801
|
Affiliation(s)
- Gwo-Tzer Ho
- Gastrointestinal Unit, Western General Hospital, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
802
|
Lengqvist J, Mata de Urquiza A, Perlmann T, Sjövall J, Griffiths WJ. Specificity of receptor-ligand interactions and their effect on dimerisation as observed by electrospray mass spectrometry: bile acids form stable adducts to the RXRalpha. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1448-61. [PMID: 16258897 PMCID: PMC2315782 DOI: 10.1002/jms.925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Electrospray (ES) mass spectrometry data is presented showing that agonist binding to the nuclear receptor (NR), retinoid X receptor alpha (RXRalpha), is competitive. The competitive nature of agonist binding can be used to discriminate between the specific and non-specific binding of small lipophilic molecules to NRs. Further, data is presented which show that high-affinity ligand binding to the RXRalpha ligand-binding domain (LBD) stabilises the domain homodimer. The results indicate that homodimerisation, a functional property of the receptor associated with the binding of agonist ligands, could be used to discriminate between specific and non-specific binding events. Additionally, we report on the remarkable stability of the gas-phase complex between the RXRalpha LBD protein and endogenous bile acids. Protein-bile acid interactions in the gas phase were found to be surprisingly strong, withstanding 'in-source' fragmentation in the ES interface, and, in the case of taurocholic acid (TCA) and lithocholic acid-3-sulphate (LCA-3-sulphate), collision-induced dissociation within the collision cell of a tandem mass spectrometer. Bile acids were found to be inactive towards RXRalpha in transfection assays, and have not been reported to be ligands for the RXRalpha, although lithocholic acid (LCA) has been found to be a competitor in the photoaffinity labelling of RXRbeta with 9-cis-retinoic acid (9-cis-RA). The observation of strong RXRalpha-bile acid non-covalent complexes in ES mass spectrometry highlight the danger of extrapolating gas-phase binding data to the solution phase and further to a possible biological activity, particularly when surface-active compounds such as bile acids are involved. The introduction of a competitive ligand-binding experiment can alleviate this problem and allow the differentiation between specific and non-specific binding.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, Stockholm SE-17177, Sweden
| | | | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, Stockholm SE-17177, Sweden
| | - Jan Sjövall
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - William J. Griffiths
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
803
|
Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Björkhem I, Gonzalez FJ. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2005; 47:215-27. [PMID: 16264197 PMCID: PMC1413576 DOI: 10.1194/jlr.m500430-jlr200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates many genes that are preferentially expressed in liver. Mice lacking hepatic expression of HNF4alpha (HNF4alphaDeltaL) exhibited markedly increased levels of serum bile acids (BAs) compared with HNF4alpha-floxed (HNF4alphaF/F) mice. The expression of genes involved in the hydroxylation and side chain beta-oxidation of cholesterol, including oxysterol 7alpha-hydroxylase, sterol 12alpha-hydroxylase (CYP8B1), and sterol carrier protein x, was markedly decreased in HNF4alphaDeltaL mice. Cholesterol 7alpha-hydroxylase mRNA and protein were diminished only during the dark cycle in HNF4alphaDeltaL mice, whereas expression in the light cycle was not different between HNF4alphaDeltaL and HNF4alphaF/F mice. Because CYP8B1 expression was reduced in HNF4alphaDeltaL mice, it was studied in more detail. In agreement with the mRNA levels, CYP8B1 enzyme activity was absent in HNF4alphaDeltaL mice. An HNF4alpha binding site was found in the mouse Cyp8b1 promoter that was able to direct HNF4alpha-dependent transcription. Surprisingly, cholic acid-derived BAs, produced as a result of CYP8B1 activity, were still observed in the serum and gallbladder of these mice. These studies reveal that HNF4alpha plays a central role in BA homeostasis by regulation of genes involved in BA biosynthesis, including hydroxylation and side chain beta-oxidation of cholesterol in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Ai-Ming Yu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Sun Hee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | | | - Junko Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Charlie C. Xiang
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael J. Brownstein
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Gösta Eggertsen
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Ingemar Björkhem
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
804
|
Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: from structure to potential clinical applications. J Med Chem 2005; 48:5383-403. [PMID: 16107136 DOI: 10.1021/jm0582221] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, I-06123 Perugia, Italy.
| | | | | |
Collapse
|
805
|
Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima YI. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115:2202-8. [PMID: 16075061 PMCID: PMC1180526 DOI: 10.1172/jci23076] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 05/31/2005] [Indexed: 12/12/2022] Open
Abstract
We have generated a line of mutant mouse that lacks betaKlotho, a protein that structurally resembles Klotho. The synthesis and excretion of bile acids were found to be dramatically elevated in these mutants, and the expression of 2 key bile acid synthase genes, cholesterol 7alpha-hydroxylase (Cyp7a1) and sterol 12alpha-hydroxylase (Cyp8b1), was strongly upregulated. Nuclear receptor pathways and the enterohepatic circulation, which regulates bile acid synthesis, seemed to be largely intact; however, bile acid-dependent induction of the small heterodimer partner (SHP) NR0B2, a common negative regulator of Cyp7a1 and Cyp8b1, was significantly attenuated. The expression of Cyp7a1 and Cyp8b1 is known to be repressed by dietary bile acids via both SHP-dependent and -independent regulations. Interestingly, the suppression of Cyp7a1 expression by dietary bile acids was impaired, whereas that of Cyp8b1 expression was not substantially altered in betaklotho mice. Therefore, betaKlotho may stand as a novel contributor to Cyp7a1-selective regulation. Additionally, betaKlotho-knockout mice exhibit resistance to gallstone formation, which suggests the potential future clinical relevance of the betaKlotho system.
