801
|
Social experience during adolescence influences how male zebra finches (Taeniopygia guttata) group with conspecifics. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1668-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
802
|
Hall BS, Romeo RD. The influence of poststress social factors on hormonal reactivity in prepubertal male rats. Dev Psychobiol 2013; 56:1061-9. [DOI: 10.1002/dev.21190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Baila S. Hall
- Department of Psychology and Neuroscience and Behavior Program; Barnard College of Columbia University; New York NY 10027
| | - Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program; Barnard College of Columbia University; New York NY 10027
| |
Collapse
|
803
|
Sanghez V, Razzoli M, Carobbio S, Campbell M, McCallum J, Cero C, Ceresini G, Cabassi A, Govoni P, Franceschini P, de Santis V, Gurney A, Ninkovic I, Parmigiani S, Palanza P, Vidal-Puig A, Bartolomucci A. Psychosocial stress induces hyperphagia and exacerbates diet-induced insulin resistance and the manifestations of the Metabolic Syndrome. Psychoneuroendocrinology 2013; 38:2933-42. [PMID: 24060458 DOI: 10.1016/j.psyneuen.2013.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
Stress and hypercaloric food are recognized risk factors for obesity, Metabolic Syndrome (MetS) and Type 2 Diabetes (T2D). Given the complexity of these metabolic processes and the unavailability of animal models, there is poor understanding of their underlying mechanisms. We established a model of chronic psychosocial stress in which subordinate mice are vulnerable to weight gain while dominant mice are resilient. Subordinate mice fed a standard diet showed marked hyperphagia, high leptin, low adiponectin, and dyslipidemia. Despite these molecular signatures of MetS and T2D, subordinate mice fed a standard diet were still euglycemic. We hypothesized that stress predisposes subordinate mice to develop T2D when synergizing with other risk factors. High fat diet aggravated dyslipidemia and the MetS thus causing a pre-diabetes-like state in subordinate mice. Contrary to subordinates, dominant mice were fully protected from stress-induced metabolic disorders when fed both a standard- and a high fat-diet. Dominant mice showed a hyperphagic response that was similar to subordinate but, unlike subordinates, showed a significant increase in VO2, VCO2, and respiratory exchange ratio when compared to control mice. Overall, we demonstrated a robust stress- and social status-dependent effect on the development of MetS and T2D and provided insights on the physiological mechanisms. Our results are reminiscent of the effect of the individual socioeconomic status on human health and provide an animal model to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA; Department of Neuroscience, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
804
|
Hager T, Maroteaux G, Pont PD, Julsing J, van Vliet R, Stiedl O. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice. Behav Brain Res 2013; 260:44-52. [PMID: 24304718 DOI: 10.1016/j.bbr.2013.11.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/15/2022]
Abstract
Heterozygous (HZ) missense mutations in the gene encoding syntaxin binding protein 1 (Stxbp1 or Munc18-1), a presynaptic protein essential for neurotransmitter release, causes early infantile epileptic encephalopathy, abnormal brain structure and mental retardation in humans. Here we investigated whether the mouse model mimics symptoms of the human phenotype. The effects of the deletion of munc18-1 were studied in HZ and wild-type (WT) mice based on heart rate (HR) and its variability (HRV) as independent measures to expand previous behavioral results of enhanced anxiety and impaired emotional learning suggesting mild cognitive impairments. HR responses were assessed during novelty exposure, during the expression and extinction of conditioned tone-dependent fear and during the diurnal phase. Novelty exposure yielded no differences in activity patterns between the two genotypes, while maximum HR differed significantly (WT: 770 bpm; HZ: 790 bpm). Retention tests after both auditory delay and trace fear conditioning showed a delayed extinction of the conditioned HR response in HZ mice compared to WT mice. Since the HR versus HRV correlation and HR dynamics assessed by nonlinear methods revealed similar function in HZ and WT mice, the higher HR responses of munc18-1 HZ mice to different emotional challenges cannot be attributed to differences in autonomic nervous system function. Thus, in contrast to the adverse consequences of deletion of a single allele of munc18-1 in humans, C57BL/6J mice show enhanced anxiety responses based on HR adjustments that extend previous results on the behavioral level without support of cognitive impairment, epileptic seizures and autonomic dysregulation.
Collapse
Affiliation(s)
- Torben Hager
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands; Sylics BV, PO Box 71033, 1008 BA Amsterdam, The Netherlands
| | - Grégoire Maroteaux
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Paula du Pont
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Joris Julsing
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Rick van Vliet
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands.
| |
Collapse
|
805
|
Tudorache C, Schaaf MJM, Slabbekoorn H. Covariation between behaviour and physiology indicators of coping style in zebrafish (Danio rerio). J Endocrinol 2013; 219:251-8. [PMID: 24198397 DOI: 10.1530/joe-13-0225] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All vertebrates exhibit physiological responses to a wide variety of stressors. The amplitude and profile of the response depend on the intensity, duration, controllability and predictability of the stressor, but there is also individual variation in the response, termed coping style. A better understanding of the expression of coping styles is of great value for medical applications, animal welfare issues and conservation. Here, we investigated the effect of repeated netting stress on proactive and reactive zebrafish (Danio rerio) as an upcoming model system for stress research. Fish were separated by coping styles according to the order of entering a novel environment. Subsequently, repeated netting stress was applied as stressor, over a period of 21 days. Full-body cortisol levels were determined at 0, 15, 30, 60 and 120 min after the last repeated stress event. Our results show that reactive fish display i) increased basal cortisol concentrations after being repeatedly stressed, ii) higher cortisol secretion over time and iii) slow recovery of cortisol concentration towards basal levels after the last repeated stress event. This study shows for the first time in zebrafish that different coping styles are associated with different cortisol responses during the recovery from stress over time and that coping styles can explain otherwise unaccounted variation in physiological stress responses.
Collapse
MESH Headings
- Allostasis
- Animals
- Behavior, Animal
- Brain/growth & development
- Brain/metabolism
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Expression Regulation, Developmental
- Hydrocortisone/metabolism
- Male
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/biosynthesis
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Physiological
- Stress, Psychological/metabolism
- Zebrafish/growth & development
- Zebrafish/physiology
- Zebrafish Proteins/biosynthesis
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Christian Tudorache
- Departments of Molecular Cell Biology Behavioral Biology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | |
Collapse
|
806
|
|
807
|
Davies DA, Molder JJ, Greba Q, Howland JG. Inactivation of medial prefrontal cortex or acute stress impairs odor span in rats. Learn Mem 2013; 20:665-9. [PMID: 24241748 PMCID: PMC4457520 DOI: 10.1101/lm.032243.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The capacity of working memory is limited and is altered in brain disorders including schizophrenia. In rodent working memory tasks, capacity is typically not measured (at least not explicitly). One task that does measure working memory capacity is the odor span task (OST) developed by Dudchenko and colleagues. In separate experiments, the effects of medial prefrontal cortex (mPFC) inactivation or acute stress on the OST were assessed in rats. Inactivation of the mPFC profoundly impaired odor span without affecting olfactory sensitivity. Acute stress also significantly reduced odor span. These findings support a potential role of the OST in developing novel therapeutics for disorders characterized by impaired working memory capacity.
