cancer was identified in 100%, 85.7%, 44.5%, and 37.5% of Control, TT, BCG, and BCG + TT groups, respectively. Cell proliferation marked by nuclear Ki-67 was higher in the Control compared to animals in the other groups (P = 0.03). BCG, TT, and BCG + TT groups showed proliferative cell decline and TLR4/5 labeling increase in the urothelium. BCG decreased the urothelial VEGF labeling, even in TT association. CONCLUSION TT inhibit urothelial carcinogenesis and potentiate the intravesical BCG in the treatment of bladder cancer by reducing cell proliferation and activating TLRs.
Collapse
Affiliation(s)
- Marina V Ossick
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Heloisa B Assalin
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Isis G A Kiehl
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Ana C C Salustiano
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Guilherme Zweig Rocha
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Karen L Ferrari
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Maria C B Linarelli
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Giovanna Degasperi
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| |
Collapse
|
714
|
Hoffmann D, Dvorakova T, Schramme F, Stroobant V, Van den Eynde BJ. Tryptophan 2,3-Dioxygenase Expression Identified in Murine Decidual Stromal Cells Is Not Essential for Feto-Maternal Tolerance. Front Immunol 2020; 11:601759. [PMID: 33363543 PMCID: PMC7752949 DOI: 10.3389/fimmu.2020.601759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) catalyze the rate-limiting step of tryptophan catabolism along the kynurenine pathway, which has important immuno suppressive properties, particularly in tumor cells and dendritic cells. The prominent expression of IDO1 in the placenta also suggested a role in preventing immune rejection of fetal tissues, and pharmacological inhibition of IDO1 induced abortion of allogeneic fetuses in mice. However, this was later challenged by the lack of rejection of allogeneic fetuses in IDO1-KO mice, suggesting that other mechanisms may compensate for IDO1 deficiency. Here we investigated whether TDO could contribute to feto-maternal tolerance and compensate for IDO1 deficiency in IDO1-KO mice. Expression of TDO mRNA was previously detected in placental tissues. We developed a new chimeric rabbit anti-TDO antibody to confirm TDO expression at the protein level and identify the positive cell type by immunohistochemistry in murine placenta. We observed massive TDO expression in decidual stromal cells, starting at day E3.5, peaking at day E6.5 then declining rapidly while remaining detectable until gestation end. IDO1 was also induced in decidual stromal cells, but only at a later stage of gestation when TDO expression declined. To determine whether TDO contributed to feto-maternal tolerance, we mated TDO-KO and double IDO1-TDO-KO females with allogeneic males. However, we did not observe reduced fertility. These results suggest that, despite its expression in decidual stromal cells, TDO is not a dominant mechanism of feto-maternal tolerance able to compensate for the absence of IDO1. Redundant additional mechanisms of immunosuppression likely take over in these KO mice. The massive expression of TDO during decidualization might suggest a role of TDO in angiogenesis or vessel tonicity, as previously described for IDO1.
Collapse
Affiliation(s)
- Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Tereza Dvorakova
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Florence Schramme
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
715
|
Fei F, Ma T, Zhou X, Zheng M, Cao B, Li J. Metabolic markers for diagnosis and risk-prediction of multiple myeloma. Life Sci 2020; 265:118852. [PMID: 33278388 DOI: 10.1016/j.lfs.2020.118852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
AIMS To discriminate metabolic biomarkers for diagnosis and risk prediction of multiple myeloma (MM) on a basis of metabolic characteristics in systemic circulation and local pathogenic niche. MAIN METHODS A gas chromatography mass spectrometry-based untargeted metabolomics analysis was performed within the bone marrow (BM) supernatants and peripheral plasma from healthy donors and patients with MM. KEY FINDINGS Distinct metabolic features between MM patients and healthy volunteers were profiled in both BM and plasma. Metabolic profiles of subgroups in which MM patients undergo high/medium/low risk displayed risk-dependent metabolic shift especially in BM. In MM patients, up-regulated glutamate level and down-regulated glutamine level in BM indicated enhanced glutamate metabolism which provided NH4+ for ammonia utilization. This resulted in increased level of urea and creatinine produced from urea cycle, arginine and proline metabolism in both BM and plasma collected from MM patients. The disorders of tricarboxylic acid cycle and carnitine synthesis were unique in BM of MM patients. Receiver operating characteristic curve analysis indicated that aspartate was a candidate plasma biomarker for diagnosis with the highest sensitivity and specificity in both BM and plasma. Threonine was identified as a preferential plasma biomarker for risk prediction due to significant relation with various risk indexes of MM in both BM and plasma. SIGNIFICANCE The perturbed glutamate metabolism and carnitine synthesis in BM of MM patients provided a new sight on pathogenesis of MM. The plasma level of aspartate and threonine may become a preferential metabolic marker for diagnosis and risk prediction of MM, respectively.
Collapse
Affiliation(s)
- Fei Fei
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China
| | - Tingting Ma
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China
| | - Meihong Zheng
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China
| | - Bei Cao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China.
| | - Juan Li
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Gulou district, Nanjing 210008, China.
| |
Collapse
|
716
|
Venkatesan D, Iyer M, Narayanasamy A, Siva K, Vellingiri B. Kynurenine pathway in Parkinson's disease-An update. eNeurologicalSci 2020; 21:100270. [PMID: 33134567 PMCID: PMC7585940 DOI: 10.1016/j.ensci.2020.100270] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a complex multi-factorial neurodegenerative disorder where various altered metabolic pathways contribute to the progression of the disease. Tryptophan (TRP) is a major precursor in kynurenine pathway (KP) and it has been discussed in various in vitro studies that the metabolites quinolinic acid (QUIN) causes neurotoxicity and kynurenic acid (KYNA) acts as neuroprotectant respectively. More studies are also focused on the effects of other KP metabolites and its enzymes as it has an association with ageing and PD pathogenesis. Until now, very few studies have targeted the role of genetic mutations in abnormal KP metabolism in adverse conditions of PD. Therefore, the present review gives an updated research studies on KP in connection with PD. Moreover, the review emphasizes on the urge for the development of biomarkers and also this would be an initiative in generating an alternative therapeutic approach for PD.