Collapse
Affiliation(s)
- Shinji Ito
- Department of Pathology and Tumor Biology, Graduate School of Medicine, and Horizontal Medical Research Organization, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
806
|
Kretschmer XC, Baldwin WS. CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact 2005; 155:111-28. [PMID: 16054614 DOI: 10.1016/j.cbi.2005.06.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 01/05/2023]
Abstract
The pregnane X-receptor (PXR) and the constitutive androstane receptor (CAR) are orphan nuclear receptors activated by a variety of ligands. Currently it remains uncertain whether these receptors have a high-affinity ligand or instead function as more generalized steroid/xenobiotic sensors. Both receptors are important regulators of several steroid and xenobiotic detoxification enzymes and transporters (phases I-III) in the liver and intestine and thus are important regulators of adaptation to chemical stress. The detoxification proteins induced are responsible for the metabolism, deactivation and transport of bile acids, thyroid and steroid hormones, numerous environmental chemicals, and several drugs. PXR and CAR received their names because of steroid ligands that activate and inhibit their transcriptional activity, respectively. Interestingly, some steroids and steroid mimics activate one or both receptors, including several endocrine disrupting chemicals. Environmental estrogens, such as the pesticides methoxychlor, endosulfan, dieldrin, DDT, and the plasticizer nonylphenol activate either PXR or both PXR and CAR. Because PXR and CAR are activated by numerous steroids and endocrine disrupters, it appears that these receptors protect the integrity of the endocrine system. They recognize an increase in steroid-like chemicals and, in turn, induce detoxification. Furthermore, PXR and CAR induce enzymes, such as the CYP2B and CYP3A family members, responsible for the metabolism of steroid and thyroid hormones and this may alter their normal physiological function. This review summarizes the available data on the activity of endocrine disrupters and endocrine active chemicals on PXR and CAR, examines the role of PXR and CAR in protection from these chemicals, and evaluates potential adverse physiological consequences of PXR and CAR activation.
Collapse
Affiliation(s)
- Xiomara C Kretschmer
- University of Texas at El Paso, Biological Sciences, 500 W. University Ave., El Paso, TX 79968, USA
| | | |
Collapse
|
807
|
Shelness GS, Rudel LL. A Role for the Pregnane X Receptor in High-Density Lipoprotein Metabolism. Arterioscler Thromb Vasc Biol 2005; 25:2016-7. [PMID: 16199756 DOI: 10.1161/01.atv.0000186042.94668.2b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
808
|
Choudhuri S, Valerio LG. Usefulness of studies on the molecular mechanism of action of herbals/botanicals: The case of St. John's wort. J Biochem Mol Toxicol 2005; 19:1-11. [PMID: 15736155 DOI: 10.1002/jbt.20057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of herbals/botanicals has been gaining wide popularity in recent years in the United States as well as in other parts of the world. The mechanism of action of most of these herbals/botanicals has not been subjected to thorough scientific investigations. St. John's wort (Hypericum perforatum) represents a useful case study in this sense. Traditionally, it is used as a natural treatment for depression; however, in recent years its molecular mechanism of action has been elucidated by a number of laboratories across the world. Such studies have helped understand potential interactions of St. John's wort with drugs and other xenobiotics. St. John's wort activates a nuclear receptor called pregnane X receptor (PXR). PXR is a ligand-activated transcription factor that induces a number of xenobiotic-metabolizing enzymes and transporters including cytochrome P4503A4 (CYP3A4) in humans. Because CYP3A4 alone metabolizes about 60% of all clinically relevant drugs, induction of CYP3A4 may result in the rapid elimination of these drugs and a consequent reduction in drug efficacy. Ironically, such enzyme-inducing effects may not produce any immediate adverse symptomatology in the person taking St. John's wort. Therefore, the case of St. John's wort should serve as a good example of the usefulness and importance of studies on the mechanism of action of the herbals/botanicals, particularly those with widespread use. Scientists, physicians, and other health professionals can make use of the knowledge from such studies as an additional risk management tool.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Biotechnology and GRAS Notice Review, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA.
| | | |
Collapse
|
809
|
Jurutka PW, Thompson PD, Whitfield GK, Eichhorst KR, Hall N, Dominguez CE, Hsieh JC, Haussler CA, Haussler MR. Molecular and functional comparison of 1,25-dihydroxyvitamin D(3) and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J Cell Biochem 2005; 94:917-43. [PMID: 15578590 DOI: 10.1002/jcb.20359] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vitamin D receptor (VDR) binds to and mediates the effects of the 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) hormone to alter gene transcription. A newly recognized VDR ligand is the carcinogenic bile acid, lithocholic acid (LCA). We demonstrate that, in HT-29 colon cancer cells, both LCA and 1,25(OH)(2)D(3) induce expression of cytochrome P450 3A4 (CYP3A4), an enzyme involved in cellular detoxification. We also show that LCA-VDR stimulates transcription of gene reporter constructs containing DR3 and ER6 vitamin D responsive elements (VDREs) from the human CYP3A4 gene. Utilizing gel mobility shift, pulldown, and mammalian two-hybrid assays, we observe that: (i) 1,25(OH)(2)D(3) enhances retinoid X receptor (RXR) heterodimerization with VDR more effectively than LCA, (ii) the 1,25(OH)(2)D(3)-liganded VDR-RXR heterodimer recruits full-length SRC-1 coactivator, whereas this interaction is minimal with LCA unless LXXLL-containing fragments of SRC-1 are employed, and (iii) both 1,25(OH)(2)D(3) and LCA enhance the binding of VDR to DRIP205/mediator, but unlike 1,25(OH)(2)D(3)-VDR, LCA-VDR does not interact detectably with NCoA-62 or TRIP1/SUG1, suggesting a different pattern of LCA-VDR comodulator association. Finally, residues in the human VDR (hVDR) ligand binding domain (LBD) were altered to create mutants unresponsive to 1,25(OH)(2)D(3)- and/or LCA-stimulated transactivation, identifying S237 and S225/S278 as critical for 1,25(OH)(2)D(3) and LCA action, respectively. Therefore, these two VDR ligands contact distinct residues in the binding pocket, perhaps generating unique receptor conformations that determine the degree of RXR and comodulator binding. We propose that VDR is a bifunctional regulator, with the 1,25(OH)(2)D(3)-liganded conformation facilitating high affinity endocrine actions, and the LCA-liganded configuration mediating local, lower affinity cellular detoxification by upregulation of CYP3A4 in the colon.
