751
|
Nakae J, Kitamura T, Kitamura Y, Biggs WH, Arden KC, Accili D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003; 4:119-29. [PMID: 12530968 DOI: 10.1016/s1534-5807(02)00401-x] [Citation(s) in RCA: 571] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An outstanding question in adipocyte biology is how hormonal cues are relayed to the nucleus to activate the transcriptional program that promotes adipogenesis. The forkhead transcription factor Foxo1 is regulated by insulin via Akt-dependent phosphorylation and nuclear exclusion. We show that Foxo1 is induced in the early stages of adipocyte differentiation but that its activation is delayed until the end of the clonal expansion phase. Constitutively active Foxo1 prevents the differentiation of preadipocytes, while dominant-negative Foxo1 restores adipocyte differentiation of fibroblasts from insulin receptor-deficient mice. Further, Foxo1 haploinsufficiency protects from diet-induced diabetes in mice. We propose that Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes adipocyte differentiation.
Collapse
Affiliation(s)
- Jun Nakae
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
752
|
Blum A, Maser E. Enzymology and Molecular Biology of Glucocorticoid Metabolism in Humans. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:173-216. [PMID: 14604013 DOI: 10.1016/s0079-6603(03)75006-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glucocorticoids (GCs) are a vital class of steroid hormones that are secreted by the adrenal cortex and that are regulated by ACTH largely under the control of the hypothalamic-pituitary-adrenal axis. GCs mediate profound and diverse physiological effects in vertebrates, ranging from development, metabolism, neurobiology, anti-inflammation and programmed cell death to many other fuctions. Multiple factors "downstream" of GC secretion, such as glucocorticoid receptor (GR) number and the abundance of plasma binding proteins have originally been considered as modulators of GC action. However, in the last decade the role of tissue-specific GC activating and inactivating enzymes have been identified as additional determinants in GC signalling pathways. On the cellular level, they function as important pre-receptor regulators by acting as "molecular switches" for receptor-active and receptor-inactive GC hormones. According to their biologic activity to catalyze the interconversion of C11-hydroxyl and C11-oxo GCs these enzymes have been named 11beta-hydroxysteroid dehydrogenase (11beta-HSD; EC 1.1.1.146). Two isoforms of 11beta-HSD have been cloned and characterized so far. 11beta-HSD type 1 is found in a wide range of tissues, acts predominantly as a reductase in intact cells and tissues by regenerating active cortisol from cortisone, and has been described to regulate GC access to the GR. 11beta-HSD type 2 is found mainly in mineralocorticoid target tissues such as kidney and colon, acts only as a dehydrogenase by producing inactive cortisone, and has been found to protect the mineralocorticoid receptor from high levels of receptor-active cortisol. Recently, 11beta-HSD 1 has become highly topical due to the finding that 11beta-HSD 1 plays a pivotal role in the pathogenesis of central obesity and the appearance of the metabolic syndrome. This review provides an overview on the components involved in GC signalling of 11beta-HSD type 1 as an important pre-receptor control enzyme that modulates activation of the GR.
Collapse
Affiliation(s)
- Andreas Blum
- Institute of Experimental Toxicology, Universitats Klinikum Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, D-24105 Kiel, Germany
| | | |
Collapse
|
753
|
Hammarstedt A, Smith U. Thiazolidinediones (PPARgamma ligands) increase IRS-1, UCP-2 and C/EBPalpha expression, but not transdifferentiation, in L6 muscle cells. Diabetologia 2003; 46:48-52. [PMID: 12637982 DOI: 10.1007/s00125-002-1002-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Revised: 09/12/2002] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Several effects of thiazolidinediones (TZD) have been shown in adipose tissue but very little is known about the effects in skeletal muscle. We examined the effects of TZD and PPARalpha ligands on the expression of different genes in L6 muscle cells. METHODS L6 muscle cells were exposed to PPARalpha and PPARgamma ligands for different times. The gene expression of the signalling molecules IRS-1, IRS-2, PKB/Akt, the transcription factor C/EBPalpha, the uncoupling protein UCP-2 and the adipocyte marker aP2 were measured with real-time PCR. To directly examine the effect of C/EBPalpha on gene expression, we also transfected L6 cells with this gene. RESULTS L6 muscle cells showed a low expression of PPARgamma 1, no expression of PPARgamma 2, and this was not changed by TZD. PPARgamma, but not PPARalpha, ligands rapidly increased the expression of C/EBPalpha while UCP-2 and in particular the IRS-1 gene was activated with a slow onset (12-24 h). In contrast, neither PKB/Akt nor IRS-2 expression were changed. Transfection with C/EBPalpha did not increase IRS-1 expression. There was no evidence of transdifferentiation of the muscle to an adipocyte phenotype by TZD since no aP2 expression was found. CONCLUSION/INTERPRETATION TZD increase IRS-1, UCP2 and C/EBPalpha expression in L6 muscle cells. Activation of C/EBPalpha by TZD could be necessary but it is not sufficient to account for the increased IRS-1 expression.
Collapse
Affiliation(s)
- A Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
754
|
Rosen ED. The molecular control of adipogenesis, with special reference to lymphatic pathology. Ann N Y Acad Sci 2002; 979:143-58; discussion 188-96. [PMID: 12543724 DOI: 10.1111/j.1749-6632.2002.tb04875.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipogenesis is the process by which mature fat cells are formed from pre-adipocytes. Adipogenesis has come under increasing scrutiny not only because the availability of reliable in vitro models makes it an attractive choice for developmental studies, but also because adipocytes are increasingly recognized as major players in a variety of physiological and pathophysiological states, such as obesity and type 2 diabetes. Adipocytes develop from mesenchymal stem cell precursors that are characterized by multipotency. Under the influence of various cues, these cells become committed to the adipocyte lineage. Further hormonal stimulation recruits these pre-adipocytes to accumulate lipid, express fat-specific markers, and become sensitive to the metabolic effects of insulin. A complex transcriptional cascade regulates this process, involving several distinct classes of transcription factor. In particular, the role of the nuclear hormone receptor PPARgamma will be discussed, along with bZip family members C/EBPalpha, C/EBPbeta, and C/EBPdelta. The relationship of adipose depots to the lymphatic system will also be discussed.
Collapse
Affiliation(s)
- Evan D Rosen
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| |
Collapse
|
755
|
Yamamoto H, Kurebayashi S, Hirose T, Kouhara H, Kasayama S. Reduced IRS-2 and GLUT4 expression in PPARgamma2-induced adipocytes derived from C/EBPbeta and C/EBPdelta-deficient mouse embryonic fibroblasts. J Cell Sci 2002; 115:3601-7. [PMID: 12186946 DOI: 10.1242/jcs.00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In adipose tissue, the ability of cells to respond to insulin and to express genes such as those encoding fatty-acid-binding protein (422/aP2), lipoprotein lipase (LPL), adipsin and glucose transporter 4 (GLUT4) is acquired during their differentiation into mature adipocytes. It has been recognized that peroxisome proliferator-activated receptor gamma (PPARgamma) and CCAAT/enhancer-binding proteins (C/EBPs) play critical roles in adipocyte differentiation. However, it remained uncertain whether PPARgamma or which C/EBP is involved in the acquisition of these characteristics. We introduced PPARgamma2 into C/EBPbeta/delta-double deficient mouse embryonic fibroblasts (MEFs), followed by stimulation with its ligands, in order to define the roles of C/EBPbeta and C/EBPdelta in phenotypic acquisition during adipocyte differentiation. This procedure resulted in differentiation of these MEFs into mature adipocytes morphologically similar to wild-type MEFs. However, the adipocytes derived from the C/EBPbeta/delta-deficient MEFs showed lower expression of GLUT4 and adipsin mRNA than those derived from wild-type MEFs, although aP2 and LPL mRNA levels were similar in both types. The C/EBPbeta/delta-deficient adipocytes also expressed lower amounts of insulin receptor substrate 2 (IRS-2) than the adipocytes derived from wild-type MEFs, whereas the amounts of insulin receptor and IRS-1 were similar. Finally, insulin-responsive 2-deoxyglucose uptake was lower in the C/EBPbeta/delta-deficient cells. It could thus be demonstrated that C/EBPbeta and C/EBPdelta are involved in the acquisition of IRS-2 and GLUT4 expression as well as in insulin-sensitive glucose uptake during adipocyte differentiation.