Collapse
Key Words
- 3-HAA, 3-hydroxyanthranilic acid
- 3-HK, 3-hydroxykynurenine
- 6-OHDA, 6-hydroxydopamine
- AA, anthranilic acid
- ACMSD, amino-carboxymuconatesemialdehyde decarboxylase
- AD, Alzheimer's disease
- ATP, adenosine triphosphate
- Ageing
- AhR, aryl hydrocarbon receptor
- Biomarkers
- CNS, central nervous system
- CSF, cerebrospinal fluid
- DA, dopaminergic
- FAM, formamidase
- IDO-1, indoleamine-2,3-dioxygenases
- IFN-γ, interferon-γ
- KATs, kynurenine aminotransferases
- KMO, kynurenine −3-monooxygenase
- KP, Kynurenine pathway
- KYN, kynurenine
- KYNA, kynurenic acid
- Kynurenine pathway (KP)
- L-DOPA, L-dopamine
- LID, L-DOPA-induced dyskinesia
- MPTP, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
- NAD+, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFK, N′-formylkynurenine
- NMDA, N-methyl-d-aspartate
- PA, picolinic acid
- PD, Parkinson's disease
- Parkinson's disease (PD)
- QUIN, quinolinic acid
- RBCs, red blood cells
- SNpc, substantianigra pars compacta
- TDO, tryptophan 2,3-dioxygenase
- TRP, tryptophan
- Therapeutics
- XA, xanthurenic acid
- ZNS, zonisamide
- α-synuclein, αSyn
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamalakannan Siva
- National Centre for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi 110054, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
717
|
Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol Sci 2020; 42:60-73. [PMID: 33256987 DOI: 10.1016/j.tips.2020.11.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
L-Tryptophan is an essential amino acid required for protein synthesis. It undergoes an extensive and complex metabolism along several pathways, resulting in many bioactive molecules acting in various organs through different action mechanisms. Enzymes involved in its metabolism, metabolites themselves, or their receptors, represent potential therapeutic targets, which are the subject of dynamic research. Disruptions in L-tryptophan metabolism are reported in several neurological, metabolic, psychiatric, and intestinal disorders, paving the way to develop drugs to target it. This review will briefly describe L-tryptophan metabolism and present and discuss the most recent pharmacological developments targeting it.
Collapse
|
718
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
719
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng B, Guillemin GJ. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front Cell Dev Biol 2020; 8:562812. [PMID: 33330446 PMCID: PMC7710763 DOI: 10.3389/fcell.2020.562812] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut microbiota contains a large, complex, dynamic microbial community of approximately 1014 microbes from more than 1,000 microbial species, i.e., equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human health and diseases. Importantly, gut microbiota is involved in the development and function of the brain through a bidirectional pathway termed as the gut-brain axis. Interaction between gut microbiota and immune responses can modulate the development of neuroinflammation and cancer diseases in the brain. With respect of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte-macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A, interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g., nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions, the signal transducer and activator of transcription (STAT) pathways, and tumor cell proliferation and metastasis. The outcome of such interventions could be either oncolytic or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut microbiota by classifying the modification mechanisms into (i) amino acid deprivation (arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv) myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-microbiota-brain-cancer axis, this review aims to help the research on the development of novel therapeutic strategies that may aid the efficient eradication of brain cancers.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia
| |
Collapse
|
720
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
721
|
Maddison DC, Alfonso-Núñez M, Swaih AM, Breda C, Campesan S, Allcock N, Straatman-Iwanowska A, Kyriacou CP, Giorgini F. A novel role for kynurenine 3-monooxygenase in mitochondrial dynamics. PLoS Genet 2020; 16:e1009129. [PMID: 33170836 PMCID: PMC7654755 DOI: 10.1371/journal.pgen.1009129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
The enzyme kynurenine 3-monooxygenase (KMO) operates at a critical branch-point in the kynurenine pathway (KP), the major route of tryptophan metabolism. As the KP has been implicated in the pathogenesis of several human diseases, KMO and other enzymes that control metabolic flux through the pathway are potential therapeutic targets for these disorders. While KMO is localized to the outer mitochondrial membrane in eukaryotic organisms, no mitochondrial role for KMO has been described. In this study, KMO deficient Drosophila melanogaster were investigated for mitochondrial phenotypes in vitro and in vivo. We find that a loss of function allele or RNAi knockdown of the Drosophila KMO ortholog (cinnabar) causes a range of morphological and functional alterations to mitochondria, which are independent of changes to levels of KP metabolites. Notably, cinnabar genetically interacts with the Parkinson's disease associated genes Pink1 and parkin, as well as the mitochondrial fission gene Drp1, implicating KMO in mitochondrial dynamics and mitophagy, mechanisms which govern the maintenance of a healthy mitochondrial network. Overexpression of human KMO in mammalian cells finds that KMO plays a role in the post-translational regulation of DRP1. These findings reveal a novel mitochondrial role for KMO, independent from its enzymatic role in the kynurenine pathway.
