751
|
Papaconstantinou J, Deford JH, Gerstner A, Hsieh CC, Boylston WH, Guigneaux MM, Flurkey K, Harrison DE. Hepatic gene and protein expression of primary components of the IGF-I axis in long lived Snell dwarf mice. Mech Ageing Dev 2005; 126:692-704. [PMID: 15888324 DOI: 10.1016/j.mad.2005.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/12/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence indicates that the GH/IGF-I axis plays a key role in the control of aging and longevity. To better understand this biological relationship we examined the mRNA and corresponding protein levels of primary IGF-I axis genes in the livers of young and aged long-lived Snell dwarf mice relative to their age-matched controls. We demonstrated that the level of IGF-I and ALS mRNAs is dramatically decreased in both young and aged dwarf livers, transcripts encoding IGF-IR and IGFBP-I are elevated in young dwarfs, but normalize to control levels in aged dwarf livers while transcripts encoding IGFBP-3 are elevated only in aged controls. Interestingly, regulation at the protein level of several IGF-I axis components in the Snell dwarf appears to involve both altered gene expression and post-translational regulation. In this study, we reveal both concordant and discordant relationships between mRNA and protein levels for particular components of the IGF-I axis, illustrating that some of these gene products are not solely regulated by transcriptional mechanisms. These results are consistent with a delay in the molecular maturation of the IGF-I axis in dwarf livers, suggesting the preservation of some neonatal characteristics in young adult and aged dwarf livers. Our studies provide gene expression and protein abundance profiles for components of IGF-I axis that are distinguishing characteristics of both young and aged dwarf mice, and suggest that delayed development of the IGF-I axis in the young adult Pit1(dw/dwJ) dwarf liver may play an important role in the endocrine regulation of mammalian longevity.
Collapse
Affiliation(s)
- John Papaconstantinou
- University of Texas Medical Branch, Department of Human Biological Chemistry and Genetics, Galveston, 77555-0643, USA.
| | | | | | | | | | | | | | | |
Collapse
|
752
|
Waskar M, Li Y, Tower J. Stem cell aging in the Drosophila ovary. AGE (DORDRECHT, NETHERLANDS) 2005; 27:201-212. [PMID: 23598653 PMCID: PMC3458490 DOI: 10.1007/s11357-005-2914-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 06/02/2023]
Abstract
Accumulating evidence suggests that with time human stem cells may become defective or depleted, thereby contributing to aging and aging-related diseases. Drosophila provides a convenient model system in which to study stem cell aging. The adult Drosophila ovary contains two types of stem cells: the germ-line stem cells give rise to the oocyte and its supporting nurse cells, while the somatic stem cells give rise to the follicular epithelium-a highly differentiated tissue that surrounds each oocyte as it develops. Genetic and transgenic analyses have identified several conserved signaling pathways that function in the ovary to regulate stem cell maintenance, division and differentiation, including the wingless, hedgehog, JAK/STAT, insulin and TGF-β pathways. During Drosophila aging the division of the stem cells decreases dramatically, coincident with reduced egg production. It is unknown if this reproductive senescence is due to a defect in the stem cells themselves, or due to the lack of signals normally sent to the stem cells from elsewhere in the animal, such as from the central nervous system or the stem cell niche. Methods are being developed to genetically mark stem cells in adult Drosophila and measure their survival, division rate and function during aging.
Collapse
Affiliation(s)
- Morris Waskar
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - Yishi Li
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, 835 W. 37th St., University Park, Los Angeles, CA 90089-1340 USA
| |
Collapse
|
753
|
Jemielity S, Chapuisat M, Parker JD, Keller L. Long live the queen: studying aging in social insects. AGE (DORDRECHT, NETHERLANDS) 2005; 27:241-8. [PMID: 23598656 PMCID: PMC3458492 DOI: 10.1007/s11357-005-2916-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/11/2005] [Accepted: 03/12/2005] [Indexed: 05/16/2023]
Abstract
Aging is a fascinating, albeit controversial, chapter in biology. Few other subjects have elicited more than a century of ever-increasing scientific interest. In this review, we discuss studies on aging in social insects, a group of species that includes ants and termites, as well as certain bee and wasp species. One striking feature of social insects is the lifespan of queens (reproductive females), which can reach nearly 30 years in some ant species. This is over 100 times the average lifespan of solitary insects. Moreover, there is a tremendous variation in lifespan among castes, with queens living up to 500 times longer than males and 10 times longer than workers (non-reproductive individuals). This lifespan polymorphism has allowed researchers to test the evolutionary theory of aging and - more recently - to investigate the proximate causes of aging. The originality of these studies lies in their use of naturally evolved systems to address questions related to aging and lifespan determination that cannot be answered using the conventional model organisms.
Collapse
Affiliation(s)
- Stephanie Jemielity
- Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland
| | - Joel D. Parker
- Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland
| |
Collapse
|
754
|
Abstract
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology and Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, 801 North Rutledge, Room 4389, Springfield, Illinois 62794-9628, USA.
| |
Collapse
|
755
|
McEwen JE, Zimniak P, Mehta JL, Shmookler Reis RJ. Molecular pathology of aging and its implications for senescent coronary atherosclerosis. Curr Opin Cardiol 2005; 20:399-406. [PMID: 16093759 DOI: 10.1097/01.hco.0000175517.50181.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights common mechanisms of organismal aging and inflammatory coronary atherosclerosis. RECENT FINDINGS A substantial body of evidence now indicates that aging is largely due to molecular damage inflicted by reactive oxygen species, electrophiles, and other reactive endobiotic and xenobiotic metabolites. Our understanding of genetic pathways regulating longevity began 12 years ago with the discovery that a developmental-arrest program in the nematode Caenorhabditis elegans also has marked effects on adult lifespan. This pathway, closely related to the insulin and insulinlike growth factor-signaling pathways of mammals, modulates longevity and stress resistance in several model organisms. Insulin-like signaling also has an impact on redox signaling, antioxidant defenses, and metabolic generation of oxidative stress. Recently, additional signaling pathways--involving Sirtuins, AMP kinase, Jun N-terminal kinase 1, and other master regulatory proteins--have been implicated in longevity and stress-resistance mechanisms. The inflammatory process involves acute production of reactive oxygen species by specialized cells responding to infection, exposure to toxins or allergens, cell damage, hypoxia, ischemia/reperfusion, and other factors, initiating signaling through several of these pathways. Free radical chain reactions arise from lipid oxidation and generate oxidized low-density lipoprotein, a powerful inflammatory signal and potentiator of atherosclerosis. Oxidized low-density lipoprotein accumulates in atherosclerotic arteries, particularly in rupture-prone regions. Inflammation involving oxidative stress, by way of the production of reactive oxygen species, is a hallmark of coronary atherosclerosis. SUMMARY Common pathways underlie both organismal aging and tissue-autonomous senescent pathologic processes, such as coronary atherosclerosis. The mechanisms discovered in model organisms may lead to pharmacotherapeutic interventions.
