701
|
Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 2014; 17:324-8. [PMID: 24848532 DOI: 10.1097/mco.0000000000000065] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Possible mechanisms in cellular senescence and the senescence-associated secretory phenotype (SASP) that drive and promote chronic inflammation in multiple age-related chronic diseases are considered. RECENT FINDINGS A series of studies about the SASP indicate that senescent cells may be involved in the development of chronic inflammatory diseases associated with aging. SUMMARY Aging is a complex biological process accompanied by a state of chronic, low-grade, 'sterile' inflammation, which is a major contributor to the development of many age-related chronic disorders including atherosclerosis, osteoarthritis, Alzheimer's disease, type 2 diabetes, cancers, and others. It appears that cellular senescence plays a role in causing inflammation through the SASP. A better understanding of the contribution of senescent cells to the pathologies of chronic inflammatory disorders could have potentially profound diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
702
|
Salminen LE, Schofield PR, Pierce KD, Conturo TE, Tate DF, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Akbudak E, Paul RH. Impact of the AGTR1 A1166C polymorphism on subcortical hyperintensities and cognition in healthy older adults. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9664. [PMID: 24981111 PMCID: PMC4150909 DOI: 10.1007/s11357-014-9664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/18/2014] [Indexed: 05/19/2023]
Abstract
Vascular aging consists of complex and multifaceted processes that may be influenced by genetic polymorphisms of the renin-angiotensin system. A polymorphism in the angiotensin II type 1 receptor gene (AGTR1/rs5186) has been associated with an increased risk for arterial stiffness, hypertension, and ischemic stroke. Despite these identified relationships, the impact of AGTR1 A1166C on white matter integrity and cognition is less clear in a healthy aging population. The present study utilized indices of neuroimaging and neuropsychological assessment to examine the impact of the A1166C polymorphism on subcortical hyperintensities (SH) and cognition in 49 healthy adults between ages 51-85. Using a dominant statistical model (CC + CA (risk) vs. AA), results revealed significantly larger SH volume for individuals with the C1166 variant (p < 0.05, partial eta(2) = 0.117) compared with those with the AA genotype. Post hoc analyses indicated that increased SH volume in C allele carriers could not be explained by vascular factors such as pulse pressure or body mass index. In addition, cognitive performance did not differ significantly between groups and was not significantly associated with SH in this cohort. Results suggest that presence of the C1166 variant may serve as a biomarker of risk for suboptimal brain integrity in otherwise healthy older adults prior to changes in cognition.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO, 63121, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
703
|
Testa R, Genovese S, Ceriello A. Nutritional imbalances linking cellular senescence and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 2014; 17:338-42. [PMID: 24839949 DOI: 10.1097/mco.0000000000000066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Quality of nutrition plays a central role in illnesses such as diabetes and its complications. Dietary and lifestyle habits may have a strong impact, either worsening or improving the evolution of diabetes mellitus. Some factors, such as obesity, worsen the illness, causing chronic inflammation, lipid metabolic disorder, accelerated atherosclerosis, increased risk for thrombosis, hypertension, hyperinsulinemia, insulin resistance, and cellular senescence. Some other nutritional components, however, have an opposite effect, probably increasing antioxidant defense. RECENT FINDINGS The effects of nutritional factors on cellular senescence in diabetic patients are described in this review. In particular, we discuss some of the nutritional causes of cellular senescence in diabetes mellitus and focus on different nutraceutical compounds that can affect cellular senescence. Furthermore, relevant mechanisms of action are also described. SUMMARY Diet and nutraceutical factors have important effects on diabetes mellitus. Some molecules, which improve antioxidant defense, may counteract cellular senescence. A good lifestyle with physical activity and good weight control can improve the quality of life in diabetic people; on the contrary, obesity and vitamin deficiencies may worsen the evolution of this illness, even inducing cellular senescence.
Collapse
Affiliation(s)
- Roberto Testa
- aExperimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona bDepartment of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Sesto San Giovanni (MI), Italy cInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) dCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | | | | |
Collapse
|
704
|
Newsholme P, de Bittencourt PIH. The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care 2014; 17:295-305. [PMID: 24878874 DOI: 10.1097/mco.0000000000000077] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Obesity is a chronic inflammatory disease in which the physiological resolution of inflammation is attenuated, leading to low-grade inflammation throughout the body. However, the heat shock response, which is a key component of the physiological response to resolve inflammation, is seriously hampered in adipose tissue and other metabolic organs (e.g. skeletal muscle, liver, pancreatic β-cells) in metabolic diseases. In this review, we hypothesize that adipocyte metabolic stress triggers the onset of fat cell senescence, and companion senescence-associated secretory phenotype (SASP), and that such a scenario is responsible for attenuating the resolution of inflammation. RECENT FINDINGS We shall discuss the role of the heat shock response in the context of the resolution of inflammation and the relevance of heat shock response blockade in chronic inflammatory diseases. Sirtuin-1 is responsible for the induction of heat shock transcription factor-1 mRNA expression and for the stabilization of heat shock transcription factor-1 in a high-profile activity state. However, adipose tissue-emanated SASP depress sirtuin-1 expression, leading adipocytes to a perpetual state of unresolved inflammation, due to a dampening of the heat shock response. SUMMARY The advance of inflammasome-mediated SASP from adipose to other tissues promotes cellular senescence in many other cells of the organism, aggravating obesity-dependent chronic inflammation. Inducers of heat shock response (e.g. heat shock itself, physical exercise and calorie restriction) may efficiently interrupt this vicious cycle and are envisaged as the best and also the most economical treatment for obesity-related chronic diseases.
Collapse
Affiliation(s)
- Philip Newsholme
- aSchool of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia bLaboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre cNational Institute of Hormones and Women's Health, Porto Alegre, RS, Brazil
| | | |
Collapse
|
705
|
Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci 2014; 15:11473-94. [PMID: 24979131 PMCID: PMC4139794 DOI: 10.3390/ijms150711473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023] Open
Abstract
Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.
Collapse
|
706
|
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, Moinard C, Forest C, Noirez P. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol Nutr Food Res 2014; 58:1765-75. [DOI: 10.1002/mnfr.201400053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Nolwenn Joffin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
- Département de Biochimie et de Biologie Moléculaire; Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines; Versailles France
| | - Sylvie Durant
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean Bastin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean-Pascal De Bandt
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Luc Cynober
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Christophe Moinard
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
| | - Claude Forest
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Philippe Noirez
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut de Recherche Biomédicale et d’Epidémiologie du Sport; Paris France
- UFR des Sciences et Techniques des Activités Physiques et Sportives; Paris France
| |
Collapse
|
707
|
Borlaug BA. Fatness, Fitness, Stiffness, and Age. JACC-HEART FAILURE 2014; 2:247-9. [DOI: 10.1016/j.jchf.2014.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
|
708
|
Tabibian JH, O'Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 2014; 59:2263-2275. [PMID: 24390753 PMCID: PMC4167827 DOI: 10.1002/hep.26993] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/25/2013] [Indexed: 12/15/2022]
Abstract
UNLABELLED Primary sclerosing cholangitis (PSC) is an incurable cholangiopathy of unknown etiopathogenesis. Here we tested the hypothesis that cholangiocyte senescence is a pathophysiologically important phenotype in PSC. We assessed markers of cellular senescence and senescence-associated secretory phenotype (SASP) in livers of patients with PSC, primary biliary cirrhosis, hepatitis C, and in normals by fluorescent in situ hybridization (FISH) and immunofluorescence microscopy (IFM). We tested whether endogenous and exogenous biliary constituents affect senescence and SASP in cultured human cholangiocytes. We determined in coculture whether senescent cholangiocytes induce senescence in bystander cholangiocytes. Finally, we explored signaling mechanisms involved in cholangiocyte senescence and SASP. In vivo, PSC cholangiocytes expressed significantly more senescence-associated p16(INK4a) and γH2A.x compared to the other three conditions; expression of profibroinflammatory SASP components (i.e., IL-6, IL-8, CCL2, PAI-1) was also highest in PSC cholangiocytes. In vitro, several biologically relevant endogenous (e.g., cholestane 3,5,6 oxysterol) and exogenous (e.g., lipopolysaccharide) molecules normally present in bile induced cholangiocyte senescence and SASP. Furthermore, experimentally induced senescent human cholangiocytes caused senescence in bystander cholangiocytes. N-Ras, a known inducer of senescence, was increased in PSC cholangiocytes and in experimentally induced senescent cultured cholangiocytes; inhibition of Ras abrogated experimentally induced senescence and SASP. CONCLUSION Cholangiocyte senescence induced by biliary constituents by way of N-Ras activation is an important pathogenic mechanism in PSC. Pharmacologic inhibition of N-Ras with a resultant reduction in cholangiocyte senescence and SASP is a new therapeutic approach for PSC.