Collapse
Affiliation(s)
- Daniel C. Maddison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mónica Alfonso-Núñez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Aisha M. Swaih
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH, United Kingdom
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Natalie Allcock
- Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, United Kingdom
| | - Anna Straatman-Iwanowska
- Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, Leicestershire, United Kingdom
| | - Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
- * E-mail:
| |
Collapse
|
722
|
Dong F, Hao F, Murray IA, Smith PB, Koo I, Tindall AM, Kris-Etherton PM, Gowda K, Amin SG, Patterson AD, Perdew GH. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes 2020; 12:1-24. [PMID: 32783770 PMCID: PMC7524359 DOI: 10.1080/19490976.2020.1788899] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Commensal microbiota-dependent tryptophan catabolism within the gastrointestinal tract is known to exert profound effects upon host physiology, including the maintenance of epithelial barrier and immune function. A number of abundant microbiota-derived tryptophan metabolites exhibit activation potential for the aryl hydrocarbon receptor (AHR). Gene expression facilitated by AHR activation through the presence of dietary or microbiota-generated metabolites can influence gastrointestinal homeostasis and confer protection from intestinal challenges. Utilizing untargeted mass spectrometry-based metabolomics profiling, combined with AHR activity screening assays, we identify four previously unrecognized tryptophan metabolites, present in mouse cecal contents and human stool, with the capacity to activate AHR. Using GC/MS and LC/MS platforms, quantification of these novel AHR activators, along with previously established AHR-activating tryptophan metabolites, was achieved, providing a relative order of abundance. Using physiologically relevant concentrations and quantitative gene expression analyses, the relative efficacy of these tryptophan metabolites with regard to mouse or human AHR activation potential is examined. These data reveal indole, 2-oxindole, indole-3-acetic acid and kynurenic acid as the dominant AHR activators in mouse cecal contents and human stool from participants on a controlled diet. Here we provide the first documentation of the relative abundance and AHR activation potential of a panel of microbiota-derived tryptophan metabolites. Furthermore, these data reveal the human AHR to be more sensitive, at physiologically relevant concentrations, to tryptophan metabolite activation than mouse AHR. Additionally, correlation analyses indicate a relationship linking major tryptophan metabolite abundance with AHR activity, suggesting these cecal/fecal metabolites represent biomarkers of intestinal AHR activity.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Philip B. Smith
- The Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Alyssa M. Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA,CONTACT Gary H. Perdew Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
723
|
Hou E, Zhao Y, Hang J, Qiao J. Metabolomics and correlation network analysis of follicular fluid reveals associations between l-tryptophan, l-tyrosine and polycystic ovary syndrome. Biomed Chromatogr 2020; 35:e4993. [PMID: 32986877 DOI: 10.1002/bmc.4993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women of reproductive age. Some studies have investigated metabolic alterations in plasma and follicular fluid from PCOS patients, but they did not control for obesity or insulin resistance (IR); additionally, correlation analysis of metabolites is sparse. Accordingly, in this study, we aimed to examine metabolic differences owing to the pathogenesis of PCOS, identify the hub metabolites and investigate its associations with androgens. We applied GC-MS platform coupled with a correlation network approach to analyze follicular fluid samples from 32 PCOS patients without obesity and IR and 31 healthy women. Thirty significantly altered metabolites in PCOS patients were enriched in amino acid metabolism. l-Phenylalanine, l-tryptophan, pyroglutamic acid, l-tyrosine, l-leucine and l-valine were screened as hub metabolites in metabolic correlation network. Among them, increased l-tryptophan and l-tyrosine were altered hub metabolites, and they had a more significant impact on the metabolic change of PCOS. In addition, l-tryptophan and l-tyrosine were significantly positively associated with serum androgens levels in the PCOS. Our results suggest that disorders of amino acid metabolism, especially tryptophan and tyrosine metabolism, might play an important role in the development of PCOS in predisposed women without obesity and IR.
Collapse
Affiliation(s)
- Entai Hou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction (Peking University Third Hospital), Beijing, China
| |
Collapse
|
724
|
Negatu DA, Gengenbacher M, Dartois V, Dick T. Indole Propionic Acid, an Unusual Antibiotic Produced by the Gut Microbiota, With Anti-inflammatory and Antioxidant Properties. Front Microbiol 2020; 11:575586. [PMID: 33193190 PMCID: PMC7652848 DOI: 10.3389/fmicb.2020.575586] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Most antibiotics are produced by soil microbes and typically interfere with macromolecular synthesis processes as their antibacterial mechanism of action. These natural products are often large and suffer from poor chemical tractability. Here, we discuss discovery, mechanism of action, and the therapeutic potentials of an unusual antibiotic, indole propionic acid (IPA). IPA is produced by the human gut microbiota. The molecule is small, chemically tractable, and targets amino acid biosynthesis. IPA is active against a broad spectrum of mycobacteria, including drug resistant Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM). Interestingly, the microbiota-produced metabolite is detectable in the serum of healthy individuals, tuberculosis (TB) patients, and several animal models. Thus, the microbiota in our gut may influence susceptibility to mycobacterial diseases. If a gut-lung microbiome axis can be demonstrated, IPA may have potential as a biomarker of disease progression, and development of microbiota-based therapies could be explored. In addition to its antimycobacterial activity, the molecule displays anti-inflammatory and antioxidant properties. This raises the possibility that IPA has therapeutic potential as both antibiotic and add-on host-directed drug for the treatment of TB in patient populations where disease morbidity and mortality is driven by excessive inflammation and tissue damage, such as TB-associated immune reconstitution inflammatory syndrome, TB-meningitis, and TB-diabetes.