Collapse
Affiliation(s)
- Hiroyasu Yamamoto
- Department of Molecular Medicine (C-4), Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
756
|
Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 2002; 277:34322-8. [PMID: 12097321 DOI: 10.1074/jbc.m201304200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resistance to the stimulatory effects of insulin on glucose utilization is a key feature of type 2 diabetes, obesity, and the metabolic syndrome. Recent studies suggest that insulin resistance is primarily caused by a defect in glucose transport. GLUT4 is the main insulin-responsive glucose transporter and is expressed predominantly in muscle and adipose tissues. Whereas GLUT4 has been shown to play a critical role in maintaining systemic glucose homeostasis, the mechanisms regulating its expression are incompletely understood. We have cloned the murine homologue of KLF15, a member of the Krüppel-like family of transcription factors. KLF15 is highly expressed in adipocytes and myocytes in vivo and is induced when 3T3-L1 preadipocytes are differentiated into adipocytes. Overexpression of KLF15 in adipose and muscle cell lines potently induces GLUT4 expression. This effect is specific to KLF15 as overexpression of two other Krüppel-like factors, KLF2/LKLF and KLF4/GKLF, did not induce GLUT4 expression. Both basal (3.3-fold, p < 0.001) and insulin-stimulated (2.4-fold, p < 0.00001) glucose uptake are increased in KLF15-overexpressing adipocytes. In co-transfection assays, KLF15 and MEF2A, a known activator of GLUT4, synergistically activates the GLUT4 promoter. Promoter deletion and mutational analyses provide evidence that this activity requires an intact KLF15-binding site proximal to the MEF2A site. Finally, co-immunoprecipitation assays show that KLF15 specifically interacts with MEF2A. These studies indicate that KLF15 is an important regulator of GLUT4 in both adipose and muscle tissues.
Collapse
Affiliation(s)
- Susan Gray
- Cardiovascular Division, Brigham and Women's Hospital, Thorn Building, 20 Shattuck Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
757
|
Abstract
Normal metabolic balance is maintained by a complex homeostatic system involving multiple tissues and organs. Acquired or inherited defects in any part of this system can lead to metabolic disorders, such as diabetes and obesity. Adipose tissue, once thought to function primarily as a passive depot for the storage of excess lipid, is now understood to play a much more active role in metabolic regulation, secreting a variety of metabolic hormones and actively functioning to prevent deleterious lipid accumulation in other tissues. Here, we review new advances in our understanding of adipogenesis and fat-cell function, primarily from the perspective of the transcription factor peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Heidi S Camp
- Department of Molecular Sciences and Technology, Pfizer Global Research and Development, 2800 Plymouth Rd, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
758
|
Staiger H, Häring HU, Löffler G. Serum-free differentiation of 3T3-L1 preadipocytes is characterized by only transient expression of peroxisome proliferator-activated receptor-gamma. Biochem Biophys Res Commun 2002; 296:125-8. [PMID: 12147237 DOI: 10.1016/s0006-291x(02)00810-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adipogenic transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a pivotal role in the regulation of whole body insulin sensitivity. Little, however, is known about hormonal and molecular modulation of PPARgamma gene expression. Therefore, we investigated the temporal and conditional expression of PPARgamma in a serum-free model of 3T3-L1 adipocyte differentiation. We show here that expression of PPARgamma depends on the full set of known adipogenic stimuli and not on a single hormone/agent. Unexpectedly, an indeed marked but only transient peak of PPARgamma expression (39+/-5-fold increase over basal on day 3 after hormonal stimulation) occurs during serum-free adipose conversion. To our knowledge, this finding is novel and probably remained hidden until now because of the common use of serum-containing preadipocyte culture systems. We conclude that maintenance, but not induction, of PPARgamma gene expression in vitro must be achieved by one or more still unknown serum component(s).
Collapse
Affiliation(s)
- Harald Staiger
- Department of Endocrinology, Metabolism, and Pathobiochemistry, Medical Clinic Tübingen, Eberhard-Karls-University, Tübingen, Germany.
| | | | | |
Collapse
|
759
|
Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002; 365:561-75. [PMID: 12006103 PMCID: PMC1222736 DOI: 10.1042/bj20020508] [Citation(s) in RCA: 1075] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 05/09/2002] [Accepted: 05/10/2002] [Indexed: 02/07/2023]
Abstract
CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that all contain a highly conserved, basic-leucine zipper domain at the C-terminus that is involved in dimerization and DNA binding. At least six members of the family have been isolated and characterized to date (C/EBP alpha[bond]C/EBP zeta), with further diversity produced by the generation of different sized polypeptides, predominantly by differential use of translation initiation sites, and extensive protein-protein interactions both within the family and with other transcription factors. The function of the C/EBPs has recently been investigated by a number of approaches, including studies on mice that lack specific members, and has identified pivotal roles of the family in the control of cellular proliferation and differentiation, metabolism, inflammation and numerous other responses, particularly in hepatocytes, adipocytes and haematopoietic cells. The expression of the C/EBPs is regulated at multiple levels during several physiological and pathophysiological conditions through the action of a range of factors, including hormones, mitogens, cytokines, nutrients and certain toxins. The mechanisms through which the C/EBP members are regulated during such conditions have also been the focus of several recent studies and have revealed an immense complexity with the potential existence of cell/tissue- and species-specific differences. This review deals with the structure, biological function and the regulation of the C/EBP family.
Collapse
Affiliation(s)
- Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, P.O. Box 911, Cardiff CF10 3US, Wales, U.K.
| | | |
Collapse
|
760
|
Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 2002; 51:2045-55. [PMID: 12086932 DOI: 10.2337/diabetes.51.7.2045] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma plays an important role in adipogenesis. However, the functions of PPAR-gamma in differentiated adipocytes have remained unclear. The role of PPAR-gamma in mature 3T3-L1 adipocytes was therefore investigated by overexpression of a dominant negative mutant of this protein (PPAR-gamma-DeltaC) that lacks the 16 COOH-terminal amino acids and that has been shown to prevent the thiazolidinedione-induced differentiation of 3T3-L1 cells into adipocytes. Overexpression of PPAR-gamma-DeltaC in mature 3T3-L1 adipocytes by adenovirus gene transfer resulted in a decrease in both cell size and intracellular triglyceride content, an increase in the extent of lipolysis, and a reduction in the rate of free fatty acid uptake. Furthermore, overexpression of this mutant reduced the abundance of mRNAs for several key enzymes that contribute to triglyceride and free fatty acid metabolism as well as the amounts of GLUT4, insulin receptor, insulin receptor substrate (IRS), and C/EBPalpha mRNAs. It also reduced both the concentration of IRS2 and the insulin-stimulated glucose uptake. These results suggest that PPAR-gamma plays an important role in mature 3T3-L1 adipocytes at least in part by maintaining the expression of genes that confer the characteristics of mature adipocytes.