Collapse
Affiliation(s)
- Don A. Davies
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Joel J. Molder
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Quentin Greba
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - John G. Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| |
Collapse
|
808
|
Geva N, Defrin R. Enhanced pain modulation among triathletes: A possible explanation for their exceptional capabilities. Pain 2013; 154:2317-2323. [DOI: 10.1016/j.pain.2013.06.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
809
|
Children's heart rate variability as stress indicator: association with reported stress and cortisol. Biol Psychol 2013; 94:433-40. [PMID: 24007813 DOI: 10.1016/j.biopsycho.2013.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 08/25/2013] [Accepted: 08/25/2013] [Indexed: 11/22/2022]
Abstract
UNLABELLED Stress is a complex phenomenon coordinated by two main neural systems: the hypothalamic-pituitary-adrenal system with cortisol as classical stress biomarker and the autonomic nervous system with heart rate variability (HRV) as recently suggested stress marker. To test low HRV (5 minute measurements) as stress indicator in young children (5-10 y), associations with self-reported chronic stress aspects (events, emotions and problems) (N=334) and salivary cortisol (N=293) were performed. Peer problems, anger, anxiety and sadness were associated with lower root mean square of successive differences (RMSSD) and high frequency power (i.e. lower parasympathetic activity). Anxiety and anger were also related to a higher low frequency to high frequency ratio. Using multilevel modelling, higher cortisol levels, a larger cortisol awakening response and steeper diurnal decline were also associated with these HRV patterns of lower parasympathetic activity. CONCLUSION Low HRV (lower parasympathetic activity) might serve as stress indicator in children.
Collapse
|
810
|
Bourne AR, Mohan G, Stone MF, Pham MQ, Schultz CR, Meyerhoff JL, Lumley LA. Olfactory cues increase avoidance behavior and induce Fos expression in the amygdala, hippocampus and prefrontal cortex of socially defeated mice. Behav Brain Res 2013; 256:188-96. [PMID: 23968590 DOI: 10.1016/j.bbr.2013.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Genes and proteins of the Fos family are used as markers of neuronal activity and can be modulated by stress. This study investigated whether social defeat (SD) or exposure to an olfactory cue associated with the SD experience activated Fos and FosB/DeltaFosB (ΔFosB) expression in brain regions implicated in the development of post-traumatic stress disorder. Mice exposed to acute SD showed more Fos positive cells in the basolateral amygdala (BLA), CA1 of the hippocampus and the medial prefrontal cortex (mPFC) 1h after SD, and had greater expression of the more persistent FosB/ΔFosB protein in the BLA 24 h after SD compared to controls. Mice exposed to an olfactory cue 24 h or 7 days after SD had higher levels of Fos expression in all three regions 1h after exposure to the cue, and displayed increased avoidance behavior compared to controls. While the avoidance response dissipated with time (less at 7 day vs 24 h after social defeat), Fos expression in the mPFC and CA1 in response to an olfactory cue was greater at 7 days relative to 24 h after social defeat. The results suggest additional processing of the cue-stress association and may provide further support for a role of the mPFC in fear inhibition. These findings may have implications for brain regions and circuitry involved in the avoidance of cues associated with a stressful event that may lead to context-dependent adaptive or maladaptive behavior.
Collapse
Affiliation(s)
- A R Bourne
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | | | | | | | |
Collapse
|
811
|
Morris JP, Thatje S, Hauton C. The use of stress-70 proteins in physiology: a re-appraisal. Mol Ecol 2013; 22:1494-502. [PMID: 23599959 DOI: 10.1111/mec.12216] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are few factors more important to the mechanisms of evolution than stress. The stress response has formed as a result of natural selection, improving the capacity of organisms to withstand situations that require action.The ubiquity of the cellular stress response suggests that effective mechanisms to counteract stress emerged early in the history of life, and their commonality proves how vital such mechanisms are to operative evolution. The cellular stress response (CSR) has been identified as a characteristic of cells in all three domains of life and consists of a core 44 proteins that are structurally highly conserved and that have been termed the ‘minimal stressproteome’ (MSP). Within the MSP, the most intensely researched proteins are a family of heat-shock proteins known as HSP70. Superficially, correlations between the induction of stress and HSP70 differential expression support the use of HSP70 expression as a nonspecific biomarker of stress. However, we argue that too often authors have failed to question exactly what HSP70 differential expression signifies. Herein, we argue that HSP70 up-regulation in response to stressors has been shown to be far more complex than the commonly accepted quasi-linear relationship. In addition, in many instances, the uncertain identity and function of heat-shock proteins and heat-shock cognates has led to difficulties in interpretation of reports of inducible heat-shock proteins and constitutive heat-shock cognates. We caution against the broad application of HSP70 as a biomarker of stress in isolation and conclude that the application of HSP70 as a meaningful index of stress requires a higher degree of validation than the majority of research currently undertakes.
Collapse
Affiliation(s)
- J P Morris
- Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Southampton, European Way, SO14 3ZH, UK.
| | | | | |
Collapse
|
812
|
The role of galanin system in modulating depression, anxiety, and addiction-like behaviors after chronic restraint stress. Neuroscience 2013; 246:82-93. [DOI: 10.1016/j.neuroscience.2013.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
|
813
|
Lavoie JAA. Eye of the beholder: perceived stress, coping style, and coping effectiveness among discharged psychiatric patients. Arch Psychiatr Nurs 2013; 27:185-90. [PMID: 23915696 DOI: 10.1016/j.apnu.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/12/2013] [Accepted: 02/17/2013] [Indexed: 11/25/2022]
Abstract
Sources of perceived stress, coping style and coping efficacy were investigated among psychiatric patients being discharged to the community. The study's purpose was to (i) qualitatively characterize sources of perceived stress; (ii) identify preferred coping styles, and (iii) test the effectiveness of coping styles. Thematic coding of participants' narratives revealed that dominant stressors were family relationships, mental health symptoms, and employment issues. Consistent with previous findings among non-clinical samples, problem-focused coping styles were predictive of decreased perceived stress and increased perceived efficacy, whereas emotion-oriented coping styles were negatively associated with these outcomes. Contrary to hypotheses, avoidance coping styles was unrelated to outcomes.