Collapse
Affiliation(s)
- Dereje Abate Negatu
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States.,Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States
| |
Collapse
|
725
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
726
|
Tryptophan Intake and Metabolism in Older Adults with Mood Disorders. Nutrients 2020; 12:nu12103183. [PMID: 33081001 PMCID: PMC7603218 DOI: 10.3390/nu12103183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The role of serotonin in the pathogenesis of depression is well-documented, while the involvement of other tryptophan (TRP) metabolites generated in the kynurenine pathway is less known. The aim of this study was to assess the intake and metabolism of TRP in elderly patients with mood disorders. Ninety subjects in three groups, 30 subjects each, were enrolled in this study: controls (healthy young adults, group I) and elderly individuals without (group II) or with (group III) symptoms of mild and moderate depression, as assessed by the Hamilton Depression Rating Scale (HAM-D) and further referred to as mood disorders. The average TRP intake was evaluated with the nutrition calculator. Urinary levels of TRP, 5-hydroxyindoleacetic acid (5-HIAA), L-kynurenine (KYN), kynurenic acid (KynA), xanthurenic acid (XA), and quinolinic acid (QA) were determined by liquid chromatography with tandem mass spectrometry and related to creatinine level. The average daily intake of TRP was significantly lower in group III than the remaining two groups, but group III was also characterized by higher urinary levels of KYN, KynA, XA, and QA as compared with younger adult individuals and elderly patients without mood disorders. Therefore, mild and moderate depression in the elderly may be associated with a lower intake of TRP and changes in its kynurenine metabolic pathway, which suggests a potential dietary TRP-based intervention in this group of patients.
Collapse
|
727
|
Guenin-Macé L, Morel JD, Doisne JM, Schiavo A, Boulet L, Mayau V, Goncalves P, Duchatelet S, Hovnanian A, Bondet V, Duffy D, Ungeheuer MN, Delage M, Nassif A, Di Santo JP, Demangel C. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight 2020; 5:140598. [PMID: 32970636 PMCID: PMC7605522 DOI: 10.1172/jci.insight.140598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disorder of unknown etiology that manifests as recurrent, painful lesions. Cutaneous dysbiosis and unresolved inflammation are hallmarks of active HS, but their origin and interplay remain unclear. Our metabolomic profiling of HS skin revealed an abnormal induction of the kynurenine pathway of tryptophan catabolism in dermal fibroblasts, correlating with the release of kynurenine pathway–inducing cytokines by inflammatory cell infiltrates. Notably, overactivation of the kynurenine pathway in lesional skin was associated with local and systemic depletion in tryptophan. Yet the skin microbiota normally degrades host tryptophan into indoles regulating tissue inflammation via engagement of the aryl hydrocarbon receptor (AHR). In HS skin lesions, we detected contextual defects in AHR activation coinciding with impaired production of bacteria-derived AHR agonists and decreased incidence of AHR ligand-producing bacteria in the resident flora. Dysregulation of tryptophan catabolism at the skin-microbiota interface thus provides a mechanism linking the immunological and microbiological features of HS lesions. In addition to revealing metabolic alterations in patients with HS, our study suggests that correcting AHR signaling would help restore immune homeostasis in HS skin. Loss of homeostasis of tryptophan metabolism at the host-microbiota interface may contribute to Hidradenitis Suppurativa.
Collapse
Affiliation(s)
- Laure Guenin-Macé
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Jean-David Morel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France.,Université Paris 7, Sorbonne Paris Cité, Paris, France.,ENS de Lyon, Lyon, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Angèle Schiavo
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Lysiane Boulet
- Laboratoire de Biochimie Hormonale et Nutritionnelle, CHU Grenoble-Alpes, La Tronche, France
| | - Véronique Mayau
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Pedro Goncalves
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Sabine Duchatelet
- Université de Paris, Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Paris, France
| | - Alain Hovnanian
- Université de Paris, Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Paris, France.,Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, INSERM U1223, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, INSERM U1223, Paris, France
| | | | - Maïa Delage
- Centre Médical, Institut Pasteur, Paris, France
| | - Aude Nassif
- Centre Médical, Institut Pasteur, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, INSERM U1223, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
728
|
Masaki A, Ishida T, Maeda Y, Ito A, Suzuki S, Narita T, Kinoshita S, Yoshida T, Ri M, Kusumoto S, Komatsu H, Inagaki H, Ueda R, Choi I, Suehiro Y, Iida S. Clinical significance of tryptophan catabolism in follicular lymphoma. Hematol Oncol 2020; 38:742-753. [PMID: 32940915 DOI: 10.1002/hon.2804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/11/2022]
Abstract
The enzyme, indoleamine 2,3-dioxygenase 1 (IDO), catabolizes tryptophan (Trp) in the kynurenine (Kyn) pathway, and is important in suppressing antitumor immune responses in the tumor microenvironment. With regard to previously untreated patients with follicular lymphoma (FL), we sought to establish the prognostic significance of Trp catabolism in this disease. Serum Trp and Kyn levels in 110 patients with FL were quantified, and their relationship to different clinical parameters studied. IDO expression in the lymph nodes of affected patients was studied. Study participants included 54 males and 56 females (age range 39-86, median 62 years), showing a 5-year overall survival (OS) rate of 78.5%. Patients with a high Kyn level (5-year OS, 65.0% vs. 81.7%; p = 0.026), high Kyn/Trp ratio (71.1% vs. 81.7%; p = 0.002), and low hemoglobin (Hb) level (<12.0 g/dL; p = 0.001; a component of FL international prognostic indexes) demonstrated a significantly shorter OS. Multivariate analysis included the following 10 variables: age, sex, serum β2-microglobulin, Hb, longest diameter of the largest involved node, Ann Arbor stage, serum lactate dehydrogenase, histologic grading, B symptoms, and serum Kyn/Trp ratio; a lower Hb level and a high Kyn/Trp ratio (HR, 3.239; 95% CI, 1.296-8.096) led to a significantly inferior OS. In the microenvironment, some CD11c-positive myeloid dendritic cells but not FL tumor cells were found to produce IDO. Overall, measuring levels of serum Kyn and Trp in individual patients with FL contributed to predicting their prognosis.