Collapse
Affiliation(s)
- Peter W Jurutka
- Department of Biochemistry and Molecular Biophysics, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
810
|
Cheng X, Maher J, Dieter MZ, Klaassen CD. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos 2005; 33:1276-82. [PMID: 15919853 DOI: 10.1124/dmd.105.003988] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Drug-metabolizing enzymes and transporters are key factors that affect disposition of xenobiotics. Phase I enzyme induction by classes of microsomal enzyme inducers occurs via activation of transcription factors such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear factor erythroid 2-related factor 2 (Nrf2). However, regulation of organic anion-transporting polypeptide (Oatp) uptake transporters by these factors is poorly understood. Hepatic Oatp uptake of some chemicals must occur prior to biotransformation; thus, we hypothesize that expression of Oatps and biotransformation enzymes is coordinately regulated in liver. In the present study, the effects of known chemical activators of AhR, CAR, PXR, PPARalpha, and Nrf2 on the hepatic mRNA expression of mouse Oatps and drug-metabolizing enzymes were quantified by the branched DNA assay. All chemicals increased the expression of their well characterized target drug-metabolizing enzymes: AhR ligands increased Cyp1A1, CAR activators increased Cyp2B10, PXR ligands increased Cyp3A11, PPARalpha ligands increased Cyp4A14, and Nrf2 activators induced NAD(P)H:quinone oxidoreductase 1. AhR ligands (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyl 126, and beta-naphthoflavone) increased Oatp2b1 and 3a1 mRNA expression in liver. CAR activators [phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, and diallyl sulfide] decreased Oatp1a1 mRNA expression. Two PXR ligands [pregnenolone-16alpha-carbonitrile (PCN) and spironolactone] increased Oatp1a4 mRNA expression in liver, whereas PXR ligands (PCN, spironolactone, and dexamethasone) and PPARalpha ligands (clofibrate, ciprofibrate, and diethylhexylphthalate) decreased Oatp1a1, 1b2, 2a1, and 2b1 mRNA expression in liver. Nrf2 activators (oltipraz, ethoxyquin, and butylated hydroxyanisole) down-regulated Oatp1a1 but up-regulated Oatp2b1 mRNA expression. Therefore, only a few transcription factor activators increased Oatp expression, and, surprisingly, many decreased Oatp expression.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
811
|
Abstract
In this minireview, the role of various nuclear receptors and transcription factors in the expression of drug disposition genes is summarized. Specifically, the molecular aspects and functional impact of the aryl hydrocarbon receptor (AhR), nuclear factor-E2 p45-related factor 2 (N(r)f2), hepatocyte nuclear factor 1alpha (HNF1alpha), constitutive androstane receptor (LAR), pregnane X receptor (PXR), farnesoid X receptor (FXR), peroxisome proliferator-activated receptor alpha (PPAR(alpha)), hepatocyte nuclear factor 4alpha (HNF4alpha), vitamin D receptor (VDR), liver receptor homolog 1 (LRH1), liver X receptor (LXR(alpha)), small heterodimer partner-1 (SHP-1), and glucocorticoid receptor (GR) on gene expression are detailed. Finally, we discuss some current topics and themes in nuclear receptor-mediated regulation of drug metabolizing enzymes and drug transporters.
Collapse
Affiliation(s)
- Rommel G Tirona
- Department of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
812
|
Xu C, Li CYT, Kong ANT. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28:249-68. [PMID: 15832810 DOI: 10.1007/bf02977789] [Citation(s) in RCA: 870] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular "stress" response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against "environmental" insults such as those elicited by exposure to xenobiotics.
Collapse
Affiliation(s)
- Changjiang Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
813
|
|
814
|
Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43:342-57. [PMID: 15975683 DOI: 10.1016/j.jhep.2005.03.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 12/24/2022]
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, E RAE 09, 8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
815
|
Mu Y, Stephenson CRJ, Kendall C, Saini SPS, Toma D, Ren S, Cai H, Strom SC, Day BW, Wipf P, Xie W. A pregnane X receptor agonist with unique species-dependent stereoselectivity and its implications in drug development. Mol Pharmacol 2005; 68:403-13. [PMID: 15872116 DOI: 10.1124/mol.105.013292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pregnane X receptor (PXR) is an orphan nuclear receptor that regulates the expression of genes encoding drug-metabolizing enzymes and transporters. In addition to affecting drug metabolism, potent and selective PXR agonists may also have therapeutic potential by removing endogenous and exogenous toxins. In this article, we report the synthesis and identification of novel PXR agonists from a library of peptide isosteres. Compound S20, a C-cyclopropylalkylamide, was found to be a PXR agonist with both enantiomer- and species-specific selectivity. S20 has three chiral carbons and was resolved into its two enantiomers. The individual S20 enantiomers exhibited striking mouse/human-specific PXR activation, whereby enantiomer (+)-S20 preferentially activated hPXR, and enantiomer (-)-S20 was a better activator for mPXR. As a human PXR (hPXR) agonist, (+)-S20 was more potent and efficacious than rifampicin. Mutagenesis studies revealed that the ligand binding domain residue Phe305 is critical for the preference for the (-)-S20 enantiomer by the rodent PXR. Treatment of S20 induced the expression of drug-metabolizing enzymes and transporters in reporter gene assays, in primary human hepatocytes, and in "humanized" hPXR transgenic mice. To our knowledge, S20 represents the first compound whose enantiomers have opposite species preference in activating a xenobiotic receptor. The stereoselectivity may be used to guide the development of safer drugs to avoid drug-drug interactions or to achieve human-specific therapeutic effects when a xenobiotic receptor is being used as a drug target.
Collapse
Affiliation(s)
- Ying Mu
- Center for Pharmacogenetics, Salk Hall 656, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
816
|
Maeda T, Miyata M, Yotsumoto T, Kobayashi D, Nozawa T, Toyama K, Gonzalez FJ, Yamazoe Y, Tamai I. Regulation of drug transporters by the farnesoid X receptor in mice. Mol Pharm 2005; 1:281-9. [PMID: 15981587 DOI: 10.1021/mp0499656] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The farnesoid X receptor (FXR, NR1H4) regulates bile acid and lipid homeostasis by acting as an intracellular bile acid-sensing transcription factor, resulting in altered expression of enzymes and transporters involved in bile acid synthesis and transport. Here, we quantitatively analyzed the alterations in expression levels of drug transporters, mainly organic anion-transporting polypeptides (oatp), in wild-type and FXR-null mice to evaluate the role of FXR in their expression and regulation by cholic acid. Changes in the mRNA amounts in liver, kidney, small intestine, and testis in FXR-null mice fed with or without a supplement of 0.5% cholic acid in the diet were analyzed by semiquantitative RT-PCR. In FXR-null mice, the mRNA levels of oatp1, oatp2, oatp3, and octn1 were lower than those of wild-type mice in kidney and testis, while there was no difference in liver or small intestine. Cholic acid feeding led to significantly decreased levels of expression of oatp1 and oct1 and an increased level of expression of oatp2 in wild-type mouse liver. In FXR-null mice, oatp1 and other transporters were downregulated in liver, kidney, and testis, whereas small intestine ASBT, octn2, and pept1 were upregulated. Our results suggested that FXR is involved in the transcriptional regulation of oatp and other transporters in a tissue-specific manner. Furthermore, the effect of cholic acid treatment indicates the involvement of regulatory mechanism(s) other than FXR.
