801
|
Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 2013; 110:7312-7. [PMID: 23589885 DOI: 10.1073/pnas.1220998110] [Citation(s) in RCA: 732] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia, or low oxygen tension, is a major regulator of tumor development and aggressiveness. However, how cancer cells adapt to hypoxia and communicate with their surrounding microenvironment during tumor development remain important questions. Here, we show that secreted vesicles with exosome characteristics mediate hypoxia-dependent intercellular signaling of the highly malignant brain tumor glioblastoma multiforme (GBM). In vitro hypoxia experiments with glioma cells and studies with patient materials reveal the enrichment in exosomes of hypoxia-regulated mRNAs and proteins (e.g., matrix metalloproteinases, IL-8, PDGFs, caveolin 1, and lysyl oxidase), several of which were associated with poor glioma patient prognosis. We show that exosomes derived from GBM cells grown at hypoxic compared with normoxic conditions are potent inducers of angiogenesis ex vivo and in vitro through phenotypic modulation of endothelial cells. Interestingly, endothelial cells were programmed by GBM cell-derived hypoxic exosomes to secrete several potent growth factors and cytokines and to stimulate pericyte PI3K/AKT signaling activation and migration. Moreover, exosomes derived from hypoxic compared with normoxic conditions showed increased autocrine, promigratory activation of GBM cells. These findings were correlated with significantly enhanced induction by hypoxic compared with normoxic exosomes of tumor vascularization, pericyte vessel coverage, GBM cell proliferation, as well as decreased tumor hypoxia in a mouse xenograft model. We conclude that the proteome and mRNA profiles of exosome vesicles closely reflect the oxygenation status of donor glioma cells and patient tumors, and that the exosomal pathway constitutes a potentially targetable driver of hypoxia-dependent intercellular signaling during tumor development.
Collapse
|
802
|
Wu S, Ju GQ, Du T, Zhu YJ, Liu GH. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 2013; 8:e61366. [PMID: 23593475 PMCID: PMC3625149 DOI: 10.1371/journal.pone.0061366] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/07/2013] [Indexed: 12/29/2022] Open
Abstract
Several studies suggest that mesenchymal stem cells (MSCs) possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs) are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Urology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Guan-Qun Ju
- Department of Urology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Du
- Department of Urology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jian Zhu
- Department of Urology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YJZ); (GHL)
| | - Guo-Hua Liu
- Department of Urology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YJZ); (GHL)
| |
Collapse
|
803
|
|
804
|
Increased procoagulant function of microparticles in pediatric inflammatory bowel disease: role in increased thrombin generation. J Pediatr Gastroenterol Nutr 2013; 56:401-7. [PMID: 23164759 DOI: 10.1097/mpg.0b013e31827daf72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Patients with inflammatory bowel disease (IBD) have a higher risk for venous thromboembolism compared with non-IBD subjects. The pathogenic mechanisms of the thrombotic events are not fully understood. We investigated levels of circulating microparticles and their influence on thrombin generation in pediatric patients with IBD during active and quiescent disease compared with healthy controls. METHODS Plasma samples were collected from 33 pediatric patients with Crohn disease (CD), 20 pediatric patients with ulcerative colitis (UC), and 60 healthy controls. Microparticles' procoagulant activity was measured by enzyme-linked immunosorbent assay, and the dependency of thrombin generation on microparticles-derived tissue factor was determined by means of calibrated automated thrombography. RESULTS The procoagulant function of microparticles was significantly increased in patients with active and inactive CD, and active UC compared with controls. Endogenous thrombin potential was significantly higher in patients with CD and UC compared with controls. A minor influence of microparticles on thrombin generation was only observed for patients with active UC. CONCLUSIONS Our study shows increased procoagulant function of microparticles in pediatric patients with active and quiescent CD and active UC compared with controls, but demonstrates that they are not a major cause for the higher thrombin generation in pediatric patients with IBD.
Collapse
|
805
|
Galindo-Hernandez O, Villegas-Comonfort S, Candanedo F, González-Vázquez MC, Chavez-Ocaña S, Jimenez-Villanueva X, Sierra-Martinez M, Salazar EP. Elevated Concentration of Microvesicles Isolated from Peripheral Blood in Breast Cancer Patients. Arch Med Res 2013; 44:208-14. [DOI: 10.1016/j.arcmed.2013.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
|
806
|
Fontana S, Simona F, Saieva L, Laura S, Taverna S, Simona T, Alessandro R, Riccardo A. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics 2013; 13:1581-94. [PMID: 23401131 DOI: 10.1002/pmic.201200398] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
Exosomes are nanometer-sized vesicles (40-100 nm diameter) of endocytic origin released from different cell types under both normal and pathological conditions. They function as cell free messengers, playing a relevant role in the cell-cell communication that is strongly related to the nature of the molecules (proteins, mRNAs, miRNAs, and lipids) that they transport. Tumor cells actively shed exosomes into their surrounding microenvironment and growing evidence indicates that these vesicles have pleiotropic functions in the regulation of tumor progression, promoting immune escape, tumor invasion, neovascularization, and metastasis. During the last few years remarkable efforts have been made to obtain an accurate definition of the protein content of tumor-derived exosomes (TDEs) by applying MS-based proteomic technologies. To date, TDEs proteomic studies have been mainly utilized to catalog TDEs proteins with the purpose of identifying disease biomarkers. The future challenge for improving our understanding and characterization of TDEs will be the implementation of new systems-driven and proteomic integrative strategies. The aim of this article is to provide an overview of the most characterized exosomes-mediated mechanisms that contribute to the pathogenesis of cancer and to review recent proteomics data that support the protumorigenic role of TDEs.