Collapse
Affiliation(s)
- Ayako Masaki
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Ishida
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Maeda
- Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
| | - Asahi Ito
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tomoko Narita
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Kinoshita
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Yoshida
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaki Ri
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shigeru Kusumoto
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirokazu Komatsu
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ilseung Choi
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Shinsuke Iida
- Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
729
|
Nutritional Therapy to Modulate Tryptophan Metabolism and Aryl Hydrocarbon-Receptor Signaling Activation in Human Diseases. Nutrients 2020; 12:nu12092846. [PMID: 32957545 PMCID: PMC7551725 DOI: 10.3390/nu12092846] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a nuclear protein which, upon association with certain endogenous and exogenous ligands, translocates into the nucleus, binds DNA and regulates gene expression. Tryptophan (Trp) metabolites are one of the most important endogenous AhR ligands. The intestinal microbiota is a critical player in human intestinal homeostasis. Many of its effects are mediated by an assembly of metabolites, including Trp metabolites. In the intestine, Trp is metabolized by three main routes, leading to kynurenine, serotonin, and indole derivative synthesis under the direct or indirect involvement of the microbiota. Disturbance in Trp metabolism and/or AhR activation is strongly associated with multiple gastrointestinal, neurological and metabolic disorders, suggesting Trp metabolites/AhR signaling modulation as an interesting therapeutic perspective. In this review, we describe the most recent advances concerning Trp metabolism and AhR signaling in human health and disease, with a focus on nutrition as a potential therapy to modulate Trp metabolites acting on AhR. A better understanding of the complex balance between these pathways in human health and disease will yield therapeutic opportunities.
Collapse
|
730
|
Wang XN, Liu JQ, Shi ZQ, Sun FY, Liu LF, Xin GZ. Orthogonal label and label-free dual pretreatment for targeted profiling of neurotransmitters in enteric nervous system. Anal Chim Acta 2020; 1139:68-78. [PMID: 33190711 DOI: 10.1016/j.aca.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Neurotransmitter (NT) abnormalities in the enteric nervous system have been reported as crucial roles to regulate the intestinal inflammation and gut immune homeostasis. Capturing quantitative changes at the NT metabolome provides an opportunity to develop an understanding of neuroimmune-mediated inflammation. Given the wide diversity of chemical characterizations in the NTs, only partial coverage of the NT metabolome can be simultaneously quantified in a single-run analysis. Herein, we summarized the distribution of functional groups of compound entries in the NT metabolome. Based on this information, an orthogonal dansyl-labeling and label-free dual pretreatment approach was separately designed to target phenol and amine NTs and tertiary amine and choline NTs. By combining the dansyl-labeled and unlabeled NTs within a single vial, a comprehensive and practical approach was optimized for quantifying high coverage of NT metabolome in a single-run analysis on the reversed-phase C18 column. Method validation indicated good linearity with correlation coefficients (R2) > 0.99, intra- and interday accuracy with relative error < ±20%, and precision with relative standard deviations of ≤15%. With this method, we could simultaneously monitor the alterations of cholines, amines, amino acids, tryptophan and phenylalanine biological pathways in dextran sulphate sodium-induced colitis mice. The measured levels of NT metabolome ranged from 0.0007 to 3.540 μg/mg in intestinal contents and 0.013-154.54 μg/mL in serum samples. The NT metabolism was disrupted by colitis, characterized by the changed NT levels in serum and excessive amino acid NTs accumulation in the intestinal contents. We envisage that the orthogonal approach is of great significance for the comprehensive determination of targeted metabolomics. NTs have the potential to be biomarkers for clinical metabolomics.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang, 330004, Jiangxi Province, China
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
731
|
Zhou L, Zhang P, Wang H, Wang D, Li Y. Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy. Acc Chem Res 2020; 53:1761-1772. [PMID: 32819102 DOI: 10.1021/acs.accounts.0c00254] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer immunotherapy, which suppresses tumor relapse and metastasis by boosting host immunity and inducing long-term immune memory effects, is emerging as a vital approach to improve the prognosis of patients. Although remarkable efficacy has been observed in some patients, challenges including low response rate, drug resistance, and immune-related adverse effects still limit the clinical application of cancer immunotherapy in broad types of tumors. Immunotherapeutic agents are used to enhance tumor immunogenicity and reverse the effects of the immunosuppressive tumor microenvironment (ITM), but the benefits of monotherapy are mild and transient due to off-target distribution of drugs. To overcome these issues, smart nanosized drug delivery systems (sNDDS) have been developed to enhance tissue specificity, co-deliver multiple drugs, prime immune cells, and amplify immune responses in tumors. Moreover, accumulating knowledge in cancer