Collapse
Affiliation(s)
- James H Tabibian
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
709
|
Hofmann JW, McBryan T, Adams PD, Sedivy JM. The effects of aging on the expression of Wnt pathway genes in mouse tissues. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9618. [PMID: 24488586 PMCID: PMC4082588 DOI: 10.1007/s11357-014-9618-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/12/2014] [Indexed: 05/19/2023]
Abstract
The Wnt signaling pathway is involved in the regulation of tissue patterning and organ development during embryogenesis and continues to contribute to the maintenance of tissue homeostasis in adulthood. Recently, Wnt signaling has also been implicated in the establishment and progression of replicative cellular senescence. Given the known roles of tissue homeostasis and cellular senescence in aging, we sought to determine whether Wnt signaling changes with age. We examined the expression of 84 Wnt pathway-related genes in the liver, lung, skeletal muscle, and brain tissue from young and old mice. Expression changes were compared with those seen in cellular senescence, and transcription factors that might mediate these changes were predicted bioinformatically. In aggregate, our data are indicative of a general decrease in Wnt signaling with age, especially in the lung and brain. Furthermore, the set of genes that are differentially expressed with age is distinct from the genes differentially expressed in cellular senescence. The transcription factors predicted to regulate these changes, Nf-κB, Myb, Nkx2-1, Nr5a2, and Ep300, are known to regulate inflammation, differentiation, lipid metabolism, and chromatin remodeling, all of which have previously been implicated in aging. Although our study does not address whether altered Wnt signaling is a cause or an effect of aging, the presence of a relationship between the two provides a starting point for further investigation.
Collapse
Affiliation(s)
- Jeffrey W. Hofmann
- />Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, Providence, RI 02903 USA
| | - Tony McBryan
- />Beatson Institute for Cancer Research and Institute for Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Peter D. Adams
- />Beatson Institute for Cancer Research and Institute for Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John M. Sedivy
- />Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories for Molecular Medicine, Brown University, Providence, RI 02903 USA
| |
Collapse
|
710
|
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S4-9. [PMID: 24833586 DOI: 10.1093/gerona/glu057] [Citation(s) in RCA: 2515] [Impact Index Per Article: 228.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by a chronic, low-grade inflammation, and this phenomenon has been termed as "inflammaging." Inflammaging is a highly significant risk factor for both morbidity and mortality in the elderly people, as most if not all age-related diseases share an inflammatory pathogenesis. Nevertheless, the precise etiology of inflammaging and its potential causal role in contributing to adverse health outcomes remain largely unknown. The identification of pathways that control age-related inflammation across multiple systems is therefore important in order to understand whether treatments that modulate inflammaging may be beneficial in old people. The session on inflammation of the Advances in Gerosciences meeting held at the National Institutes of Health/National Institute on Aging in Bethesda on October 30 and 31, 2013 was aimed at defining these important unanswered questions about inflammaging. This article reports the main outcomes of this session.
Collapse
Affiliation(s)
- Claudio Franceschi
- DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Italy. IRCCS Institute of Neurological Sciences, and CNR-ISOF, Bologna, Italy.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California. Life Sciences Division, Lawrence Berkeley National Laboratory, California
| |
Collapse
|
711
|
Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Int J Obes (Lond) 2014; 39:331-8. [PMID: 24849394 DOI: 10.1038/ijo.2014.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES In the context of obesity, epigenetic mechanisms regulate cell-specific chromatin plasticity, perpetuating gene expression responses to nutrient excess. MacroH2A1, a variant of histone H2A, emerged as a key chromatin regulator sensing small nutrients during cell proliferation and differentiation. Mice genetically ablated for macroH2A1 (knockout (KO)) do not show overt phenotypes under a standard diet. Our objective was to analyse the in vivo role of macroH2A1 in response to nutritional excess. METHODS Twelve-week-old whole-body macroH2A1 KO male mice were given a high-fat diet (60% energy from lard) for 12 weeks until being killed, and examined for glucose and insulin tolerance, and for body fat composition. Energy expenditure was assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in the brown adipose tissue (BAT) or in adipogenesis in the visceral adipose tissue (VAT). RESULTS Under a chow diet, macroH2A1 KO mice did not differ from their wild-type (WT) littermates for body weight, and for sensitivity to glucose or insulin. However, KO mice displayed decreased heat production (P<0.05), and enhanced total activity during the night (P<0.01). These activities related to protection against diet-induced obesity in KO mice, which displayed decreased body weight owing to a specific decrease in fat mass (P<0.05), increased tolerance to glucose (P<0.05), and enhanced total activity during the day (P<0.05), compared with WT mice. KO mice displayed increased expression of thermogenic genes (Ucp1, P<0.05; Glut4, P<0.05; Cox4, P<0.01) in BAT and a decreased expression of adipogenic genes (Pparγ, P<0.05; Fabp4, P<0.05; Glut4, P<0.05) in VAT compared with WT mice, indicative of augmented energy expenditure. CONCLUSIONS Genetic eviction of macroH2A1 confers protection against diet-induced obesity and metabolic derangements in mice. Inhibition of macroH2A1 might be a helpful strategy for epigenetic therapy of obesity.
Collapse
|
712
|
Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, Maeda N, Arbones-Mainar JM. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J 2014; 28:3769-79. [PMID: 24812087 DOI: 10.1096/fj.14-251165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Impaired adipogenesis renders an adipose tissue unable to expand, leading to lipotoxicity and conditions such as diabetes and cardiovascular disease. While factors important for adipogenesis have been studied extensively, those that set the limits of adipose tissue expansion remain undetermined. Feeding a Western-type diet to apolipoprotein E2 knock-in mice, a model of metabolic syndrome, produced 3 groups of equally obese mice: mice with normal glucose tolerance, hyperinsulinemic yet glucose-tolerant mice, and prediabetic mice with impaired glucose tolerance and reduced circulating insulin. Using proteomics, we compared subcutaneous adipose tissues from mice in these groups and found that the expression of PTRF (polymerase I and transcript release factor) associated selectively with their glucose tolerance status. Lentiviral and pharmacologically overexpressed PTRF, whose function is critical for caveola formation, compromised adipocyte differentiation of cultured 3T3-L1cells. In human adipose tissue, PTRF mRNA levels positively correlated with markers of lipolysis and cellular senescence. Furthermore, a negative relationship between telomere length and PTRF mRNA levels was observed in human subcutaneous fat. PTRF is associated with limited adipose tissue expansion underpinning the key role of caveolae in adipocyte regulation. Furthermore, PTRF may be a suitable adipocyte marker for predicting pathological obesity and inform clinical management.
Collapse
Affiliation(s)
- Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Robert M DeKroon
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Oscar Alzate
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine and
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
713
|
Zhang C, Zhen YZ, Lin YJ, Liu J, Wei J, Xu R, Hu G. KNDC1 knockdown protects human umbilical vein endothelial cells from senescence. Mol Med Rep 2014; 10:82-8. [PMID: 24788352 PMCID: PMC4068720 DOI: 10.3892/mmr.2014.2201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 04/07/2014] [Indexed: 12/24/2022] Open
Abstract
KNDC1 (kinase noncatalytic C-lobe domain containing 1), a brain-specific Ras guanine nucleotide exchange factor, controls the negative regulation of neuronal dendrite growth. However, the effect of KNDC1 on cellular senescence remains to be elucidated. The present study investigated the impact of KNDC1 knockdown on human endothelial cell senescence and the mechanisms underlying this effect. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as a model of biological aging. Senescence-associated β-galactosidase staining was used to detect cellular senescence and flow cytometry was employed to determine cell cycle progression. Quantitative polymerase chain reaction (qPCR) and western blot analysis were utilized to investigate mRNA transcription and protein expression. In the HUVECs, a senescence-like phenotypes developed with increasing passage number in vitro, which were associated with a progressive increase in the transcription and expression of KNDC1. KNDC1 knockdown promoted cell proliferation and partially reversed cellular senescence and cell cycle arrest in the G0/G1 phase in aging HUVECs. Investigations into the mechanism underlying this effect demonstrated that KNDC1 knockdown promoted HUVEC proliferation via the extracellular signal-regulated kinase signaling pathway and delayed HUVEC senescence by inhibiting the p53-p21-p16 transduction cascade. In addition, the promotion of the capillary tube network formation and the increased expression of endothelial nitric oxide synthase revealed that the activity and function of endothelial cells were enhanced. In conclusion, KNDC1 knockdown delayed endothelial cell senescence and promoted HUVEC activity and function. These results demonstrated that KNDC1 may be a novel therapeutic target for the development of agents to extend human life.