Collapse
Affiliation(s)
- Joan E McEwen
- Geriatric Research and Education Clinical Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
756
|
Ruden DM, De Luca M, Garfinkel MD, Bynum KL, Lu X. DROSOPHILANUTRIGENOMICS CAN PROVIDE CLUES TO HUMAN GENE-NUTRIENT INTERACTIONS. Annu Rev Nutr 2005; 25:499-522. [PMID: 16011476 DOI: 10.1146/annurev.nutr.25.050304.092708] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nutrigenomics refers to the complex effects of the nutritional environment on the genome, epigenome, and proteome of an organism. The diverse tissue- and organ-specific effects of diet include gene expression patterns, organization of the chromatin, and protein post-translational modifications. Long-term effects of diet range from obesity and associated diseases such as diabetes and cardiovascular disease to increased or decreased longevity. Furthermore, the diet of the mother can potentially have long-term health impacts on the children, possibly through inherited diet-induced chromatin alterations. Drosophila is a unique and ideal model organism for conducting nutrigenomics research for numerous reasons. Drosophila, yeast, and Caenorhabditis elegans all have sophisticated genetics as well as sequenced genomes, and researchers working with all three organisms have made valuable discoveries in nutrigenomics. However, unlike yeast and C. elegans, Drosophila has adipose-like tissues and a lipid transport system, making it a closer model to humans. This review summarizes what has already been learned in Drosophila nutrigenomics (with an emphasis on lipids and sterols), critically evaluates the data, and discusses fruitful areas for future research.
Collapse
Affiliation(s)
- Douglas M Ruden
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
757
|
Affiliation(s)
- Hans-Willem Snoeck
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA.
| |
Collapse
|
758
|
Sieburth D, Ch'ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM. Systematic analysis of genes required for synapse structure and function. Nature 2005; 436:510-7. [PMID: 16049479 DOI: 10.1038/nature03809] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/09/2005] [Indexed: 11/09/2022]
Abstract
Chemical synapses are complex structures that mediate rapid intercellular signalling in the nervous system. Proteomic studies suggest that several hundred proteins will be found at synaptic specializations. Here we describe a systematic screen to identify genes required for the function or development of Caenorhabditis elegans neuromuscular junctions. A total of 185 genes were identified in an RNA interference screen for decreased acetylcholine secretion; 132 of these genes had not previously been implicated in synaptic transmission. Functional profiles for these genes were determined by comparing secretion defects observed after RNA interference under a variety of conditions. Hierarchical clustering identified groups of functionally related genes, including those involved in the synaptic vesicle cycle, neuropeptide signalling and responsiveness to phorbol esters. Twenty-four genes encoded proteins that were localized to presynaptic specializations. Loss-of-function mutations in 12 genes caused defects in presynaptic structure.
Collapse
Affiliation(s)
- Derek Sieburth
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
759
|
Mooijaart SP, Brandt BW, Baldal EA, Pijpe J, Kuningas M, Beekman M, Zwaan BJ, Slagboom PE, Westendorp RGJ, van Heemst D. C. elegans DAF-12, Nuclear Hormone Receptors and human longevity and disease at old age. Ageing Res Rev 2005; 4:351-71. [PMID: 16051528 DOI: 10.1016/j.arr.2005.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 01/12/2023]
Abstract
In Caenorhabditis elegans, DAF-12 appears to be a decisive checkpoint for many life history traits including longevity. The daf-12 gene encodes a Nuclear Hormone Receptor (NHR) and is member of a superfamily that is abundantly represented throughout the animal kingdom, including humans. It is, however, unclear which of the human receptor representatives are most similar to DAF-12, and what their role is in determining human longevity and disease at old age. Using a sequence similarity search, we identified human NHRs similar to C. elegans DAF-12 and found that, based on sequence similarity, Liver X Receptor A and B are most similar to C. elegans DAF-12, followed by the Pregnane X Receptor, Vitamin D Receptor, Constitutive Andosteron Receptor and the Farnesoid X Receptor. Their biological functions include, amongst others, detoxification and immunomodulation. Both are processes that are involved in protecting the body from harmful environmental influences. Furthermore, the DAF-12 signalling systems seem to be functionally conserved and all six human NHRs have cholesterol derived compounds as their ligands. We conclude that the DAF-12 signalling system seems to be evolutionary conserved and that NHRs in man are critical for body homeostasis and survival. Genomic variations in these NHRs or their target genes are prime candidates for the regulation of human lifespan and disease at old age.
Collapse
Affiliation(s)
- S P Mooijaart
- Department of Gerontology and Geriatrics, C-2-R, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
760
|
Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Ageing Res Rev 2005; 4:372-97. [PMID: 16024299 DOI: 10.1016/j.arr.2005.04.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 01/08/2023]
Abstract
The fruit fly Drosophila melanogaster is one of the principal model organisms used for studying the biology of aging. Flies are well suited for such studies for a number of reasons. Flies develop to adulthood quickly, have a relatively short life span, and are inexpensive to house. Most of the fly genome has been sequenced, powerful genetic tools are available to manipulate it, and most fly genes have obvious homologues in mammals. While the majority of aging studies in flies have focused on regulation of life span, the fly is emerging as a powerful model system for investigating the biology that underlies age-related functional decline. Key to the use of flies in this way is the striking number of parallels between functional senescence in Drosophila and humans. Here, we review age-related functional declines in Drosophila, human correlates of these age-related declines, and common mechanisms that influence longevity and specific aspects of functional senescence in flies.
Collapse
Affiliation(s)
- Michael S Grotewiel
- Department of Human Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
761
|
Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS, Bartke A. Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived GHR-KO mice. Exp Gerontol 2005; 40:679-84. [PMID: 16054319 DOI: 10.1016/j.exger.2005.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Growth hormone receptor/binding protein knockout (GHR-KO) mice are characterized by resistance to growth hormone (GH), reduced insulin like growth factor 1 (IGF1) levels and enhanced insulin sensitivity and markedly increased lifespan. Findings in these and other long-lived mutant mice, and in normal animals subjected to caloric restriction (CR) indicate that insulin signaling is importantly involved in the control of longevity. We have examined the mRNA expression level of genes involved in insulin/IGF1 action in the skeletal muscle and liver of normal and GHR-KO mice fed ad libitum or subjected to long term 30% CR. The levels of IR, IRS1, IRS2, GLUT4 and IGF1 message in the skeletal muscle were reduced by CR in both normal and GHR-KO mice. In the liver, the results indicate that in GHR-KO mice mRNA expression of genes related to early steps of insulin signaling is up-regulated in the liver but not in the muscle. The results also show that improved insulin sensitivity in response to CR is not due to increased mRNA expression of the above genes in either normal or GHR-KO animals.
Collapse
Affiliation(s)
- Michal M Masternak
- Departments of Internal Medicine and Physiology, Geriatrics Research, Southern Illinois University, School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA.
| | | | | | | | | | | | | |
Collapse
|
762
|
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai SI. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2:105-17. [PMID: 16098828 DOI: 10.1016/j.cmet.2005.07.001] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 04/16/2005] [Accepted: 07/01/2005] [Indexed: 01/12/2023]
Abstract
Sir2 NAD-dependent deacetylases connect transcription, metabolism, and aging. Increasing the dosage or activity of Sir2 extends life span in yeast, worms, and flies and promotes fat mobilization and glucose production in mammalian cells. Here we show that increased dosage of Sirt1, the mammalian Sir2 ortholog, in pancreatic beta cells improves glucose tolerance and enhances insulin secretion in response to glucose in beta cell-specific Sirt1-overexpressing (BESTO) transgenic mice. This phenotype is maintained as BESTO mice age. Pancreatic perfusion experiments further demonstrate that Sirt1 enhances insulin secretion in response to glucose and KCl. Microarray analyses of beta cell lines reveal that Sirt1 regulates genes involved in insulin secretion, including uncoupling protein 2 (Ucp2). Isolated BESTO islets also have reduced Ucp2, increased ATP production, and enhanced insulin secretion during glucose and KCl stimulation. These findings establish the importance of Sirt1 in beta cell function in vivo and suggest therapeutic interventions for type 2 diabetes.