Collapse
Affiliation(s)
| | - Fontana Simona
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
807
|
Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013; 4:21. [PMID: 23508692 PMCID: PMC3589665 DOI: 10.3389/fphar.2013.00021] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/13/2013] [Indexed: 12/18/2022] Open
Abstract
In multicellular organisms both health and disease are defined by patterns of communication between the constituent cells. In addition to networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membraneous structures known extracellular vesicles (EV). Several biogenetic pathways produce EVs with different properties, and known as exosomes, ectosomes, and apoptotic bodies. In cancer, EVs carry molecular signatures and effectors of the disease, such as mutant oncoproteins, oncogenic transcripts, microRNA, and DNA sequences. Intercellular trafficking of such EVs (oncosomes) may contribute to horizontal cellular transformation, phenotypic reprograming, and functional re-education of recipient cells, both locally and systemically. The EV-mediated, reciprocal molecular exchange also includes tumor suppressors, phosphoproteins, proteases, growth factors, and bioactive lipids, all of which participate in the functional integration of multiple cells and their collective involvement in tumor angiogenesis, inflammation, immunity, coagulopathy, mobilization of bone marrow-derived effectors, metastasis, drug resistance, or cellular stemness. In cases where the EV role is rate limiting their production and uptake may represent and unexplored anticancer therapy target. Moreover, oncosomes circulating in biofluids of cancer patients offer an unprecedented, remote, and non-invasive access to crucial molecular information about cancer cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. New nanotechnologies are being developed to exploit this unique biomarker platform. Indeed, embracing the notion that human cancers are defined not only by processes occurring within cancer cells, but also between them, and amidst the altered tumor and systemic microenvironment may open new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Janusz Rak
- The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, McGill University Montreal, QC, Canada
| |
Collapse
|
808
|
Levänen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock ÅM. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 2013; 131:894-903. [PMID: 23333113 PMCID: PMC4013392 DOI: 10.1016/j.jaci.2012.11.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma is characterized by increased airway narrowing in response to nonspecific stimuli. The disorder is influenced by both environmental and genetic factors. Exosomes are nanosized vesicles of endosomal origin released from inflammatory and epithelial cells that have been implicated in asthma. In this study we characterized the microRNA (miRNA) content of exosomes in healthy control subjects and patients with mild intermittent asthma both at unprovoked baseline and in response to environmental challenge. OBJECTIVE To investigate alterations in bronchoalveolar lavage fluid (BALF) exosomal miRNA profiles due to asthma, and following subway air exposure. METHODS Exosomes were isolated from BALF from healthy control subjects (n = 10) and patients with mild intermittent asthma (n = 10) after subway and control exposures. Exosomal RNA was analyzed by using microarrays containing probes for 894 human miRNAs, and selected findings were validated with quantitative RT-PCR. Results were analyzed by using multivariate modeling. RESULTS The presence of miRNAs was confirmed in exosomes from BALF of both asthmatic patients and healthy control subjects. Significant differences in BALF exosomal miRNA was detected for 24 miRNAs with a subset of 16 miRNAs, including members of the let-7 and miRNA-200 families, providing robust classification of patients with mild nonsymptomatic asthma from healthy subjects with 72% cross-validated predictive power (Q(2) = 0.72). In contrast, subway exposure did not cause any significant alterations in miRNA profiles. CONCLUSION These studies demonstrate substantial differences in exosomal miRNA profiles between healthy subjects and patients with unprovoked, mild, stable asthma. These changes might be important in the inflammatory response leading to bronchial hyperresponsiveness and asthma.
Collapse
Affiliation(s)
- Bettina Levänen
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Nirav R. Bhakta
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | | | | | - Stefanie Hiltbrunner
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | | | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | - David J. Erle
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
- Lung Biology Center, University of California–San Francisco
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
809
|
Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65:391-7. [PMID: 22921840 DOI: 10.1016/j.addr.2012.08.008] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
Abstract
Using oligonucleotide-based drugs to modulate gene expression has opened a new avenue for drug discovery. In particular small interfering RNAs (siRNAs) are being rapidly recognized as promising therapeutic tools, but their poor bioavailability limits the full realization of their clinical potential. In recent years, cumulating evidence has emerged for the role of membrane vesicles, secreted by most cells and found in all body fluids, as key mediators of information transmission between cells. Importantly, a sub-group of these termed exosomes, have recently been shown to contain various RNA species and to mediate their horizontal transfer to neighbouring- or distant recipient cells. Here, we provide a brief overview on membrane vesicles and their role in exchange of genetic information. We also describe how these natural carriers of genetic material can be harnessed to overcome the obstacle of poor delivery and allow efficient systemic delivery of exogenous siRNA across biological barriers such as the blood-brain barrier.
Collapse
|
810
|
Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev 2013; 65:383-90. [PMID: 22921594 DOI: 10.1016/j.addr.2012.08.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
Exosomes play an important role in cell-to-cell communication to promote tumor metastasis. In order to image the fate of cancer-cell-derived exosomes in orthotopic nude mouse models of breast cancer, we used green fluorescent protein (GFP)-tagged CD63, which is a general marker of exosomes. Breast cancer cells transferred their own exosomes to other cancer cells and normal lung tissue cells in culture. In orthotopic nude-mouse models, breast cancer cells secreted exosomes into the tumor microenvironment. Tumor-derived exosomes were incorporated into tumor-associated cells as well as circulating in the blood of mice with breast cancer metastases. These results suggest that tumor-derived exosomes may contribute to forming a niche to promote tumor growth and metastasis. Our results demonstrate the usefulness of GFP imaging to investigate the role of exosomes in cancer metastasis.
Collapse
|
811
|
Xu D, Tahara H. The role of exosomes and microRNAs in senescence and aging. Adv Drug Deliv Rev 2013; 65:368-75. [PMID: 22820533 DOI: 10.1016/j.addr.2012.07.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 12/31/2022]
Abstract
Senescence is viewed as a cellular counterpart to aging of tissues and organisms, characterized by an irreversible growth arrest and a combination of changes in cell morphology, function and behavior. microRNAs (miRNAs), the most studied small non-coding RNAs, play an important role in many biological processes by the regulation of gene expression. Recent evidence has shown that miRNAs are contained in exosomes that are tiny vesicles of endocytic origin and released by a variety of different cells as a means for cell-to-cell contact and information transfer. Exosomes and miRNAs have been found to participate in the complex networks of cellular senescence and contribute to aging. Here, we will give an overview on the involvement of secretory factors including exosomes and miRNA in the regulation of cellular senescence, demonstrating the potential role of exosomes and miRNAs in biological processes and signaling pathways of senescence and aging.