Collapse
Affiliation(s)
- Chunyan Zhang
- Radiologic Department, Beijing Shijitan Hospital Affiliated of Capital Medical University, Beijing 100038, P.R. China
| | - Yong-Zhan Zhen
- Department of Histology and Embryology, Basic Medical College of Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Ya-Jun Lin
- Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, P.R. China
| | - Jiang Liu
- Department of Endocrinology, The Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, P.R. China
| | - Jie Wei
- Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, P.R. China
| | - Rong Xu
- Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, P.R. China
| | - Gang Hu
- Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, P.R. China
| |
Collapse
|
714
|
Mitterberger MC, Mattesich M, Zwerschke W. Bariatric surgery and diet-induced long-term caloric restriction protect subcutaneous adipose-derived stromal/progenitor cells and prolong their life span in formerly obese humans. Exp Gerontol 2014; 56:106-13. [PMID: 24747059 DOI: 10.1016/j.exger.2014.03.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 12/25/2022]
Abstract
A key effect of prolonged reducing diets and bariatric surgeries in formerly obese people is long-term caloric restriction (CR). The analysis of the impact of these interventions on specific tissues will contribute to a better understanding of their mechanisms of action. The physiological functions of subcutaneous white adipose tissues are mainly fulfilled by adipocytes arising out of adipose-derived stromal/progenitor cells (ASCs), which are crucial for adipose tissue homeostasis. In the present study we analyzed ASC from age-matched long-term calorically restricted formerly obese (CRD), obese (OD) and normal weight donors (NWDs). We demonstrate that ASC derived from CRD has a significant longer replicative lifespan than ASC isolated from OD and NWD. This correlated with strongly reduced DNA-damage and improved survival of the CRD ASC, both are hallmarks of CR. The adipogenic capacity was significantly lower in ASC derived from CRD than that from OD, as shown by reduced expression of the adipogenic key regulator PPARγ2 and the differentiation marker FABP4. The adipogenic capacity of ASCs from CRD and NWD differed only slightly. In conclusion, we provide evidence that bariatric surgery and diet-induced long-term CR substantially reprogram ASCs in formerly obese humans, comprising reduced DNA-damage, improved viability, extended replicative lifespan and reduced adipogenic differentiation potential.
Collapse
Affiliation(s)
- Maria C Mitterberger
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria.
| |
Collapse
|
715
|
Inhibition of age-related cytokines production by ATGL: a mechanism linked to the anti-inflammatory effect of resveratrol. Mediators Inflamm 2014; 2014:917698. [PMID: 24817795 PMCID: PMC4000984 DOI: 10.1155/2014/917698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/15/2014] [Indexed: 01/07/2023] Open
Abstract
Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT), disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV) efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states.
Collapse
|
716
|
Rana KS, Arif M, Hill EJ, Aldred S, Nagel DA, Nevill A, Randeva HS, Bailey CJ, Bellary S, Brown JE. Plasma irisin levels predict telomere length in healthy adults. AGE (DORDRECHT, NETHERLANDS) 2014; 36:995-1001. [PMID: 24469890 PMCID: PMC4039281 DOI: 10.1007/s11357-014-9620-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/15/2014] [Indexed: 05/30/2023]
Abstract
The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43 ± 15.8 years, BMI 24.3 ± 2.9 kg/m(2)). Data showed significant correlations between log-transformed relative telomere length and the following: age (p < 0.001), height (p = 0.045), total body fat percentage (p = 0.031), abdominal fat percentage (p = 0.038), visceral fat level (p < 0.001), plasma leptin (p = 0.029) and plasma irisin (p = 0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b = -0.00735, p = 0.001) and plasma irisin levels (b = 0.04527, p = 0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process.
Collapse
Affiliation(s)
- Karan S. Rana
- Aston Research Centre for Healthy Ageing and School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - Muhammad Arif
- School of Life and Health Science, Aston University, Birmingham, B4 7ET UK
| | - Eric J. Hill
- Aston Research Centre for Healthy Ageing and School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - David A. Nagel
- School of Life and Health Science, Aston University, Birmingham, B4 7ET UK
| | - Alan Nevill
- School of Sport, Performing Arts and Leisure, University of Wolverhampton, Walsall, WS1 3BD UK
| | - Harpal S. Randeva
- Metabolic & Vascular Health, Warwick Medical School, Warwick University, Coventry, CV2 2DX UK
| | - Clifford J. Bailey
- School of Life and Health Science, Aston University, Birmingham, B4 7ET UK
| | - Srikanth Bellary
- Aston Research Centre for Healthy Ageing and School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - James E. Brown
- Aston Research Centre for Healthy Ageing and School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
717
|
Wang QA, Scherer PE, Gupta RK. Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. J Lipid Res 2014; 55:605-24. [PMID: 24532650 PMCID: PMC3966696 DOI: 10.1194/jlr.r046441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Indexed: 12/14/2022] Open
Abstract
Adipocyte differentiation and function have become areas of intense focus in the field of energy metabolism; however, understanding the role of specific genes in the establishment and maintenance of fat cell function can be challenging and complex. In this review, we offer practical guidelines for the study of adipocyte development and function. We discuss improved cellular and genetic systems for the study of adipose biology and highlight recent insights gained from these new approaches.
Collapse
Affiliation(s)
- Qiong A. Wang
- Department of Internal Medicine, Touchstone Diabetes Center, and University of Texas Southwestern Medical Center, Dallas, TX 75287
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, and University of Texas Southwestern Medical Center, Dallas, TX 75287
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75287
| | - Rana K. Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, and University of Texas Southwestern Medical Center, Dallas, TX 75287
| |
Collapse
|
718
|
Aging differentially alters the expression of angiogenic genes in a tissue-dependent manner. Biochem Biophys Res Commun 2014; 446:1243-9. [PMID: 24685483 DOI: 10.1016/j.bbrc.2014.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Organ functions are altered and impaired during aging, thereby resulting in increased morbidity of age-related diseases such as Alzheimer's disease, diabetes, and heart failure in the elderly. Angiogenesis plays a crucial role in the maintenance of tissue homeostasis, and aging is known to reduce the angiogenic capacity in many tissues. Here, we report the differential effects of aging on the expression of angiogenic factors in different tissues, representing a potentially causes for age-related metabolic disorders. PCR-array analysis revealed that many of angiogenic genes were down-regulated in the white adipose tissue (WAT) of aged mice, whereas they were largely up-regulated in the skeletal muscle (SM) of aged mice compared to that in young mice. Consistently, blood vessel density was substantially reduced and hypoxia was exacerbated in WAT of aged mice compared to that in young mice. In contrast, blood vessel density in SM of aged mice was well preserved and was not different from that in young mice. Moreover, we identified that endoplasmic reticulum (ER) stress was strongly induced in both WAT and SM during aging in vivo. We also found that ER stress significantly reduced the expression of angiogenic genes in 3T3-L1 adipocytes, whereas it increased their expression in C2C12 myotubes in vitro. These results collectively indicate that aging differentially affects the expression of angiogenic genes in different tissues, and that aging-associated down-regulation of angiogenic genes in WAT, at least in part through ER stress, is potentially involved in the age-related adipose tissue dysfunction.