Collapse
Affiliation(s)
- Tomoji Maeda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
817
|
Dowless MS, Barbee JL, Borchert KM, Bocchinfuso WP, Houck KA. Cyclic AMP-independent activation of CYP3A4 gene expression by forskolin. Eur J Pharmacol 2005; 512:9-13. [PMID: 15814084 DOI: 10.1016/j.ejphar.2005.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/03/2004] [Accepted: 02/18/2005] [Indexed: 11/29/2022]
Abstract
Forskolin and cAMP have been shown to have paradoxical effects in the regulation of expression levels of mRNA of cytochrome P450 3A (CYP3A) family members. We demonstrate in this study that forskolin upregulated the promoter for CYP3A4 independent of its ability to increase cAMP levels. This activity was explained showing forskolin directly activated the pregnane-X-receptor, a known regulator of CYP3A genes.
Collapse
Affiliation(s)
- Michele S Dowless
- Lilly Research Laboratories, Eli Lilly and Co., 20 T.W. Alexander Drive, P.O. Box 13951, Research Triangle Park, NC 27709-3951, USA
| | | | | | | | | |
Collapse
|
818
|
Lee FY, Kast-Woelbern HR, Chang J, Luo G, Jones SA, Fishbein MC, Edwards PA. Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem 2005; 280:31792-800. [PMID: 16012168 DOI: 10.1074/jbc.m503182200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
819
|
Ding X, Staudinger JL. The ratio of constitutive androstane receptor to pregnane X receptor determines the activity of guggulsterone against the Cyp2b10 promoter. J Pharmacol Exp Ther 2005; 314:120-7. [PMID: 15833898 DOI: 10.1124/jpet.105.085225] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Guggulsterone is the active ingredient in gugulipid, an organic extract of the Commiphora mukul plant. Gugulipid has been used for nearly 3000 years in Ayurvedic medicine, mainly as a treatment for arthritis. Herbal practitioners currently use gugulipid therapy in conditions as diverse as rheumatism, coronary artery disease, arthritis, hyperlipidemia, acne, and obesity. The active ingredient in gugulipid is guggulsterone, a plant sterol compound recently identified as a pregnane X receptor (PXR; NR1I2) ligand. We show herein that guggulsterone treatment represses the expression of cytochrome P450 2b10 (Cyp2b10) gene expression by inhibiting constitutive androstane receptor (CAR; NR1I3) activity in hepatocytes lacking functional PXR (PXR-knockout). We also show that PXR-CAR cross-talk determines the net activity of guggulsterone treatment toward Cyp2b10 gene expression. Using mammalian two-hybrid assays, we show that treatment with guggulsterone differentially affects protein cofactor recruitment to these two nuclear receptors. These data identify guggulsterone as an inverse agonist of the nuclear receptor CAR. When viewed together with the data showing that PXR and CAR expression is highly variable in different ethnic populations and that CAR expression is under the control of a circadian rhythm, our data provide important insight into the molecular mechanism of interindividual variability of drug metabolism. These data, together with the recent resolution of the crystal structures of PXR and CAR, will likely aid in the rational design of more specific CAR inverse agonists that are currently viewed as potential antiobesity drugs.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Blotting, Northern
- Cells, Cultured
- Constitutive Androstane Receptor
- Cytochrome P450 Family 2
- Gene Expression/drug effects
- Genes, Reporter
- Luciferases/genetics
- Mice
- Mice, Knockout
- Plasmids/genetics
- Pregnane X Receptor
- Pregnenediones/pharmacology
- Promoter Regions, Genetic/genetics
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/drug effects
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Steroid Hydroxylases/genetics
- Transcription Factors/drug effects
- Transcription Factors/physiology
- Transfection
Collapse
Affiliation(s)
- Xunshan Ding
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., 5046 Malott Hall, Lawrence, KS 66045, USA
| | | |
Collapse
|
820
|
Wood M, Ananthanarayanan M, Jones B, Wooton-Kee R, Hoffman T, Suchy FJ, Vore M. Hormonal regulation of hepatic organic anion transporting polypeptides. Mol Pharmacol 2005; 68:218-25. [PMID: 15840840 DOI: 10.1124/mol.104.010371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organic anion transporting polypeptides (Oatp) mediate the transport of a wide variety of amphipathic organic substrates. Rat Oatp1b2 and human OATP1B3 are members of a liver-specific subfamily of Oatps/OATPs. We investigated whether prolactin (PRL) and growth hormone (GH) regulated Oatp1b2 and OATP1B3 gene expression via signal transducers and activators of transcription 5 (Stat5). Binding sites for Stat5 transcription factors were located in the promoters of Oatp1b2 and OATP1B3 at -209 to -201 (5'-TTCTGGGAA-3') and -170 to -162 (5'-TTCTGAGAA-3'), respectively. In primary hepatocytes from female and male rats treated with PRL or GH, Oatp1b2 mRNA measured by real-time polymerase chain reaction was significantly induced 2-fold. HepG2 cells were transiently transfected with expression vectors containing Oatp1b2 or OATP1B3 promoter fragments, cDNAs for Stat5a, and the receptors for PRL (PRLR(L)) or GH (GHR), and treated with PRL or GH. PRL and GH induction of Oatp1b2 and OATP1B3 promoter activity required cotransfection of Stat5a and PRLR(L) or GHR. Mutation of the Stat5 binding site in both promoters eliminated hormonal induction. In DNA binding assays, HepG2 cells transfected with cDNAs for Stat5a and PRLR(L) were treated with PRL, and nuclear extracts were probed with a (32)P-labeled oligomer corresponding to -177 to -157 of the OATP1B3 promoter. PRL enhanced the binding of Stat5a to the OATP1B3 promoter and DNA-protein binding was inhibited in competition assays by excess OATP1B3 and Stat5 consensus oligomers but not by mutant Stat5 oligomers. These findings indicate that PRL and GH can regulate Oatp1b2 and OATP1B3 gene expression via the Stat5 signal-transduction pathway.