Collapse
|
812
|
Barderas R, Mendes M, Torres S, Bartolomé RA, López-Lucendo M, Villar-Vázquez R, Peláez-García A, Fuente E, Bonilla F, Casal JI. In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol Cell Proteomics 2013; 12:1602-20. [PMID: 23443137 DOI: 10.1074/mcp.m112.022848] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Liver metastasis in colorectal cancer is the major cause of cancer-related deaths. To identify and characterize proteins associated with colon cancer metastasis, we have compared the conditioned serum-free medium of highly metastatic KM12SM colorectal cancer cells with the parental, poorly metastatic KM12C cells using quantitative stable isotope labeling by amino acids in cell culture (SILAC) analyses on a linear ion trap-Orbitrap Velos mass spectrometer. In total, 1337 proteins were simultaneously identified in SILAC forward and reverse experiments. For quantification, 1098 proteins were selected in both experiments, with 155 proteins showing >1.5-fold change. About 52% of these proteins were secreted directly or using alternative secretion pathways. GDF15, S100A8/A9, and SERPINI1 showed capacity to discriminate cancer serum samples from healthy controls using ELISAs. In silico analyses of deregulated proteins in the secretome of metastatic cells showed a major abundance of proteins involved in cell adhesion, migration, and invasion. To characterize the tumorigenic and metastatic properties of some top up- and down-regulated proteins, we used siRNA silencing and antibody blocking. Knockdown expression of NEO1, SERPINI1, and PODXL showed a significant effect on cellular adhesion. Silencing or blocking experiments with SOSTDC1, CTSS, EFNA3, CD137L/TNFSF9, ZG16B, and Midkine caused a significant decrease in migration and invasion of highly metastatic cells. In addition, silencing of SOSTDC1, EFNA3, and CD137L/TNFSF9 reduced liver colonization capacity of KM12SM cells. Finally, the panel of six proteins involved in invasion showed association with poor prognosis and overall survival after dataset analysis of gene alterations. In summary, we have defined a collection of proteins that are relevant for understanding the mechanisms underlying adhesion, migration, invasion, and metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Functional Proteomics Laboratory, Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
813
|
Abstract
Objective: Elevated plasma levels of the fatty acid transporter, CD36, have been shown to constitute a novel biomarker for type 2 diabetes mellitus (T2DM). We recently reported such circulating CD36 to be entirely associated with cellular microparticles (MPs) and aim here to determine the absolute levels and cellular origin(s) of these CD36+MPs in persons with T2DM. Design: An ex vivo case-control study was conducted using plasma samples from 33 obese individuals with T2DM (body mass index (BMI)=39.9±6.4 kg m−2; age=57±9 years; 18 male:15 female) and age- and gender-matched lean and obese non-T2DM controls (BMI=23.6±1.8 kg m−2 and 33.5±5.9 kg m−2, respectively). Flow cytometry was used to analyse surface expression of CD36 together with tissue-specific markers: CD41, CD235a, CD14, CD105 and phosphatidyl serine on plasma MPs. An enzyme-linked immunosorbent assay was used to quantify absolute CD36 protein concentrations. Results: CD36+MP levels were significantly higher in obese people with T2DM (P<0.00001) and were primarily derived from erythrocytes (CD235a+=35.8±14.6%); although this did not correlate with haemoglobin A1c. By contrast, the main source of CD36+MPs in non-T2DM individuals was endothelial cells (CD105+=40.9±8.3% and 33.9±8.3% for lean and obese controls, respectively). Across the entire cohort, plasma CD36 protein concentration varied from undetectable to 22.9 μg ml−1 and was positively correlated with CD36+MPs measured by flow cytometry (P=0.0006) but only weakly associated with the distribution of controls and T2DM (P=0.021). Multivariate analysis confirmed that plasma CD36+MP levels were a much better biomarker for diabetes than CD36 protein concentration (P=0.009 vs P=0.398, respectively). Conclusions: Both the levels and cellular profile of CD36+MPs differ in T2DM compared with controls, suggesting that these specific vesicles could represent distinct biological vectors contributing to the pathology of the disease.
Collapse
|
814
|
Abstract
The tumour microenvironment represents a dynamic complex milieu, which includes tumour cells, cells of the immune system and other (cellular and non-cellular) components. The role of these particular ‘puzzle pieces’ may change substantially due to their mutual interactions. The present review concerns different opinions on interactions that occur between monocytes, tumour cells and TMVs (tumour-derived microvesicles).
Collapse
|
815
|
Coxsackievirus B transmission and possible new roles for extracellular vesicles. Biochem Soc Trans 2013; 41:299-302. [DOI: 10.1042/bst20120272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coxsackievirus B1, a member of the Picornaviridae family is a non-enveloped single-stranded RNA virus associated with human diseases including myocarditis and pancreatitis. Infection of the intestinal mucosa, lined by polarized epithelial cells, requires interaction of coxsackievirus with apically located DAF (decay-accelerating factor) before transport to the basolaterally located CAR (coxsackie and adenovirus receptor), where entry is mediated by endocytosis. As with many other non-enveloped viruses, coxsackievirus has to induce lysis of host cells in order to perpetuate infection. However, recent evidence indicates that virus spread to secondary sites is not only achieved by a lytic mechanism and a non-lytic cell–cell strategy has been suggested for coxsackievirus B3. A physical interaction between infected and non-infected cells has been shown to be an efficient mechanism for retroviral transmission and one type of extracellular vesicle, the exosome, has been implicated in HIV-1 transmission. HIV-1 also takes advantage of depolymerization of actin for spread between T-cells. Calpain-mediated depolymerization of the actin cytoskeleton, as a result of increases in intracellular calcium concentration during coxsackievirus infection, would result in a release of host cell-derived microvesicles. If so, we speculate that maybe such microvesicles, increasingly recognized as major vehicles mediating intercellular communication, could play a role in the intercellular transmission of non-enveloped viruses.
Collapse
|
816
|
Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 2013; 30:1985-98. [PMID: 22736596 PMCID: PMC3468738 DOI: 10.1002/stem.1161] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microvesicles (MVs) play a pivotal role in cell-to-cell communication. Recent studies demonstrated that MVs may transfer genetic information between cells. Here, we show that MVs derived from human adult liver stem cells (HLSC) may reprogram in vitro HepG2 hepatoma and primary hepatocellular carcinoma cells by inhibiting their growth and survival. In vivo intratumor administration of MVs induced regression of ectopic tumors developed in SCID mice. We suggest that the mechanism of action is related to the delivery of microRNAs (miRNAs) from HLSC-derived MVs (MV-HLSC) to tumor cells on the basis of the following evidence: (a) the rapid, CD29-mediated internalization of MV-HLSC in HepG2 and the inhibition of tumor cell growth after MV uptake; (b) the transfer by MV-HLSC of miRNAs with potential antitumor activity that was downregulated in HepG2 cells with respect to normal hepatocytes; (c) the abrogation of the MV-HLSC antitumor effect after MV pretreatment with RNase or generation of MVs depleted of miRNAs; (d) the relevance of selected miRNAs was proven by transfecting HepG2 with miRNA mimics. The antitumor effect of MV-HLSC was also observed in tumors other than liver such as lymphoblastoma and glioblastoma. These results suggest that the delivery of selected miRNAs by MVs derived from stem cells may inhibit tumor growth and stimulate apoptosis. Stem Cells2012;30:1985–1998
Collapse
Affiliation(s)
- Valentina Fonsato
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS) and Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
817
|
Smythies J, Edelstein L. Transsynaptic modality codes in the brain: possible involvement of synchronized spike timing, microRNAs, exosomes and epigenetic processes. Front Integr Neurosci 2013; 6:126. [PMID: 23316146 PMCID: PMC3539687 DOI: 10.3389/fnint.2012.00126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/13/2012] [Indexed: 11/13/2022] Open
Abstract
This paper surveys two different mechanisms by which a presynaptic cell can modulate the structure and function of the postsynaptic cell. We first present the evidence that this occurs, and then discuss two mechanisms that could bring this about. The first hypothesis relates to the long lasting effects that the spike patterns of presynaptic axons may exert by modulating activity-inducible programs in postsynaptic cells. The second hypothesis is based on recently obtained evidence that, the afferent neuron at the neuromuscular junction buds off exosomes at its synapse and carries a cargo of Wg and Evi, which are large molecular transsynaptic signaling agents (LMTSAs). Further evidence indicates that many types of neurons bud off exosomes containing payloads of various lipids, proteins, and types of RNA. The evidence suggests that they are transmitted across the synapse and are taken up by the postsynaptic structure either by perisynaptic or exosynaptic mechanisms, thus mediating the transfer of information between neurons. To date, the molecular hypothesis has been limited to local interactions within the synapse of concern. In this paper, we explore the possibility that this represents a mechanism for information transfer involving the postsynaptic neuron as a whole. This entails a review of the known functions of these molecules in neuronal physiology, together with an estimate of the possible types of information they could carry and how they might affect neurocomputations.