Collapse
Affiliation(s)
- Yoshikazu Tamori
- Division of Diabetes, Digestive, and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
761
|
Vosper H, Khoudoli GA, Graham TL, Palmer CNA. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002; 95:47-62. [PMID: 12163127 DOI: 10.1016/s0163-7258(02)00232-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyslipidaemia is a major risk factor in the development of atherosclerosis, and lipid lowering is achieved clinically using fibrate drugs and statins. Fibrate drugs are ligands for the fatty acid receptor peroxisome proliferator-activated receptor (PPAR)alpha, and the lipid-lowering effects of this class of drugs are mediated by the control of lipid metabolism, as directed by PPARalpha. PPARalpha ligands also mediate potentially protective changes in the expression of several proteins that are not involved in lipid metabolism, but are implicated in the pathogenesis of heart disease. Clinical studies with bezafibrate and gemfibrozil support the hypothesis that these drugs may have a significant protective effect against cardiovascular disease. The thiazolidinedione group of insulin-sensitising drugs are PPARgamma ligands, and these have beneficial effects on serum lipids in diabetic patients and have also been shown to inhibit the progression of atherosclerosis in animal models. However, their efficacy in the prevention of cardiovascular-associated mortality has yet to be determined. Recent studies have found that PPARdelta is also a regulator of serum lipids. However, there are currently no drugs in clinical use that selectively activate this receptor. It is clear that all three forms of PPARs have mechanistically different modes of lipid lowering and that drugs currently available have not been optimised on the basis of PPAR biology. A new generation of rationally designed PPAR ligands may provide substantially improved drugs for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Helen Vosper
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | |
Collapse
|
762
|
Valet P, Tavernier G, Castan-Laurell I, Saulnier-Blache JS, Langin D. Understanding adipose tissue development from transgenic animal models. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30458-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
763
|
Terauchi Y, Kadowaki T. Insights into molecular pathogenesis of type 2 diabetes from knockout mouse models. Endocr J 2002; 49:247-63. [PMID: 12201207 DOI: 10.1507/endocrj.49.247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yasuo Terauchi
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | |
Collapse
|
764
|
Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I. Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 2002; 37:757-67. [PMID: 12175476 DOI: 10.1016/s0531-5565(02)00014-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In advanced old age, fat depot size declines while lipid is redistributed to muscle, bone marrow, and other tissues. Decreased fat depot size is related to reduced fat cell size and function and impaired differentiation of preadipocytes into fat cells. Reduced differentiation-dependent gene expression results from decreased abundance of the adipogenic transcription factors, CCAAT/enhancer binding alpha (C/EBPalpha) and peroxisome proliferator activated receptor gamma (PPARgamma). Increased expression of anti-adipogenic C/EBP family members contributes, perhaps due to cellular stress response pathway activation with aging. Hence, dysfunctional adipocyte-like cells appear in adipose tissue that are smaller and less insulin responsive than fully differentiated fat cells. Adipogenesis can be restored by overexpressing adipogenic transcription factors in preadipocytes from old animals. Redistribution of lipid to extra-adipose sites with aging could result from loss of lipid storage capacity in fat depots, altered fatty acid handling resulting in lipid accumulation, dysdifferentiation of mesenchymal precursors, such as muscle satellite cells and osteoblast precursors, into a partial adipocyte phenotype, or a combination of these mechanisms. Thus, accumulation of mesenchymal adipocyte-like default (MAD) cells in fat depots, muscle, bone marrow, and elsewhere is a potentially reversible process that could contribute to maldistribution of fat in old age.
Collapse
Affiliation(s)
- James L Kirkland
- Geriatrics Section, Departments of Medicine and Biochemistry, Boston University, 88 East Newton Street, F435, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
765
|
Hartman HB, Hu X, Tyler KX, Dalal CK, Lazar MA. Mechanisms regulating adipocyte expression of resistin. J Biol Chem 2002; 277:19754-61. [PMID: 11901161 DOI: 10.1074/jbc.m201451200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Resistin, also known as Adipocyte Secreted Factor (ADSF) and Found in Inflammatory Zone 3 (FIZZ3), is a mouse protein with potential roles in insulin resistance and adipocyte differentiation. The resistin gene is expressed almost exclusively in adipocytes. Here we show that a proximal 264-base pair fragment of the mouse resistin promoter is sufficient for expression in adipocytes. Ectopic expression of the adipogenic transcription factor CCAAT/enhancer-binding protein (C/EBPalpha) was sufficient for expression in non-adipogenic cells. C/EBPalpha binds specifically to a site that is essential for expression of the resistin promoter. Chromatin immunoprecipitation studies of the endogenous gene demonstrated adipocyte-specific association of C/EBPalpha with the proximal resistin promoter in adipocytes but not preadipocytes. C/EBPalpha binding was associated with the recruitment of coactivators p300 and CREB-binding protein and a dramatic increase in histone acetylation in the vicinity of the resistin promoter. The antidiabetic thiazolidinedione (TZD) drug rosiglitazone reduced resistin expression with an ED(50) similar to its K(d) for binding to peroxisome proliferator activated receptor gamma (PPARgamma). Other TZD- and non-TZD PPARgamma ligands also down-regulated resistin expression. However, no functional PPARgamma binding site was found within 6.2 kb of the transcriptional start site, suggesting that if PPARgamma is involved, it is either acting at a long distance from the start site, in an intron, or indirectly. Nevertheless, rosiglitazone treatment selectively decreased histone acetylation at the resistin promoter without a change in occupation by C/EBPalpha, CREB-binding protein, or p300. Thus, adipocyte specificity of resistin gene expression is because of C/EBPalpha binding, leading to the recruitment of transcriptional coactivators and histone acetylation that is characteristic of an active chromatin environment. TZD reduces resistin gene expression at least in part by reducing histone acetylation associated with the binding of C/EBPalpha in mature adipocytes.
Collapse
Affiliation(s)
- Helen B Hartman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Genetics and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
766
|
Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM, Roeder RG. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature 2002; 417:563-7. [PMID: 12037571 DOI: 10.1038/417563a] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The TRAP (thyroid hormone receptor-associated proteins) transcription coactivator complex (also known as Mediator) was first isolated as a group of proteins that facilitate the function of the thyroid hormone receptor. This complex interacts physically with several nuclear receptors through the TRAP220 subunit, and with diverse activators through other subunits. TRAP220 has been reported to show ligand-enhanced interaction with peroxisome proliferator-activated receptor gamma(2) (PPAR gamma(2)), a nuclear receptor essential for adipogenesis. Here we show that Trap220(-/-) fibroblasts are refractory to PPAR gamma(2)-stimulated adipogenesis, but not to MyoD-stimulated myogenesis, and do not express adipogenesis markers or PPAR gamma(2) target genes. These defects can be restored by expression of exogenous TRAP220. Further indicative of a direct role for TRAP220 in PPAR gamma(2) function via the TRAP complex, TRAP functions directly as a transcriptional coactivator for PPAR gamma(2) in a purified in vitro system and interacts with PPAR gamma(2) in a ligand- and TRAP220-dependent manner. These data indicate that TRAP220 acts, via the TRAP complex, as a PPAR gamma(2)-selective coactivator and, accordingly, that it is specific for one fibroblast differentiation pathway (adipogenesis) relative to another (myogenesis).
Collapse
Affiliation(s)
- Kai Ge
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
767
|
Takahashi N, Kawada T, Yamamoto T, Goto T, Taimatsu A, Aoki N, Kawasaki H, Taira K, Yokoyama KK, Kamei Y, Fushiki T. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2002; 277:16906-12. [PMID: 11884404 DOI: 10.1074/jbc.m200585200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cAMP-response element-binding protein-binding protein (CBP) and p300 are common coactivators for several transcriptional factors. It has been reported that both CBP and p300 are significant for the activation of peroxisome proliferator-activated receptor gamma (PPARgamma), which is a crucial nuclear receptor in adipogenesis. However, it remains unclear whether CBP and/or p300 is physiologically essential to the activation of PPARgamma in adipocytes and adipocyte differentiation. In this study, we investigated the physiological significance of CBP/p300 in NIH3T3 cells transiently expressing PPARgamma and CBP and in 3T3-L1 preadipocytes stably expressing CBP- or p300-specific ribozymes. In PPARgamma-transfected NIH3T3 cells, induction of expression of PPARgamma target genes such as adipocyte fatty acid-binding protein (aP2) and lipoprotein lipase (LPL) by adding thiazolidinedione was enhanced, depending on the amount of a CBP expression plasmid transfected. Expression of aP2 and LPL genes, as well as glycerol-3-phosphate dehydrogenase activity and triacylglyceride accumulation after adipogenic induction, was largely suppressed in 3T3-L1 adipocytes expressing either the CBP- or p300-specific active ribozyme, but not in inactive ribozyme-expressing cells. These data suggest that both CBP and p300 are indispensable for the full activation of PPARgamma and adipocyte differentiation and that CBP and p300 do not mutually complement in the process.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
768
|
Li Y, Lazar MA. Differential gene regulation by PPARgamma agonist and constitutively active PPARgamma2. Mol Endocrinol 2002; 16:1040-8. [PMID: 11981038 DOI: 10.1210/mend.16.5.0825] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The PPARgamma is a key adipogenic determination factor. Ligands for PPARgamma such as antidiabetic thiazolidinedione (TZD) compounds are adipogenic, and many adipocyte genes that are activated by TZDs contain binding sites for PPARgamma. Like ligands for other nuclear receptors, TZDs can regulate genes positively or negatively. Here, we sought to understand the importance of positive regulation of gene expression by PPARgamma in adipogenesis. Fusion of the potent viral transcriptional activator VP16 to PPARgamma2 (VP16-PPARgamma) created a transcription factor that constitutively and dramatically activated transcription of PPARgamma-responsive genes in the absence of ligand. Forced expression of VP16-PPARgamma in 3T3-L1 preadipocytes using retroviral vectors led to adipogenesis in the absence of standard differentiating medium or any exogenous PPARgamma ligand. Gene microarray analysis revealed that VP16-PPARgamma induced many of the genes associated with adipogenesis and adipocyte function. Thus, direct up-regulation of gene expression by PPARgamma is sufficient for adipogenesis. TZD-induced adipogenesis up-regulated many of the same genes, although some were divergently regulated, including resistin, whose gene expression was reduced inVP16-PPARgamma adipocytes treated with TZDs. These results show that, although activation of PPARgamma by a heterologous activation domain is sufficient for adipogenesis, it is not equivalent to TZD treatment. This conclusion has important implications for understanding biological effects of the TZDs on adipogenesis and insulin sensitization.