Collapse
Affiliation(s)
- M Wood
- Graduate Center for Toxicology, 306 Health Sciences Research Building, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | | | |
Collapse
|
821
|
Sporstøl M, Tapia G, Malerød L, Mousavi SA, Berg T. Pregnane X receptor-agonists down-regulate hepatic ATP-binding cassette transporter A1 and scavenger receptor class B type I. Biochem Biophys Res Commun 2005; 331:1533-1541. [PMID: 15883047 DOI: 10.1016/j.bbrc.2005.04.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Pregnane X receptor (PXR) is the molecular target for a wide variety of endogenous and xenobiotic compounds. It regulates the expression of genes central to the detoxification (cytochrome P-450 enzymes) and excretion (xenobiotic transporters) of potentially harmful compounds. The aim of the present investigation was to determine the role of PXR in regulation of high-density lipoprotein (HDL) cholesterol metabolism by studying its impact on ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression in hepatocytes. ABCA1 and SR-BI are major factors in the exchange of cholesterol between cells and HDL. Expression analyses were performed using Western blotting and quantitative real time RT-PCR. Luciferase reporter gene assays were used to measure promoter activities. Total cholesterol was measured enzymatically after lipid extraction (Folch's method). The expression of ABCA1 and SR-BI was inhibited by the PXR activators rifampicin and lithocholic acid (LCA) in HepG2 cells and pregnenolone 16alpha-carbonitrile (PCN) in primary rat hepatocytes. Thus, PXR appears to be a regulator of hepatic cholesterol transport by inhibiting genes central to cholesterol uptake (SR-BI) and efflux (ABCA1).
Collapse
Affiliation(s)
- Marita Sporstøl
- Programme for Cell Biology, Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
822
|
McCarthy TC, Li X, Sinal CJ. Vitamin D Receptor-dependent Regulation of Colon Multidrug Resistance-associated Protein 3 Gene Expression by Bile Acids. J Biol Chem 2005; 280:23232-42. [PMID: 15824121 DOI: 10.1074/jbc.m411520200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-associated protein 3 (MRP3) is a multispecific anion transporter that is capable of transporting a number of conjugated and unconjugated bile acids. Expression of the MRP3 gene is increased during pathological states associated with elevated bile acid concentrations indicating a role for this transporter in adaptive and homeostatic bile acid metabolism. Analysis of Mrp3 mRNA levels in various mouse tissues with known relevance and/or exposure to bile acids revealed the highest levels of basal expression in the colon followed in order by the liver, duodenum, jejunum, ileum, and kidney. Functional analysis of a murine Mrp3 promoter reporter construct revealed vitamin D receptor (VDR)-dependent activation by 1,25-dihydroxyvitamin D(3) (VD3), 9-cis-retinoic acid (RA), and the cholestatic secondary bile acid, lithocholic acid (LCA). Using a series of deletion constructs combined with sequence analysis, a candidate VDR response element (VDRE) was identified between -1028 and -1014 bp of the Mrp3 promoter. Activation of the Mrp3 promoter in response to VD3, RA, or LCA, as well as binding of VDR/RXR heterodimers, was attenuated substantially by mutation of this VDRE. Treatment of mice with VD3 or LCA demonstrated in vivo modulation of the Mrp3 gene in colon but not in the liver. Reduction of endogenous VDR expression in colon adenocarcinoma MCA-38 cells by siRNA transfection was associated with reduced constitutive and inducible expression of the Mrp3 gene. These data support a regulatory role for the VDR in the protection of colon cells from bile acid toxicity through regulation of the Mrp3 expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bile Acids and Salts/metabolism
- Calcitriol/metabolism
- Cell Line, Tumor
- Cloning, Molecular
- Colon/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Exons
- Gene Deletion
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Intestinal Mucosa/metabolism
- Kidney/metabolism
- Ligands
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Multidrug Resistance-Associated Proteins/metabolism
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Calcitriol/chemistry
- Receptors, Calcitriol/metabolism
- Transfection
Collapse
Affiliation(s)
- Tanya C McCarthy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
823
|
Gnerre C, Schuster GU, Roth A, Handschin C, Johansson L, Looser R, Parini P, Podvinec M, Robertsson K, Gustafsson JA, Meyer UA. LXR deficiency and cholesterol feeding affect the expression and phenobarbital-mediated induction of cytochromes P450 in mouse liver. J Lipid Res 2005; 46:1633-42. [PMID: 15930522 DOI: 10.1194/jlr.m400453-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic transformation by the superfamily of cytochromes P450 (CYPs) plays an important role in the detoxification of xenobiotics such as drugs, environmental pollutants, and food additives. Endogenous substrates of CYPs include fatty acids, sterols, steroids, and bile acids. Induction of CYPs via transcriptional activation by substrates and other xenobiotics is an important adaptive mechanism that increases the organism's defense capability against toxicity. Numerous in vivo and in vitro data have highlighted the concept that the molecular mechanism of hepatic drug induction is linked to endogenous regulatory pathways. In particular, in vitro data suggest that oxysterols via the liver X receptor (LXR) inhibit phenobarbital (PB)-mediated induction of CYPs. To study the link between LXR, cholesterol homeostasis, and drug induction in vivo, we designed experiments in wild-type, LXRalpha-, LXRbeta-, and LXRalpha/beta-deficient mice. Our data expose differential regulatory patterns for Cyp2b10 and Cyp3a11 dependent on the expression of LXR isoforms and on challenge of cholesterol homeostasis by excess dietary cholesterol. Our results suggest that, in the mouse, liver cholesterol status significantly alters the pattern of expression of Cyp3a11, whereas the absence of LXR leads to an increase in PB-mediated activation of Cyp2b10.