Collapse
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego La Jolla, CA, SA
| | | |
Collapse
|
818
|
Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, Riganti L, Corradini I, Francolini M, Garzetti L, Maiorino C, Servida F, Vercelli A, Rocca M, Dalla Libera D, Martinelli V, Comi G, Martino G, Matteoli M, Furlan R. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 2013; 72:610-24. [PMID: 23109155 DOI: 10.1002/ana.23627] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Microvesicles (MVs) have been indicated as important mediators of intercellular communication and are emerging as new biomarkers of tissue damage. Our previous data indicate that reactive microglia/macrophages release MVs in vitro. The aim of the study was to evaluate whether MVs are released by microglia/macrophages in vivo and whether their number varies in brain inflammatory conditions, such as multiple sclerosis (MS). METHODS Electron and fluorescence microscopy and flow cytometry were used to detect myeloid MVs in the cerebrospinal fluid (CSF) of healthy controls, MS patients, and rodents affected by experimental autoimmune encephalomyelitis (EAE), the animal model of MS. RESULTS Myeloid MVs were detected in CSF of healthy controls. In relapsing and remitting EAE mice, the concentration of myeloid MVs in the CSF was significantly increased and closely associated with disease course. Analysis of MVs in the CSF of 28 relapsing patients and 28 patients with clinical isolated syndrome from 2 independent cohorts revealed higher levels of myeloid MVs than in 13 age-matched controls, indicating a clinical value of MVs as a companion tool to capture disease activity. Myeloid MVs were found to spread inflammatory signals both in vitro and in vivo at the site of administration; mice impaired in MV shedding were protected from EAE, suggesting a pathogenic role for MVs in the disease. Finally, FTY720, the first approved oral MS drug, significantly reduced the amount of MVs in the CSF of EAE-treated mice. INTERPRETATION These findings identify myeloid MVs as a marker and therapeutic target of brain inflammation.
Collapse
Affiliation(s)
- Claudia Verderio
- Italian National Research Council Institute of Neuroscience and Department of Medical Pharmacology, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
819
|
Contribution of cells undergoing epithelial–mesenchymal transition to the tumour microenvironment. J Proteomics 2013; 78:545-57. [DOI: 10.1016/j.jprot.2012.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
|
820
|
Abstract
The role of extracellular vesicles as an important mediator of cell-to-cell communication has been well established by many studies that have shown their capability for exchanging proteins, bioactive lipids and nucleic acids. Extracellular vesicles have been implicated in several physiological and pathological processes according to the cell of origin. Identification of the innate properties of extracellular vesicles derived from stem cells and from immune cells has led to the possibility of their exploitation in regenerative medicine and immune therapies. As extracellular vesicles are able to cross biological barriers, express surface receptors and contain defined cargoes able to target specific cells/tissues, they may represent a biocompatible and effective tool for drug delivery. Herein, we review and discuss the perspectives related to the therapeutic opportunities of extracellular vesicles.
Collapse
Affiliation(s)
- Giovanni Camussi
- Department Medical Sciences, University of Torino, Torino, Italy
| | - Peter J Quesenberry
- Department of Medicine, the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
821
|
Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G, Benigni A. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 2012; 22:772-80. [PMID: 23082760 DOI: 10.1089/scd.2012.0266] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone marrow-mesenchymal stem cells (BM-MSC) ameliorate renal dysfunction and repair tubular damage of acute kidney injury by locally releasing growth factors, including the insulin-like growth factor-1 (IGF-1). The restricted homing of BM-MSC at the site of injury led us to investigate a possible gene-based communication mechanism between BM-MSC and tubular cells. Human BM-MSC (hBM-MSC) released microparticles and exosomes (Exo) enriched in mRNAs. A selected pattern of transcripts was detected in Exo versus parental cells. Exo expressed the IGF-1 receptor (IGF-1R), but not IGF-1 mRNA, while hBM-MSC contained both mRNAs. R- cells lacking IGF-1R exposed to hBM-MSC-derived Exo acquired the human IGF-1R transcript that was translated in the corresponding protein. Transfer of IGF-1R mRNA from Exo to cisplatin-damaged proximal tubular cells (proximal tubular epithelial cell [PTEC]) increased PTEC proliferation. Coincubation of damaged PTEC with Exo and soluble IGF-1 further enhanced cell proliferation. These findings suggest that horizontal transfer of the mRNA for IGF-1R to tubular cells through Exo potentiates tubular cell sensitivity to locally produced IGF-1 providing a new mechanism underlying the powerful renoprotection of few BM-MSC observed in vivo.
Collapse
Affiliation(s)
- Susanna Tomasoni
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
822
|
Morigi M, Benigni A. Mesenchymal stem cells and kidney repair. Nephrol Dial Transplant 2012; 28:788-93. [DOI: 10.1093/ndt/gfs556] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
823
|
Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen ENM, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TSK, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BWM, Vázquez J, Vidal M, Wauben MHM, Yáñez-Mó M, Zoeller M, Mathivanan S. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10:e1001450. [PMID: 23271954 PMCID: PMC3525526 DOI: 10.1371/journal.pbio.1001450] [Citation(s) in RCA: 983] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
Collapse
Affiliation(s)
- Hina Kalra
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Richard J. Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Hong Ji
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Altevogt
- Tumor Immunology Programme, German Cancer Research Center, Heidelberg, Germany
| | - Philip Askenase
- Department of Medicine, Yale Medical School, New Haven, Connecticut, United States of America
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Francesc E. Borràs
- IVECAT, LIRAD-BST, Institut d'Investigació Germans Trias i Pujol, Dept de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Xandra Breakefield
- Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Department of Internal Medicine, Centre for Molecular Biotechnology and Centre for Research in Experimental Medicine, Torino, Italy
| | - Aled Clayton
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff, United Kingdom
| | - Emanuele Cocucci
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Juan M. Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Yong Song Gho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dwijendra Gupta
- Center of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, India
| | | | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Andrew F. Hill
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Jameel M. Inal
- Cellular and Molecular Immunology Research Centre, Faculty of Life Sciences, London Metropolitan University, London, United Kingdom
| | - Guido Jenster
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Sai Kiang Lim
- A*STAR Institute of Medical Biology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alicia Llorente
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Jan Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Marcilla
- Área de Parasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot (Valencia), Spain
| | | | - Irina Nazarenko
- Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany
| | - Rienk Nieuwland
- Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther N. M. Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tushar Patel
- Mayo Clinic, Jacksonville, Florida, United States of America
| | - Melissa G. Piper
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Stefano Pluchino
- Center for Brain Repair and Wellcome Trust-MRC Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | | | | | - Gavin E. Reid
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | | | - Raymond M. Schiffelers
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pia Siljander
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Finland
| | | | - Willem Stoorvogel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Douglas Taylor
- Department of Obstetrics, Gynecology and Women's Health and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Clotilde Thery
- Institut Curie Centre de Recherche, Paris, France
- INSERM U932, Paris, France
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bas W. M. van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michel Vidal
- UMR 5235 CNRS-University Montpellier II, Montpellier, France
| | - Marca H. M. Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Life Sciences, Utrecht University, Utrecht, The Netherlands
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Margot Zoeller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
824
|
Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M, Baba H. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 2012; 119:1159-67. [PMID: 23224754 DOI: 10.1002/cncr.27895] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exosomes are 40-nm to 100-nm membrane vesicles that are secreted by various cells, and they play a major role in cell-cell communication. The objective of this study was to clarify the significance of the levels of microRNA in exosomes extracted from the sera of patients with esophageal squamous cell cancer (ESCC). METHODS The authors isolated exosomes in serum samples from patients who had ESCC and from patients who had benign diseases without systemic inflammation. Total RNA was purified from the exosomes, and expression levels of microRNA-21 (miR-21) were analyzed by quantitative real-time polymerase chain reaction. RESULTS Serum exosomes from patients with ESCC induced the proliferation of ESCC cells in vitro. The expression levels of exosomal miR-21 were significantly higher in patients with ESCC than those with benign diseases with and without (C-reactive protein <0.3 mg/dL) systemic inflammation. MiR-21 was not detected in serum that remained after exosome extraction. Exosomal miR-21 expression was correlated with advanced tumor classification, positive lymph node status, and the presence of metastasis with inflammation or and clinical stage without inflammation (C-reactive protein <0.3 mg/dL). CONCLUSIONS The current results confirmed that exosomal miR-21 expression is up-regulated in serum from patients with ESCC versus serum from patients who have benign diseases without systemic inflammation. Exosomal miR-21 was positively correlated with tumor progression and aggressiveness, suggesting that it may be a useful target for cancer therapy. Cancer 2013. © 2012 American Cancer Society.