biology, immunology, and material science has also greatly promoted the development of sNDDS for enhancing cancer immunotherapy.In this Account, we will discuss the approaches of our group in designing sNDDS to induce immunogenic cell death (ICD) for combination with cancer immunotherapy. We propose a brief overview on the design of nanocarriers, intelligent moieties and immunotherapeutic agents in sNDDS. Then, we discuss the strategies to remodel ITM by leveraging ICD as well as cooperating with programmed cell death protein 1 ligand blockade and indoleamine 2,3-dioxygenase 1 inhibition. We have synthesized a series of stimuli-responsive polymers and prodrugs to fabricate sNDDS and have integrated multiple immunotherapeutic drugs into one platform for combinational immunotherapy. Last, we present an outlook on future design of sNDDS and possible directions for enhancing cancer immunotherapy. Building on the concept of enhancing tumor immunogenicity and reversing ITM, we hope this Account will contribute to the rational design of sNDDS for co-delivery of multiple drugs with amplified immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
732
|
Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain Sci 2020; 10:brainsci10090631. [PMID: 32932826 PMCID: PMC7563403 DOI: 10.3390/brainsci10090631] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Autism Spectrum Disorder (ASD) etiopathogenesis is still unclear and no effective preventive and treatment measures have been identified. Research has focused on the potential role of neuroinflammation and the Kynurenine pathway; here we review the nature of these interactions. Pre-natal or neonatal infections would induce microglial activation, with secondary consequences on behavior, cognition and neurotransmitter networks. Peripherally, higher levels of pro-inflammatory cytokines and anti-brain antibodies have been identified. Increased frequency of autoimmune diseases, allergies, and recurring infections have been demonstrated both in autistic patients and in their relatives. Genetic studies have also identified some important polymorphisms in chromosome loci related to the human leukocyte antigen (HLA) system. The persistence of immune-inflammatory deregulation would lead to mitochondrial dysfunction and oxidative stress, creating a self-sustaining cytotoxic loop. Chronic inflammation activates the Kynurenine pathway with an increase in neurotoxic metabolites and excitotoxicity, causing long-term changes in the glutamatergic system, trophic support and synaptic function. Furthermore, overactivation of the Kynurenine branch induces depletion of melatonin and serotonin, worsening ASD symptoms. Thus, in genetically predisposed subjects, aberrant neurodevelopment may derive from a complex interplay between inflammatory processes, mitochondrial dysfunction, oxidative stress and Kynurenine pathway overexpression. To validate this hypothesis a new translational research approach is necessary.
Collapse
|
733
|
Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe? Biomolecules 2020; 10:biom10091280. [PMID: 32899743 PMCID: PMC7563518 DOI: 10.3390/biom10091280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.
Collapse
|
734
|
Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 2020; 11:1203-1219. [PMID: 32401136 PMCID: PMC7524279 DOI: 10.1080/19490976.2020.1758008] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) is not only a nutrient enhancer but also has systemic effects. Trp metabolites signaling through the well-known aryl hydrocarbon receptor (AhR) constitute the interface of microbiome-gut-brain axis. However, the pathway through which Trp metabolites affect central nervous system (CNS) function have not been fully elucidated. AhR participates in a broad variety of physiological and pathological processes that also highly relevant to intestinal homeostasis and CNS diseases. Via the AhR-dependent mechanism, Trp metabolites connect bidirectional signaling between the gut microbiome and the brain, mediated via immune, metabolic, and neural (vagal) signaling mechanisms, with downstream effects on behavior and CNS function. These findings shed light on the complex Trp regulation of microbiome-gut-brain axis and add another facet to our understanding that dietary Trp is expected to be a promising noninvasive approach for alleviating systemic diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing100193, China
| |
Collapse
|
735
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
736
|
Targeting Metabolic Pathways in Kidney Cancer: Rationale and Therapeutic Opportunities. ACTA ACUST UNITED AC 2020; 26:407-418. [PMID: 32947309 DOI: 10.1097/ppo.0000000000000472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in cellular sugar, amino acid and nucleic acid, and lipid metabolism, as well as in mitochondrial function, are a hallmark of renal cell carcinoma (RCC). The activation of oncogenes such as hypoxia-inducible factor and loss of the von Hippel-Lindau function and other tumor suppressors frequently occur early on during tumorigenesis and are the drivers for these changes, collectively known as "metabolic reprogramming," which promotes cellular growth, proliferation, and stress resilience. However, tumor cells can become addicted to reprogrammed metabolism. Here, we review the current knowledge of metabolic addictions in clear cell RCC, the most common form of RCC, and to what extent this has created therapeutic opportunities to interfere with such altered metabolic pathways to selectively target tumor cells. We highlight preclinical and emerging clinical data on novel therapeutics targeting metabolic traits in clear cell RCC to provide a comprehensive overview on current strategies to exploit metabolic reprogramming clinically.