Collapse
|
719
|
Wiley L, Ashok D, Martin-Ruiz C, Talbot DCS, Collerton J, Kingston A, Davies K, Chinnery PF, Catt M, Jagger C, Kirkwood TBL, von Zglinicki T. Reactive oxygen species production and mitochondrial dysfunction in white blood cells are not valid biomarkers of ageing in the very old. PLoS One 2014; 9:e91005. [PMID: 24614678 PMCID: PMC3948743 DOI: 10.1371/journal.pone.0091005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Reliable and valid biomarkers of ageing (BoA) are needed to understand mechanisms, test interventions and predict the timing of adverse health events associated with ageing. Since increased reactive oxygen species (ROS) production and mitochondrial dysfunction are consequences of cellular senescence and may contribute causally to the ageing of organisms, we focused on these parameters as candidate BoA. Superoxide levels, mitochondrial mass and mitochondrial membrane potential in human peripheral blood mononuclear cells (PBMCs) and subpopulations (lymphocytes and monocytes) were measured in participants from the Newcastle 85+ study, a population-based study of the very old (aged 85 years and older). The intra- and inter-assay precision expressed as coefficient of variation (CV) for all parameters was acceptable (3% to 12% and 5 to 22% respectively). All parameters were stable in the short-term (1 week interval) in a sample of control individuals in the PBMCs and lymphocyte subpopulation, however they were unstable in the monocyte subpopulation; this rendered monocytes unreliable for further analysis. There was a significant association between superoxide levels and mitochondrial mass (positive in lymphocytes, p = 0.01) and between superoxide levels and mitochondrial membrane potential (negative in PBMCs, p = 0.01; positive in lymphocytes, p = 0.05). There were also significant associations between superoxide levels and mitochondrial parameters with other markers of oxidative stress-induced cellular senescence (p≤0.04), however some were in the opposite direction to expected. No associations were found between the measured parameters and age-related outcomes, including cognitive impairment, disability, co-morbidity and survival - questioning the validity of these parameters as candidate BoA in the very old.
Collapse
Affiliation(s)
- Laura Wiley
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Deepthi Ashok
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Duncan C. S. Talbot
- Unilever Discover, Colworth Science Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Joanna Collerton
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Andrew Kingston
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Karen Davies
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Patrick F. Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Catt
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Carol Jagger
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Thomas B. L. Kirkwood
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
720
|
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med 2014; 4:4/3/a015271. [PMID: 24591537 DOI: 10.1101/cshperspect.a015271] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipocytes are intimately associated with the dermal compartment of the skin, existing in a specialized dermal depot and displaying dynamic changes in size during tissue homeostasis. However, the roles of adipocytes in cutaneous biology and disease are not well understood. Traditionally, adipocytes within tissues were thought to act as reservoirs of energy, as thermal, or as structural support. In this review, we discuss recent studies revealing the cellular basis of the dynamic development and regenerative capacity of dermal adipocytes associated with the hair cycle and following injury. We discuss and speculate on potential roles of dermal adipocytes in cutaneous biology with an emphasis on communication during hair follicle growth and wound healing. Finally, we explore how alterations in the dermal adipose tissue may support clinical manifestations of cutaneous diseases such as lipodystrophy, obesity, and alopecia.
Collapse
Affiliation(s)
- Guillermo Rivera-Gonzalez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | | |
Collapse
|
721
|
Zhao L, Zou X, Feng Z, Luo C, Liu J, Li H, Chang L, Wang H, Li Y, Long J, Gao F, Liu J. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp Gerontol 2014; 56:3-12. [PMID: 24518876 DOI: 10.1016/j.exger.2014.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023]
Abstract
Adipogenesis and lipid accumulation during aging have a great impact on the aging process and the pathogenesis of chronic, age-related diseases. However, little is known about the age-related molecular changes in lipid accumulation and the mechanisms underlying them. Here, using 5-month- and 25-month-old rats (young and old, respectively), we found that epididymal fat is the only tissue to accumulate during aging. By testing tissues rich with mitochondria in old and young animals, we found that the old animals had elevated levels of triglycerides in their muscle, heart and liver tissues but not in their kidneys, while, the mRNA level of fatty acid synthase remained unchanged among the four tissues. Regarding lipid catabolism, we determined that the activities of mitochondrial ETC. complexes changed in aged rats (muscle: decreased complex I and V activities; heart: decreased complex I activity; liver: increased complex I and III activities; kidney: decreased complex I and increased complex II activities), while changes in mitochondrial content were not observed in the muscle, heart nor in the liver tissue except increased complex IV and V subunits in aged kidneys. Furthermore, decreased mitochondrial fusion marker Mfn2 and decreased PGC-1α level were observed in the aged muscle, heart and liver but remained unchanged in the kidneys. Down-regulation of Mfn2 with siRNA in 293T cells induced significant mitochondrial dysfunction including decreased oxygen consumption, decreased ATP production, and increased ROS production, followed by increased triglyceride content suggesting a contributing role of decreased mitochondrial fusion to lipid deposit. Meanwhile, judging from autophagy marker p62/SQSTM1 and LC3-II, autophagy was suppressed in the aged muscle, heart and liver but remained unchanged in the kidneys. Taken together, these data suggest that reduction in PGC-1α expression and disruption of mitochondrial dynamics and autophagy might contribute to lipid accumulation during aging.
Collapse
Affiliation(s)
- Lin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Zou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhihui Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Cheng Luo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liao Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| | - Jiankang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
722
|
Bitto A, Crowe EP, Lerner C, Torres C, Sell C. The senescence arrest program and the cell cycle. Methods Mol Biol 2014; 1170:145-154. [PMID: 24906313 DOI: 10.1007/978-1-4939-0888-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
All living organisms are subject to progressive loss of function and damage to their tissues, a process known as aging. At the cellular level, the accumulation of damage to DNA, proteins, and organelles induces cellular senescence, a stress-response pathway that likely influences the aging process. Although the senescence arrest program was initially described in vitro, accumulating evidence suggests that this damage response program occurs in a variety of pathologic settings. This review discusses aspects of the senescence program, their interrelationships with damage arrest pathways, the cell cycle, and the impact of senescence in vivo.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Health Science Building D-514, Seattle, 357470, WA, USA
| | | | | | | | | |
Collapse
|
723
|
Gharipour M, Sadeghi M, Dianatkhah M, Bidmeshgi S, Ahmadi A, Tahri M, Sarrafzadegan N. The cut-off values of anthropometric indices for identifying subjects at risk for metabolic syndrome in Iranian elderly men. J Obes 2014; 2014:907149. [PMID: 24782923 PMCID: PMC3981184 DOI: 10.1155/2014/907149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/27/2014] [Indexed: 11/23/2022] Open
Abstract
AIM This study aimed to investigate which anthropometric indices could be a better predictor of metabolic syndrome (MetS) and the cut-off points for these surrogates to appropriately differentiate MetS in the Iranian elderly. METHOD The present cross-sectional study was conducted on a sample of Isfahan Healthy Heart Program (IHHP). MetS was defined according to Third Adult Treatment Panel (ATPIII). In total, 206 elderly subjects with MetS criteria were selected. Anthropometric indices were measured and plotted using receiver operating characteristic (ROC) curves. RESULTS WC followed by WHtR yielded the highest area under the curve (AUC) (0.683; 95% CI 0.606-0.761 and 0.680; 95% CI 0.602-0.758, resp.) for MetS. WC at a cut of 94.5 cm resulted in the highest Youden index with sensitivity 64% and 68% specificity to predict the presence of ≥2 metabolic risk factors. BMI had the lowest sensitivity and specificity for MetS and MetS components. WC has the best ability to detect MetS which followed by WHtR and BMI had a lower discriminating value comparatively. CONCLUSION WC is the best predictor for predicting the presence of ≥2 metabolic risk factors among Iranian elderly population and the best value of WC is 94.5 cm. This cut-off values of WC should be advocated and used in Iranian men until larger cross-sectional studies show different results.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Metabolic Syndrome Department, Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute (WHO Collaborating Center), Isfahan University of Medical Sciences, Isfahan, Iran
- *Masoumeh Sadeghi:
| | - Minoo Dianatkhah
- Interventional Cardiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Bidmeshgi
- Hypertension Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Ahmadi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Tahri
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
724
|
Abstract
Adipose tissue historically was believed to be an inert tissue, functioning primarily in the storage of energy and thermal homeostasis. However, recent discoveries point toward a critical role for adipocytes in endocrine function as well as immune regulation. Excess body fat, accumulated through aging and/or a calorie-rich diet, is associated with many chronic metabolic and inflammatory diseases. Within the stromal vascular fraction of adipose tissue, macrophages and T cells accumulate with increasing tissue mass, secreting pro- or anti-inflammatory cytokines. In this review we discuss the current understanding of immune cell function in both diet-induced and age-related obesity. In both models of obesity, the classically activated, pro-inflammatory (M1) subtype takes precedence over the alternatively activated, anti-inflammatory (M2) macrophages, causing tissue necrosis and releasing pro-inflammatory cytokines like interleukin-6. Other distinct adipose tissue macrophage subtypes have been identified by surface marker expression and their functions characterized. Adipose tissue T cell recruitment to adipose tissue is also different between aging- and diet-induced obesity. Under both conditions, T cells exhibit restricted T-cell receptor diversity and produce higher levels of pro-inflammatory signals like interferon-γ and granzyme B relative to young or healthy mice. However, numbers of regulatory T cells are dramatically different between the 2 models of obesity. Taken together, these findings suggest models of age- and diet-induced obesity may be more distinct than previously thought, with many questions yet to be resolved in this multidimensional disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Colin Delaney
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Hang Shi
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
725
|
Sheedfar F, Biase SD, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes? Aging Cell 2013; 12:950-4. [PMID: 23815295 DOI: 10.1111/acel.12128] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 12/14/2022] Open
Abstract
The liver is the only internal human organ capable of natural regeneration of lost tissue, as little as 25% of a liver can regenerate into a whole liver. The process of aging predisposes to hepatic functional and structural impairment and metabolic risk. Therefore, understanding how aging could affect the molecular pathology of liver diseases is particularly important, and few studies to date have tackled this complex process. The most common liver disease, affecting one-third of the overall population, is nonalcoholic fatty liver disease (NAFLD), characterized by an intrahepatic accumulation of lipids. NAFLD can evolve into nonalcoholic steatohepatitis (NASH) in the presence of oxidative stress and inflammation. NASH is a serious risk factor for disabling and deadly liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). Old age seems to favor NAFLD, NASH, and ultimately HCC, in agreement with the inflamm-aging theory, according to which aging accrues inflammation. However, the incidence of HCC drops significantly in the very elderly (individuals aged more than 70) and the relationship between the progression of NAFLD/NASH/HCC and very old age is obscure. In this review, we discuss the literature and we argue that there might be an age window in which the liver becomes resistant to the development of injury; this needs to be studied to understand fully the interaction between age and liver diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Fareeba Sheedfar
- Molecular Genetics; University of Groningen; University Medical Center Groningen (UMCG); Groningen The Netherlands
| | - Stefano Di Biase
- Andrus Gerontology Center and Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Debby Koonen
- Molecular Genetics; University of Groningen; University Medical Center Groningen (UMCG); Groningen The Netherlands
| | - Manlio Vinciguerra
- Division of Medicine; University College London (UCL) - Institute for Liver and Digestive Health; Royal Free Hospital; London UK
- Euro-Mediterranean Institute for Science and Technology (IEMEST); Palermo Italy
- Department of Medical Sciences; Division of Internal Medicine; IRCCS “Casa Sollievo della Sofferenza”; S. Giovanni Rotondo Italy
| |
Collapse
|
726
|
Anvar SY, Raz Y, Verway N, van der Sluijs B, Venema A, Goeman JJ, Vissing J, van der Maarel SM, 't Hoen PAC, van Engelen BGM, Raz V. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging. Aging (Albany NY) 2013; 5:412-26. [PMID: 23793615 PMCID: PMC3824410 DOI: 10.18632/aging.100567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by trinucleotide repeat expansion mutations in Poly(A) binding protein 1 (PABPN1). PABPN1 is a regulator of mRNA stability and is ubiquitously expressed. Here we investigated how symptoms in OPMD initiate only at midlife and why a subset of skeletal muscles is predominantly affected. Genome-wide RNA expression profiles from Vastus lateralis muscles human carriers of expanded-PABPN1 at pre-symptomatic and symptomatic stages were compared with healthy controls. Major expression changes were found to be associated with age rather than with expression of expanded-PABPN1, instead transcriptomes of OPMD and elderly muscles were significantly similar (P<0.05). Using k-means clustering we identified age-dependent trends in both OPMD and controls, but trends were often accelerated in OPMD. We report an age-regulated decline in PABPN1 levels in Vastus lateralis muscles from the fifth decade. In concurrence with severe muscle degeneration in OPMD, the decline in PABPN1 accelerated in OPMD and was specific to skeletal muscles. Reduced PABPN1 levels (30% to 60%) in muscle cells induced myogenic defects and morphological signatures of cellular aging in proportion to PABPN1 expression levels. We suggest that PABPN1 levels regulate muscle cell aging and OPMD represents an accelerated muscle aging disorder.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Center for Human and Clinical Genetics, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
727
|
Vu BG, Gourronc FA, Bernlohr DA, Schlievert PM, Klingelhutz AJ. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines. PLoS One 2013; 8:e77988. [PMID: 24205055 PMCID: PMC3813495 DOI: 10.1371/journal.pone.0077988] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs) on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. Methodology/Principal Findings Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT) and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. Conclusions/Significance Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to understand further the mechanism by which toxins are involved in wound healing and the development and clinical manifestations of obesity and diabetes.
Collapse
Affiliation(s)
- Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Francoise A. Gourronc
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - David A. Bernlohr
- Department of Biochemistry and Molecular Biology/Biophysics, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aloysius J. Klingelhutz
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
728
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 768] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
729
|
Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation. Cell Death Differ 2013; 21:113-23. [PMID: 24096872 DOI: 10.1038/cdd.2013.137] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.
Collapse
|
730
|
McGillicuddy FC, Reynolds CM, Finucane O, Coleman E, Harford KA, Grant C, Sergi D, Williams LM, Mills KHG, Roche HM. Long-term exposure to a high-fat diet results in the development of glucose intolerance and insulin resistance in interleukin-1 receptor I-deficient mice. Am J Physiol Endocrinol Metab 2013; 305:E834-44. [PMID: 23921145 PMCID: PMC3798700 DOI: 10.1152/ajpendo.00297.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Emerging evidence has demonstrated that saturated fatty acids prime pro-IL-1β production and inflammasome-mediated IL-1β activation is critical in obesity-associated insulin resistance (IR). Nonetheless, IL-1 receptor I-deficient (IL-1RI(-/-)) mice develop mature-onset obesity despite consuming a low-fat diet (LFD). With this apparent contradiction, the present study evaluated whether IL-1RI(-/-) mice were protected against long-term (6 mo) high-fat diet (HFD)-induced IR. Male wild-type and IL-1RI(-/-) mice were fed LFD or HFD for 3 or 6 mo, and glucose and insulin tolerance tests were performed. Adipose insulin sensitivity, cytokine profiles, and adipocyte morphology were assessed. The adipogenic potential of stromal vascular fraction was determined. Hepatic lipid accumulation and insulin sensitivity were characterized. IL-1RI(-/-) mice developed glucose intolerance and IR after 6 mo HFD compared with 3 mo HFD, coincident with enhanced weight gain, hyperinsulinemia, and hyperleptinemia. The aggravated IR phenotype was associated with loss of adipose functionality, switch from adipocyte hyperplasia to hypertrophy and hepatosteatosis. Induction of adipogenic genes was reduced in IL-1RI(-/-) preadipocytes after 6 mo HFD compared with 3 mo HFD. Obese LFD-IL-1RI(-/-) mice exhibited preserved metabolic health. IL-1RI(-/-) mice develop glucose intolerance and IR after 6 mo HFD intervention. While mature-onset obesity is evident in LFD-IL-1RI(-/-) mice, the additional metabolic insult of HFD was required to drive adipose inflammation and systemic IR. These findings indicate an important interaction between dietary fat and IL-1, relevant to optimal metabolic health.