Collapse
Affiliation(s)
- Kathryn A Moynihan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
763
|
Hansen M, Hsu AL, Dillin A, Kenyon C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 2005; 1:119-28. [PMID: 16103914 PMCID: PMC1183531 DOI: 10.1371/journal.pgen.0010017] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 06/09/2005] [Indexed: 11/18/2022] Open
Abstract
Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i) that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii) that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii) that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.
Collapse
Affiliation(s)
- Malene Hansen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Ao-Lin Hsu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Andrew Dillin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
764
|
Abstract
Longevity, i.e., the property of being long-lived, has its natural limitation in the aging process. Longevity has a strong genetic component, as has become apparent from studies with a variety of organisms, from yeast to humans. Genetic screening efforts with invertebrates have unraveled multiple genetic pathways that suggest longevity is promoted through the manipulation of metabolism and the resistance to oxidative stress. To some extent, these same mechanisms appear to act in mammals also, despite considerable divergence during evolution. Thus far, evidence from population-based studies with humans suggests the importance of genes involved in cardiovascular disease as important determinants of longevity. The challenge is to test if the candidate longevity genes that have emerged from studies with model organisms exhibit genetic variation for life span in human populations. Future investigations are likely to involve large-scale case-control studies, in which large numbers of genes, corresponding to entire gene functional modules, will be assessed for all possible sequence variation and associated with detailed phenotypic information on each individual over extended periods of time. This should eventually unravel the genetic factors that contribute to each particular aging phenotype.
Collapse
Affiliation(s)
- Jan Vijg
- University of Texas Health Science Center, San Antonio, Texas 78245, USA.
| | | |
Collapse
|
765
|
Abstract
Bigger animals live longer. The scaling exponent for the relationship between lifespan and body mass is between 0.15 and 0.3. Bigger animals also expend more energy, and the scaling exponent for the relationship of resting metabolic rate (RMR) to body mass lies somewhere between 0.66 and 0.8. Mass-specific RMR therefore scales with a corresponding exponent between -0.2 and -0.33. Because the exponents for mass-specific RMR are close to the exponents for lifespan, but have opposite signs, their product (the mass-specific expenditure of energy per lifespan) is independent of body mass (exponent between -0.08 and 0.08). This means that across species a gram of tissue on average expends about the same amount of energy before it dies regardless of whether that tissue is located in a shrew, a cow, an elephant or a whale. This fact led to the notion that ageing and lifespan are processes regulated by energy metabolism rates and that elevating metabolism will be associated with premature mortality--the rate of living theory. The free-radical theory of ageing provides a potential mechanism that links metabolism to ageing phenomena, since oxygen free radicals are formed as a by-product of oxidative phosphorylation. Despite this potential synergy in these theoretical approaches, the free-radical theory has grown in stature while the rate of living theory has fallen into disrepute. This is primarily because comparisons made across classes (for example, between birds and mammals) do not conform to the expectations, and even within classes there is substantial interspecific variability in the mass-specific expenditure of energy per lifespan. Using interspecific data to test the rate of living hypothesis is, however, confused by several major problems. For example, appeals that the resultant lifetime expenditure of energy per gram of tissue is 'too variable' depend on the biological significance rather than the statistical significance of the variation observed. Moreover, maximum lifespan is not a good marker of ageing and RMR is not a good measure of total energy metabolism. Analysis of residual lifespan against residual RMR reveals no significant relationship. However, this is still based on RMR. A novel comparison using daily energy expenditure (DEE), rather than BMR, suggests that lifetime expenditure of energy per gram of tissue is NOT independent of body mass, and that tissue in smaller animals expends more energy before expiring than tissue in larger animals. Some of the residual variation in this relationship in mammals is explained by ambient temperature. In addition there is a significant negative relationship between residual lifespan and residual daily energy expenditure in mammals. A potentially much better model to explore the links of body size, metabolism and ageing is to examine the intraspecific links. These studies have generated some data that support the original rate of living theory and other data that conflict. In particular several studies have shown that manipulating animals to expend more or less energy generate the expected effects on lifespan (particularly when the subjects are ectotherms). However, smaller individuals with higher rates of metabolism live longer than their slower, larger conspecifics. An addition to these confused observations has been the recent suggestion that under some circumstances we might expect mitochondria to produce fewer free radicals when metabolism is higher--particularly when they are uncoupled. These new ideas concerning the manner in which mitochondria generate free radicals as a function of metabolism shed some light on the complexity of observations linking body size, metabolism and lifespan.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| |
Collapse
|
766
|
Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 2005; 289:E23-9. [PMID: 15701676 DOI: 10.1152/ajpendo.00575.2004] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf mutant stock are resistant, in vitro, to the cytotoxic effects of H(2)O(2), cadmium, UV light, paraquat, and heat. We show here that similar resistance profiles are seen in fibroblast cells derived from a related mutant, the Ames dwarf mouse, and that cells from growth hormone receptor-null mice are resistant to H(2)O(2), paraquat, and UV but not to cadmium. Resistance to UV light, cadmium, and H(2)O(2) are similar in cells derived from 1-wk-old Snell dwarf or normal mice, and thus the resistance of cell lines derived from young adult donors reflects developmental processes, presumably hormone dependent, that take place in the first few months of life. The resistance of cells from Snell dwarf mice to these stresses does not reflect merely antioxidant defenses: dwarf-derived cells are also resistant to the DNA-alkylating agent methyl methanesulfonate. Furthermore, inhibitor studies show that fibroblast resistance to UV light is unaffected by the antioxidants ascorbic acid and N-acetyl-L-cysteine. These data suggest that postnatal exposure to altered levels of pituitary hormones leads to development of cellular resistance to oxidative and nonoxidative stressors, which are stable through many rounds of in vitro cell division and could contribute to the remarkable disease resistance of long-lived mutant mice.
Collapse
Affiliation(s)
- Adam B Salmon
- Cellular and Molecular Biology Graduate Program, University. of Michigan School of Medicine, 1500 E. Medical Center Dr., 5316 CCGC 0940, Ann Arbor, MI 48105-0940, USA
| | | | | | | | | | | |
Collapse
|
767
|
Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 2005; 142:347-56. [PMID: 15935161 DOI: 10.1016/j.ygcen.2005.02.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 02/01/2005] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
Juvenile hormone (JH) is a key endocrine regulator of insect metamorphosis, reproduction, and aging. The synthesis of JH is regulated by neuropeptides and biogenic amines, but the molecular and cellular basis of this control remains largely unknown. Genetic analysis of JH synthesis in Drosophila melanogaster mutant for insulin signaling may provide new and powerful insights. Mutants of the insulin receptor (InR) are slow to develop, small, infertile, and long-lived. We previously reported that mutants of InR had reduced JH synthesis as young adults, and that normal longevity and vitellogenesis were restored by topical application of a JH analog [Science 292 (2001) 107]. Here, we describe the 10-day adult age course of JH synthesis from isolated corpus allatum (CA) of InR and of chico, the insulin receptor substrate homolog. JH synthesis increased in wildtype flies to a maximum of 30fmol/gland/h at day 10. In contrast, homozygous InR mutants produced no more than 3 fmol/gland/h JH within the first 5 days, and only 7 fmol/gland/h at day 10. InR mutation disproportionately reduced the synthesis of JH III-bisepoxide, the major JH subtype of the fly. Mutation of chico also reduces body size and extends longevity [Science 292 (2001) 104; Aging Cell 1 (2002a) 75]. Both homozygous and heterozygous chico genotypes reduced JH synthesis, but only to 47 and 67%, respectively, of wildtype and without influencing the ratio of JH subtypes. Because JH synthetic rate does not correlate with the size of CA, it is not likely that insulin signaling mediates JH by impeding endocrine tissue development. Alternatively, we find allatotropin-positive axons to be abundant in the adult brain and in the corpora cardiaca-corpus allatum complex but these neurons are less immunoreactive in the InR mutant genotype, suggesting that insulin signaling may affect JH synthesis through control of JH regulatory neuropeptides.