Collapse
Affiliation(s)
- Youhei Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
825
|
Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, Yeh CM, Yeh KT, Chen YC, Hsu TH, Shen SC, Lee WR, Chiou JF, Luo SF, Jiang MC. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol Med 2012; 18:1269-80. [PMID: 22952058 DOI: 10.2119/molmed.2012.00205] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1-like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal-regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras-induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody-conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the "early" and "late" metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Ching-Fong Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
826
|
Wiedmer SK, Lokajová J. Capillary electromigration techniques for studying interactions between analytes and lipid dispersions. J Sep Sci 2012; 36:37-51. [DOI: 10.1002/jssc.201200829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/11/2022]
|
827
|
Sahler J, Woeller C, Spinelli S, Blumberg N, Phipps R. A novel method for overexpression of peroxisome proliferator-activated receptor-γ in megakaryocyte and platelet microparticles achieves transcellular signaling. J Thromb Haemost 2012; 10:2563-72. [PMID: 23039852 PMCID: PMC3666584 DOI: 10.1111/jth.12017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Microparticles are submicrometer vesicles that contain RNA and protein derived from their parent cells. Platelet and megakaryocyte microparticles represent 80% of circulating microparticles, and their numbers are elevated in diseases such as cancer and type 2 diabetes. The ability of microparticles to transport protein, lipid and RNA to target cells, as a means of transcellular communication, remains poorly understood. Determining the influence that microparticles have on circulating cells is essential for understanding their role in health and in disease. OBJECTIVES To develop a novel approach to modify the composition of platelet microparticles, and understand how such changes impact their transcellular communication. METHODS This novel model utilizes a lentiviral technology to alter the transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) content of megakaryoblastic cell lines and primary megakaryocytes, and also the protein composition of generated platelets and microparticles. The subsequent microparticles were isolated and added to target cells for assessment of uptake and resultant signaling events. RESULTS We successfully engineered microparticles to contain green fluorescent protein and elevated levels of PPARγ. We found that these altered microparticles could be internalized by the monocytic cell line THP-1 and primary human microvascular endothelial cells. Importantly, microparticle-delivered PPARγ was shown to increase the expression of fatty acid-binding protein 4 (FABP4), which is a known PPARγ target gene in THP-1 cells. CONCLUSION This proof-of-concept modification of megakaryocyte, platelet and microparticle composition and subsequent change in target cell physiology is an important new tool to address transcellular communication of microparticles.
Collapse
Affiliation(s)
- J Sahler
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
828
|
Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 2012; 22:758-71. [PMID: 23034046 DOI: 10.1089/scd.2012.0304] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have opposite effects on tumor growth, being able either to favor angiogenesis and tumor initiation or to inhibit progression of established tumors. Factors produced by MSCs within the tumor microenvironment may be relevant for their biological effects. Recent studies demonstrated that microvesicles (MVs) are an integral component of inter-cellular communication within the tumor microenvironment. In the present study, we evaluated whether MVs derived from human bone marrow MSCs may stimulate or inhibit in vitro and in vivo growth of HepG2 hepatoma, Kaposi's sarcoma, and Skov-3 ovarian tumor cell lines. We found that MVs inhibited cell cycle progression in all cell lines and induced apoptosis in HepG2 and Kaposi's cells and necrosis in Skov-3. The observed activation of negative regulators of cell cycle may explain these biological effects. In vivo intra-tumor administration of MVs in established tumors generated by subcutaneous injection of these cell lines in SCID mice significantly inhibited tumor growth. In conclusion, MVs from human MSCs inhibited in vitro cell growth and survival of different tumor cell lines and in vivo progression of established tumors.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Internal Medicine, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
829
|
Abstract
Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.
Collapse
|
830
|
Duttagupta R, Jones KW. The curious case of miRNAs in circulation: potential diagnostic biomarkers? WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:129-38. [PMID: 23139172 DOI: 10.1002/wrna.1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pervasive occurrence of cell-free miRNAs in circulation suggests that these species play an emerging role as regulatory molecules in the secretory environment. Are these molecules released fortuitously with no clear biological intent? Or do they constitute a regulatory architecture that has evolved to modulate gene expression using the highways and byways of the circulatory system? The study of circulating miRNAs continues to increase our understanding of the regulation of genomes. The diversity of acellular miRNAs from a functional perspective is discussed, and in particular we explore their utility in a clinical setting as blood-based biomarkers for diseases.
Collapse
|
831
|
Ratajczak J, Kucia M, Mierzejewska K, Marlicz W, Pietrzkowski Z, Wojakowski W, Greco NJ, Tendera M, Ratajczak MZ. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine. Stem Cells Dev 2012; 22:422-30. [PMID: 23003001 DOI: 10.1089/scd.2012.0268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
832
|
Falchi AM, Sogos V, Saba F, Piras M, Congiu T, Piludu M. Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem Cell Biol 2012; 139:221-31. [PMID: 23108569 DOI: 10.1007/s00418-012-1045-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2012] [Indexed: 12/24/2022]
Abstract
Various cells types, including stem and progenitor cells, can exchange complex information via plasma membrane-derived vesicles, which can carry signals both in their limiting membrane and lumen. Astrocytes, traditionally regarded as mere supportive cells, play previously unrecognized functions in neuronal modulation and are capable of releasing signalling molecules of different functional significance. In the present study, we provide direct evidence that human fetal astrocytes in culture, expressing the same feature as immature and reactive astrocytes, release membrane vesicles larger than the microvesicles described up to now. We found that these large vesicles, ranging from 1-5 to 8 μm in diameter and expressing on their surface β1-integrin proteins, contain mitochondria and lipid droplets together with ATP. We documented vesicle content with fluorescent-specific dyes and with the immunocytochemistry technique we confirmed that mitochondria and lipid droplets were co-localized in the same vesicle. Scanning electron microscopy and transmission electron microscopy confirmed that astrocytes shed from surface membrane vesicles of the same size as the ones detected by fluorescence microscopy. Our results report for the first time that cultured astrocytes, activated by repetitive stimulation of ATP released from neighboring cells, shed from their surface large membrane vesicles containing mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Angela Maria Falchi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, 09042 Monserrato, CA, Italy.