Collapse
Affiliation(s)
- Carmela Gnerre
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
824
|
Ando H, Tsuruoka S, Yamamoto H, Takamura T, Kaneko S, Fujimura A. Regulation of cholesterol 7alpha-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet. Atherosclerosis 2005; 178:265-9. [PMID: 15694933 DOI: 10.1016/j.atherosclerosis.2004.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/31/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
The nuclear receptors liver X receptor (LXR) alpha and farnesoid X receptor (FXR) are positive and negative regulators of cholesterol 7alpha-hydroxylase (CYP7A1) transcription, respectively. To clarify their roles in the regulation of CYP7A1 in mice, we investigated mRNA expression of their target genes in the livers of C57BL/6 mice fed the following five diets for 2 weeks: a standard diet, cholic acid, cholesterol, cholesterol+high fat, or an atherogenic diet (cholic acid+cholesterol+high fat). The mRNA level of ATP-binding cassette transporter (ABC) A1 gene, one of LXRalpha target genes, significantly increased on the diets containing cholic acid and/or cholesterol+high fat, but not on the diet containing cholesterol alone. On the other hand, the mRNA levels of the FXR target genes ABCB11, ABCC2, and short heterodimer partner increased only on the diet containing cholic acid with or without cholesterol+high fat. Surprisingly, cholesterol alone or cholesterol+high fat did not affect CYP7A1 mRNA level, whereas cholic acid with or without cholesterol+high fat greatly reduced the level. Thus, in the atherogenic diet-fed mice, cholic acid component is needed for the FXR activation, and FXR dominantly regulates CYP7A1 transcription.
Collapse
Affiliation(s)
- Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
825
|
Rühl R, Sczech R, Landes N, Pfluger P, Kluth D, Schweigert FJ. Carotenoids and their metabolites are naturally occurring activators of gene expression via the pregnane X receptor. Eur J Nutr 2005; 43:336-43. [PMID: 15309450 DOI: 10.1007/s00394-004-0475-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carotenoids are important micronutrients in the human diet and are present in human serum at micromolar concentrations. In addition to their antioxidant potential, carotenoids obtain physiologically relevant properties such as influencing cellular signal pathways, gene expression or induction of detoxifying enzymes. In this study, we determined the transactivation of PXR by cotransfection with the full-length receptor and a PXR-responsive reporter gene. Carotenoids and retinol revealed a 5-6 fold reporter gene activity in HepG2 cells in comparison to a 7-fold induction by the well-known PXR agonist rifampicin, whereas apo-carotenals and lycopene exerted less or no activation potential. The inductive efficacy was hereby concentration-dependent. In addition, carotenoid- or retinol-mediated gene expression of PXR-responsive genes like CYP3A4/CYP3A7, CYP3A5, MDR-1 and MRP-2 has been determined in HepG2 cells by RT-PCR with up-regulative properties of beta-carotene or retinol being comparable to or even higher than that of rifampicin. In conclusion, PXR-mediated up-regulation of CYP3A4/CYP3A7 and CYP3A5 as well as MDR1 and MRP2 by carotenoids points to a potential interference on the metabolism of xenobiotic and endogenous relevant compounds.
Collapse
Affiliation(s)
- Ralph Rühl
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Potsdam-Rehbrücke, Germany.
| | | | | | | | | | | |
Collapse
|
826
|
Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:84-93. [PMID: 15708356 DOI: 10.1016/j.bbalip.2004.11.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 09/30/2004] [Accepted: 11/05/2004] [Indexed: 02/03/2023]
Abstract
The hepatic predominating cytochrome P450, CYP3A4, plays an essential role in the detoxification of bile acids and is important in pathological conditions such as cholestasis where CYP3A4 is adaptively up-regulated. However, the mechanism that triggers the up-regulation of CYP3A4 is still not clear. In this study, using recombinant CYP3A4 and human liver microsomes, we demonstrate that CYP3A4 can metabolise lithocholic acid into 3-dehydrolithocholic acid, a potent activator of the nuclear receptors, pregnane X receptor and 1,25-dihydroxy vitamin D3 receptor, which are known to regulate the expression of CYP3A4. This process thus provides a feed-forward metabolism of toxic bile acid that may be of importance in maintaining bile acid homeostasis. We also provide evidence for a novel CYP3A4-mediated metabolic pathway of the secondary bile acid deoxycholic acid. Patients treated with the antiepileptic drug carbamazepine, a CYP3A4 inducer, had markedly elevated urinary excretion of 1beta-hydroxydeoxycholic acid compared to healthy controls. The importance of CYP3A4 in this process was verified by incubations with recombinant CYP3A4 and human liver microsomes, both of which efficiently converted deoxycholic acid into 1beta-hydroxydeoxycholic acid. Interestingly, CYP3A4 was also found to be active against the secondary bile acid ursodeoxycholic acid.
Collapse
Affiliation(s)
- Karl Bodin
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Huddinge, SE-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
827
|
Kim SJ, Bang EK, Kwon HJ, Shim JS, Kim BH. Modified oligonucleotides containing lithocholic acid in their backbones: their enhanced cellular uptake and their mimicking of hairpin structures. Chembiochem 2005; 5:1517-22. [PMID: 15515100 DOI: 10.1002/cbic.200400150] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Their enhanced cell permeability and their ability to mimic DNA structures make modified oligodeoxyribonucleotides (ODNs) very important substances for increasing our understanding of cell biology and for therapeutic applications. Lithocholic acid is a hydrophobic secondary bile acid that is a substrate of nuclear Pregnane X receptor (PXR). We designed and synthesized novel lithocholic acid-based ODNs (L-ODNs) by using a new phosphoramidite derived from lithocholic acid. By comparing data obtained from circular-dichroism, melting-point, and theoretical studies, we believe that these L-ODNs adopt DNA hairpin structures. Furthermore, L-ODNs have enhanced cellular uptake properties with respect to regular ODNs. To demonstrate their enhanced cell permeabilities, we carried out cellular uptake experiments of L-ODNs in HeLa cells. By attaching fluorescein as a fluorescence label and using confocal microscopy, we observed that the permeability of L-ODNs is much higher than that of natural ODNs.