Collapse
Affiliation(s)
- Meng-Ping Tu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
768
|
Timiras PS, Yaghmaie F, Saeed O, Thung E, Chinn G. The ageing phenome: caloric restriction and hormones promote neural cell survival, growth, and de-differentiation. Mech Ageing Dev 2005; 126:3-9. [PMID: 15610756 DOI: 10.1016/j.mad.2004.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phenome represents the observable properties of an organism that have developed under the continued influences of both genome and environmental factors. Phenotypic properties are expressed through the functions of cells, organs and body systems that operate optimally, close to equilibrium. In complex organisms, maintenance of the equilibrium is achieved by the interplay of several regulatory mechanisms. In the elderly, dynamic instability may lead to progressive loss of normal function, failure of adaptation and increased pathology. Extensive research (reported elsewhere in this journal) has demonstrated that genetic manipulations of endocrine signaling in flies, worms and mice increase longevity. Another effective strategy for prolonging the lifespan is caloric restriction: in data presented here, the persistence of estrogen-sensitive cells in the hypothalamus of caloric restricted 22-month-old female mice, may explain the persistence of reproductive function at an age, when reproductive function has long ceased in ad libitum fed controls. Still another strategy utilizes the effects of epidermal growth factor (EGF) to promote in vitro proliferation of neuroglia, astrocytes and oligodendrocytes. Their subsequent de-differentiation generates immature precursor cells potentially capable of differentiating into neuroblasts and neurons. These and other examples suggest that, in terms of functional outcomes, "the genome proposes but the phenome disposes".
Collapse
Affiliation(s)
- Paola S Timiras
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | | | | | | | | |
Collapse
|
769
|
Gems D, McElwee JJ. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mech Ageing Dev 2005; 126:381-7. [PMID: 15664624 DOI: 10.1016/j.mad.2004.09.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/16/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.
Collapse
Affiliation(s)
- David Gems
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
770
|
Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 2005; 126:365-79. [PMID: 15664623 DOI: 10.1016/j.mad.2004.08.012] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 02/02/2023]
Abstract
Superoxide is among the most abundant reactive oxygen species (ROS) produced by the mitochondria, and is involved in cellular signaling pathways. Superoxide and other ROS can damage cellular macromolecules and levels of oxidative damage products are positively correlated with aging. Superoxide dismutase (SOD) enzymes catalyze the breakdown of superoxide into hydrogen peroxide and water and are therefore central regulators of ROS levels. Genetic and transgenic manipulation of SOD activities in model systems such as S. cereviseae, mouse and Drosophila are consistent with a central role for SOD enzymes in regulating oxidative stress resistance. Over-expression of SOD in S. cereviseae and Drosophila can reduce oxidative damage and extend life span, but the mechanism(s) are not yet clear. A phylogenetic analysis of publicly available SOD protein sequences suggests several additional conserved gene families. For example, in addition to the well-characterized soluble Cu/Zn enzyme (Sod) and mitochondrial manganese-containing form (Sod2), Drosophila melanogaster is found to contain a putative copper chaperone (CCS), an extracellular Cu/Zn enzyme (Sod3), and an extracellular protein distantly related to the Cu/Zn forms (Sodq). C. elegans and blue crab are unusual in having two Mn-containing SODs, and A. gambiae contains an unusual internally repeated SOD. The most parsimonius conclusion from the analysis of the extracellular SODs is that they evolved independently multiple times by addition of a signal peptide to cytoplasmic SOD.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, SHS172, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | |
Collapse
|
771
|
Leroi AM, Bartke A, De Benedictis G, Franceschi C, Gartner A, Gonos ES, Gonos E, Fedei ME, Feder ME, Kivisild T, Lee S, Kartaf-Ozer N, Kartal-Ozer N, Schumacher M, Sikora E, Slagboom E, Tatar M, Yashin AI, Vijg J, Zwaan B. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech Ageing Dev 2005; 126:421-9. [PMID: 15664630 DOI: 10.1016/j.mad.2004.07.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 07/24/2004] [Indexed: 11/18/2022]
Abstract
Classical evolutionary theory predicts the existence of genes with antagonistic effects on longevity and various components of early-life fitness. Quantitative genetic studies have provided convincing evidence that such genes exist. However, antagonistic pleiotropic effects have rarely been attributed to individual loci. We examine several classes of longevity-assurance genes: those involved in regulation of the gonad; the insulin-like growth factor pathway; free-radical scavenging; heat shock proteins and apoptosis. We find initial evidence that antagonistic pleiotropic effects are pervasive in each of these classes of genes and in various model systems--although most studies lack explicit studies of fitness components. This is particularly true of human studies. Very little is known about the early-life fitness effects of longevity loci. Given the possible medical importance of such effects we urge their future study.
Collapse
Affiliation(s)
- Armand M Leroi
- Department of Biological Sciences, Imperial College London, Silwood Park Campus, Ascot, Berks., SL5-7PY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
772
|
Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121:115-25. [PMID: 15820683 DOI: 10.1016/j.cell.2005.02.030] [Citation(s) in RCA: 415] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/20/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Aging of a eukaryotic organism is affected by its nutrition state and by its ability to prevent or repair oxidative damage. Consequently, signal transduction systems that control metabolism and oxidative stress responses influence life span. When nutrients are abundant, the insulin/IGF signaling (IIS) pathway promotes growth and energy storage but shortens life span. The transcription factor Foxo, which is inhibited by IIS, extends life span in conditions of low IIS activity. Life span can also be increased by activating the stress-responsive Jun-N-terminal kinase (JNK) pathway. Here we show that JNK requires Foxo to extend life span in Drosophila. JNK antagonizes IIS, causing nuclear localization of Foxo and inducing its targets, including growth control and stress defense genes. JNK and Foxo also restrict IIS activity systemically by repressing IIS ligand expression in neuroendocrine cells. The convergence of JNK signaling and IIS on Foxo provides a model to explain the effects of stress and nutrition on longevity.
Collapse
Affiliation(s)
- Meng C Wang
- Department of Biomedical Genetics, The Aab Institute of Biomedical Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 633, Rochester, New York 14642, USA
| | | | | |
Collapse
|
773
|
Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 2005; 126:351-61. [PMID: 15621218 DOI: 10.1016/j.mad.2004.08.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we review data of recent literature on the distribution in centenarians of candidate germ-line polymorphisms that likely affect the individual chance to reach the extreme limit of human life. On the basis of previous observations on the immunology, endocrinology and cellular biology of centenarians we focused on genes that regulate immune responses and inflammation (IL-6, IL-1 cluster, IL-10), genes involved in the insulin/IGF-I signalling pathway and genes that counteract oxidative stress (PON1). On the whole, data indicate that polymorphisms of these genes likely contribute to human longevity, in accord with observations emerging from a variety of animal models, and suggest that a common core of master genes and metabolic pathways are responsible for aging and longevity across animal species. Moreover, in the concern of our plan to discover new genetic factors related to longevity, we explored the possibility to by-pass the need of an a-priori choice of candidate genes, extending the search to genes and genomic regions of still unknown function. Alu sequences may be considered as good markers of highly variable and potentially unstable loci in functionally important genomic regions. We extensively screened Alu-rich genomic sites and found a new genomic region associated with longevity.