| | | | | | | | | | | |
Collapse
|
833
|
He J, Wang Y, Sun S, Yu M, Wang C, Pei X, Zhu B, Wu J, Zhao W. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 2012; 17:493-500. [PMID: 22369283 DOI: 10.1111/j.1440-1797.2012.01589.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Several studies have demonstrated administration of mesenchymal stem cells (MSC) could reverse kidney injury by paracrine mechanisms rather than by MSC transdifferentiation. Recently, a few researchers found microvesicles (MV) derived from MSC might be a paracrine mechanism for cell-to-cell communication. The aim of this study was to investigate the repair effects of MV in a 5/6 subtotal nephrectomy (Nx) mice model. METHODS The animals were randomly divided into four groups: Control, Nx, Nx + MSC and Nx + MV group. MSC were injected (1 × 10(6) /mouse) through caudal vein in Nx + MSC group at the second day after the surgery and MV were injected (30 µg/mouse) through caudal vein in Nx + MV group on alternate days. Mice were killed on day 7 after the first time of administration. Blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA) and proteinuria were evaluated. Histopathology of kidney was analysed. RESULTS In Nx mice, the levels of Scr, UA and proteinuria were significantly decreased with administration of MV and MSC (P < 0.05). The remnant kidneys of MV and MSC-treated Nx mice showed less fibrosis, interstitial lymphocyte infiltrates and less or absent tubular atrophy compared with the untreated Nx group. The Histological Score of Kidney in untreated mice was 3.13 ± 0.74, while in the MSC-treated group it was 1.67 ± 0.47 and in the MV-treated group it was 1.80 ± 0.44, nearly preserving normal morphology of the kidney (P < 0.01). CONCLUSION This study showed MV protects against renal injury induced by 5/6 Nx, which could mimic the role of MSC in kidney repair. The research showed a newly potential therapeutic approach to kidney diseases.
Collapse
Affiliation(s)
- Juan He
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
834
|
Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett 2012; 341:97-104. [PMID: 23089245 DOI: 10.1016/j.canlet.2012.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 10/02/2012] [Accepted: 10/13/2012] [Indexed: 12/13/2022]
Abstract
Stem cells are defined by their self-renewal capacity and the ability to give rise to all differentiated progeny necessary for one specific organ. These two characteristics are also inherent in cancer stem cells (CSCs), which are thought to be the only subpopulation within a tumor endowed with tumorigenic potential. CSCs combine many features that render cancer one of the leading causes of death in the Western world: metastasis, tumor recurrence, and therapy refractoriness. Strikingly, CSCs are not a fixed entity, but differentiated tumor cells are able to revert to a stem-like state. Thus, CSCs are not only intrinsically programmed to fulfill their detrimental roles, but are orchestrated by stromal cells residing in their vicinity and forming the CSC niche. Yet, this relationship is not a one-way road: CSCs are able to manipulate stromal cells to their needs, not only in the primary tumor, but also in distant organs and thus prime the foreign soil for their arrival by inducing a premetastatic niche. The suggested plasticity between the differentiation states of cancer cells and the regulation by microenvironmental cues provides new starting-points for novel cancer therapies.
Collapse
|
835
|
Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem 2012; 45:727-32. [PMID: 22713968 DOI: 10.1016/j.clinbiochem.2012.04.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 12/12/2022]
Abstract
Coronary artery disease and acute myocardial infarction (AMI) are the leading causes of death for both men and women. Serum cardiac-specific troponin level is now used for the "early" diagnosis of AMI. However, due to the "delayed" release of troponin, an earlier, more sensitive and specific biomarker is urgently demanded to further reduce AMI mortality. Recent studies have found that circulating microRNAs (miRNAs) are closely linked to myocardial injury. Due to the cell-specific physiological functions and the stability of miRNAs in plasma, serum, and urine, they are emerging as sensitive biomarkers of AMI. This review summarizes the latest insights into the identification and potential application of plasma and serum miRNAs as novel biomarkers for diagnosis and prognosis of AMI.
Collapse
Affiliation(s)
- Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
836
|
Liu Y, Huang W, Zhang R, Wu J, Li L, Tang Y. Proteomic analysis of TNF-α-activated endothelial cells and endothelial microparticles. Mol Med Rep 2012; 7:318-26. [PMID: 23124128 DOI: 10.3892/mmr.2012.1139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/11/2012] [Indexed: 11/05/2022] Open
Abstract
Endothelial microparticles (EMPs) are small vesicles released from endothelial cells (ECs) and found circulating in the blood. EMPs are formed by a plasma membrane surrounding a small amount of cytosol and contain a subset of cellular proteins. As the number of EMPs in the blood increases with certain diseases, they may be an attractive biomarker for clinical diagnosis. Proteomic analysis of EMPs has been previously performed by mass spectrometry. However, the proteomic information of the ECs that secrete EMPs is lacking. This study introduces an in vitro model of activated ECs we created for proteomic analyses and reports the changes of the protein content in the ECs and EMPs using proteomic methods. Thus, this study provides valuable information for the analysis of the highly dynamic secretion process of EMPs. There is a direct correlation between the proteins that form EMPs and tumor necrosis factor-α (TNF-α)-activated ECs. The endothelial proteins transferred by EMPs may play important roles in the interaction between EMPs and the target cells, which may lead to endothelial dysfunction.