Collapse
Affiliation(s)
- Jennifer A A Lavoie
- Criminology Department, Wilfrid Laurier University - Laurier Brantford, Brantford, Ontario, Canada N3T 2Y3.
| |
Collapse
|
814
|
Hypothalamic corticotropin-releasing factor is centrally involved in learning under moderate stress. Neuropsychopharmacology 2013; 38:1825-32. [PMID: 23568325 PMCID: PMC3717532 DOI: 10.1038/npp.2013.82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/09/2022]
Abstract
The corticotropin-releasing factor (CRF) neuropeptide is found to have a pivotal role in the regulation of the behavioral and neuroendocrine responses to stressful challenges. Here, we studied the involvement of the hypothalamic CRF in learning under stressful conditions. We have used a site-specific viral approach to knockdown (KD) CRF expression in the paraventricular nucleus of the hypothalamus (PVN). The two-way shuttle avoidance (TWSA) task was chosen to assess learning and memory under stressful conditions. Control animals learned to shuttle from one side to the other to avoid electrical foot shock by responding to a tone. Novel object and social recognition tasks were used to assess memory under less stressful conditions. KD of PVN-CRF expression decreased the number of avoidance responses in a TWSA session under moderate (0.8 mA), but not strong (1.5 mA), stimulus intensity compared to control rats. On the other hand, KD of PVN-CRF had no effect on memory performance in the less stressful novel object or social recognition tasks. Interestingly, basal or stress-induced corticosterone levels in CRF KD rats were not significantly different from controls. Taken together, the data suggest that the observed impairment was not a result of alteration in HPA axis activity, but rather due to reduced PVN-CRF activity on other brain areas. We propose that hypothalamic CRF is centrally involved in learning under moderate stressful challenge. Under 'basal' (less stressful) conditions or when the intensity of the stress is more demanding, central CRF ceases to be the determinant factor, as was indicated by performances in the TWSA with higher stimulus intensity or in the less stressful tasks of object and social recognition.
Collapse
|
815
|
Jarczok MN, Jarczok M, Mauss D, Koenig J, Li J, Herr RM, Thayer JF. Autonomic nervous system activity and workplace stressors--a systematic review. Neurosci Biobehav Rev 2013; 37:1810-23. [PMID: 23891906 DOI: 10.1016/j.neubiorev.2013.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/22/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
AIM This systematic review evaluates and summarizes the evidence of the association between psychosocial work environment as indicated by several work-stress models such as Job-Demand-Control (JDC), Effort-Reward-Imbalance (ERI), or Organizational Justice (OJ) and autonomic nervous system (ANS) function as indexed by heart rate variability (HRV). METHOD We conducted a systematic literature search following the PRISMA-Statement in eleven databases including Medline, Web of Science and PsycINFO to address medical as well as psychological aspects of the relation between psychosocial work-stress models and HRV. RESULTS We identified 19 publications with a total of 8382 employees from ten countries reporting data from the years 1976-2008. Overall, nine of all studies report a negative and significant association between vagally-mediated HRV and measures of stress at work, while eight of all studies report a negative and significant association to mixed sympathetic and parasympathetic measures of HRV. CONCLUSIONS This systematic review provides evidence that adverse psychosocial work conditions are negatively associated with ANS function as indexed by HRV.
Collapse
Affiliation(s)
- Marc N Jarczok
- Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 7-11, 68167 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
816
|
de Kloet ER. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol 2013; 719:53-62. [PMID: 23876452 DOI: 10.1016/j.ejphar.2013.04.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 01/18/2023]
Abstract
This contribution is focused on the action of the naturally occurring corticosteroids, cortisol and corticosterone, which are secreted from the adrenals in hourly pulses and after stress with the goal to maintain resilience and health. To achieve this goal the action of the corticosteroids displays an impressive diversity, because it is cell-specific and context-dependent in coordinating the individual's response to changing environments. These diverse actions of corticosterone are mediated by mineralocorticoid- and glucocorticoid-receptors that operate as a binary system in concert with neurotransmitter and neuropeptide signals to activate and inhibit stress reactions, respectively. Classically MR and GR are gene transcription factors, but recently these receptors appear to mediate also rapid non-genomic actions on excitatory neurotransmission suggesting that they integrate functions over time. Hence the balance of receptor-mediated actions is crucial for homeostasis. This balanced function of mineralo- and glucocorticoid-receptors can be altered epigenetically by a history of traumatic (early) life events and the experience of repeated stressors as well as by predisposing genetic variants in signaling pathways of these receptors. One of these variants, mineralocorticoid receptor haplotype 2, is associated with dispositional optimism in appraisal of environmental challenges. Imbalance in receptor-mediated corticosterone actions was found to leave a genomic signature highlighting the role of master switches such as cAMP response element-binding protein and mammalian target of rapamycin to compromise health, and to promote vulnerability to disease. Diabetic encephalopathy is a pathology of imbalanced corticosterone action, which can be corrected in its pre-stage by a brief treatment with the antiglucocorticoid mifepristone.
Collapse
Affiliation(s)
- E R de Kloet
- Department of Medical Pharmacology, Leiden Academic Center for Drug Research & Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
817
|
Effects of acute restraint stress on set-shifting and reversal learning in male rats. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2013; 13:164-73. [PMID: 23055093 DOI: 10.3758/s13415-012-0124-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.
Collapse
|
818
|
Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJA. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp 2013:e4367. [PMID: 23852258 PMCID: PMC3731199 DOI: 10.3791/4367] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This video publication explains in detail the experimental protocol of the resident-intruder paradigm in rats. This test is a standardized method to measure offensive aggression and defensive behavior in a semi natural setting. The most important behavioral elements performed by the resident and the intruder are demonstrated in the video and illustrated using artistic drawings. The use of the resident intruder paradigm for acute and chronic social stress experiments is explained as well. Finally, some brief tests and criteria are presented to distinguish aggression from its more violent and pathological forms.
Collapse
Affiliation(s)
- Jaap M Koolhaas
- Department of Behavioral Physiology, Center for Behavior and Neurosciences, University Groningen.
| | | | | | | | | | | |
Collapse
|
819
|
Chaby LE, Cavigelli SA, White A, Wang K, Braithwaite VA. Long-term changes in cognitive bias and coping response as a result of chronic unpredictable stress during adolescence. Front Hum Neurosci 2013; 7:328. [PMID: 23847501 PMCID: PMC3701140 DOI: 10.3389/fnhum.2013.00328] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 11/13/2022] Open
Abstract
Animals that experience adverse events in early life often have life-long changes to their physiology and behavior. Long-term effects of stress during early life have been studied extensively, but less attention has been given to the consequences of negative experiences solely during the adolescent phase. Adolescence is a particularly sensitive period of life when regulation of the glucocorticoid “stress” hormone response matures and specific regions in the brain undergo considerable change. Aversive experiences during this time might, therefore, be expected to generate long-term consequences for the adult phenotype. Here we investigated the long-term effects of exposure to chronic unpredictable stress during adolescence on adult decision-making, coping response, cognitive bias, and exploratory behavior in rats. Rats exposed to chronic unpredictable stress (e.g., isolation, crowding, cage tilt) were compared to control animals that were maintained in standard, predictable conditions throughout development. Unpredictable stress during adolescence resulted in a suite of long-term behavioral and cognitive changes including a negative cognitive bias [F(1, 12) = 5.000, P < 0.05], altered coping response [T(1, 14) = 2.216, P = 0.04], and accelerated decision-making [T(1, 14) = 3.245, P = 0.01]. Exposure to chronic stress during adolescence also caused a short-term increase in boldness behaviors; in a novel object test 15 days after the last stressor, animals exposed to chronic unpredictable stress had decreased latencies to leave a familiar shelter and approach a novel object [T(1, 14) = 2.240, P = 0.04; T(1, 14) = 2.419, P = 0.03, respectively]. The results showed that stress during adolescence has long-term impacts on behavior and cognition that affect the interpretation of ambiguous stimuli, behavioral response to adverse events, and how animals make decisions.