Collapse
|
774
|
Gerstbrein B, Stamatas G, Kollias N, Driscoll M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 2005; 4:127-37. [PMID: 15924569 DOI: 10.1111/j.1474-9726.2005.00153.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autofluorescent lipofuscin and advanced glycation end-products (age pigments) accumulate with age across phyla, yet little is understood about their formation under physiological conditions and their specific contributions to the aging process. We used in vivo spectrofluorimetry to quantitate autofluorescence in wild-type Caenorhabditis elegans and longevity mutants disrupted for distinct aspects of the aging process. In wild-type animals, age pigments increase into adulthood, accumulating slowly during the reproductive phase and more rapidly during the post-reproductive period. As in humans, insulin signaling influences age pigment accumulation - mutations that lower efficacy of insulin signaling and extend lifespan [daf-2(e1370) insulin receptor and age-1(hx546) PI3-kinase] dramatically lower age pigment accumulation; conversely, elimination of the insulin-inhibited DAF-16/FOXO transcription factor causes a huge increase in age pigment accumulation, supporting that the short-lived daf-16 null mutant is truly progeric. By contrast, mutations that increase mitochondrial reactive oxygen species production do not affect age pigment accumulation, challenging assumptions about the role of oxidative stress in generating these species in vivo. Dietary restriction reduces age pigment levels significantly and is associated with a unique spectral shift that might serve as a rapidly scored reporter of the dietary restricted state. Unexpectedly, genetically identical siblings that age poorly (as judged by decrepit locomotory capacity) have dramatically higher levels of age pigments than their same-aged siblings that appear to have aged more gracefully and move youthfully. Thus, high age pigment levels indicate a physiologically aged state rather than simply marking chronological time, and age pigments are valid reporters of nematode healthspan.
Collapse
Affiliation(s)
- Beate Gerstbrein
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
775
|
Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A. Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiol Aging 2005; 26:929-37. [PMID: 15718052 DOI: 10.1016/j.neurobiolaging.2004.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 07/19/2004] [Accepted: 07/30/2004] [Indexed: 11/19/2022]
Abstract
Beneficial effects of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) on the development and function of the central nervous system are well documented. In spite of primary deficiency of GH and secondary IGF-1 deficiency, Ames dwarf mice live considerably longer than normal animals, exhibit apparently normal cognitive functions and maintain them into advanced age. In an attempt to reconcile these findings, we have examined local expression of GH and IGF-1 in the hippocampus of normal and Ames dwarf mice. We found that both hippocampal GH and IGF-1 protein levels are increased and the corresponding mRNAs are normal in Ames dwarf as compared with normal mice. Increased phosphorylation of Akt and cyclic AMP responsive element-binding protein (CREB) were detected in the hippocampus of Ames dwarf mice. Our results suggest that increase in hippocampal GH and IGF-1 protein expression and subsequent activation of PI3K/Akt-CREB signal transduction cascade might contribute to the maintenance of cognitive function and is likely to be responsible for the integrity of neuronal structure, and maintenance of youthful levels of cognitive function in these long-lived mice during aging.
Collapse
Affiliation(s)
- Liou Y Sun
- Geriatrics Research, Department of Medicine, Southern Illinois University, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
776
|
Masternak MM, Al-Regaiey KA, Bonkowski MS, Panici JA, Bartke A. Effect of every other day feeding diet on gene expression in normal and in long-lived Ames dwarf mice. Exp Gerontol 2005; 40:491-7. [PMID: 15935586 DOI: 10.1016/j.exger.2005.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 11/25/2022]
Abstract
Ames dwarf mutant mice are long-lived, hypoinsulinemic and hypoglycemic and exhibit enhanced sensitivity to injected insulin. Their phenotypic characteristics show many similarities to animals subjected to caloric restriction (CR) but Ames dwarf mice are not CR mimetics. Reducing daily food intake by 30% prolongs longevity in both normal and Ames dwarf mice. In the present study, the animals were subjected to a different type of CR, every other day feeding (EOD). Using real-time PCR, we have examined the expression of genes related to insulin signaling in the liver of normal and dwarf mice after 9 months of EOD. The results indicate that EOD produces some changes in the insulin and IGF1 signaling pathways, and that these changes are consistent with EOD increasing insulin sensitivity.
Collapse
Affiliation(s)
- Michal M Masternak
- Departments of Internal Medicine and Physiology, Geriatrics Research, Southern Illinois University, School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | |
Collapse
|
777
|
Argentino DP, Dominici FP, Muñoz MC, Al-Regaiey K, Bartke A, Turyn D. Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and Ames dwarf (Prop1df/Prop1df) mice. Exp Gerontol 2005; 40:27-35. [PMID: 15664729 DOI: 10.1016/j.exger.2004.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/31/2004] [Accepted: 09/13/2004] [Indexed: 11/15/2022]
Abstract
Ames dwarf mice are a model of retarded aging and extended longevity and display enhanced insulin sensitivity. Caloric restriction (CR) and the dwarf mutation have additive effects on lifespan. To begin to understand the mechanisms behind this effect, an analysis of the in vivo status of the insulin signaling system was performed in skeletal muscle from Ames dwarf (df/df) and normal mice fed ad libitum or subjected to long-term (over 1 year) CR. The response to CR was different in both groups of animals. In normal animals, CR induced a significant reduction in both circulating insulin and glucose levels, together with an increase in the in vivo insulin-stimulated phosphorylation of the IR, a trend towards an increase in the in vivo insulin-stimulated phosphorylation levels of IR substrate-1, and an increase in the abundance of GLUT4 in muscle. In contrast, CR did not modify none of these parameters in df/df mice. Interestingly, CR induced a reduction in the p85 subunit of phosphatidylinositol 3-kinase abundance in skeletal muscle in both groups of animals. These results suggest that in skeletal muscle, long-term CR induces different effects on the first steps of the insulin signaling system in normal mice than in df/df mice.
Collapse
Affiliation(s)
- Danila Paula Argentino
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Junín 956, 1113AAD Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
778
|
Hsieh CC, Papaconstantinou J. Akt/PKB and p38 MAPK signaling, translational initiation and longevity in Snell dwarf mouse livers. Mech Ageing Dev 2005; 125:785-98. [PMID: 15541773 DOI: 10.1016/j.mad.2004.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin/IGF-1/GH and p38 MAPK signaling pathways play a key role in the regulation of protein synthesis. The regulation of GH and TSH secretion hormones, that affect the activity of these pathways, plays an important role in the decline of rates of protein synthesis in aged rodent tissues. Studies have indicated that longevity of the Snell dwarf (Pit-1) mouse mutant is associated with the reduction of function of the insulin/IGF-1/GH signaling pathway. We have previously shown that PI3K activity, a signaling protein that plays a key role in the regulation of translation, is also dramatically decreased in the Snell dwarf liver suggesting that the protein synthesis-signaling pathway may be attenuated in this long-lived mouse. Similarly, signaling via p38 MAPK also plays a role in the regulation of protein synthesis. In this study we examined the activities of these signaling pathways to determine if the translation-signaling pathway is altered in young versus aged Snell dwarf mouse livers. Our data indicate that the phosphorylation and kinase activities of Akt/PKB and p38 MAPK, and the levels of phosphorylation of downstream regulators of translation are decreased in dwarf mouse livers. Thus, the overall activities of major components of the translational initiation pathway are decreased in the long-lived Snell dwarf mouse livers. We propose that down-regulation of protein synthesis may be an important characteristic of the Pit-1 mutation and longevity of the Snell dwarf mouse.