Collapse
|
737
|
Aslamkhan AG, Xu Q, Loughlin A, Vu H, Pacchione S, Bhatt B, Garfinkel I, Styring TG, LaFranco-Scheuch L, Pearson K, Reynolds S, Li N, Zhou H, Miller JR, Solban N, Bass A, Glaab WE. Characterization of indoleamine-2,3-dioxygenase 1, tryptophan-2,3-dioxygenase, and Ido1/Tdo2 knockout mice. Toxicol Appl Pharmacol 2020; 406:115216. [PMID: 32871117 DOI: 10.1016/j.taap.2020.115216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO2) degrade tryptophan (Trp) to kynurenine (Kyn), and these enzymes have promise as therapeutic targets. A comprehensive characterization of potential safety liabilities of IDO1 and TDO2 inhibitors using knockout (KO) mice has not been assessed, nor has the dual Ido1/Tdo2 KO been reported. Here we characterized male and female mice with KOs for Ido1, Tdo2, and Ido1/Tdo2 and compared findings to the wild type (WT) mouse strain, evaluated for 14 days, using metabolomics, transcriptional profiling, behavioral analysis, spleen immunophenotyping, comprehensive histopathological analysis, and serum clinical chemistry. Multiple metabolomic changes were seen in KO mice. For catabolism of Trp to Kyn and anthranilic acid, both substrates were decreased in liver of Tdo2 and dual KO mice. Metabolism of Trp to serotonin and its metabolites resulted in an increase in 5-Hydroxyindole-3-acetic acid in the Tdo2 and dual KO mice. Ido1 and dual KO mice displayed a Kyn reduction in plasma but not in liver. Nicotinamide synthesis and conversion of glucose to lactic acid were not impacted. A slight decrease in serum alkaline phosphatase was seen in all KOs, and small changes in liver gene expression of genes unrelated to tryptophan metabolism were observed. Regarding other parameters, no genotype-specific changes were observed. In summary, this work shows metabolomic pathway changes for metabolites downstream of tryptophan in these KO mice, and suggests that inhibition of the IDO1 and TDO2 enzymes would be well tolerated whether inhibited individually or in combination since no safety liabilities were uncovered.
Collapse
Affiliation(s)
- Amy G Aslamkhan
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA; 770 Sumneytown Pike, WP45-313; West Point, PA 19486, USA.
| | - Qiuwei Xu
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Amy Loughlin
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Heather Vu
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Stephen Pacchione
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Bhavana Bhatt
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Ivy Garfinkel
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Tara Grady Styring
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Lisa LaFranco-Scheuch
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Kara Pearson
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Spencer Reynolds
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Nianyu Li
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Heather Zhou
- Genetics and Pharmacogenomics, Merck & Co, Inc., Kenilworth, NJ, USA
| | | | - Nicolas Solban
- Quantitative Biosciences, Merck & Co, Inc., Boston, MA, USA
| | - Alan Bass
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Warren E Glaab
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| |
Collapse
|
738
|
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020; 182:1252-1270.e34. [PMID: 32818467 DOI: 10.1016/j.cell.2020.07.038] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.
Collapse
|
739
|
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22:1073-1113. [PMID: 32328653 PMCID: PMC7594557 DOI: 10.1093/neuonc/noaa106] [Citation(s) in RCA: 598] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are the most common form of malignant primary brain tumor and an important cause of morbidity and mortality. In recent years there have been important advances in understanding the molecular pathogenesis and biology of these tumors, but this has not translated into significantly improved outcomes for patients. In this consensus review from the Society for Neuro-Oncology (SNO) and the European Association of Neuro-Oncology (EANO), the current management of isocitrate dehydrogenase wildtype (IDHwt) glioblastomas will be discussed. In addition, novel therapies such as targeted molecular therapies, agents targeting DNA damage response and metabolism, immunotherapies, and viral therapies will be reviewed, as well as the current challenges and future directions for research.
Collapse
Affiliation(s)
- Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eudocia Quant Lee
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Chang
- University of California San Francisco, San Francisco, California, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy F Cloughesy
- David Geffen School of Medicine, Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - John F DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Monika E Hegi
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Emilie Le Rhun
- University of Lille, Inserm, Neuro-oncology, General and Stereotaxic Neurosurgery service, University Hospital of Lille, Lille, France; Breast Cancer Department, Oscar Lambret Center, Lille, France and Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Schiff
- University of Virginia School of Medicine, Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague and Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Jonathan Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Andreas von Deimling
- Neuropathology and Clinical Cooperation Unit Neuropathology, University Heidelberg and German Cancer Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neuro-oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - David A Reardon
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
740
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
741
|
Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Int J Mol Sci 2020; 21:ijms21165823. [PMID: 32823705 PMCID: PMC7461572 DOI: 10.3390/ijms21165823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5′-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.
Collapse
|
742
|
Lin H, Teng H, Wu W, Li Y, Lv G, Huang X, Yan W, Lin Z. Pharmacokinetic and metabolomic analyses of Mangiferin calcium salt in rat models of type 2 diabetes and non-alcoholic fatty liver disease. BMC Pharmacol Toxicol 2020; 21:59. [PMID: 32762728 PMCID: PMC7409647 DOI: 10.1186/s40360-020-00438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver is one of the most common comorbidities of diabetes. It can cause disturbance of glucose and lipid metabolism in the body, gradually develop into liver fibrosis, and even cause liver cirrhosis. Mangiferin has a variety of pharmacological activities, especially for the improvement of glycolipid metabolism and liver injury. However, its poor oral absorption and low bioavailability limit its further clinical development and application. The modification of mangiferin derivatives is the current research hotspot to solve this problem. Methods The plasma pharmacokinetic of mangiferin calcium salt (MCS) and mangiferin were monitored by HPLC. The urine metabolomics of MCS were conducted by UPLC-Q-TOF-MS. Results The pharmacokinetic parameters of MCS have been varied, and the oral absorption effect of MCS was better than mangiferin. Also MCS had a good therapeutic effect on type 2 diabetes and NAFLD rats by regulating glucose and lipid metabolism. Sixteen potential biomarkers had been identified based on metabolomics which were related to the corresponding pathways including Pantothenate and CoA biosynthesis, fatty acid biosynthesis, citric acid cycle, arginine biosynthesis, tryptophan metabolism, etc. Conclusions The present study validated the favorable pharmacokinetic profiles of MCS and the biochemical mechanisms of MCS in treating type 2 diabetes and NAFLD.