Collapse
Affiliation(s)
- Lauren E Chaby
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park PA, USA ; Department of Ecosystem Science and Management, Pennsylvania State University, University Park PA, USA
| | | | | | | | | |
Collapse
|
820
|
Ho N, Sommers M. Anhedonia: a concept analysis. Arch Psychiatr Nurs 2013; 27:121-9. [PMID: 23706888 PMCID: PMC3664836 DOI: 10.1016/j.apnu.2013.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 10/26/2022]
Abstract
Anhedonia presents itself in a myriad of disease processes. To further develop our understanding of anhedonia and effective ways to manage it, the concept requires clear boundaries. This paper critically examined the current scientific literature and conducted a concept analysis of anhedonia to provide a more accurate and lucid understanding of the concept. As part of the concept analysis, this paper also provides model, borderline, related, and contrary examples of anhedonia.
Collapse
Affiliation(s)
- Nancy Ho
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
821
|
Proeschold-Bell RJ, Swift R, Moore HE, Bennett G, Li XF, Blouin R, Williams VP, Williams RB, Toole D. Use of a randomized multiple baseline design: rationale and design of the spirited life holistic health intervention study. Contemp Clin Trials 2013; 35:138-52. [PMID: 23685205 DOI: 10.1016/j.cct.2013.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Clergy suffer from high rates of obesity, chronic disease, and depression, and simultaneously underestimate the toll these take on their daily functioning. Health interventions are needed for clergy and may be tailored to their occupational context and theological beliefs. Few studies have sought to improve clergy health. No prior studies have utilized a randomized design. Spirited Life is a randomized, multiple baseline study that offered enrollment to nearly all United Methodist Church clergy in North Carolina in fall 2010. A total of 1114 clergy (response rate = 64%) enrolled. Using a multiple baseline design, we randomized participants to three cohorts. Each cohort began the health intervention in one of three consecutive years. The third cohort served as a randomized waitlist control cohort, allowing comparisons between the first and third cohorts. The two-year Spirited Life intervention consists of: 1) a theological underpinning for health stewardship based on incarnation, grace, and response and delivered during workshops; 2) the stress management program Williams LifeSkills; 3) Naturally Slim, an online weight loss program; 4) phone contact with a Wellness Advocate; and 5) $500 small grants for health goals. Metabolic syndrome is the primary endpoint. Stress and depressive severity are secondary endpoints. We measured each construct before, twice during, and at the end of the two-year intervention. Study outcomes, to be published after follow-up data are gathered, will provide evidence of the effectiveness of the combined intervention components of Spirited Life. If successful, the intervention may be considered for use with other clergy and faith populations.
Collapse
Affiliation(s)
- Rae Jean Proeschold-Bell
- Duke Global Health Institute and Duke Center for Health Policy and Inequalities Research, Durham, NC 27708-0392, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
822
|
Individual differences in the effects of chronic stress on memory: behavioral and neurochemical correlates of resiliency. Neuroscience 2013; 246:142-59. [PMID: 23644054 DOI: 10.1016/j.neuroscience.2013.04.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Abstract
Chronic stress has been shown to impair memory, however, the extent to which memory can be impaired is often variable across individuals. Predisposed differences in particular traits, such as anxiety, may reveal underlying neurobiological mechanisms that could be driving individual differences in sensitivity to stress and, thus, stress resiliency. Such pre-morbid characteristics may serve as early indicators of susceptibility to stress. Neuropeptide Y (NPY) and enkephalin (ENK) are neurochemical messengers of interest implicated in modulating anxiety and motivation circuitry; however, little is known about how these neuropeptides interact with stress resiliency and memory. In this experiment, adult male rats were appetitively trained to locate sugar rewards in a motivation-based spatial memory task before undergoing repeated immobilization stress and then being tested for memory retention. Anxiety-related behaviors, among other characteristics, were monitored longitudinally. Results indicated that stressed animals which showed little to no impairments in memory post-stress (i.e., the more stress-resilient individuals) exhibited lower anxiety levels prior to stress when compared to stressed animals that showed large deficits in memory (i.e., the more stress-susceptible individuals). Interestingly, all stressed animals, regardless of memory change, showed reduced body weight gain as well as thymic involution, suggesting that the effects of stress on metabolism and the immune system were dissociated from the effects of stress on higher cognition, and that stress resiliency seems to be domain-specific rather than a global characteristic within an individual. Neurochemical analyses revealed that NPY in the hypothalamus and amygdala and ENK in the nucleus accumbens were modulated differentially between stress-resilient and stress-susceptible individuals, with elevated expression of these neuropeptides fostering anxiolytic and pro-motivation function, thus driving cognitive resiliency in a domain-specific manner. Findings suggest that such neurochemical markers may be novel targets for pharmacological interventions that can serve to prevent or ameliorate the negative effects of stress on memory.
Collapse
|
823
|
Shusterman V, Lampert R. Role of Stress in Cardiac Arrhythmias. J Atr Fibrillation 2013; 5:834. [PMID: 28496839 DOI: 10.4022/jafib.834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Abstract
Stress is a major trigger of cardiac arrhythmias; it exerts profound effects on electrophysiology of the cardiomyocytes and the cardiac rhythm. Psychological and physiological stressors impact the cardiovascular system through the autonomic nervous system (ANS). While stressors vary, properties of the stress response at the level of cardiovascular system (collectively referred to as the autonomic cardiovascular responses) are similar and can be studied independently from the properties of specific stressors. Here, we will review the clinical and experimental evidence linking common stressors and atrial arrhythmias. Specifically, we will describe the impact of psychological and circadian stressors on ANS activity and arrhythmogenesis. We will also review studies examining relationships between autonomic cardiovascular responses and cardiac arrhythmias in ambulatory and laboratory settings.
Collapse
Affiliation(s)
- Vladimir Shusterman
- University of Pittsburgh School of Medicine and Yale University School of Medicine
| | - Rachel Lampert
- University of Pittsburgh School of Medicine and Yale University School of Medicine
| |
Collapse
|
824
|
Social agonistic distress in male and female mice: changes of behavior and brain monoamine functioning in relation to acute and chronic challenges. PLoS One 2013; 8:e60133. [PMID: 23565195 PMCID: PMC3614949 DOI: 10.1371/journal.pone.0060133] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
Stressful events promote several neuroendocrine and neurotransmitter changes that might contribute to the provocation of psychological and physical pathologies. Perhaps, because of its apparent ecological validity and its simple application, there has been increasing use of social defeat (resident-intruder) paradigms as a stressor. The frequency of stress-related psychopathology is much greater in females than in males, but the typical resident-intruder paradigm is less useful in assessing stressor effects in females. An alternative, but infrequently used procedure in females involves exposing a mouse to a lactating dam, resulting in threatening gestures being expressed by the resident. In the present investigation we demonstrated the utility of this paradigm, showing that the standard resident-intruder paradigm in males and the modified version in females promoted elevated anxiety in a plus-maze test. The behavioral effects that reflected anxiety were more pronounced 2 weeks after the stressor treatment than they were 2 hr afterward, possibly reflecting the abatement of the stress-related of hyper-arousal. These treatments, like a stressor comprising physical restraint, increased plasma corticosterone and elicited variations of norepinephrine and serotonin levels and turnover within the prefrontal cortex, hippocampus and central amygdala. Moreover, the stressor effects were exaggerated among mice that had been exposed to a chronic or subchronic-intermittent regimen of unpredictable stressors. Indeed, some of the monoamine changes were more pronounced in females than in males, although it is less certain whether this represented compensatory changes to deal with chronic stressors that could result in excessive strain on biological systems (allostatic overload).