Collapse
Affiliation(s)
- Ching-Chyuan Hsieh
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | |
Collapse
|
779
|
Parker AJ, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C. Neuroprotection par l’activation des sirtuines dans des modèles simplifiés de chorée de Huntington. Med Sci (Paris) 2005; 21:556-7. [PMID: 15885210 DOI: 10.1051/medsci/2005215556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
780
|
Duan C, Xu Q. Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen Comp Endocrinol 2005; 142:44-52. [PMID: 15862547 DOI: 10.1016/j.ygcen.2004.12.022] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/17/2004] [Accepted: 12/18/2004] [Indexed: 12/20/2022]
Abstract
The insulin-like growth factor (IGF) system is an evolutionarily conserved signaling pathway that is composed of two IGF ligands, two IGF receptors, and six IGF binding proteins. Studies in a variety of species suggest that the IGF signaling system plays a fundamental role in regulating embryonic growth and differentiation as well as in maintaining homeostasis in the adults. In extracellular fluids, IGFs are present in a complex with an IGF-binding protein (IGFBP). These IGFBPs are traditionally thought to function as carrier proteins and regulate circulating IGF turnover, transport, and distribution. Locally expressed IGFBPs can also inhibit and/or potentiate IGF activities. Recent studies have shown that some IGFBPs, in particular IGFBP-3 and -5, possess intrinsic biological activities and can act through IGF-independent mechanisms. In this article, we provide a brief overview of our current understanding of the IGF signaling system with particular reference to IGFBPs.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
781
|
Majeed N, Blouin MJ, Kaplan-Lefko PJ, Barry-Shaw J, Greenberg NM, Gaudreau P, Bismar TA, Pollak M. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 2005; 24:4736-40. [PMID: 15870705 DOI: 10.1038/sj.onc.1208572] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circulating insulin-like growth factor-I (IGF-I) levels have been shown to be related to risk of prostate cancer in epidemiologic studies. While specific genetic loci responsible for interindividual variation in circulating IGF-I levels in normal men have not been identified, candidate genes include those involved in the growth hormone (GH)-IGF-I axis such as the hypothalamic factors GH releasing hormone (GHRH) and somatostatin and their receptors. To investigate the role of the GH-IGF-I axis on in vivo prostate carcinogenesis and neoplastic progression, we generated mice genetically predisposed to prostate cancer (the TRAMP model) to be homozygous for lit, a mutation that inactivates the GHRH receptor (GHRH-R) and reduces circulating levels of GH and IGF-I. The lit mutation significantly reduced the percentage of the prostate gland showing neoplastic changes at 35 weeks of age (P=0.0005) and was also associated with improved survival (P<0.01). These data provide an example of a germ line mutation that reduces risk in an experimental prostate carcinogenesis model. The results suggest that prostate carcinogenesis and progression may be influenced by germ line variation of genes encoding signalling molecules in the GH-IGF-I axis.
Collapse
Affiliation(s)
- Noreen Majeed
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
782
|
Rozman KK, Lebofsky M, Pinson DM. Chronic toxicity and carcinogenicity of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin displays a distinct dose/time toxicity threshold (c×t=k) and a life-prolonging subthreshold effect. Food Chem Toxicol 2005; 43:729-40. [PMID: 15778013 DOI: 10.1016/j.fct.2005.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/12/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Chronic toxicity of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) including its carcinogenicity was studied in female Sprague-Dawley rats in lifetime experiments. Six single dose and three multiple dose rate experiments were conducted with a single dose corn oil control group and a multiple dose rate corn oil control group, respectively. The lowest dose (1.0 mg/kg) of HpCDD and multiple dose rates of corn oil (4.0 ml/kg every other week) both prolonged the life of rats by about 2 months over that of single dose corn oil controls. Higher doses resulted in a predictable shortening of the life of rats after single dose administrations as well as after multiple dose rate administrations. The c x t = k paradigm previously validated for acute toxicity [Toxicol. Sci. 49 (1999) 102] was confirmed for chronic toxicity including carcinogenicity of HpCDD. The c x t = k product was independent of dosing regimen. Anemia and squamous cell carcinoma of the lungs were the earliest and most prevalent endpoints of toxicity. A dose of 2.1 mg/kg and 3.1 mg/kg of HpCDD caused 16.6% and 73.3% lung cancer, respectively. Liver cancer had a low prevalence and was a very late effect occurring only at doses lethal acutely for most rats in the three highest dosage groups. There was no correlation in the dose-dependence of non-malignant hepatic lesions and liver cancer.
Collapse
Affiliation(s)
- Karl K Rozman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
783
|
Piper MDW, Mair W, Partridge L. Counting the Calories: The Role of Specific Nutrients in Extension of Life Span by Food Restriction. J Gerontol A Biol Sci Med Sci 2005; 60:549-55. [PMID: 15972601 DOI: 10.1093/gerona/60.5.549] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reduction of food intake without malnourishment extends life span in many different organisms. The majority of work in this field has been performed in rodents where it has been shown that both restricting access to the entire diet and restricting individual dietary components can cause life-span extension. Thus, for insights into the mode of action of this intervention, it is of great interest to investigate the aspects of diet that are critical for life span extension. Further studies on the mechanisms of how food components modify life span are well suited to the model organism Drosophila melanogaster because of its short life span and ease of handling and containment. Therefore, we summarize practical aspects of implementing dietary restriction in this organism, as well as highlight the major advances already made. Delineation of the nutritional components that are critical for life-span extension will help to reveal the mechanisms by which it operates.
Collapse
Affiliation(s)
- Matthew D W Piper
- Department of Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
784
|
Tatar M. The neuroendocrine regulation of Drosophila aging. Exp Gerontol 2005; 39:1745-50. [PMID: 15582291 DOI: 10.1016/j.exger.2004.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/28/2004] [Indexed: 11/17/2022]
Abstract
The rate of aging is regulated by hormones in insects and, most likely, in mammals. Mutations of the insulin-signaling pathway extend lifespan in the fruit fly and influence the level of other hormones, specifically juvenile hormone and the sterol ecdysone, each of which may directly influence senescence. With new genetic and genomic tools in Drosophila biology we are now exploring how the neuroendocrine system responds to environmental conditions to modify insulin action, how these signals control secondary hormones, and how these messages together modulate animal aging.
Collapse
Affiliation(s)
- Marc Tatar
- Division of Biology and Medicine, Brown University, Box G-W, Providence, Rhode Island 02192, USA.
| |
Collapse
|
785
|
Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM, Yang GS, Holt RA, Jones SJM, Marra MA, Brooks-Wilson AR, Riddle DL. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 2005; 15:603-15. [PMID: 15837805 PMCID: PMC1088289 DOI: 10.1101/gr.3274805] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified longevity-associated genes in a long-lived Caenorhabditis elegans daf-2 (insulin/IGF receptor) mutant using serial analysis of gene expression (SAGE), a method that efficiently quantifies large numbers of mRNA transcripts by sequencing short tags. Reduction of daf-2 signaling in these mutant worms leads to a doubling in mean lifespan. We prepared C. elegans SAGE libraries from 1, 6, and 10-d-old adult daf-2 and from 1 and 6-d-old control adults. Differences in gene expression between daf-2 libraries representing different ages and between daf-2 versus control libraries identified not only single genes, but whole gene families that were differentially regulated. These gene families are part of major metabolic pathways including lipid, protein, and energy metabolism, stress response, and cell structure. Similar expression patterns of closely related family members emphasize the importance of these genes in aging-related processes. Global analysis of metabolism-associated genes showed hypometabolic features in mid-life daf-2 mutants that diminish with advanced age. Comparison of our results to recent microarray studies highlights sets of overlapping genes that are highly conserved throughout evolution and thus represent strong candidate genes that control aging and longevity.