Collapse
Affiliation(s)
- Fiona C McGillicuddy
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
731
|
Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y, Minamino T. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab 2013; 18:491-504. [PMID: 24093674 DOI: 10.1016/j.cmet.2013.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/10/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Semaphorins and their receptors (plexins) are axon-guiding molecules that regulate the development of the nervous system during embryogenesis. Here we describe a previously unknown role of class 3 semaphorin E (Sema3E) in adipose tissue inflammation and insulin resistance. Expression of Sema3E and its receptor plexinD1 was upregulated in the adipose tissue of a mouse model of dietary obesity. Inhibition of the Sema3E-plexinD1 axis markedly reduced adipose tissue inflammation and improved insulin resistance in this model. Conversely, overexpression of Sema3E in adipose tissue provoked inflammation and insulin resistance. Sema3E promoted infiltration of macrophages, and this effect was inhibited by disrupting plexinD1 expression in macrophages. Disruption of adipose tissue p53 expression led to downregulation of Sema3E expression and improved adipose tissue inflammation. These results indicate that Sema3E acts as a chemoattractant for macrophages, with p53-induced upregulation of Sema3E expression provoking adipose tissue inflammation and systemic insulin resistance in association with dietary obesity.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Science and Medicine, 1-8-1 Inohana, Chuo-ku, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
732
|
Goruppi S, Dotto GP. Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol 2013; 23:593-602. [PMID: 24074947 DOI: 10.1016/j.tcb.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
Multifocal and recurrent epithelial tumors, originating from either dormant or de novo cancer cells, are major causes of morbidity and mortality. The age-dependent increase of cancer incidence has long been assumed to result from the sequential accumulation of cancer-driving or -facilitating mutations with induction of cellular senescence as a protective mechanism. However, recent evidence suggests that the initiation and development of epithelial cancer results from a close interplay with its altered tissue microenvironment, with chronic inflammation, stromal senescence, autophagy, and the activation of cancer-associated fibroblasts (CAFs) playing possible primary roles. We will discuss recent progress in these areas, and highlight how this understanding may be used for devising novel preventive and therapeutic approaches to the epithelial cancer problem.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, 13th Street Building 149, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
733
|
Karakasilioti I, Kamileri I, Chatzinikolaou G, Kosteas T, Vergadi E, Robinson AR, Tsamardinos I, Rozgaja TA, Siakouli S, Tsatsanis C, Niedernhofer LJ, Garinis GA. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab 2013; 18:403-15. [PMID: 24011075 PMCID: PMC4116679 DOI: 10.1016/j.cmet.2013.08.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/18/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022]
Abstract
Lipodystrophies represent a group of heterogeneous disorders characterized by loss of fat tissue. However, the underlying mechanisms remain poorly understood. Using mice carrying an ERCC1-XPF DNA repair defect systematically or in adipocytes, we show that DNA damage signaling triggers a chronic autoinflammatory response leading to fat depletion. Ercc1-/- and aP2-Ercc1F/- fat depots show extensive gene expression similarities to lipodystrophic Pparγ(ldi/+) animals, focal areas of ruptured basement membrane, the reappearance of primary cilia, necrosis, fibrosis, and a marked decrease in adiposity. We find that persistent DNA damage in aP2-Ercc1F/- fat depots and in adipocytes ex vivo triggers the induction of proinflammatory factors by promoting transcriptionally active histone marks and the dissociation of nuclear receptor corepressor complexes from promoters; the response is cell autonomous and requires ataxia telangiectasia mutated (ATM). Thus, persistent DNA damage-driven autoinflammation plays a causative role in adipose tissue degeneration, with important ramifications for progressive lipodystrophies and natural aging.
Collapse
Affiliation(s)
- Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
734
|
Finelli C, Sommella L, Gioia S, La Sala N, Tarantino G. Should visceral fat be reduced to increase longevity? Ageing Res Rev 2013; 12:996-1004. [PMID: 23764746 DOI: 10.1016/j.arr.2013.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
Several epidemiologic studies have implicated visceral fat as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and death. Utilizing novel models of visceral obesity, numerous studies have demonstrated that the relationship between visceral fat and longevity is causal while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. Specific recommended intake levels vary based on a number of factors, including current weight, activity levels, and weight loss goals. It is discussed the need of reducing the visceral fat as a potential treatment strategy to prevent or delay age-related diseases and to increase longevity.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Chiaromonte, Potenza, Italy.
| | | | | | | | | |
Collapse
|
735
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
736
|
Molligan J, Schon L, Zhang Z. A stereologic study of the plantar fat pad in young and aged rats. J Anat 2013; 223:537-45. [PMID: 24033117 DOI: 10.1111/joa.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 01/16/2023] Open
Abstract
Plantar fat pad (PFP) is a tissue structure that absorbs the initial impact of walking and running and ultimately bears body weight at standing. This study was designed to quantify the histomorphological changes of the PFP in aged rats. The most medial PFP was dissected from the hind feet of young rats (4 months old, n = 6) and aged rats (24 months old, n = 6). Histological structure and cellular senescence of PFP were analyzed stereologically and histomorphometrically. Immunohistochemistry of matrix metalloproteinase 9 (MMP9) was also performed on PFP tissue sections. Compared with young rats, the thickness of epidermis, dermis and septa of the PFP were significantly reduced in the aged rats. The total volume of adipose tissue in the PFP of aged rats was only about 65% of that in the young rats. The microvascular density and the number of fat pad units (FPU), a cluster of adipocytes enclosed by elastin septa, in the PFP were unchanged in the aged rats. In the aged rats, the number of adipocytes per FPU was reduced but the number of simple adipocyte clusters, without surrounding septa, was increased. The shift of the types of adipocyte clusters in the aged PFP was accompanied by degradation of elastin fibers and increased expression of MMP9. In conclusion, the PFP, particularly the elastic septa, degenerates significantly in aged rats and this may contribute to the pathology of PFP-related diseases.
Collapse
Affiliation(s)
- Jeremy Molligan
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, MD, USA
| | | | | |
Collapse
|
737
|
Liu LF, Shen WJ, Ueno M, Patel S, Azhar S, Kraemer FB. Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes. PLoS One 2013; 8:e72367. [PMID: 23967297 PMCID: PMC3743818 DOI: 10.1371/journal.pone.0072367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023] Open
Abstract
This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background.
Collapse
Affiliation(s)
- Li-Fen Liu
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Wen-Jun Shen
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Masami Ueno
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Shailja Patel
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Salman Azhar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Fredric B. Kraemer
- Division of Endocrinology, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
738
|
Stephenson EJ, Lessard SJ, Rivas DA, Watt MJ, Yaspelkis BB, Koch LG, Britton SL, Hawley JA. Exercise training enhances white adipose tissue metabolism in rats selectively bred for low- or high-endurance running capacity. Am J Physiol Endocrinol Metab 2013; 305:E429-38. [PMID: 23757406 PMCID: PMC4073983 DOI: 10.1152/ajpendo.00544.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Impaired visceral white adipose tissue (WAT) metabolism has been implicated in the pathogenesis of several lifestyle-related disease states, with diminished expression of several WAT mitochondrial genes reported in both insulin-resistant humans and rodents. We have used rat models selectively bred for low- (LCR) or high-intrinsic running capacity (HCR) that present simultaneously with divergent metabolic phenotypes to test the hypothesis that oxidative enzyme expression is reduced in epididymal WAT from LCR animals. Based on this assumption, we further hypothesized that short-term exercise training (6 wk of treadmill running) would ameliorate this deficit. Approximately 22-wk-old rats (generation 22) were studied. In untrained rats, the abundance of mitochondrial respiratory complexes I-V, citrate synthase (CS), and PGC-1 was similar for both phenotypes, although CS activity was greater than 50% in HCR (P = 0.09). Exercise training increased CS activity in both phenotypes but did not alter mitochondrial protein content. Training increased the expression and phosphorylation of proteins with roles in β-adrenergic signaling, including β3-adrenergic receptor (16% increase in LCR; P < 0.05), NOR1 (24% decrease in LCR, 21% decrease in HCR; P < 0.05), phospho-ATGL (25% increase in HCR; P < 0.05), perilipin (25% increase in HCR; P < 0.05), CGI-58 (15% increase in LCR; P < 0.05), and GLUT4 (16% increase in HCR; P < 0.0001). A training effect was also observed for phospho-p38 MAPK (12% decrease in LCR, 20% decrease in HCR; P < 0.05) and phospho-JNK (29% increase in LCR, 20% increase in HCR; P < 0.05). We conclude that in the LCR-HCR model system, mitochondrial protein expression in WAT is not affected by intrinsic running capacity or exercise training. However, training does induce alterations in the activity and expression of several proteins that are essential to the intracellular regulation of WAT metabolism.