Collapse
|
825
|
Social stress models in depression research: what do they tell us? Cell Tissue Res 2013; 354:179-90. [PMID: 23532563 DOI: 10.1007/s00441-013-1606-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
Interest has recently surged in the use of social stress models, especially social defeat. Such interest lies both in the recognition that stressors of social origin play a major role in human psychopathologies and in the acknowledgement that natural and hence ethologically-based stress models have important translational value. The use of the most recent technology has allowed the recognition of the mechanisms through which social defeat might have enduring psychoneuroendocrine effects, especially social avoidance and anhedonia, two behaviours relevant to human depression. In view of the sensitivity of these behavioural outcomes to repeated antidepressant treatments, the social defeat model has been proposed as a possible animal model of depression. The present survey is aimed at examining the limits of such an interpretation and focuses on methodological aspects and on the relevance of social defeat to the study of anxiety-related pathologies.
Collapse
|
826
|
Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T. Interpreting Stress Responses during Routine Toxicity Studies. Toxicol Pathol 2013; 41:560-614. [DOI: 10.1177/0192623312466452] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress often occurs during toxicity studies. The perception of sensory stimuli as stressful primarily results in catecholamine release and activation of the hypothalamic–pituitary–adrenal (HPA) axis to increase serum glucocorticoid concentrations. Downstream effects of these neuroendocrine signals may include decreased total body weights or body weight gain; food consumption and activity; altered organ weights (e.g., thymus, spleen, adrenal); lymphocyte depletion in thymus and spleen; altered circulating leukocyte counts (e.g., increased neutrophils with decreased lymphocytes and eosinophils); and altered reproductive functions. Typically, only some of these findings occur in a given study. Stress responses should be interpreted as secondary (indirect) rather than primary (direct) test article–related findings. Determining whether effects are the result of stress requires a weight-of-evidence approach. The evaluation and interpretation of routinely collected data (standard in-life, clinical pathology, and anatomic pathology endpoints) are appropriate and generally sufficient to assess whether or not changes are secondary to stress. The impact of possible stress-induced effects on data interpretation can partially be mitigated by toxicity study designs that use appropriate control groups (e.g., cohorts treated with vehicle and subjected to the same procedures as those dosed with test article), housing that minimizes isolation and offers environmental enrichment, and experimental procedures that minimize stress and sampling and analytical bias. This article is a comprehensive overview of the biological aspects of the stress response, beginning with a Summary (Section 1) and an Introduction (Section 2) that describes the historical and conventional methods used to characterize acute and chronic stress responses. These sections are followed by reviews of the primary systems and parameters that regulate and/or are influenced by stress, with an emphasis on parameters evaluated in toxicity studies: In-life Procedures (Section 3), Nervous System (Section 4), Endocrine System (Section 5), Reproductive System (Section 6), Clinical Pathology (Section 7), and Immune System (Section 8). The paper concludes (Section 9) with a brief discussion on Minimizing Stress-Related Effects (9.1.), and a final section explaining why Parameters routinely measured are appropriate for assessing the role of stress in toxicology studies (9.2.).
Collapse
Affiliation(s)
| | | | - Keith L. Bailey
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brad Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
827
|
Shi P, Miao X, Yao H, Lin S, Wei B, Chen J, Lin X, Tang Y. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
828
|
Abstract
This paper reviews the history of the transition from the belief that gastrointestinal ulcers are caused primarily by psychological factors to the current state of belief that they are caused primarily by infection and argues that neither is fully accurate. We argue that psychological factors play a significant role as predisposing to vulnerability, modulating of precipitation, and sustaining of gastric ulceration. We review data that challenge the assumption of a simple infectious disease model and adduce recent preclinical data that confirm the predisposing, modulatory, and sustaining roles for psychological factors. We note that others, too, are now challenging the adequacy of the contemporary simple bacterial infection model. We hope to replace the competition between psychology and medicine with cooperation in understanding and treating patients suffering gastric ulceration and ulcer.
Collapse
|
829
|
Jensen P. Transgenerational epigenetic effects on animal behaviour. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:447-54. [PMID: 23369895 DOI: 10.1016/j.pbiomolbio.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 01/02/2023]
Abstract
Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations.
Collapse
Affiliation(s)
- Per Jensen
- IFM Biology, AVIAN Behaviour Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
830
|
Sandi C. Stress and cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:245-261. [DOI: 10.1002/wcs.1222] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carmen Sandi
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
831
|
Malter Cohen M, Tottenham N, Casey BJ. Translational developmental studies of stress on brain and behavior: implications for adolescent mental health and illness? Neuroscience 2013; 249:53-62. [PMID: 23340244 DOI: 10.1016/j.neuroscience.2013.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 01/13/2023]
Abstract
Adolescence is the transition from childhood to adulthood, with onset marked by puberty and the offset by relative independence from parents. Across species, it is a time of incredible change that carries increased risks and rewards. The ability of the individual to respond adequately to the mental, physical and emotional stresses of life during this time is a function of both their early environment and their present state. In this article, we focus on the effects that acute threat and chronic stress have on the brain and behavior in humans and rodents. First, we highlight developmental changes in frontolimbic function as healthy individuals transition into and out of adolescence. Second, we examine genetic factors that may enhance susceptibility to stress in one individual over another using translation from genetic mouse models to human neuroimaging. Third, we examine how the timing and nature of stress varies in its impact on brain and behavior. These findings are discussed in the context of implications for adolescent mental health and illness.
Collapse
Affiliation(s)
- M Malter Cohen
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA.
| | | | | |
Collapse
|
832
|
Sørensen C, Johansen IB, Øverli Ø. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 2013; 181:25-34. [PMID: 23274407 DOI: 10.1016/j.ygcen.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
Physiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.g. active/aggressive) and reactive (e.g. conservation/withdrawal) behaviour in response to unpredictable and uncontrollable events. Thresholds for switching from active coping to behavioural inhibition are individually variable, and depend on experience and genetic factors. Such factors affect physiological stress responses as well as perception, learning, and memory. Here we review the role of an important contributor to neural processing, the set of biochemical, molecular, and structural processes collectively referred to as neural plasticity. We will concentrate on work in teleost fishes, while also elucidating conserved aspects. In fishes, environmental and physiological control of brain cell proliferation and neurogenesis has received recent attention. This work has revealed that the expression of genes involved in CNS plasticity is affected by heritable variation in stress coping style, and is also differentially affected by short- and long-term stress. Chronic stress experienced by subordinate fish in social hierarchies leads to a marked suppression of brain cell proliferation. Interestingly, typically routine dependent and inflexible behaviour in proactive individuals is also associated with low transcription of neurogenesis related genes. The potential for these findings to illuminate stress-related neurobiological disorders in other vertebrates is also discussed.