Collapse
Affiliation(s)
- Yiyun Liu
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | |
Collapse
|
837
|
Zhang Y, Zhang R, Zhang H, Liu J, Yang Z, Xu P, Cai W, Lu G, Cui M, Schwendener RA, Shi HZ, Xiong H, Huang B. Microparticles released by Listeria monocytogenes-infected macrophages are required for dendritic cell-elicited protective immunity. Cell Mol Immunol 2012; 9:489-96. [PMID: 23064105 DOI: 10.1038/cmi.2012.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interplay between macrophages and dendritic cells in the processing and presentation of bacterial antigens for T-cell immune responses remains poorly understood. Using a Listeria monocytogenes (Lm) infection model, we demonstrate that dendritic cells (DCs) require the support of macrophages to elicit protective immunity against Lm infection. DCs themselves were inefficient at taking up Lm but capable of taking up microparticles (MPs) released by Lm-infected macrophages. These MPs transferred Lm antigens to DCs, allowing DCs to present Lm antigen to effector T cells. MP-mediated Lm antigen transfer required MHC class I participation, since MHC class I deficiency in macrophages resulted in a significant reduction of T-cell activation. Moreover, the vaccination of mice with MPs from Lm-infected macrophages produced strong protective immunity against Lm infection. We here identify an intrinsic antigen transfer program between macrophages and DCs during Lm infection, and emphasize that macrophages also play an essential role in DC-elicited Lm-specific T-cell responses.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
838
|
Nakshatri H, Qi G, You J, Kerry B, Schneider B, Zon R, Buck C, Regnier F, Wang M. Intrinsic subtype-associated changes in the plasma proteome in breast cancer. Proteomics Clin Appl 2012; 3:1305-13. [PMID: 21136952 DOI: 10.1002/prca.200900040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breast cancers are classified into five intrinsic subtypes: Luminal subtype A, Luminal subtype B, HER2+, Basal, and Normal-like. In this study, we compared the plasma proteome of patients with Luminal A, Luminal B, HER2+, and Basal subtype with plasma from healthy individuals. Protein changes were considered significant if q-value (false discovery rate) was less than 5%. The highest number of changes in the plasma proteome was observed in patients with Luminal type B followed by Basal type breast cancers. The plasma proteome of Luminal A and HER2+ breast cancer patients did not differ significantly from healthy individuals. In Basal breast cancer, a significant number of plasma proteins were downregulated compared with healthy individuals. Acute phase-response proteins α-glycoprotein orosomucoid 1 and serum amyloid protein P were specifically upregulated in the plasma of Luminal B breast cancer patients, suggesting prevalence of low-grade inflammation. Proteins involved in immune response and free radical scavenging were downregulated in the plasma of Luminal B patients, which is in agreement with defective immune system observed in cancer patients. These results reveal intrinsic subtype specific changes in the plasma proteome that may influence tumor progression as well as the systemic effects of cancer.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
839
|
Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, Musolino C. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 2012; 41:1897-912. [PMID: 23026890 DOI: 10.3892/ijo.2012.1647] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/16/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding, endogenous, single-stranded RNAs. MiRNAs have been implicated in different areas such as the immune response, neural development, DNA repair, apoptosis, oxidative stress response and cancer. However, while the majority of miRNAs are found intracellularly, a significant number of miRNAs have been observed outside of cells, including various body fluids. Circulating miRNAs function as 'extracellular communication RNAs' that play an important role in cell proliferation and differentiation. MiRNA regulation is essential to many cellular processes, and escape from this regulatory network seems to be a common characteristic of several disease processes and malignant transformation. The interest in circulating miRNAs reflects in fact their central role in regulation of gene expression and the implication of miRNA-specific aberrant expression in the pathogenesis of cancer, cardiac, metabolic, neurologic, immune-related diseases as well as others. In our review we aimed to summarize the data related to the action of cellular miRNAs on the onset of various diseases, thus bringing together some of the latest information available on the role of circulating miRNAs. Additionally, the role of circulating miRNAs could be particularly relevant in the context of neoplastic diseases. At least 79 miRNAs have been reported as plasma or serum miRNA biomarkers of solid and hematologic tumors. Circulating miRNA profiling could improve the diagnosis of cancer, and could predict outcome for cancer patients, while the profiling of alterations in circulating miRNA that may signal a predisposition to cancer, could also be a therapeutic target in these patients.
Collapse
|
840
|
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012; 26:1287-99. [PMID: 22713869 DOI: 10.1101/gad.192351.112] [Citation(s) in RCA: 416] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the study of tumor-derived microvesicles reveal new insights into the cellular basis of disease progression and the potential to translate this knowledge into innovative approaches for cancer diagnostics and personalized therapy. Tumor-derived microvesicles are heterogeneous membrane-bound sacs that are shed from the surfaces of tumor cells into the extracellular environment. They have been thought to deposit paracrine information and create paths of least resistance, as well as be taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. The complexity of their bioactive cargo-which includes proteins, RNA, microRNA, and DNA-suggests multipronged mechanisms by which microvesicles can condition the extracellular milieu to facilitate disease progression. The formation of these shed vesicles likely involves both a redistribution of surface lipids and the vertical trafficking of cargo to sites of microvesicle biogenesis at the cell surface. Current research also suggests that molecular profiling of these structures could unleash their potential as circulating biomarkers as well as platforms for personalized medicine. Thus, new and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
841
|
Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 2012; 7:42. [PMID: 22920859 PMCID: PMC3483256 DOI: 10.1186/1750-1326-7-42] [Citation(s) in RCA: 656] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinson's disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of αsyn oligomers and determine their extracellular location. RESULTS Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity. CONCLUSIONS Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Karin M Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
842
|
Aliotta JM. Tumor exosomes: a novel biomarker? J Gastrointest Oncol 2012; 2:203-5. [PMID: 22811852 DOI: 10.3978/j.issn.2078-6891.2011.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jason M Aliotta
- Division of Pulmonary, Sleep and Critical Care Medicine, Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
843
|
Palmisano G, Jensen SS, Le Bihan MC, Lainé J, McGuire JN, Pociot F, Larsen MR. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Mol Cell Proteomics 2012; 11:230-43. [PMID: 22345510 PMCID: PMC3412958 DOI: 10.1074/mcp.m111.012732] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/10/2012] [Indexed: 01/14/2023] Open
Abstract
Microparticles and exosomes are two of the most well characterized membrane-derived microvesicles released either directly from the plasma membrane or released through the fusion of intracellular multivesicular bodies with the plasma membrane, respectively. They are thought to be involved in many significant biological processes such as cell to cell communication, rescue from apoptosis, and immunological responses. Here we report for the first time a quantitative study of proteins from β-cell-derived microvesicles generated after cytokine induced apoptosis using stable isotope labeled amino acids in cell culture combined with mass spectrometry. We identified and quantified a large number of β-cell-specific proteins and proteins previously described in microvesicles from other cell types in addition to new proteins located to these vesicles. In addition, we quantified specific sites of protein phosphorylation and N-linked sialylation in proteins associated with microvesicles from β-cells. Using pathway analysis software, we were able to map the most distinctive changes between microvesicles generated during growth and after cytokine stimulation to several cell death and cell signaling molecules including tumor necrosis factor receptor superfamily member 1A, tumor necrosis factor, α-induced protein 3, tumor necrosis factor-interacting kinase receptor-interacting serine-threonine kinase 1, and intercellular adhesion molecule 1.
Collapse
Affiliation(s)
- Giuseppe Palmisano
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Søren Skov Jensen
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Marie-Catherine Le Bihan
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- ‖UMR S 974 INSERM, Institut de Myologie, Paris 75013, France
| | - Jeanne Lainé
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | - Martin Røssel Larsen
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
844
|
D’Asti E, Garnier D, Lee TH, Montermini L, Meehan B, Rak J. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012; 3:294. [PMID: 22934045 PMCID: PMC3429065 DOI: 10.3389/fphys.2012.00294] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | - Janusz Rak
- Pediatrics, Cancer and Angiogenesis Laboratory, RI MUHC, Montreal Children’s Hospital, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
845
|
Li F, Chen YZ, Miao ZN, Zheng SY, Jin J. Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram 2012; 14:334-41. [PMID: 22816556 DOI: 10.1089/cell.2012.0002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cartilage tissue engineering requires a porous biodegradable scaffold and nonimmunogenic cells with chondrogenic potential. In this study, the ability of the placenta-derived mesenchymal stem cells (PMSCs) to grow on silk fibroin (SF) biomaterial was determined, and the potential of a SF biomaterial serving as a delivery vehicle for human PMSCs in a rabbit articular cartilage defects model was evaluated. Human PMSCs were maintained in vitro in an allogeneic mixed lymphocyte reactions (MLR) system to investigate the suppressive effects on T cell proliferation. A total of 12 healthy adult New Zealand rabbits were implanted with a PMSC/SF biomaterial complex after articular cartilage defects of the femoral condyle in the knee were established. The repair of the articular cartilage defects was observed after 4 weeks, 8 weeks, and 12 weeks. Results from the MLR indicated that human PMSCs inhibited rabbit T cell responses. Knee damage was repaired by the newly formed hyaline cartilage, and within 12 weeks there was neither degeneration nor infiltration with lymphocytes or leukocytes, and no silk fibroin biomaterial residue was detected. In conclusion, the silk fibroin biomaterial can be applied as a new scaffold for cartilage tissue engineering, and implantation of human PMSCs on the cartilage can enhance repair of articular cartilage defects in a rabbit model.