Collapse
Affiliation(s)
- Yong Li
- Division of Endocrinology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
769
|
Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, DePonte M, Stevenson M, Guo W, Han J, Waloga G, Lash TL, Jensen MD, Kirkland JL. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1286-96. [PMID: 11959668 DOI: 10.1152/ajpregu.00653.2001] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fat distribution varies among individuals with similar body fat content. Innate differences in adipose cell characteristics may contribute because lipid accumulation and lipogenic enzyme activities vary among preadipocytes cultured from different fat depots. We determined expression of the adipogenic transcription factors peroxisome proliferator activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein-alpha (C/EBP-alpha) and their targets in abdominal subcutaneous, mesenteric, and omental preadipocytes cultured in parallel from obese subjects. Subcutaneous preadipocytes, which had the highest lipid accumulation, glycerol-3-phosphate dehydrogenase (G3PD) activity, and adipocyte fatty acid binding protein (aP2) abundance, had highest PPAR-gamma and C/EBP-alpha expression. Levels were intermediate in mesenteric and lowest in omental preadipocytes. Overexpression of C/EBP-alpha in transfected omental preadipocytes enhanced differentiation. The proportion of differentiated cells in colonies derived from single subcutaneous preadipocytes was higher than in mesenteric or omental clones. Only cells that acquired lipid inclusions exhibited C/EBP-alpha upregulation, irrespective of depot origin. Thus regional variation in adipogenesis depends on differences at the level of transcription factor expression and is a trait conferred on daughter cells.
Collapse
Affiliation(s)
- Tamara Tchkonia
- Evans Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
770
|
Sewter C, Berger D, Considine RV, Medina G, Rochford J, Ciaraldi T, Henry R, Dohm L, Flier JS, O'Rahilly S, Vidal-Puig AJ. Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Diabetes 2002; 51:1035-41. [PMID: 11916923 DOI: 10.2337/diabetes.51.4.1035] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sterol regulatory element binding protein (SREBP)-1 is a transcription factor with important roles in the control of fatty acid metabolism and adipogenesis. Little information is available regarding the expression of this molecule in human health or disease. Exposure of isolated human adipocytes to insulin enhanced SREBP1 gene expression and promoted its proteolytic cleavage to the active form. Furthermore, 3 h of in vivo hyperinsulinemia also significantly increased SREBP1 gene expression in human skeletal muscle. Transcript levels of SREBP1c, the most abundant isoform in adipose tissue, were significantly decreased in the subcutaneous adipose tissue of obese normoglycemic and type 2 diabetic subjects compared with that of nonobese normoglycemic control subjects. In skeletal muscle, SREBP1 expression was significantly reduced in type 2 diabetic subjects but not in obese subjects. Within the diabetic group, the extent of SREBP1 suppression was inversely related to metabolic control and was normalized by 3 h of in vivo hyperinsulinemia. Exposure of isolated human adipocytes to tumor necrosis factor-alpha (TNF-alpha) produced a marked and specific decrease in the mRNA encoding the SREBP1c isoform and completely blocked the insulin-induced cleavage of SREBP1 protein. Thus, both the expression and proteolytic maturation of human SREBP1 are positively modulated by insulin. The specific reduction in the SREBP1c isoform seen in the adipose tissue of obese and type 2 diabetic subjects can be recapitulated ex vivo by TNF-alpha, suggesting a possible mechanism for this association.
Collapse
Affiliation(s)
- Ciaran Sewter
- Department of Clinical Biochemistry and Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
771
|
Margareto J, Rivero I, Monge A, Aldana I, Marti A, Martínez JA. Changes in UCP2, PPARgamma2, and c/EBPalpha gene expression induced by a neuropeptide Y (NPY) related receptor antagonist in overweight rats. Nutr Neurosci 2002; 5:13-7. [PMID: 11929193 DOI: 10.1080/10284150290007065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Neuropeptide Y (NPY), a peptide released by nervous cells, appears to contribute to adiposity regulation by increasing food intake and inhibiting lipolysis. New NPY receptor related antagonists such as S.A.0204 are being developed as potential anti-obesity drugs affecting adipocyte lipid metabolism and thermogenesis. In this sense, those animals fed on a high-energy yielding (cafeteria) diet decreased body fat weight as compared to overweight controls, when they were administered with S.A.0204, and increased body temperature, which statistically correlated with high UCP2 mRNA expression levels in white adipose tissue. In addition, the in vivo NPY-antagonist administration was able to prevent white adipose tissue growth in animals fed the cafeteria (high-fat) diet by impairing PPARy and CIEBPalpha mRNA expression in white fat cells. In summary, this novel NPY related-antagonist S.A.0204 may regulate body fat deposition by affecting both energy dissipation and white adipose tissue deposition, representing a potential new pharmacological strategy for obesity management.
Collapse
Affiliation(s)
- J Margareto
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
772
|
Abstract
We have previously employed high density oligonucleotide arrays representing thousands of genes to determine the gene expression profile of the aging process in skeletal muscle (gastrocnemius) and brain (cerebellum and neocortex) of male C57BL/6 mice. Specific gene expression profiles are associated with the aging process of individual organs, and caloric restriction can prevent or retard the establishment of these gene expression alterations. The use of DNA microarrays may provide a new tool to measure biological age on a tissue-specific basis and to evaluate at the molecular level the efficacy of interventions designed to retard the aging process.
Collapse
Affiliation(s)
- Richard Weindruch
- Department of Medicine, University of Wisconsin-Madison and Veterans Administration Hospital, Geriatric Research, Education and Clinical Center, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
773
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to a nuclear receptor superfamily. PPARs have three isoforms: alpha, beta (or delta), and gamma. It is known that PPARgamma is expressed predominantly in adipose tissue and promotes adipocyte differentiation and glucose homeostasis. Recently, synthetic antidiabetic thiazolidinediones (TZDs) and the natural prostaglandin D2 (PGD2) metabolite, 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), have been identified as ligands for PPARgamma. Furthermore, it has become apparent that PPARs are present both in a variety of different cell types and in atherosclerotic lesions and the studies about PPARgamma have been extended. Although activation of PPARgamma appears to have protective effects on atherosclerosis, it is still largely uncertain whether PPARgamma ligands prevent the development of cardiovascular disease. Recent evidence suggests that some benefit from antidiabetic agents, TZDs, may occur independent of increased insulin sensitivity. In this article, we review the latest developments in the PPAR field and summarize the roles of PPARgamma and the actions of PPARgamma ligands in the cardiovascular system.