Collapse
Affiliation(s)
- Christina Sørensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
833
|
Lee JS, Kim HG, Han JM, Lee JS, Son SW, Ahn YC, Son CG. Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:339-347. [PMID: 22813841 DOI: 10.1016/j.pnpbp.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
We evaluated the pharmacological effects of Myelophil, a 30% ethanol extract of a mix of Astragali Radix and Salviae Radix, on oxidative stress-induced brain damage in mice caused by restraint stress. C57BL/6 male mice (eight weeks old) underwent daily oral administration of distilled water, Myelophil (25, 50, or 100mg/kg), or ascorbic acid (100mg/kg) 1h before induction of restraint stress, which involved 3h of immobilization per day for 21days. Nitric oxide levels, lipid peroxidation, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione redox system enzymes), and concentrations of adrenaline, corticosterone, and interferon-γ, were measured in brain tissues and/or sera. Restraint stress-induced increases in nitric oxide levels (serum and brain tissues) and lipid peroxidation (brain tissues) were significantly attenuated by Myelophil treatment. Restraint stress moderately lowered total antioxidant capacity, catalase activity, glutathione content, and the activities of glutathione reductase, glutathione peroxidase, and glutathione S-transferase; all these responses were reversed by Myelophil. Myelophil significantly attenuated the elevated serum concentrations of adrenaline and corticosterone and restored serum and brain interferon-γ levels. Moreover, Myelophil normalized expression of the genes encoding monoamine oxidase A, catechol-O-methyltransferase, and phenylethanolamine N-methyltransferase, which was up-regulated by restraint stress in brain tissues. These results suggest that Myelophil has pharmacological properties protects brain tissues against stress-associated oxidative stress damage, perhaps in part through regulation of stress hormones.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon, 301-724, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
834
|
Polak EL, Privitera MD, Lipton RB, Haut SR. Behavioral intervention as an add-on therapy in epilepsy: designing a clinical trial. Epilepsy Behav 2012; 25:505-10. [PMID: 23153715 DOI: 10.1016/j.yebeh.2012.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Many patients with epilepsy continue to experience seizures despite taking medication, and stress is a commonly reported trigger for seizures in these individuals. Therefore, a behavioral therapy proven to be effective in epilepsy could be a valuable adjunct to current pharmacotherapy. The challenges in testing such a behavioral intervention for epilepsy are numerous, including lack of consensus about sham designs, maintaining the blind, and powering the study absent known effect sizes. Herein, we present the design of a randomized, controlled, double-blind trial of progressive muscle relaxation as an add-on therapy for refractory epilepsy. Progressive muscle relaxation, which involves the tensing and releasing of muscle groups one at a time, is a well-established technique that relaxes the body and mind, reduces stress, and may improve seizure control. Study design issues discussed may provide insights that will inform future behavioral research in epilepsy.
Collapse
Affiliation(s)
- Emily L Polak
- Montefiore-Einstein Epilepsy Center, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
835
|
Bartlang MS, Neumann ID, Slattery DA, Uschold-Schmidt N, Kraus D, Helfrich-Förster C, Reber SO. Time matters: pathological effects of repeated psychosocial stress during the active, but not inactive, phase of male mice. J Endocrinol 2012; 215:425-37. [PMID: 23001029 DOI: 10.1530/joe-12-0267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent findings in rats indicated that the physiological consequences of repeated restraint stress are dependent on the time of day of stressor exposure. To investigate whether this is also true for clinically more relevant psychosocial stressors and whether repeated stressor exposure during the light phase or dark phase is more detrimental for an organism, we exposed male C57BL/6 mice to social defeat (SD) across 19 days either in the light phase between Zeitgeber time (ZT)1 and ZT3 (SDL mice) or in the dark phase between ZT13 and ZT15 (SDD mice). While SDL mice showed a prolonged increase in adrenal weight and an attenuated adrenal responsiveness to ACTH in vitro after stressor termination, SDD mice showed reduced dark phase home-cage activity on observation days 7, 14, and 20, flattening of the diurnal corticosterone rhythm, lack of social preference, and higher in vitro IFNγ secretion from mesenteric lymph node cells on day 20/21. Furthermore, the colitis-aggravating effect of SD was more pronounced in SDD than SDL mice following dextran sulfate sodium treatment. In conclusion, the present findings demonstrate that repeated SD effects on behavior, physiology, and immunology strongly depend on the time of day of stressor exposure. Whereas physiological parameters were more affected by SD during the light/inactive phase of mice, behavioral and immunological parameters were more affected by SD during the dark phase. Our results imply that repeated daily SD exposure has a more negative outcome when applied during the dark/active phase. By contrast, the minor physiological changes seen in SDL mice might represent beneficial adaptations preventing the formation of those maladaptive consequences.
Collapse
Affiliation(s)
- Manuela S Bartlang
- Department of Neurobiology and Genetics, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
836
|
Helmreich DL, Tylee D, Christianson JP, Kubala KH, Govindarajan ST, O'Neill WE, Becoats K, Watkins L, Maier SF. Active behavioral coping alters the behavioral but not the endocrine response to stress. Psychoneuroendocrinology 2012; 37:1941-8. [PMID: 22578266 PMCID: PMC3358794 DOI: 10.1016/j.psyneuen.2012.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/04/2012] [Accepted: 04/13/2012] [Indexed: 01/31/2023]
Abstract
Exposure to traumatic stressors typically causes lasting changes in emotionality and behavior. However, coping strategies have been shown to prevent and alleviate many stress consequences and the biological mechanisms that underlie coping are of great interest. Whereas the laboratory stressor inescapable tail-shock induces anxiety-like behaviors, here we demonstrate that permitting a rat to chew on a wooden dowel during administration of tail-shock prevented the development of anxiety like behaviors in the open field and juvenile social exploration tests. Uncontrollable stressors increase corticosterone and decrease thyroid hormone, and we hypothesized that coping would blunt these changes. While tail-shock did produce these effects, active coping did not alter hormone levels. The dissociation between behavioral resilience and circulating hormones is discussed with regard to the utility of these molecules as biomarkers for psychiatric disease.
Collapse
Affiliation(s)
- Dana L Helmreich
- Department of Psychiatry, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
837
|
Sood R, Ritov G, Richter-Levin G, Barki-Harrington L. Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma. Behav Brain Res 2012; 240:26-8. [PMID: 23174211 DOI: 10.1016/j.bbr.2012.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 12/29/2022]
Abstract
Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes. Elevated plus maze tests confirmed that animals that experienced the threat of drowning present heightened levels of anxiety one month after trauma. An examination of the CA1 hippocampal areas of the same rats showed that underwater trauma caused a significant increase in the association of Mdm2 with β2AR, β Arrestin-1, and p53 in the ventral but not dorsal CA1. Our results provide support for the idea that stress-related events may result in biochemical changes restricted to the ventral 'emotion-related' parts of the hippocampus.