Collapse
Affiliation(s)
- Fang Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, P.R. China
| | | | | | | | | |
Collapse
|
846
|
Kralj-Iglic V. Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomedicine 2012; 7:3579-96. [PMID: 22888223 PMCID: PMC3414204 DOI: 10.2147/ijn.s29076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Membranous nanostructures, such as nanovesicles and nanotubules, are an important pool of biological membranes. Recent results indicate that they constitute cell-cell communication systems and that cancer development is influenced by these systems. Nanovesicles that are pinched off from cancer cells can move within the circulation and interact with distant cells. It has been suggested and indicated by experimental evidence that nanovesicles can induce metastases from the primary tumor in this way. Therefore, it is of importance to understand better the mechanisms of membrane budding and vesiculation. Here, a theoretical description is presented concerning consistently related lateral membrane composition, orientational ordering of membrane constituents, and a stable shape of nanovesicles and nanotubules. It is shown that the character of stable nanostructures reflects the composition of the membrane and the intrinsic shape of its constituents. An extension of the fluid mosaic model of biological membranes is suggested by taking into account curvature-mediated orientational ordering of the membrane constituents on strongly anisotropically curved regions. Based on experimental data for artificial membranes, a possible antimetastatic effect of plasma constituents via mediation of attractive interaction between membranous structures is suggested. This mediated attractive interaction hypothetically suppresses nanovesiculation by causing adhesion of buds to the mother membrane and preventing them from being pinched off from the membrane.
Collapse
Affiliation(s)
- Veronika Kralj-Iglic
- Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia.
| |
Collapse
|
847
|
Gills JJ, Zhang C, Abu-Asab MS, Castillo SS, Marceau C, LoPiccolo J, Kozikowski AP, Tsokos M, Goldkorn T, Dennis PA. Ceramide mediates nanovesicle shedding and cell death in response to phosphatidylinositol ether lipid analogs and perifosine. Cell Death Dis 2012; 3:e340. [PMID: 22764099 PMCID: PMC3406576 DOI: 10.1038/cddis.2012.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anticancer phospholipids that inhibit Akt such as the alkylphospholipid perifosine (Per) and phosphatidylinositol ether lipid analogs (PIAs) promote cellular detachment and apoptosis and have a similar cytotoxicity profile against cancer cell lines in the NCI60 panel. While investigating the mechanism of Akt inhibition, we found that short-term incubation with these compounds induced rapid shedding of cellular nanovesicles containing EGFR, IGFR and p-Akt that occurred in vitro and in vivo, while prolonged incubation led to cell detachment and death that depended on sphingomyelinase-mediated generation of ceramide. Pretreatment with sphingomyelinase inhibitors blocked ceramide generation, decreases in phospho-Akt, nanovesicle release and cell detachment in response to alkylphospholipids and PIAs in non-small cell lung cancer cell lines. Similarly, exogenous ceramide also decreased active Akt and induced nanovesicle release. Knockdown of neutral sphingomyelinase decreased, whereas overexpression of neutral or acid sphingomyelinase increased cell detachment and death in response to the compounds. When transferred in vitro, PIA or Per-induced nanovesicles increased ceramide levels and death in recipient cells. These results indicate ceramide generation underlies the Akt inhibition and cytotoxicity of this group of agents, and suggests nanovesicle shedding and uptake might potentially propagate their cytotoxicity in vivo.
Collapse
Affiliation(s)
- J J Gills
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4254, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
848
|
Lai CPK, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3:228. [PMID: 22754538 PMCID: PMC3384085 DOI: 10.3389/fphys.2012.00228] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Collapse
Affiliation(s)
- Charles Pin-Kuang Lai
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
849
|
Järver P, Coursindel T, Andaloussi SEL, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e27. [PMID: 23344079 PMCID: PMC3390225 DOI: 10.1038/mtna.2012.18] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Järver
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Samir EL Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institute, Hudidnge, Sweden
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew JA Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
850
|
Eken C, Sadallah S, Martin PJ, Treves S, Schifferli JA. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 2012; 218:382-92. [PMID: 22749214 DOI: 10.1016/j.imbio.2012.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 04/03/2012] [Accepted: 05/17/2012] [Indexed: 02/02/2023]
Abstract
Ectosomes are vesicles shed directly from the cell surface. Human polymorphonuclear neutrophils release ectosomes (PMN-Ect) upon their activation. PMN-Ect expose phosphatidylserine (PS) on the outer leaflet of the plasma membrane, and down-modulate the inflammatory response of human macrophages and dendritic cells exposed to TLR-2 and -4 ligands. This down-modulation is mediated by PS via the engagement and activation of the Mer receptor tyrosine kinase (MerTK). In the present study, we demonstrate that exposure of macrophages to PMN-Ect activates directly 2 additional pathways, an immediate Ca(2+) flux and a rapid release of TGF-β1. As expected, the Ca(2+) flux was necessary for the activation of TLR-2 pathway with the release of cytokines. However, MerTK blockade with antibodies did not modify the Ca(2+) flux, indicating an independent activation of Ca(2+) by PMN-Ect. Striking was that the rapid release of TGF-β1 was independent of the MerTK pathway and did not require a Ca(2+) flux. TGF-β1 was present in cytosolic storage pools, which were depleted after exposure of the macrophages to PMN-Ect, and no increase in TGF-β1 mRNA could be detected in the 3 first hours when maximal release had occurred. The release of TGF-β1 by macrophages was seen only for PMN-Ect and not for PS-liposomes or erythrocyte ectosomes, which express PS. However, blocking the PS of PMN-Ect inhibited TGF-β1 release, suggesting that PS expression was necessary although not sufficient for this release. Interestingly, the effects of PMN-Ect pre-exposure were lasting for 24h with the macrophages being less receptive to TLR-2 activation and TGF-β1 stores remaining low. In sum, PMN-Ect induce several signaling pathways in resting and stimulated macrophages, which include independently the MerTK pathway, Ca(2+) flux and the release of stored TGF-β1, and each might influence the immunomodulatory effects of macrophages.
Collapse
Affiliation(s)
- Ceylan Eken
- Immunonephrology Laboratory, Departments of Biomedicine and Medicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|