Collapse
Affiliation(s)
- Erin J Stephenson
- School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | | | | | | | | | | | | | | |
Collapse
|
739
|
Markowski DN, Thies HW, Gottlieb A, Wenk H, Wischnewsky M, Bullerdiek J. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. GENES AND NUTRITION 2013; 8:449-56. [PMID: 23881689 DOI: 10.1007/s12263-013-0354-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
There is a clear link between overweight, gain of white adipose tissue, and diabetes type 2 (T2D). The molecular mechanism of the gain of adipose tissue is linked with the expression of high mobility group protein AT-hook 2 (HMGA2), and recent studies revealed an association with a SNP near HMGA2. In this study, we investigated the gene expression of HMGA2, p14 (Arf) , CDKN1A, and BAX in human abdominal subcutaneous white adipose tissue from 157 patients. We found a significant higher HMGA2 expression in obese individuals than in non-obese patients. Furthermore, the HMGA2 expression in white adipose tissue in patient with type 2 diabetes was significantly higher than in nondiabetic patients. There is an association between the DNA-binding nonhistone protein HMGA2 and the risk of developing T2D that remains mechanistically unexplained so far. Likewise, p14(Arf), an inducer of cellular senescence, has been associated with the occurrence of T2D. The data of the present study provide evidence that both proteins act within the same network to drive proliferation of adipose tissue stem and precursor cells, senescence, and increased risk of T2D, respectively.
Collapse
|
740
|
Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Sallam R, Bassas A, Duncan M. Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 2013; 48:1196-203. [PMID: 23886751 DOI: 10.1016/j.exger.2013.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Obesity and aging are interrelated conditions that both cause changes in adipocyte metabolism and affect the distribution of fat in both subcutaneous and visceral depots. In addition, both weight gain and aging can lead to similar clinical outcomes such as insulin resistance, cardiovascular disease, type 2 diabetes mellitus, atherosclerosis and stroke. Our objective was to examine the changes in protein expression within the subcutaneous adipose tissue of obese patients, matched for BMI, in relation to age. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both young (26.2±4.3 (mean age±SD); n=7) and old (52.2±4.7 (mean age±SD); n=7) obese individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). Thirty differentially expressed protein spots (ANOVA test, p≤0.05; fold-change ≥1.8) were detected, of which, 15 were identified by MALDI-TOF mass spectrometry. These were comprised of a total of thirteen unique protein sequences. Nine proteins were more abundant in the adipocytes isolated from old vs. young individuals. These proteins included prohibitin 1, protein disulphide isomerase A3, beta actin, profilin, aldo-ketoreductase 1 C2, alpha crystallin B and the annexins A1, A5 and A6. Four other proteins were less abundant in the adipocytes from old, obese subjects and these included keratin type 2 cytoskeletal 1, keratin type 2 cytoskeletal 10 and hemoglobins A and B. The differentially abundant proteins were investigated by Ingenuity Pathway Analysis (IPA) to reveal their associations with known biological functions. This analysis identified signal transducer and activator of transcription 3 as the central molecule in the connectivity map and the apoptotic pathway as the pathway with the highest score. Differences in the abundances of several proteins were confirmed by immunoblotting: i.e., prohibitin 1, protein disulphide isomerase A3, beta actin, profilin and signal transducer and activator of transcription 3 proteins. In conclusion, proteomic analysis of subcutaneous adipose tissue reveals differences in the abundance of proteins in adipocytes isolated from young vs. old individuals. These differentially abundant proteins are involved in the regulation of apoptosis, cellular senescence and inflammatory response. All these are common pathologic events in both obesity and aging.
Collapse
Affiliation(s)
- Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
741
|
Abstract
Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage were significantly higher in cells subjected to oxidative stress and senescence. Adipocytes subjected to oxidative stress also showed shortened telomeres and increased mRNA and protein expression of p53, p21, TNF alpha and IL-6. Senescent cells were also characterized by decreased levels of adiponectin and impaired glucose uptake. Briefly, adipocytes under oxidative stress exhibited increased ROS generation, DNA damage, shortened telomeres and switched to senescent/pro-inflammatory phenotype with impaired glucose uptake.
Collapse
|
742
|
Sackmann-Sala L, Berryman DE, Lubbers ER, Zhang H, Vesel CB, Troike KM, Gosney ES, List EO, Kopchick JJ. Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. J Gerontol A Biol Sci Med Sci 2013; 69:34-43. [PMID: 23873966 DOI: 10.1093/gerona/glt110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Growth hormone receptor-null (GHR(-/-)) mice are dwarf, insulin sensitive, and long-lived in spite of increased adiposity. However, their adiposity is not uniform, with select white adipose tissue (WAT) depots enlarged. To study WAT depot-specific effects on insulin sensitivity and life span, we analyzed individual WAT depots of 12- and 24-month-old GHR(-) (/-) and wild-type (WT) mice, as well as their plasma levels of selected hormones. Adipocyte sizes and plasma insulin, leptin, and adiponectin levels decreased with age in both GHR(-) (/-) and WT mice. Two-dimensional gel electrophoresis proteomes of WAT depots were similar among groups, but several proteins involved in endocytosis and/or cytoskeletal organization (Ehd2, S100A10, actin), anticoagulation (S100A10, annexin A5), and age-related conditions (alpha2-macroglobulin, apolipoprotein A-I, transthyretin) showed significant differences between genotypes. Because Ehd2 may regulate endocytosis of Glut4, we measured Glut4 levels in the WAT depots of GHR(-) (/-) and WT mice. Inguinal WAT of 12-month-old GHR(-) (/-) mice displayed lower levels of Glut4 than WT. Overall, the protein changes detected in this study offer new insights into possible mechanisms contributing to enhanced insulin sensitivity and extended life span in GHR(-) (/-) mice.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701.
| | | | | | | | | | | | | | | | | |
Collapse
|
743
|
Finelli C, Tarantino G. Should visceral fat, strictly linked to hepatic steatosis, be depleted to improve survival? Hepatol Int 2013; 7:413-428. [PMID: 26201775 DOI: 10.1007/s12072-012-9406-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Numerous epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes mellitus, cardiovascular disease, stroke, metabolic syndrome and its further expression, i.e., nonalcoholic fatty liver disease and death. Using novel models of visceral obesity, several studies have demonstrated that the relationship between visceral fat and longevity is causal, while the accrual of subcutaneous fat does not appear to play an important role in the etiology of disease risk. The need of reducing the visceral fat to improve survival, mainly taking into account the strict link between nonalcoholic fatty liver disease and the coronary artery disease is discussed.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorder, Stella Maris Mediterraneo Foundation Chiaromonte, Potenza, Italy
| | - Giovanni Tarantino
- Department of Clinical and Experimental Medicine, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
744
|
Sutton GM, Ptitsyn AA, Floyd ZE, Yu G, Wu X, Hamel K, Shah FS, Centanni A, Eilertsen K, Kheterpal I, Newman S, Leonardi C, Freitas MA, Bunnell BA, Gimble JM. Biological aging alters circadian mechanisms in murine adipose tissue depots. AGE (DORDRECHT, NETHERLANDS) 2013; 35:533-47. [PMID: 22411258 PMCID: PMC3636385 DOI: 10.1007/s11357-012-9389-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/18/2011] [Indexed: 05/31/2023]
Abstract
Biological aging alters the metabolism and volume of adipose tissue depots. Recent evidence suggests that circadian mechanisms play a role in promoting adipogenesis, obesity, and lipodystrophy. The current study compared cohorts of younger (5-9 months) and older (24-28 months) C57BL/6 mice as a function of biological age and circadian time. Advanced age significantly reduced the weight of the brown, epididymal, inguinal, and retroperitoneal adipose depots but not total body weight. The older mice reduced their physical activity by >50% and delayed their activity initiation after light offset. The expressed transcriptome in brown and white adipose depots and liver of both cohorts displayed evidence of circadian rhythmicity; however, the oscillating mRNAs differed significantly between age groups and across tissues. The amplitude of Cry1, a component of the negative arm of the circadian apparatus, and downstream regulators such as Rev-erbα were elevated in the older relative to the younger cohorts as a function of circadian time. Overall, transcript levels differed significantly for 557 (inguinal adipose), 1,016 (liver), and 1,021 (brown adipose) expressed sequences between the cohorts as a function of age. These included transcripts encoding proteins within the canonical and non-canonical Wnt pathways. Since the Wnt pathway regulates adipose stem cell differentiation and shares a critical enzyme, glycogen synthase kinase 3β, with the circadian mechanism, the intersection between these two fundamental regulatory mechanisms merits further investigation with respect to biological aging of adipose tissues.