Collapse
Affiliation(s)
- Su Jeong Kim
- Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyoja Dong, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
828
|
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329:386-90. [PMID: 15721318 DOI: 10.1016/j.bbrc.2005.01.139] [Citation(s) in RCA: 582] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Indexed: 02/08/2023]
Abstract
Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. Recently, a G protein-coupled receptor, TGR5, was identified as a cell-surface bile acid receptor. In this study, we show that bile acids promote glucagon-like peptide-1 (GLP-1) secretion through TGR5 in a murine enteroendocrine cell line STC-1. In STC-1 cells, bile acids promoted GLP-1 secretion in a dose-dependent manner. As STC-1 cells express TGR5 mRNA, we examined whether bile acids induce GLP-1 secretion through TGR5. RNA interference experiments showed that reduced expression of TGR5 resulted in reduced secretion of GLP-1. Furthermore, transient transfection of STC-1 cells with an expression plasmid containing TGR5 significantly enhanced GLP-1 secretion, indicating that bile acids promote GLP-1 secretion through TGR5 in STC-1 cells. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in STC-1 cells. An adenylate cyclase inhibitor, MDL12330A, significantly suppressed bile acid-promoted GLP-1 secretion, suggesting that bile acids induce GLP-1 secretion via intracellular cAMP production in STC-1 cells.
Collapse
Affiliation(s)
- Susumu Katsuma
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
829
|
Mitchell BF, Mitchell JM, Chowdhury J, Tougas M, Engelen SME, Senff N, Heijnen I, Moore JT, Goodwin B, Wong S, Davidge ST. Metabolites of progesterone and the pregnane X receptor: a novel pathway regulating uterine contractility in pregnancy? Am J Obstet Gynecol 2005; 192:1304-13; discussion 1313-5. [PMID: 15846226 DOI: 10.1016/j.ajog.2005.01.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the role of 5beta-dihydroprogesterone (5beta-DHP), acting through the nuclear receptor pregnane X receptor (PXR), in regulating uterine contractility. STUDY DESIGN Uterine contractility was studied in tissues from women, rats, and mice. Messenger RNA was assessed using reverse transcriptase-polymerase chain reaction (RT-PCR), and protein was measured using enzyme assays, immunofluorescence microscopy, and Western analyses. RESULTS Human and rat uterine tissues contain mRNA and protein for 5beta-reductase and for PXR. Acute in vitro treatment with 5beta-DHP causes rapid uterine relaxation that is not mediated by PXR. Chronic in vivo administration of 5beta-DHP to mice with intact PXR, but not in mice with disrupted PXR, causes an increased effect of 1400W, a specific inhibitor of inducible nitric oxide synthase (iNOS). This suggests that 5beta-DHP increased iNOS-modulated uterine tone, as occurs during pregnancy. CONCLUSION These data support the hypothesis that metabolites of progesterone may act chronically through a PXR-mediated mechanism to regulate uterine contractility.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Base Sequence
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Models, Animal
- Molecular Sequence Data
- Myometrium/drug effects
- Myometrium/metabolism
- Organ Culture Techniques
- Pregnancy
- Pregnancy, Animal
- Pregnane X Receptor
- Probability
- Progesterone/metabolism
- Progesterone/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Up-Regulation
- Uterine Contraction/drug effects
- Uterine Contraction/physiology
Collapse
Affiliation(s)
- Bryan F Mitchell
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
830
|
Fang HL, Strom SC, Cai H, Falany CN, Kocarek TA, Runge-Morris M. Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor. Mol Pharmacol 2005; 67:1257-67. [PMID: 15635043 DOI: 10.1124/mol.104.005389] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human hydroxysteroid sulfotransferase or (HUMAN)SULT2A1 catalyzes the sulfonation of procarcinogen xenobiotics, hydroxysteroids, and bile acids and plays a dynamic role in hepatic cholesterol homeostasis. The treatment of primary cultured human hepatocytes with a peroxisome proliferator-activated receptor alpha (PPARalpha)-activating concentration of ciprofibrate (10(-) (4) M) increased (HUMAN)SULT2A1 mRNA, immunoreactive protein, and enzymatic activity levels by approximately 2-fold. By contrast, expression of (RAT)SULT2A3, the rat counterpart to (HUMAN)SULT2A1, was induced by treatment of primary hepatocyte cultures with an activator of the pregnane X receptor, but not PPARalpha. In HepG2 cells, transient transfection analyses of luciferase reporter constructs containing upstream regions of the (HUMAN)SULT2A1 gene implicated a candidate peroxisome proliferator response element (PPRE) at nucleotides (nt) -5949 to -5929 relative to the transcription start site. Site-directed mutagenesis and electrophoretic mobility shift assay studies confirmed that this distal PPRE (dPPRE), a direct repeat nuclear receptor motif containing one intervening nt, represented a functional PPRE. Chromatin immunoprecipitation analysis indicated that the (HUMAN)SULT2A1 dPPRE was also a functional element in the context of the human genome. These data support a major role for the PPARalpha transcription factor in the regulation of hepatic (HUMAN)SULT2A1. Results also indicate that important species differences govern the transactivation of SULT2A gene transcription by nuclear receptors.
Collapse
Affiliation(s)
- Hai-Lin Fang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Ave., Room 4000, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
831
|
Trauner M, Wagner M, Fickert P, Zollner G. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J Clin Gastroenterol 2005; 39:S111-24. [PMID: 15758646 DOI: 10.1097/01.mcg.0000155551.37266.26] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatobiliary transport systems are responsible for hepatic uptake and excretion of bile salts and other biliary constituents (eg, bilirubin) into bile. Hereditary transport defects can result in progressive familial and benign recurrent intrahepatic cholestasis. Exposure to acquired cholestatic injury (eg, drugs, hormones, proinflammatory cytokines, biliary obstruction or destruction) also results in altered expression and function of hepatic uptake and excretory systems, changes that may maintain and contribute to cholestasis and jaundice. Recruitment of alternative efflux pumps and induction of phase I and II detoxifying enzymes may limit hepatic accumulation of potentially toxic biliary constituents in cholestasis by providing alternative metabolic and escape routes. These molecular changes are mediated by bile salts, proinflammatory cytokines, drugs, and hormones at a transcriptional and posttranscriptional level. Alterations of hepatobiliary transporters and enzymes are not only relevant for a better understanding of the pathophysiology of cholestatic liver diseases, but may also represent important targets for pharmacotherapy. Drugs (eg, ursodeoxycholic acid, rifampicin) used to treat cholestatic liver diseases and pruritus may counteract cholestasis via stimulation of defective transporter expression and function. In addition, therapeutic strategies may be aimed at supporting and stimulating alternative detoxification pathways and elimination routes for bile salts in cholestasis.