Collapse
Affiliation(s)
- Hiroyuki Takano
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | | |
Collapse
|
774
|
Abstract
The balance of contradictory signals experienced by preadipocytes influences whether these cells undergo adipogenesis. In addition to the endocrine system, these signals originate from the preadipocytes themselves or operate as part of a feedback loop involving mature adipocytes. The factors that regulate adipogenesis either promote or block the cascade of transcription factors that coordinate the differentiation process. Some of the positive factors reviewed include insulin-like growth factor I, macrophage colony-stimulating factor, fatty acids, prostaglandins and glucocorticoids, and negative factors reviewed include Wnt, transforming growth factor beta, inflammatory cytokines and prostaglandin F(2alpha). Tipping the scales towards or away from adipogenesis has profound implications for human health. In this review, we describe recent contributions to the field and will focus on factors that probably play a role in vivo.
Collapse
Affiliation(s)
- Ormond A MacDougald
- Dept Physiology, University of Michigan Medical School, 1301 E. Catherine Rd, Ann Arbor, MI 48109-0622, USA.
| | | |
Collapse
|
775
|
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 2002; 16:22-6. [PMID: 11782441 PMCID: PMC155311 DOI: 10.1101/gad.948702] [Citation(s) in RCA: 1114] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Accepted: 11/09/2001] [Indexed: 12/22/2022]
Abstract
PPARgamma and C/EBPalpha are critical transcription factors in adipogenesis, but the precise role of these proteins has been difficult to ascertain because they positively regulate each other's expression. Questions remain about whether these factors operate independently in separate, parallel pathways of differentiation, or whether a single pathway exists. PPARgamma can promote adipogenesis in C/EBPalpha-deficient cells, but the converse has not been tested. We have created an immortalized line of fibroblasts lacking PPARgamma, which we use to show that C/EBPalpha has no ability to promote adipogenesis in the absence of PPARgamma. These results indicate that C/EBPalpha and PPARgamma participate in a single pathway of fat cell development with PPARgamma being the proximal effector of adipogenesis.
Collapse
Affiliation(s)
- Evan D Rosen
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
776
|
Affiliation(s)
- Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
777
|
Abstract
Thiazolidinediones (TZD, glitazones) are a new class of oral antidiabetic drugs which exert their insulin sensitizing action by stimulation of the nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPAR-gamma). At present pioglitazone and rosiglitazone are available for clinical use. Different activation levels of PPAR-gamma and of co-factors determine the binding of PPAR-gamma to distinct target genes, which in turn regulates their transcriptional activity. TZD lower blood glucose levels, partly by influencing glucose transporters and the insulin-signaling pathway. In this review the molecular and cellular mechanisms as well as the metabolic effects of PPAR activation by TZD are discussed. Knowledge regarding the influence of genetic variations of PPAR-gamma on the effects of TZD is so far limited to in vitro studies. The results of these studies are reviewed.
Collapse
Affiliation(s)
- Carsten Otto
- Medical Department 2, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | |
Collapse
|
778
|
Lyons SE, Shue BC, Lei L, Oates AC, Zon LI, Liu PP. Molecular cloning, genetic mapping, and expression analysis of four zebrafish c/ebp genes. Gene 2001; 281:43-51. [PMID: 11750126 DOI: 10.1016/s0378-1119(01)00774-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CCAAT/enhancer binding protein family (C/EBP) are transcription factors that play integral roles in the development and function of many organ systems, including hematopoietic cells, adipose tissues, and liver. We have identified and characterized putative zebrafish orthologs of mammalian C/EBP alpha, beta, gamma, and delta using low-stringency hybridization screening and computer searches of the GenBank EST database. c/ebpa and g were mapped within 1 cM of each other on linkage group (LG) 7, syntenic with human CEBPA and G genes on chromosome 19. c/ebpb was mapped to LG8, and c/ebpd was mapped to LG24, on the same LG as a recently identified unique c/ebp in zebrafish, c/ebp1. The mapping of these genes established new syntenic relationships between LG8 and human chromosome 20, extended existing synteny between LG7 and human chromosome 19, and confirmed the synteny between LG24 and human chromosome 8. In addition, these syntenies between zebrafish and human chromosomes are also conserved in the mouse genome. To characterize the expression of these genes, RNA in situ hybridization in embryos of wild type and a hematopoietic mutant, cloche, was performed. The results showed that zebrafish c/ebpa, b, g, and d were expressed in many embryonic tissues. c/ebpa and b were expressed in a subset of hematopoietic cells in a region consistent with myeloid expression. In addition, there was expression of c/ebpa and b in the liver and c/ebpa, b, and d in regions of the gastrointestinal tract. The expression of the c/ebps may serve as important markers for analysis of myelopoiesis, hepatic development, and other developmental processes in the future.
Collapse
Affiliation(s)
- S E Lyons
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Room 3A18, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
779
|
Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, Matsuda M, Nagaretani H, Ouchi N, Hotta K, Kihara S, Kadowaki T, Funahashi T, Matsuzawa Y. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor gamma. J Biol Chem 2001; 276:48572-9. [PMID: 11679588 DOI: 10.1074/jbc.m108213200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current study demonstrates that aquaporin adipose (AQPap), an adipose-specific glycerol channel (Kishida, K., Kuriyama, H., Funahashi, T., Shimomura, I., Kihara, S., Ouchi, N., Nishida, M., Nishizawa, H., Matsuda, M., Takahashi, M., Hotta, K., Nakamura, T., Yamashita, S., Tochino, Y., and Matsuzawa, Y. (2000) J. Biol. Chem. 275, 20896-20902), is a target gene of peroxisome proliferator-activated receptor (PPAR) gamma. The AQPap mRNA amounts increased following the induction of PPARgamma in the differentiation of 3T3-L1 adipocytes. The AQPap mRNA in the adipose tissue increased when mice were treated with pioglitazone (PGZ), a synthetic PPARgamma ligand, and decreased in PPARgamma(+/-) heterozygous knockout mice. In 3T3-L1 adipocytes, PGZ augmented the AQPap mRNA expression and its promoter activity. Serial deletion of the promoter revealed the putative peroxisome proliferator-activated receptor response element (PPRE) at -93/-77. In 3T3-L1 preadipocytes, the expression of PPARgamma by transfection and PGZ activated the luciferase activity of the promoter containing the PPRE, whereas the PPRE-deleted mutant was not affected. The gel mobility shift assay showed the direct binding of PPARgamma-retinoid X receptor alpha complex to the PPRE. DeltaPPARgamma, which we generated as the dominant negative PPARgamma lacking the activation function-2 domain, suppressed the promoter activity in 3T3-L1 cells, dose-dependently. We conclude that AQPap is a novel adipose-specific target gene of PPARgamma through the binding of PPARgamma-retinoid X receptor complex to the PPRE region in its promoter.
Collapse
Affiliation(s)
- K Kishida
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
780
|
Collins S, Cao W, Daniel KW, Dixon TM, Medvedev AV, Onuma H, Surwit R. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med (Maywood) 2001; 226:982-90. [PMID: 11743133 DOI: 10.1177/153537020122601104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interest in the biology of adipose tissue has undergone a revival in recent years with the discovery of a host of genes that contribute to the regulation of satiety and metabolic rate. The catecholamines have long been known to be key modulators of adipose tissue lipolysis and the hydrolysis of triglyceride energy stores. However, more recent efforts to understand the role of individual adrenergic receptor subtypes expressed in adipocytes and their signal transduction pathways have revealed a complexity not previously appreciated. Combined with this interest in the modulation of adipocyte metabolism is a renewed focus upon brown adipose tissue and the mechanisms of whole body thermogenesis in general. The discovery of novel homologs of the brown fat uncoupling protein (UCP) such as UCP2 and UCP3 has provoked intensive study of these mitochondrial proteins and the role that they play in fuel metabolism. The story of the novel UCPs has proven to be intriguing and still incompletely understood. Here, we review the status of adipose tissue from inert storage depot to endocrine organ, interesting signal transduction pathways triggered by beta-adrenergic receptors in adipocytes, the potential of these receptors for discriminating and coordinated metabolic regulation, and current views on the role of UCP2 and UCP3 based on physiological studies and gene knockout models.