Collapse
Affiliation(s)
- Rapita Sood
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | | | | | | |
Collapse
|
838
|
Reimert I, Bolhuis JE, Kemp B, Rodenburg TB. Indicators of positive and negative emotions and emotional contagion in pigs. Physiol Behav 2012; 109:42-50. [PMID: 23159725 DOI: 10.1016/j.physbeh.2012.11.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/05/2012] [Accepted: 11/08/2012] [Indexed: 11/28/2022]
Abstract
For the welfare of group-housed animals, such as pigs, the emotional state of an individual pig is relevant, but also the extent to which pen mates are affected by the distress or pleasure of other individuals, i.e. emotional contagion, a simple form of empathy. Therefore, indicators of positive and negative emotions were investigated in pigs during anticipation and experience of a rewarding (access in pairs to a compartment with straw, peat and chocolate raisins) or aversive (social isolation combined with negative, unpredictable interventions) event. Thereafter the same indicators were investigated in naive pigs during anticipation and experience of a rewarding or aversive event by their trained pen mates. Positive emotions could be indicated by play, barks and tail movements, while negative emotions could be indicated by freezing, defecating, urinating, escape attempts, high-pitched vocalizations (screams, squeals or grunt-squeals), tail low, ears back and ear movements. Salivary cortisol measurements supported these behavioral observations. During anticipation of the aversive event, naive pigs tended to show more tail low. During the aversive event, naive pigs tended to defecate more, while they played more during the rewarding event. These results suggest that pigs might be sensitive to emotional contagion, which could have implications for the welfare of group-housed pigs. Pig emotions and the process of emotional contagion merit, therefore, further research.
Collapse
Affiliation(s)
- Inonge Reimert
- Wageningen University, Department of Animal Sciences, Adaptation Physiology Group, The Netherlands.
| | | | | | | |
Collapse
|
839
|
Silvennoinen R, Escola-Gil JC, Julve J, Rotllan N, Llaverias G, Metso J, Valledor AF, He J, Yu L, Jauhiainen M, Blanco-Vaca F, Kovanen PT, Lee-Rueckert M. Acute Psychological Stress Accelerates Reverse Cholesterol Transport via Corticosterone-Dependent Inhibition of Intestinal Cholesterol Absorption. Circ Res 2012; 111:1459-69. [DOI: 10.1161/circresaha.112.277962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rationale:
Psychological stress is associated with an increased risk of cardiovascular diseases. However, the connecting mechanisms of the stress-inducing activation of the hypothalamic-pituitary-adrenal axis with atherosclerosis are not well-understood.
Objective:
To study the effect of acute psychological stress on reverse cholesterol transport (RCT), which transfers peripheral cholesterol to the liver for its ultimate fecal excretion.
Methods and Results:
C57Bl/6J mice were exposed to restraint stress for 3 hours to induce acute psychological stress. RCT in vivo was quantified by measuring the transfer of [
3
H]cholesterol from intraperitoneally injected mouse macrophages to the lumen of the small intestine within the stress period. Surprisingly, stress markedly increased the contents of macrophage-derived [
3
H]cholesterol in the intestinal lumen. In the stressed mice, intestinal absorption of [
14
C]cholesterol was significantly impaired, the intestinal mRNA expression level of peroxisome proliferator–activated receptor-α increased, and that of the sterol influx transporter Niemann-Pick C1–like 1 decreased. The stress-dependent effects on RCT rate and peroxisome proliferator–activated receptor-α gene expression were fully mimicked by administration of the stress hormone corticosterone (CORT) to nonstressed mice, and they were blocked by the inhibition of CORT synthesis in stressed mice. Moreover, the intestinal expression of Niemann-Pick C1–like 1 protein decreased when circulating levels of CORT increased. Of note, when either peroxisome proliferator-activated receptor α or liver X receptor α knockout mice were exposed to stress, the RCT rate remained unchanged, although plasma CORT increased. This indicates that activities of both transcription factors were required for the RCT-accelerating effect of stress.
Conclusions:
Acute psychological stress accelerated RCT by compromising intestinal cholesterol absorption. The present results uncover a novel functional connection between the hypothalamic-pituitary-adrenal axis and RCT that can be triggered by a stress-induced increase in circulating CORT.
Collapse
Affiliation(s)
- Reija Silvennoinen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Joan Carles Escola-Gil
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Josep Julve
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Noemi Rotllan
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Gemma Llaverias
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jari Metso
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Annabel F. Valledor
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Jianming He
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Liqing Yu
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Francisco Blanco-Vaca
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (R.S., P.T.K., M.L.-R.); Departament de Bioquimica, IIB Sant Pau-CIBER de Diabetes y Enfermedades Metabolicas Asociadas-Universitat Autonoma de Barcelona, Barcelona, Spain (J.C.E.-G., J.J., N.R., G.L., F.B.-V.); Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit Biomedicum, Helsinki, Finland (J.M., M.J.); Department of Physiology and Immunology, School of Biology, University
| |
Collapse
|
840
|
Araya-Callís C, Hiemke C, Abumaria N, Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl) 2012; 224:209-22. [PMID: 22610521 PMCID: PMC3465647 DOI: 10.1007/s00213-012-2741-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/03/2012] [Indexed: 11/06/2022]
Abstract
RATIONALE It has been suggested that there are causal relationships between alterations in brain glia and major depression. OBJECTIVES To investigate whether a depressive-like state induces changes in brain astrocytes, we used chronic social stress in male rats, an established preclinical model of depression. Expression of two astrocytic proteins, the intermediate filament component glial fibrillary acidic protein (GFAP) and the cytoplasmic protein N-myc downregulated gene 2 (NDRG2), was analyzed in the hippocampus. For comparison, expression of the neuronal protein syntaxin-1A was also determined. METHODS Adult male rats were subjected to daily social defeat for 5 weeks and were concomitantly treated with citalopram (30 mg/kg/day, via the drinking water) for 4 weeks. RESULTS Western blot analysis showed that the chronic stress downregulated GFAP but upregulated NDRG2 protein. Citalopram did not prevent these stress effects, but the antidepressant per se downregulated GFAP and upregulated NDRG2 in nonstressed rats. In contrast, citalopram prevented the stress-induced upregulation of the neuronal protein syntaxin-1A. CONCLUSIONS These data suggest that chronic stress and citalopram differentially affect expression of astrocytic genes while the antidepressant drug does not prevent the stress effects. The inverse regulation of the cytoskeletal protein GFAP and the cytoplasmic protein NDRG2 indicates that the cells undergo profound metabolic changes during stress and citalopram treatment. Furthermore, the present findings indicate that a 4-week treatment with citalopram does not restore normal glial function in the hippocampus, although the behavior of the animals was normalized within this treatment period, as reported previously.