Collapse
Affiliation(s)
- He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| | - Houlei Teng
- Changzhou Deze Drug Research Co., Ltd, Changzhou, China
| | - Wei Wu
- Changzhou Deze Drug Research Co., Ltd, Changzhou, China
| | - Yong Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenhao Yan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
743
|
Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, Roy NC. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci 2020; 14:44. [PMID: 32848651 PMCID: PMC7419604 DOI: 10.3389/fnint.2020.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that alterations in the development of the gastrointestinal (GI) tract during the early postnatal period can influence brain development and vice-versa. It is increasingly recognized that communication between the GI tract and brain is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the developmental changes in the body during this period. This review provides an overview of major developmental events in the GI tract and brain in the early postnatal period and their parallel developmental trajectories under physiological conditions. Current knowledge of GBA mediators in context to brain function and behavioral outcomes and their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents hypotheses on the role of the GBA mediators in response to the parallel development of the GI tract and brain in infants.
Collapse
Affiliation(s)
- Ankita Jena
- School of Food & Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand.,The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Carlos A Montoya
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Jane A Mullaney
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wayne Young
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
744
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
745
|
Zhou YT, Li SS, Ai M, Chen H, Liu YX, Li BY, Zhao Y, Cai WW, Hou B, Ni LL, Xu F, Qiu LY. 1,25(OH)2D3 mitigate cancer-related fatigue in tumor-bearing mice: Integrating network pharmacological analysis. Biomed Pharmacother 2020; 128:110256. [DOI: 10.1016/j.biopha.2020.110256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
|
746
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
747
|
Rodrigues-Oliveira AF, Batista PR, Ducati LC, Correra TC. Analyzing the N–H+…π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02643-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
748
|
Joisten N, Walzik D, Metcalfe AJ, Bloch W, Zimmer P. Physical Exercise as Kynurenine Pathway Modulator in Chronic Diseases: Implications for Immune and Energy Homeostasis. Int J Tryptophan Res 2020; 13:1178646920938688. [PMID: 32684749 PMCID: PMC7346690 DOI: 10.1177/1178646920938688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence highlights the substantial role of the kynurenine pathway in various physiological systems and pathological conditions. Physical exercise has been shown to impact the kynurenine pathway in response to both single (acute) and multiple (chronic) exercise training stimuli. In this perspective article, we briefly outline the current knowledge concerning exercise-induced modulations of the kynurenine pathway and discuss underlying mechanisms. Furthermore, we expose the potential involvement of exercise-induced kynurenine pathway modulations on energy homeostasis (eg, through de novo synthesis of NAD+) and finally suggest how these modulations may contribute to exercise-induced benefits in the prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Niklas Joisten
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - David Walzik
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Alan J Metcalfe
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
749
|
Abstract
From a general perspective, in the context of solid tumors, we can distinguish metabolic alterations of cancer cells from those of the stroma. These two components interact with each other and with the extracellular matrix (ECM), and these interactions can take the form of either metabolic competition or metabolic symbiosis. The aim of this chapter is to overview the canonical metabolic alterations of tumor and stroma cells and to present specific examples of metabolic competition and symbiosis. We will also discuss the complexity and plasticity of metabolism, which pose indeed a serious threat to our ability to target selective metabolic features of tumor microenvironment with drugs. Finally, we will highlight some limitations of state-of-the-art techniques used to study tumor metabolism and propose some innovative solutions to investigate the clinical relevance of metabolic alterations for patient management and treatment.
Collapse
|
750
|
Xu T, Wang Q, Liu M. A Network Pharmacology Approach to Explore the Potential Mechanisms of Huangqin-Baishao Herb Pair in Treatment of Cancer. Med Sci Monit 2020; 26:e923199. [PMID: 32609659 PMCID: PMC7346753 DOI: 10.12659/msm.923199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study was to identify the bioactive ingredients of Huangqin-Baishao herb pair and to reveal its anti-cancer mechanisms through a pharmacology approach. MATERIAL AND METHODS Detailed information on compounds in the HQ-BS herb pair was obtained from the Traditional Chinese medicine systems pharmacology (TCMSP) and screened by the criteria of OB ≥30% and DL ≥0.18. A systematic drug targeting model (SysDT) was used for compound targets prediction, and then the targets were analyzed for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of HQ-BS targets was constructed, after identifying core networks through Cytoscape plugins. RESULTS We found 47 bioactive compounds of HQ-BS and 107 human-derived targets. A compound target network and a target signal pathway network were constructed and used for topological analysis. Kaempferol, beta-sitosterol, stigmasterol, wogonin, and oroxylin-a were identified as core compounds and pathways in cancer. The calcium signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, chemical carcinogenesis, estrogen signaling pathway, proteoglycans in cancer, HIF-1 signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, small cell lung cancer, prostate cancer, colorectal cancer, NOD-like receptor signaling pathway, and T cell receptor signaling pathway were found to be potential signals of HQ-BS in treating cancer. Through PPI network analysis, TNF signaling pathway, tryptophan metabolism, proteoglycans in cancer, cell cycle, and chemical carcinogenesis sub-networks were obtained. CONCLUSIONS HQ-BS contains various bioactive compounds, including flavonoids, phytosterols, and other compounds, and these compounds can inhibit or activate multiple targets and pathways against cancer.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|