Collapse
Affiliation(s)
- S Collins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
781
|
Pedersen TA, Kowenz-Leutz E, Leutz A, Nerlov C. Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev 2001; 15:3208-16. [PMID: 11731483 PMCID: PMC312836 DOI: 10.1101/gad.209901] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromatin remodeling is an important step in promoter activation during cellular lineage commitment and differentiation. We show that the ability of the C/EBPalpha transcription factor to direct adipocyte differentiation of uncommitted fibroblast precursors and to activate SWI/SNF-dependent myeloid-specific genes depends on a domain, C/EBPalpha transactivation element III (TE-III), that binds the SWI/SNF chromatin remodeling complex. TE-III collaborates with C/EBPalpha TBP/TFIIB interaction motifs during induction of adipogenesis and adipocyte-specific gene expression. These results indicate that C/EBPalpha acts as a lineage-instructive transcription factor through SWI/SNF-dependent modification of the chromatin structure of lineage-specific genes, followed by direct promoter activation via recruitment of the basal transcription-initiation complex, and provide a mechanism by which C/EBPalpha can mediate differentiation along multiple cellular lineages.
Collapse
Affiliation(s)
- T A Pedersen
- Laboratory of Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
782
|
Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, Kahn CR, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 2001; 108:1205-13. [PMID: 11602628 PMCID: PMC209529 DOI: 10.1172/jci13103] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although insulin regulates metabolism in both brown and white adipocytes, the role of these tissues in energy storage and utilization is quite different. Recombination technology using the Cre-loxP approach allows inactivation of the insulin receptor in a tissue-specific manner. Mice lacking insulin receptors in brown adipocytes show an age-dependent loss of interscapular brown fat but increased expression of uncoupling protein-1 and -2. In parallel, these mice develop an insulin-secretion defect resulting in a progressive glucose intolerance, without insulin resistance. This model provides direct evidence for not only a role for the insulin receptors in brown fat adipogenesis, the data also suggest a novel role of brown adipose tissue in the regulation of insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- C Guerra
- Jackson Laboratory, Bar Harbor, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
783
|
Rosen ED, Spiegelman BM. PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001; 276:37731-4. [PMID: 11459852 DOI: 10.1074/jbc.r100034200] [Citation(s) in RCA: 881] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- E D Rosen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
784
|
Affiliation(s)
- Q Tong
- Division of Biological Sciences, Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
785
|
Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106:563-73. [PMID: 11551504 DOI: 10.1016/s0092-8674(01)00474-3] [Citation(s) in RCA: 417] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity, hyperlipidemia, and insulin resistance are common forerunners of type 2 diabetes mellitus. We have identified the human winged helix/forkhead transcription factor gene FOXC2 as a key regulator of adipocyte metabolism. Increased FOXC2 expression, in adipocytes, has a pleiotropic effect on gene expression, which leads to a lean and insulin sensitive phenotype. FOXC2 affects adipocyte metabolism by increasing the sensitivity of the beta-adrenergic-cAMP-protein kinase A (PKA) signaling pathway through alteration of adipocyte PKA holoenzyme composition. Increased FOXC2 levels, induced by high fat diet, seem to counteract most of the symptoms associated with obesity, including hypertriglyceridemia and diet-induced insulin resistance--a likely consequence hereof would be protection against type 2 diabetes.
Collapse
Affiliation(s)
- A Cederberg
- Medical Genetics, Department of Medical Biochemistry, Göteborg University, Box 440, SE-405 30, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
786
|
Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int 2001; 60:14-30. [PMID: 11422732 DOI: 10.1046/j.1523-1755.2001.00766.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. PPARs play an important role in the general transcriptional control of numerous cellular processes, including lipid metabolism, glucose homeostasis, cell cycle progression, cell differentiation, inflammation and extracellular matrix remodeling. Three PPAR isoforms, designated PPARalpha, PPARbeta and PPARgamma, have been cloned and are differentially expressed in several tissues including the kidney. PPARalpha primary regulates lipid metabolism and modulates inflammation. PPARalpha is the molecular target of the hypolipidemic fibrates including bezafibrate and clofibrate. PPARbeta participates in embryonic development, implantation and bone formation. PPARgamma is a key factor in adipogenesis and also plays an important role in insulin sensitivity, cell cycle regulation and cell differentiation. Antidiabetic thiazolidinediones (TZDs) such as troglitazone and rosiglitazone are specific ligands of PPARgamma, and this interaction is responsible for the insulin-sensitizing and hypoglycemic effect of these drugs. The kidney has been shown to differentially express all PPAR isoforms. PPARalpha is predominantly expressed in proximal tubules and medullary thick ascending limbs, while PPARgamma is expressed in medullary collecting ducts, pelvic urothelium and glomerular mesangial cells. PPARbeta is ubiquitously expressed at low levels in all segments of nephron. Accumulating data has begun to emerge suggesting physiological and pathophysiological roles of PPARs in several tissues including the kidney. The availability of PPAR-selective agonists and antagonists may provide a new approach to modulate the renal response to diseases including glomerulonephritis, glomerulosclerosis and diabetic nephropathy.
Collapse
Affiliation(s)
- Y Guan
- Division of Nephrology, and Department of Molecular Physiology, Veterans Administration Medical Center, and Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2372, USA.
| | | |
Collapse
|
787
|
Karagiannides I, Tchkonia T, Dobson DE, Steppan CM, Cummins P, Chan G, Salvatori K, Hadzopoulou-Cladaras M, Kirkland JL. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1772-80. [PMID: 11353682 DOI: 10.1152/ajpregu.2001.280.6.r1772] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fat mass, adipocyte size and metabolic responsiveness, and preadipocyte differentiation decrease between middle and old age. We show that expression of CCAAT/enhancer binding protein (C/EBP)-α, a key regulator of adipogenesis and fat cell function, declined substantially with aging in differentiating preadipocytes cultured under identical conditions from rats of various ages. Overexpression of C/EBPα in preadipocytes cultured from old rats restored capacity to differentiate into fat cells, indicating that downstream differentiation-dependent genes maintain responsiveness to regulators of adipogenesis. C/EBPα-expression also decreased with age in fat tissue from three different depots and in isolated fat cells. The overall level of C/EBPβ, which modulates C/EBPα-expression, did not change with age, but the truncated, dominant-negative C/EBPβ-liver inhibitory protein (LIP) isoform increased in cultured preadipocytes and isolated fat cells. Overexpression of C/EBPβ-LIP in preadipocytes from young rats impaired adipogenesis. C/EBPδ, which acts with full-length C/EBPβ to enhance adipogenesis, decreased with age. Thus processes intrinsic to adipose cells involving changes in C/EBP family members contribute to impaired adipogenesis and altered fat tissue function with aging. These effects are potentially reversible.
Collapse
Affiliation(s)
- I Karagiannides
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
788
|
Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, Courtois B, Bergaud B, Ramez V, Blanchet AM, Adelmant G, Baron R, Roman-Roman S. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 2001; 114:2085-94. [PMID: 11493644 DOI: 10.1242/jcs.114.11.2085] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteins of the hedgehog (Hh) family regulate various aspects of development. Recently, members of this family have been shown to regulate skeletal formation in vertebrates and to control both chondrocyte and osteoblast differentiation. In the present study, we analyzed the effect of Sonic hedgehog (Shh) on the osteoblastic and adipocytic commitment/differentiation. Recombinant N-terminal Shh (N-Shh) significantly increased the percentage of both the pluripotent mesenchymal cell lines C3H10T1/2 and ST2 and calvaria cells responding to bone morphogenetic protein 2 (BMP-2), in terms of osteoblast commitment as assessed by measuring alkaline phosphatase (ALP) activity. This synergistic effect was mediated, at least partly, through the positive modulation of the transcriptional output of BMPs via Smad signaling. Furthermore, N-Shh was found to abolish adipocytic differentiation of C3H10T1/2 cells both in the presence or absence of BMP-2. A short treatment with N-Shh was sufficient to dramatically reduce the levels of the adipocytic-related transcription factors C/EBPα and PPARγ in both C3H10T1/2 and calvaria cell cultures. Given the inverse relationship between marrow adipocytes and osteoblasts with aging, agonists of the Hh signaling pathway might constitute potential drugs for preventing and/or treating osteopenic disorders.