Collapse
Affiliation(s)
- Carolina Araya-Callís
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Nashat Abumaria
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gabriele Flugge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| |
Collapse
|
841
|
Baracchini C, Ballotta E, Manara R. Response to Letter Regarding Article “Jugular Veins in Transient Global Amnesia: Innocent Bystanders”. Stroke 2012. [DOI: 10.1161/strokeaha.112.672931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claudio Baracchini
- Department of Neurological Sciences, University of Padua School of Medicine, Padova, Italy
| | - Enzo Ballotta
- Vascular Surgery Section, Geriatric Surgery Clinic, Department of Surgical and Gastroenterological Sciences, University of Padua, School of Medicine, Padova, Italy
| | - Renzo Manara
- Department of Neurological Sciences, University of Padua School of Medicine, Padova, Italy
| |
Collapse
|
842
|
Boonstra R. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct Ecol 2012. [DOI: 10.1111/1365-2435.12008] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rudy Boonstra
- Department of Biological Sciences; Centre for the Neurobiology of Stress; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| |
Collapse
|
843
|
The effects of acute stress on Pavlovian-instrumental transfer in rats. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 13:174-85. [DOI: 10.3758/s13415-012-0129-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
844
|
The relation between fearfulness in young and stress-response in adult laying hens, on individual and group level. Physiol Behav 2012; 107:433-9. [DOI: 10.1016/j.physbeh.2012.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/07/2012] [Indexed: 11/15/2022]
|
845
|
Del Giudice M. Fetal programming by maternal stress: Insights from a conflict perspective. Psychoneuroendocrinology 2012; 37:1614-29. [PMID: 22694951 DOI: 10.1016/j.psyneuen.2012.05.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
Maternal stress during pregnancy has pervasive effects on the offspring's physiology and behavior, including the development of anxious, reactive temperament and increased stress responsivity. These outcomes can be seen as the result of adaptive developmental plasticity: maternal stress hormones carry useful information about the state of the external world, which can be used by the developing fetus to match its phenotype to the predicted environment. This account, however, neglects the inherent conflict of interest between mother and fetus about the outcomes of fetal programming. The aim of this paper is to extend the adaptive model of prenatal stress by framing mother-fetus interactions in an evolutionary conflict perspective. In the paper, I show how a conflict perspective provides many new insights in the functions and mechanisms of fetal programming, with particular emphasis on human pregnancy. I then take advantage of those insights to make sense of some puzzling features of maternal and fetal physiology and generate novel empirical predictions.
Collapse
Affiliation(s)
- Marco Del Giudice
- Department of Psychology, University of Turin, Via Po 14, 10123 Torino, Italy.
| |
Collapse
|
846
|
Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. ACTA ACUST UNITED AC 2012; 179:61-70. [PMID: 22960404 DOI: 10.1016/j.regpep.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with locomotor activity in EPM-L and OFT-L or -D, while negatively to serum corticosterone levels in all paradigms. These results support the proposal that the hypophysiotropic PVN TRH neurons are activated by short term physical activity but that this response may be blunted by the inhibitory effect of stress.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca MOR, México
| | | | | | | | | | | |
Collapse
|
847
|
Orlowski D, Elfving B, Müller HK, Wegener G, Bjarkam CR. Wistar rats subjected to chronic restraint stress display increased hippocampal spine density paralleled by increased expression levels of synaptic scaffolding proteins. Stress 2012; 15:514-23. [PMID: 22128856 DOI: 10.3109/10253890.2011.643516] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate whether the previously reported effect of chronic restraint stress (CRS) on hippocampal neuron morphology and spine density is paralleled by a similar change in the expression levels of synaptic scaffolding proteins. Adult male Wistar rats were subjected either to CRS (6 h/day) for 21 days or to control conditions. The resulting brains were divided and one hemisphere was impregnated with Golgi-Cox before coronal sectioning and autometallographic development. Neurons from CA1, CA3b, CA3c, and dentate gyrus (DG) area were reconstructed and subjected to Sholl analysis and spine density estimation. The contralateral hippocampus was used for quantitative real-time polymerase chain reaction and protein analysis of genes associated with spine density and morphology (the synaptic scaffolding proteins: Spinophilin, Homer1-3, and Shank1-3). In the CA3c area, CRS decreased the number of apical dendrites and their total length, whereas CA1 and DG spine density were significantly increased. Analysis of the contralateral hippocampal homogenate displayed an increased gene expression of Spinophilin, Homer1, Shank1, and Shank2 and increased protein expression of Spinophilin and Homer1 in the CRS animals. In conclusion, CRS influences hippocampal neuroplasticity by modulation of dendrite branching pattern and spine density paralleled by increased expression levels of synaptic scaffolding proteins.
Collapse
Affiliation(s)
- D Orlowski
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
848
|
Wichmann R, Fornari RV, Roozendaal B. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning. Neurobiol Learn Mem 2012; 98:197-205. [DOI: 10.1016/j.nlm.2012.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
|
849
|
Ashkenazi L, Haim A. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice. ACTA ACUST UNITED AC 2012; 215:4034-40. [PMID: 22933613 DOI: 10.1242/jeb.073429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.
Collapse
Affiliation(s)
- Lilach Ashkenazi
- The Israeli Center for Interdisciplinary Research in Chronobiology, Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | |
Collapse
|
850
|
Cory-Slechta DA, Merchant-Borna K, Allen JL, Liu S, Weston D, Conrad K. Variations in the nature of behavioral experience can differentially alter the consequences of developmental exposures to lead, prenatal stress, and the combination. Toxicol Sci 2012; 131:194-205. [PMID: 22930682 DOI: 10.1093/toxsci/kfs260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioral experience (BE) can critically influence later behavior and brain function, but the central nervous system (CNS) consequences of most developmental neurotoxicants are examined in the absence of any such context. We previously demonstrated marked differences in neurotransmitter changes produced by developmental lead (Pb) exposure ± prenatal stress (PS) depending upon whether or not rats had been given BE (Cory-Slechta, D. A., Virgolini, M. B., Rossi-George, A., Weston, D., and Thiruchelvam, M. (2009). The current study examined the hypothesis that the nature of the BE itself would be a critical determinant of outcome in mice that had been continually exposed to 0 or 100 ppm Pb acetate in drinking water alone or in combination with prenatal restraint stress. Half of the offspring in each of the four resulting groups/gender were exposed to positively reinforced (food-rewarded Fixed Interval schedule-controlled behavior) or negatively reinforced (inescapable forced swim) BE. Brain monoamines and amino acids differed significantly in relation to BE, even in control animals, as did the trajectory of effects of Pb ± PS, particularly in frontal cortex, hippocampus (both genders), and midbrain (males). In males, Pb ± PS-related changes in neurotransmitters correlated with behavioral performance. These findings suggest that CNS consequences of developmental toxicants studied in the absence of a broader spectrum of BEs may not necessarily be predictive of human outcomes. Evaluating the role of specific BEs as a modulator of neurodevelopmental insults offers the opportunity to determine what specific BEs may ameliorate the associated impacts and can assist in establishing underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|