Collapse
Affiliation(s)
- Julius Halaschek-Wiener
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
786
|
Abstract
Evolutionary considerations suggest aging is caused not by active gene programming but by evolved limitations in somatic maintenance, resulting in a build-up of damage. Ecological factors such as hazard rates and food availability influence the trade-offs between investing in growth, reproduction, and somatic survival, explaining why species evolved different life spans and why aging rate can sometimes be altered, for example, by dietary restriction. To understand the cell and molecular basis of aging is to unravel the multiplicity of mechanisms causing damage to accumulate and the complex array of systems working to keep damage at bay.
Collapse
Affiliation(s)
- Thomas B L Kirkwood
- Henry Wellcome Laboratory for Biogerontology Research, Institute for Ageing and Health, University of Newcastle, Newcastle upon Tyne NE4 6BE, United Kingdom.
| |
Collapse
|
787
|
Abstract
Mutations in genes affecting endocrine signaling, stress responses, metabolism, and telomeres can all increase the life spans of model organisms. These mutations have revealed evolutionarily conserved pathways for aging, some of which appear to extend life span in response to sensory cues, caloric restriction, or stress. Many mutations affecting longevity pathways delay age-related disease, and the molecular analysis of these pathways is leading to a mechanistic understanding of how these two processes--aging and disease susceptibility--are linked.
Collapse
Affiliation(s)
- Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA.
| |
Collapse
|
788
|
Abstract
A cost of reproduction, where lifespan and fecundity are negatively correlated, is of widespread occurrence. Mutations in insulin/IGF signaling (IIS) pathways and dietary restriction (DR) can extend lifespan in model organisms but do not always reduce fecundity, suggesting that the link between lifespan and fecundity is not inevitable. Understanding the molecular basis of the cost of reproduction will be informed by elucidation of the mechanisms by which DR and IIS affect these two traits.
Collapse
Affiliation(s)
- Linda Partridge
- UCL Centre for Research on Ageing, Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
789
|
Cho JH, Ko KM, Singaravelu G, Ahnn J. Caenorhabditis elegans PMR1, a P-type calcium ATPase, is important for calcium/manganese homeostasis and oxidative stress response. FEBS Lett 2005; 579:778-82. [PMID: 15670846 DOI: 10.1016/j.febslet.2004.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/09/2004] [Accepted: 12/09/2004] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans PMR1, a P-type Ca2+/Mn2+ ATPase, is expressed in hypodermal seam cells, intestinal cells and spermatheca; localized in Golgi complex. Knock down of pmr-1 as well as overexpression of truncated Caenorhabditis elegans PMR1, which mimics dominant mutations observed in human Hailey-Hailey disease, renders the worm highly sensitive to EGTA and Mn2+. Interestingly, pmr-1 knock down not only causes animals to become resistant to oxidative stress but also suppresses high reactive oxygen species sensitivity of smf-3 RNA-mediated interference and daf-16 worms. These findings suggest that C. elegans PMR1 has important roles in Ca2+ and Mn2+ homeostasis and oxidative stress response.
Collapse
Affiliation(s)
- Jeong Hoon Cho
- Department of Life Science, Gwangju Institute of Science and Technology, 1 Oryoung-dong, Buk-gu, Gwangju 500-712, Korea
| | | | | | | |
Collapse
|
790
|
Ozanne SE, Nicholas Hales C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech Ageing Dev 2005; 126:852-4. [PMID: 15992609 DOI: 10.1016/j.mad.2005.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 02/23/2005] [Accepted: 03/01/2005] [Indexed: 01/23/2023]
Abstract
It is widely accepted that individuals with a low birth weight are at increased risk of developing type 2 diabetes, insulin resistance and cardiovascular disease. This risk is amplified if the poor fetal growth is followed by rapid postnatal catch-up growth. We have shown recently that poor fetal growth, resulting from maternal protein restriction, followed by postnatal catch-up growth is associated with reduced average longevity in mice. Here, we show that in addition to reduced average longevity, mice which have been growth restricted in utero and then grown rapidly during the lactation period have a reduced maximum longevity. Maximum longevity of these mice was, further, reduced when the animals were weaned onto an obesity-inducing cafeteria-style diet. This reduced maximum longevity was associated with early age-related weight loss. These results demonstrate that maternal nutrition during critical periods of development has a major impact on quantity as well as quality of life.
Collapse
Affiliation(s)
- Susan E Ozanne
- Department of Clinical Biochemistry, University of Cambridge, Box 232, Level 4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK.
| | | |
Collapse
|
791
|
Abstract
The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse species including C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is involved in many interrelated functions that are necessary for metabolism, growth and reproduction. Interestingly, more and more research has revealed that insulin/IGF-1 signaling pathway plays a pivotal role in the regulation of longevity. Generally, disruption of the power of this pathway will extend longevity in species ranging from C.elegans to humans. The role of insulin/IGF-1 in longevity is probably related to stress resistance. Although the underlying mechanisms of longevity are not fully understood, the Insulin/IGF-1 signaling pathway has attracted substantial attention and it will be a novel target to prevent or postpone age-related diseases and extend life span. In this review, we mainly focus on the similar constitution and role of insulin/IGF-1 signaling pathway in C.elegans, saccharomyces cerevisiae, rodents and humans.
Collapse
Affiliation(s)
- Chun-Lei Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan XiLi, Beijing 100050, China
| | | | | | | |
Collapse
|
792
|
van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RGJ. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005; 4:79-85. [PMID: 15771611 DOI: 10.1111/j.1474-9728.2005.00148.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence is accumulating that aging is hormonally regulated by an evolutionarily conserved insulin/IGF-1 signalling (IIS) pathway. Mutations in IIS components affect lifespan in Caenorhabditis elegans, Drosophila melanogaster and mice. Most long-lived IIS mutants also show increased resistance to oxidative stress. In D. melanogaster and mice, the long-lived phenotype of several IIS mutants is restricted to females. Here, we analysed the relationship between IIS signalling, body height and longevity in humans in a prospective follow-up study. Based on the expected effects (increased or decreased signalling) of the selected variants in IIS pathway components (GHRHR, GH1, IGF1, INS, IRS1), we calculated composite IIS scores to estimate IIS pathway activity. In addition, we analysed the relative impact on lifespan and body size of the separate variants in multivariate models. In women, lower IIS scores are significantly associated with lower body height and improved old age survival. Multivariate analyses showed that these results were most pronounced for the GH1 SNP, IGF1 CA repeat and IRS1 SNP. In females, for variant allele carriers of the GH1 SNP, body height was 2 cm lower (P = 0.007) and mortality 0.80-fold reduced (P = 0.019) when compared with wild-type allele carriers. Thus, in females, genetic variation causing reduced IIS activation is beneficial for old age survival. This effect was stronger for the GH1 SNP than for variation in the conserved IIS genes that were found to affect longevity in model organisms.