Collapse
Affiliation(s)
- Gregory M Sutton
- Protein Deficiency and Developmental Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
745
|
Xu C, Bai B, Fan P, Cai Y, Huang B, Law IKM, Liu L, Xu A, Tung C, Li X, Siu FM, Che CM, Vanhoutte PM, Wang Y. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice. Am J Transl Res 2013; 5:412-426. [PMID: 23724165 PMCID: PMC3665915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
SIRT1, a longevity regulator and NAD(+)-dependent deacetylase, plays a critical role in promoting metabolic fitness associated with calorie restriction and healthy ageing. Using a tissue-specific transgenic approach, the present study demonstrates that over-expression of human SIRT1 selectively in adipose tissue of mice prevents ageing-induced deterioration of insulin sensitivity and ectopic lipid distribution, reduces whole body fat mass and enhances locomotor activity. During ageing, the water-soluble vitamin biotin is progressively accumulated in adipose tissue. Over-expression of SIRT1 alleviates ageing-associated biotin accumulation and reduces the amount of biotinylated proteins, including acetyl CoA carboxylase, a major reservoir of biotin in adipose tissues. Chronic biotin supplementation increases adipose biotin contents and abolishes adipose SIRT1-mediated beneficial effects on insulin sensitivity, lipid metabolism and locomotor activity. Biochemical, spectrometric and chromatographic analysis revealed that biotin and its metabolites act as competitive inhibitors of SIRT1-mediated deacetylation. In summary, these results demonstrate that adipose SIRT1 is a key player in maintaining systemic energy homeostasis and insulin sensitivity; enhancing its activity solely in adipose tissue can prevent ageing-associated metabolic disorders.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Bo Bai
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Pengcheng Fan
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Yu Cai
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Bosheng Huang
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Ivy KM Law
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Ling Liu
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Chunling Tung
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongHong Kong, China
| | - Xuechen Li
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongHong Kong, China
| | - Fung-Ming Siu
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongHong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongHong Kong, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong KongHong Kong, China
| |
Collapse
|
746
|
Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta Mol Basis Dis 2013; 1842:358-69. [PMID: 23688783 DOI: 10.1016/j.bbadis.2013.05.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/21/2013] [Accepted: 05/06/2013] [Indexed: 01/09/2023]
Abstract
Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Yun-Hee Lee
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Emilio P Mottillo
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
747
|
Mitterberger MC, Lechner S, Mattesich M, Zwerschke W. Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose-derived stromal/progenitor cells. J Gerontol A Biol Sci Med Sci 2013; 69:13-24. [PMID: 23657974 DOI: 10.1093/gerona/glt043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We demonstrate that adipose-derived stromal/progenitor cells isolated from abdominal subcutaneous fat pads of adult donors successively enter replicative senescence after long-term cultivation. This is characterized by enlarged cell size, flattened morphology, and upregulated senescence-associated β-galactosidase activity. Moreover, the senescence- associated cyclin-dependent kinase inhibitors p16(Ink4A) and p21(Cip1) were induced correlating with activation of the G1/S cell cycle inhibitor retinoblastoma protein and terminal proliferation arrest. The number of cells in the adipose-derived stromal/progenitor cell population with high adipogenic capacity declined inversely with the increase of senescent cells. Adipogenic hormone cocktail induced expression of the adipogenic key regulators peroxisome proliferator-activated receptor-γ2 and CCAAT/enhancer-binding protein α was significantly reduced in senescent adipose-derived stromal/ progenitor cells. Furthermore, the expression of the adipogenic differentiation genes fatty acid binding protein-4, adiponectin, and leptin and the formation of fat droplets were impaired. We conclude cellular senescence contributes to dysfunctions in adipose-derived stromal/progenitor cell replication, adipogenesis, triglyceride storage, and adipokine secretion.
Collapse
|
748
|
Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 2013; 17:644-656. [PMID: 23583168 PMCID: PMC3942783 DOI: 10.1016/j.cmet.2013.03.008] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fat distribution is closely linked to metabolic disease risk. Distribution varies with sex, genetic background, disease state, certain drugs and hormones, development, and aging. Preadipocyte replication and differentiation, developmental gene expression, susceptibility to apoptosis and cellular senescence, vascularity, inflammatory cell infiltration, and adipokine secretion vary among depots, as do fatty-acid handling and mechanisms of enlargement with positive-energy and loss with negative-energy balance. How interdepot differences in these molecular, cellular, and pathophysiological properties are related is incompletely understood. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question.
Collapse
Affiliation(s)
| | - Thomas Thomou
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging
| | - Iordanes Karagiannides
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
749
|
Wu D, Ren Z, Pae M, Han SN, Meydani SN. Diet-induced obesity has a differential effect on adipose tissue and macrophage inflammatory responses of young and old mice. Biofactors 2013; 39:326-33. [PMID: 23345024 DOI: 10.1002/biof.1075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023]
Abstract
Obesity and aging are both associated with increased inflammation in adipose tissue. In this study, we investigated effect of diet-induced obesity on inflammatory status in young and old mice. Young (2 months) and old (19 months) C57BL/6 mice were fed a low-fat (10%, LF) or high-fat (60%, HF) diet for 4.5 months. Adipose tissue from old/LF mice expressed higher levels of IL-1β, IL-6, TNFα, and cyclooxygenase-2 mRNA compared with young/LF mice. HF diet upregulated expression of all these inflammatory markers in young mice to the levels seen in the aged. Adipocytes, but not stromal vascular cells, from old/LF mice produced more IL-6, TNFα, and prostaglandin (PG)E2 than those from young/LF mice. HF diet resulted in an increase of all these markers produced by adipocytes in young, but only TNFα in old mice. PGE2 produced by peritoneal macrophages (Mϕ's) was upregulated with aging, and HF diet induced more IL-6, TNFα, and PGE2 production in young but not in old mice. Thus, HF diet/obesity induces an inflammatory state in both visceral fat cells and peritoneal Mϕ's of young mice, but not so in old mice. Together, these results suggest that HF diet-induced obesity may speed up the aging process as characterized by inflammatory status. This study also indicates that animals have a differential response, depending on their ages, to HF diet-induced obesity and inflammation. This age-related difference in response to HF diet should be considered when using inflammation status as a marker in investigating adverse health impacts of HF diet and obesity.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
750
|
Starr ME, Hu Y, Stromberg AJ, Carmical JR, Wood TG, Evers BM, Saito H. Gene expression profile of mouse white adipose tissue during inflammatory stress: age-dependent upregulation of major procoagulant factors. Aging Cell 2013; 12:194-206. [PMID: 23279636 DOI: 10.1111/acel.12040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2012] [Indexed: 12/17/2022] Open
Abstract
Tolerance to physiological stress resulting from inflammatory disease decreases significantly with age. High mortality rates, increased cytokine production, and pronounced thrombosis are characteristic complications of aged mice with acute systemic inflammation induced by injection with lipopolysaccharide (LPS). As adipose tissue is now recognized as an important source of cytokines, we determined the effects of aging on visceral white adipose tissue gene expression during LPS-induced inflammation in male C57BL/6 mice. Microarray analysis revealed that the expression of 6025 genes was significantly changed by LPS; of those, the expression of 667 showed an age-associated difference. Age-associated differences were found in many genes belonging to the inflammatory response and blood clotting pathways. Genes for several procoagulant factors were upregulated by LPS; among these, tissue factor, thrombospondin-1, and plasminogen activator inhibitors-1 and -2, exhibited age-associated increases in expression which could potentially contribute to augmented thrombosis. Further analysis by qRT-PCR, histological examination, and cell fraction separation revealed that most inflammatory and coagulant-related gene expression changes occur in resident stromal cells rather than adipocytes or infiltrating cells. In addition, basal expression levels of 303 genes were altered by aging, including increased expression of component of Sp100-rs (Csprs). This study indicates that adipose tissue is a major organ expressing genes for multiple inflammatory and coagulant factors and that the expression of many of these is significantly altered by aging during acute inflammation. Data presented here provide a framework for future studies aimed at elucidating the impact of adipose tissue on age-associated complications during sepsis and systemic inflammation.
Collapse
Affiliation(s)
| | - Yanling Hu
- Department of Statistics; University of Kentucky; Lexington; KY; USA
| | | | - Joseph R. Carmical
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston; TX; USA
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston; TX; USA
| | | | | |
Collapse
|