Collapse
Affiliation(s)
- S Spinella-Jaegle
- Bone Diseases Group, Department of Biotechnology, Hoechst-Marion-Roussel, 111 route de Noisy, 93230 Romainville, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
789
|
Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 2001; 276:18464-71. [PMID: 11279134 DOI: 10.1074/jbc.m100797200] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The differentiation of 3T3-L1 preadipocytes is regulated in part by a cascade of transcriptional events involving activation of the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor gamma (PPARgamma) by dexamethasone (DEX), 3-isobutyl-1-methylxanthine (MIX), and insulin. In this study, we demonstrate that exposure of 3T3-L1 preadipocytes to DEX and insulin fails to induce adipogenesis as indicated by a lack of C/EBPalpha, PPARgamma2, and adipose protein 2/fatty acid-binding protein expression; however, PPARgamma1 is expressed. Treatment of these MIX-deficient cells with a PPARgamma ligand, troglitazone, induces C/EBPalpha expression and rescues the block in adipogenesis. In this regard, we also show that induction of C/EBPalpha gene expression by troglitazone in C3H10T1/2 cells ectopically expressing PPARgamma occurs in the absence of ongoing protein synthesis, suggesting a direct transactivation of the C/EBPalpha gene by PPARgamma. Furthermore, ectopic expression of a dominant negative isoform of C/EBPbeta (liver-enriched transcriptional inhibitory protein (LIP)) inhibits the induction of C/EBPalpha, PPARgamma2, and adipose protein 2/fatty acid-binding protein by DEX, MIX, and insulin in 3T3-L1 cells without affecting the induction of PPARgamma1 by DEX. Exposure of LIP-expressing preadipocytes to troglitazone along with DEX, MIX, and insulin induces differentiation into adipocytes. Additionally, we show that sustained expression of C/EBPalpha in these LIP-expressing adipocytes requires constant exposure to troglitazone. Taken together, these observations suggest that inhibition of C/EBPbeta activity not only blocks C/EBPalpha and PPARgamma2 expression, but it also renders the preadipocytes dependent on an exogenous PPARgamma ligand for their differentiation into adipocytes. We propose, therefore, an additional role for C/EBPbeta in regulating PPARgamma activity during adipogenesis, and we suggest an alternative means of inducing preadipocyte differentiation that relies on the dexamethasone-associated induction of PPARgamma1 expression.
Collapse
Affiliation(s)
- J K Hamm
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 2118, USA
| | | | | |
Collapse
|
790
|
Iwata M, Haruta T, Usui I, Takata Y, Takano A, Uno T, Kawahara J, Ueno E, Sasaoka T, Ishibashi O, Kobayashi M. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator--activated receptor-gamma. Diabetes 2001; 50:1083-92. [PMID: 11334412 DOI: 10.2337/diabetes.50.5.1083] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor (TNF)-alpha is one of the candidate mediators of insulin resistance associated with obesity, a major risk factor for the development of type 2 diabetes. The insulin resistance induced by TNF-alpha is antagonized by thiazolidinediones (TZDs), a new class of insulin-sensitizing drugs. The aim of the current study was to dissect the mechanism whereby pioglitazone, one of the TZDs, ameliorates TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes. Pioglitazone restored insulin-stimulated 2-deoxyglucose (DOG) uptake, which was reduced by TNF-alpha, with concomitant restorations in tyrosine phosphorylation and protein levels of insulin receptor (IR) and insulin receptor substrate (IRS)-1, as well as association of the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase with IRS-1 and PI 3-kinase activity. Adenovirus-mediated gene transfer of either wild-type human peroxisome proliferator-activated receptor (PPAR)-gamma2 or a mutant carrying a replacement at the consensus mitogen-activated protein kinase phosphorylation site (hPPAR-gamma2-S112A) promoted adipogenesis of 3T3-L1 fibroblasts and restored TNF-alpha-induced decrease of triglyceride in adipocytes as effectively as pioglitazone. Overexpression of the PPAR-gamma proteins in TNF-alpha-treated adipocytes restored protein levels of IR/IRS-1, but did not improve insulin-stimulated tyrosine phosphorylation of IR/IRS-1 or insulin-stimulated 2-DOG uptake. These results indicate that the ability of pioglitazone to restore insulin-stimulated tyrosine phosphorylation of IR/IRS-1, which is necessary for amelioration of TNF-alpha-induced insulin resistance, may be independent of the adipogenic activity of PPAR-gamma that regulates protein levels of IR/IRS-1.
Collapse
Affiliation(s)
- M Iwata
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
791
|
Abstract
Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.
Collapse
Affiliation(s)
- R L Mynatt
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
792
|
Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 2001; 21:2521-32. [PMID: 11259600 PMCID: PMC86884 DOI: 10.1128/mcb.21.7.2521-2532.2001] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the role of insulin receptor substrate 1 (IRS-1) and IRS-2, the two ubiquitously expressed IRS proteins, in adipocyte differentiation, we established embryonic fibroblast cells with four different genotypes, i.e., wild-type, IRS-1 deficient (IRS-1(-/-)), IRS-2 deficient (IRS-2(-/-)), and IRS-1 IRS-2 double deficient (IRS-1(-/-) IRS-2(-/-)), from mouse embryos of the corresponding genotypes. The abilities of IRS-1(-/-) cells and IRS-2(-/-) cells to differentiate into adipocytes are approximately 60 and 15%, respectively, lower than that of wild-type cells, at day 8 after induction and, surprisingly, IRS-1(-/-) IRS-2(-/-) cells have no ability to differentiate into adipocytes. The expression of CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) is severely decreased in IRS-1(-/-) IRS-2(-/-) cells at both the mRNA and the protein level, and the mRNAs of lipoprotein lipase and adipocyte fatty acid binding protein are severely decreased in IRS-1(-/-) IRS-2(-/-) cells. Phosphatidylinositol 3-kinase (PI 3-kinase) activity that increases during adipocyte differentiation is almost completely abolished in IRS-1(-/-) IRS-2(-/-) cells. Treatment of wild-type cells with a PI 3-kinase inhibitor, LY294002, markedly decreases the expression of C/EBPalpha and PPARgamma, a result which is associated with a complete block of adipocyte differentiation. Moreover, histologic analysis of IRS-1(-/-) IRS-2(-/-) double-knockout mice 8 h after birth reveals severe reduction in white adipose tissue mass. Our results suggest that IRS-1 and IRS-2 play a crucial role in the upregulation of the C/EBPalpha and PPARgamma expression and adipocyte differentiation.
Collapse
Affiliation(s)
- H Miki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
793
|
Abstract
Adipogenesis, or the development of fat cells from preadipocytes, has been one of the most intensely studied models of cellular differentiation. In part this has been because of the availability of in vitro models that faithfully recapitulate most of the critical aspects of fat cell formation in vivo. More recently, studies of adipogenesis have proceeded with the hope that manipulation of this process in humans might one day lead to a reduction in the burden of obesity and diabetes. This review explores some of the highlights of a large and burgeoning literature devoted to understanding adipogenesis at the molecular level. The hormonal and transcriptional control of adipogenesis is reviewed, as well as studies on a less well known type of fat cell, the brown adipocyte. Emphasis is placed, where possible, on in vivo studies with the hope that the results discussed may one day shed light on basic questions of cellular growth and differentiation in addition to possible benefits in human health.
Collapse
Affiliation(s)
- E D Rosen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
794
|
Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 2001; 131:918S-923S. [PMID: 11238786 DOI: 10.1093/jn/131.3.918s] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An active research area in biological gerontology concerns the mechanisms by which caloric restriction (CR) retards the aging process in laboratory rodents. We used high density oligonucleotide arrays representing 6347 genes to determine the gene expression profile of the aging process in gastrocnemius muscle of male C57BL/6 mice. Aging resulted in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes. Most alterations were completely or partially prevented by CR. Transcriptional patterns of muscle from calorie-restricted animals suggest that CR retards the aging process by causing a metabolic shift toward increased protein turnover and decreased macromolecular damage. The use of high density oligonucleotide microarrays provides a new tool to measure biological age on a tissue-specific basis and to evaluate at the molecular level the efficacy of nutritional interventions designed to retard the aging process.