Collapse
Affiliation(s)
- Diana van Heemst
- Section of Gerontology and Geriatrics, Department of General Internal Medicine, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
793
|
Abstract
Increased activation of the innate immune system is a common feature of aging animals, including mammals and Drosophila melanogaster. With age, D. melanogaster progressively express higher levels of many antimicrobial peptides. It is unknown, however, whether this pattern reflects age-dependent changes in the function of the immune system itself or arises simply because aged adults have greater cumulative exposure to pathogens. Here we demonstrate that aged D. melanogaster transcribe more antimicrobial diptericin when experimentally exposed to septic bacterial infections. This strong net response in older females is the result of persistent diptericin transcription upon septic exposure, whereas young females rapidly terminate this induction. In contrast to their response to septic exposure, when exposed to killed bacteria aged females have less capacity to induce diptericin. Because this functional capacity of innate immunity declines with age, we conclude that female Drosophila undergo immune senescence. Furthermore, we show that fecundity is reduced by induction of innate immunity via the immune deficiency pathway. Consequently, maximum reproduction will occur when the immune response is tightly controlled in young females, even if this increases infection risk at later ages.
Collapse
Affiliation(s)
- Melissa Zerofsky
- Brown University, Division of Biology and Medicine, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
794
|
Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 2005; 25:819-29. [PMID: 15632081 PMCID: PMC543412 DOI: 10.1128/mcb.25.2.819-829.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.
Collapse
Affiliation(s)
- Sandra Galic
- Department of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
795
|
Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, Hanselman KB, Goldberg IG, Wolkow CA. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 2005; 59:1251-60. [PMID: 15699524 PMCID: PMC1458366 DOI: 10.1093/gerona/59.12.1251] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits on behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In contrast, sensory ability appeared well maintained during aging. Age-related behavioral declines were delayed in animals with mutations in the daf-2/insulin-like pathway governing longevity. A decline in muscle tissue integrity was correlated with the onset of age-related behavioral deficits, although significant muscle deterioration was not. Treatment with a muscarinic agonist significantly improved locomotory behavior in aged animals, indicating that improved neuromuscular signaling may be one strategy for reducing the severity of age-related behavioral impairments.
Collapse
Affiliation(s)
- Charles F Glenn
- Laboratory of Neuosciences, National Institue on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
796
|
Jenkins NL, McColl G, Lithgow GJ. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci 2005; 271:2523-6. [PMID: 15590605 PMCID: PMC1440519 DOI: 10.1098/rspb.2004.2897] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An insulin/IGF-I-like signalling pathway determines the rate of aging of the adult nematode, Caenorhabditis elegans. Mutations in genes encoding this pathway can result in a doubling of lifespan. While such mutations may appear to have little effect on development or fertility, evolutionary theory predicts that large increases in lifespan will not be optimal for fitness. We demonstrate by laboratory natural selection that partial loss of function of the insulin receptor-like protein DAF-2 results in dramatically reduced fitness even under laboratory conditions. Despite long-lived mutants appearing healthy, they exhibit a heavy fitness cost consistent with an evolutionary theory of aging.
Collapse
Affiliation(s)
- Nicole L Jenkins
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | |
Collapse
|
797
|
Baldal EA, van der Linde K, van Alphen JJM, Brakefield PM, Zwaan BJ. The effects of larval density on adult life-history traits in three species of Drosophila. Mech Ageing Dev 2005; 126:407-16. [PMID: 15664627 DOI: 10.1016/j.mad.2004.09.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/22/2004] [Accepted: 09/24/2004] [Indexed: 11/24/2022]
Abstract
There is evidence that longevity and starvation resistance are determined by a common genetic mechanism. Starvation resistance in Drosophila strongly correlates with both fat content and longevity, and is affected by density during rearing. In this study, we examine how three species, Drosophila melanogaster, Drosophila ananassae and Drosophila willistoni, respond to three larval density treatments. Starvation resistance after adult eclosion, and after 2 days of feeding, and longevity were examined in each sex. D. willistoni reacted differently to larval density than the other two species. This species showed an effect of density on longevity whilst D. ananassae and D. melanogaster showed no such effects. The results also indicate that starvation resistance is not solely determined by fat content. Resistance to starvation at two time points after eclosion differed among species. This may reflect differences in resource acquisition and allocation, and we discuss our findings in relation to how selection may operate in the different species.
Collapse
Affiliation(s)
- E A Baldal
- Section of Evolutionary Biology, Institute for Biology, Leiden University, P.O. Box 9516 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
798
|
Woelfle J, Chia DJ, Massart-Schlesinger MB, Moyano P, Rotwein P. Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-I system. Pediatr Nephrol 2005; 20:295-302. [PMID: 15549418 DOI: 10.1007/s00467-004-1602-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/22/2004] [Accepted: 06/24/2004] [Indexed: 01/18/2023]
Abstract
Since the somatomedin hypothesis of growth hormone (GH) action was first formulated nearly 50 years ago, the key roles of both GH and insulin-like growth factor (IGF)-I in human growth have been confirmed and extended to include local effects on tissue maintenance and repair. More recent insights have revealed a dark side to the GH/IGF-I signaling system. Both proteins have been implicated as potential contributing factors in selected human cancers, and normal activity through this signaling pathway has been linked to diminished lifespan in experimental animals. This review highlights both the positive and negative aspects of the GH/IGF-I-growth pathway. The overall goal is to reinforce the need for more complete understanding of the mechanisms of signaling and action of GH and IGF-I, in order to separate, if possible, the potentially beneficial outcomes on growth and on tissue maintenance and repair from deleterious effects on cancer risk and lifespan.
Collapse
Affiliation(s)
- Joachim Woelfle
- Molecular Medicine Division, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
799
|
Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433:760-4. [PMID: 15716955 DOI: 10.1038/nature03260] [Citation(s) in RCA: 1620] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 12/09/2004] [Indexed: 02/07/2023]
Abstract
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.
Collapse
Affiliation(s)
- Irina M Conboy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
800
|
Brakefield PM, Gems D, Cowen T, Christensen K, Grubeck-Loebenstein B, Keller L, Oeppen J, Rodriguez-Pena A, Stazi MA, Tatar M, Westendorp RGJ. What are the effects of maternal and pre-adult environments on ageing in humans, and are there lessons from animal models? Mech Ageing Dev 2005; 126:431-8. [PMID: 15664631 DOI: 10.1016/j.mad.2004.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 07/24/2004] [Indexed: 10/26/2022]
Abstract
An open issue in research on ageing is the extent to which responses to the environment during development can influence variability in life span in animals, and the health profile of the elderly in human populations. Both affluence and adversity in human societies have profound impacts on survivorship curves, and some of this effect may be traceable to effects in utero or in infancy. The Barker Hypothesis that links caloric restriction in very early life to disruptions of glucose-insulin metabolism in later life has attracted much attention, as well as some controversy, in medical circles. It is only rarely considered by evolutionary biologists working on phenotypic plasticity, or by biogerontologists studying model organisms such as C. elegans or Drosophila. One crucial mechanism by which animals can respond in an adaptive manner to adverse conditions, for example in nutrition or infection, during development is phenotypic plasticity. Here we begin with a discussion of adaptive plasticity in animals before asking what such phenomena may reveal of relevance to rates of ageing in animals, and in humans. We survey the evidence for effects on adult ageing of environmental conditions during development across mammalian and invertebrate model organisms, and ask whether evolutionary conserved mechanisms might be involved. We conclude that the Barker Hypothesis is poorly supported and argue that more work in human populations should be integrated with multi-disciplinary studies of ageing-related phenomena in experimental populations of different model species that are subjected to nutritional challenges or infections during pre-adult development.
Collapse
Affiliation(s)
- Paul M Brakefield
- Institute of Biology, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|