Collapse
Affiliation(s)
- R Weindruch
- University of Wisconsin-Madison and Veterans Administration Hospital, Department of Medicine, Geriatric Research, Education and Clinical Center, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
795
|
Abstract
The major transcriptional factors involved in the adipogenic process include proteins belonging to the CCAAT/enhancer binding protein family, peroxisome proliferator-activated receptor gamma, and adipocyte determination and differentiation dependent factor 1, also known as sterol regulatory element-binding protein 1. This process has been characterized with the aid of cell lines that represent various stages in the path of adipocyte commitment, ranging from pluripotent mesodermal fibroblasts to preadipocytes. Molecular analyses have led to a cascade model for adipogenesis based on timed expression of CCAAT/enhancer-binding proteins and peroxisome proliferator-activated receptor gamma. Gene targeting and transgenic-mouse technologies, which allow the manipulation of endogenous genes for these transcription factors, have also contributed to the understanding of adipogenesis. This review aims to integrate this information to gain an understanding of the transcriptional regulation of fat cell formation.
Collapse
Affiliation(s)
- S M Rangwala
- Departments of Medicine and Genetics and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
796
|
Dixon TM, Daniel KW, Farmer SR, Collins S. CCAAT/enhancer-binding protein alpha is required for transcription of the beta 3-adrenergic receptor gene during adipogenesis. J Biol Chem 2001; 276:722-8. [PMID: 11024036 DOI: 10.1074/jbc.m008440200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(3)-adrenergic receptor (beta(3)AR) is expressed predominantly in adipocytes, and it plays a major role in regulating lipolysis and adaptive thermogenesis. Its expression in a variety of adipocyte cell models is preceded by the appearance of CCAAT/enhancer-binding protein alpha (C/EBP alpha), which has been shown to regulate a number of other adipocyte-specific genes. Importantly, it has been demonstrated that several adipocyte cell lines that fail to express C/EBP alpha exhibit reduced insulin sensitivity, despite an apparent adipogenic phenotype. Here we show that transcription and function of the beta(3)AR correlates with C/EBP alpha expression in these adipocyte models. A 5.13-kilobase pair fragment of the mouse beta(3)AR promoter was isolated and sequenced. This fragment conferred a 50-fold increase in luciferase reporter gene expression in adipocytes. Two putative C/EBP binding sites exist at -3306 to -3298 and at -1462 to -1454, but only the more distal site is functional. Oligonucleotides corresponding to both the wild-type and mutated -3306 element were inserted upstream of a thymidine kinase luciferase construct. When cotransfected in fibroblasts with a C/EBP alpha expression vector, reporter gene expression increased 3-fold only in the wild-type constructs. The same mutation, when placed into the intact 5.13-kilobase pair promoter, reduced promoter activity in adipocytes from 50-fold to <10-fold. Electrophoretic mobility shift analysis demonstrated that the site at -3306 generated a specific protein-oligonucleotide complex that was supershifted by C/EBP alpha antibody, while a probe corresponding to a putative site at -1462 did not. These results define C/EBP alpha as a key transcriptional regulator of the mouse beta(3)AR gene during adipogenesis.
Collapse
Affiliation(s)
- T M Dixon
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
797
|
Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 2001; 21:319-29. [PMID: 11113206 PMCID: PMC88805 DOI: 10.1128/mcb.21.1.319-329.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The most widely distributed members of the family of insulin receptor substrate (IRS) proteins are IRS-1 and IRS-2. These proteins participate in insulin and insulin-like growth factor 1 signaling, as well as the actions of some cytokines, growth hormone, and prolactin. To more precisely define the specific role of IRS-1 in adipocyte biology, we established brown adipocyte cell lines from wild-type and IRS-1 knockout (KO) animals. Using differentiation protocols, both with and without insulin, preadipocyte cell lines derived from IRS-1 KO mice exhibited a marked decrease in differentiation and lipid accumulation (10 to 40%) compared to wild-type cells (90 to 100%). Furthermore, IRS-1 KO cells showed decreased expression of adipogenic marker proteins, such as peroxisome proliferator-activated receptor gamma (PPARgamma), CCAAT/enhancer-binding protein alpha (C/EBPalpha), fatty acid synthase, uncoupling protein-1, and glucose transporter 4. The differentiation deficit in the KO cells could be reversed almost completely by retrovirus-mediated reexpression of IRS-1, PPARgamma, or C/EBPalpha but not the thiazolidinedione troglitazone. Phosphatidylinositol 3-kinase (PI 3-kinase) assays performed at various stages of the differentiation process revealed a strong and transient activation in IRS-1, IRS-2, and phosphotyrosine-associated PI 3-kinase in the wild-type cells, whereas the IRS-1 KO cells showed impaired phosphotyrosine-associated PI 3-kinase activation, all of which was associated with IRS-2. Akt phosphorylation was reduced in parallel with the total PI 3-kinase activity. Inhibition of PI 3-kinase with LY294002 blocked differentiation of wild-type cells. Thus, IRS-1 appears to be an important mediator of brown adipocyte maturation. Furthermore, this signaling molecule appears to exert its unique role in the differentiation process via activation of PI 3-kinase and its downstream target, Akt, and is upstream of the effects of PPARgamma and C/EBPalpha.
Collapse
Affiliation(s)
- M Fasshauer
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
798
|
Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 2000; 130:3116S-3121S. [PMID: 11110883 DOI: 10.1093/jn/130.12.3116s] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent advances regarding the biology of adipose tissue have identified the adipocyte as an important mediator in many physiologic and pathologic processes regarding energy metabolism. Consideration for a central role of adipose tissue in the development of obesity, cardiovascular disease and noninsulin-dependent diabetes mellitus has resulted in new incentives toward understanding the complexities of adipocyte differentiation. Current knowledge of this process includes a cascade of transcriptional events that culminate in the expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and CCAAT/enhancer binding protein-alpha (C/EBPalpha). These prominent adipogenic transcription factors have been shown to regulate, directly or indirectly, the gene expression necessary for the development of the mature adipocyte. Hormonal and nutritional signaling that impinges on these trans-acting factors provides a molecular link between lipids and lipid-related compounds and the gene expression important for glucose and lipid homeostasis. Knowledge concerning the transcriptional events mediating adipocyte differentiation provides a basis for understanding the physiologic processes associated with adipose tissue as well as for the development of therapeutic interventions in obesity and its related disorders.
Collapse
Affiliation(s)
- R F Morrison
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
799
|
Shih SJ, Allan C, Grehan S, Tse E, Moran C, Taylor JM. Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J Biol Chem 2000; 275:31567-72. [PMID: 10893248 DOI: 10.1074/jbc.m005468200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two distal enhancers that specify apolipoprotein (apo) E gene expression in isolated macrophages and adipose tissue were identified in transgenic mice that were generated with constructs of the human apoE/C-I/C-I'/C-IV/C-II gene cluster. One of these enhancers, multienhancer 1, consists of a 620-nucleotide sequence located 3.3 kilobases (kb) downstream of the apoE gene. The second enhancer, multienhancer 2, is a 619-nucleotide sequence located 15.9 kb downstream of the apoE gene and 5.9 kb downstream of the apoC-I gene. The two enhancers are 95% identical in sequence, and they are likely to have arisen as a consequence of the gene duplication event that yielded the apoC-I gene and the apoC-I' pseudogene. Both enhancer sequences appear to have equivalent activity in directing apoE gene expression in peritoneal macrophages and in adipocytes, suggesting that their activity in specific cell types may be determined by common regulatory elements.
Collapse
Affiliation(s)
- S J Shih
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
800
|
Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000; 290:134-8. [PMID: 11021798 DOI: 10.1126/science.290.5489.134] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genes that control the early stages of adipogenesis remain largely unknown. Here, we show that murine GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors and that their down-regulation sets the stage for terminal differentiation. Constitutive GATA-2 and GATA-3 expression suppressed adipocyte differentiation and trapped cells at the preadipocyte stage. This effect is mediated, at least in part, through the direct suppression of peroxisome proliferator-activated receptor gamma. GATA-3-deficient embryonic stem cells exhibit an enhanced capacity to differentiate into adipocytes, and defective GATA-2 and GATA-3 expression is associated with obesity. Thus, GATA-2 and GATA-3 regulate adipocyte differentiation through molecular control of the preadipocyte-adipocyte transition.
Collapse
Affiliation(s)
- Q Tong
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|