Collapse
Affiliation(s)
- Michael Trauner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University, Graz, Austria.
| | | | | | | |
Collapse
|
832
|
Zucchini N, de Sousa G, Bailly-Maitre B, Gugenheim J, Bars R, Lemaire G, Rahmani R. Regulation of Bcl-2 and Bcl-xL anti-apoptotic protein expression by nuclear receptor PXR in primary cultures of human and rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:48-58. [PMID: 16085054 DOI: 10.1016/j.bbamcr.2005.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/18/2005] [Accepted: 02/23/2005] [Indexed: 01/28/2023]
Abstract
The pregnane X receptor (PXR) plays a major role in the protection of the body by regulating the genes involved in the metabolism and elimination of potentially toxic xeno- and endobiotics. We previously described that PXR activator dexamethasone protects hepatocytes from spontaneous apoptosis. We hypothesise a PXR-dependent co-regulation process between detoxication and programmed cell death. Using primary cultured human and rat hepatocytes, we investigated to determine if PXR is implicated in the regulation of Bcl-2 and Bcl-xL, two crucial apoptosis inhibitors. In the present study we demonstrated that the treatment of primary cultured hepatocytes with PXR agonists increased hepatocyte viability and protects them from staurosporine-induced apoptosis. The anti-apoptotic capacity of PXR activation was correlated with Bcl-2 and Bcl-xL induction at both the transcriptional and protein levels in man and rats, respectively. The inhibition of PXR expression by antisense oligonucleotide abolished PXR activators Bcl-xL induction. Accordingly, PXR overexpression in HepG2 cells led to bcl-2 induction upon clotrimazole treatment and protects cells against Fas-induced apoptosis. Our results demonstrate that PXR expression is required for Bcl-2 and Bcl-xL up-regulation upon PXR activators treatment in human and rat hepatocytes. They also suggest that PXR may protect the liver against chemicals by simultaneously regulating detoxication and the apoptotic pathway.
Collapse
Affiliation(s)
- Nathalie Zucchini
- Laboratoire de Toxicologie Cellulaire et Moléculaire, INRA, UMR 1112, 06903 Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
833
|
Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 2005; 569:101-10. [PMID: 15603755 DOI: 10.1016/j.mrfmmm.2004.04.021] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/14/2004] [Accepted: 04/18/2004] [Indexed: 12/30/2022]
Abstract
Cytochromes P450 are responsible for metabolism of most xenobiotics and are required for the efficient elimination of foreign chemicals from the body. Paradoxically, these enzymes also metabolically activate biologically inert compounds to electrophilic derivatives that can cause toxicity, cell death and sometimes cellular transformation resulting in cancer. To establish the role of these enzymes in toxicity and carcinogenicity in vivo, gene knockout mice have been developed. To illustrate the role of P450s in toxicity, CYP2E1-null mice were employed with the commonly used analgesic drug acetaminophen. CYP2E1 is the rate-limiting enzyme that initiates the cascade of events leading to acetaminophen hepatotoxicity; in the absence of this P450, toxicity will only be apparent at high concentrations. Other enzymes and nuclear receptors are also involved in activation or inactivating chemicals. CYP2E1 is induced by alcohol and the primary P450 that carries out ethanol oxidation that can lead to the production of activated oxygen species and oxidative stress that elevate ERK1/2 phosphorylation through EGRF/c-Raf signaling. Paradoxically, activation of this pathway inhibits apoptotic cell death stimulated by reactive oxygen generating chemicals but accelerates necrotic cell death produced by polyunsaturated fatty acids. CYP2E1 is thought to contribute to liver pathologies that result from alcoholic liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
834
|
Bresolin T, de Freitas Rebelo M, Celso Dias Bainy A. Expression of PXR, CYP3A and MDR1 genes in liver of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:403-7. [PMID: 15914091 DOI: 10.1016/j.cca.2005.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 11/16/2022]
Abstract
The Pregnane X Receptor (PXR) is a nuclear receptor involved in the transcriptional regulation of drug-metabolizing enzymes and transporters. In mammals, many xenobiotics induce the expression of cytochrome P4503A (CYP3A) and the multiple drug resistance 1 (MDR1) genes via the PXR pathway. Little attention has been given to studies about the identification and biological function of PXR homologues in non-mammalian species. Zebrafish is being widely used and accepted as model for toxicological and pharmacological studies to understand the mechanisms of human diseases and identify conserved signaling pathways. The aim of this study was to evaluate the in vivo expression of PXR, CYP3A and MDR1 genes in liver of zebrafish treated with the synthetic steroid pregnenolone 16alpha-carboninitrile (PCN), the antimycotic clotrimazole (CTZ) and the antianginal drug nifedipine (NIF). The liver of fish treated with PCN showed a 1.9-fold induction in the PXR followed by 1.8-fold induction in the CYP3A and 1.6-fold induction in the MDR1 mRNA. CTZ and NIF did not affect statistically the expression of PXR, CYP3A and MDR1. The similar pattern of mRNA expression of PXR, CYP3A and MDR1 genes found in fish treated with different PXR inducers suggests that the intrinsic association between these three genes is conserved in zebrafish.
Collapse
Affiliation(s)
- Taise Bresolin
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | |
Collapse
|
835
|
Ekins S, Kirillov E, Rakhmatulin EA, Nikolskaya T. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab Dispos 2005; 33:474-81. [PMID: 15608136 DOI: 10.1124/dmd.104.002717] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increasing generation of biological data represents a challenge to understanding the complexity of systems, resulting in scientists increasingly focused on a relatively narrow area of study, thereby limiting insight that can be gained from a broader perspective. In the field of drug metabolism and toxicology we are witnessing the characterization of many proteins. Most of the key enzymes and transporters are recognized as transcriptionally regulated by the nuclear hormone receptors such as pregnane X receptor, constitutive androstane receptor, vitamin D receptor, glucocorticoid receptor, and others. There is apparent cross talk in regulation, since multiple receptors may modulate expression of a single enzyme or transporter, representing one of many areas of active research interest. We have used published data on nuclear hormone receptors, enzymes, ligands, and other biological information to manually annotate an Oracle database, forming the basis of a platform for querying (MetaDrug). Using algorithms, we have demonstrated how nuclear hormone receptors alone can form a network of direct interactions, and when expanded, this network increases in complexity to describe the interactions with target genes as well as small molecules known to bind a receptor, enzyme, or transporter. We have also described how the database can be used for visualizing high-throughput microarray data derived from a published study of MCF-7 cells treated with 4-hydroxytamoxifen, to highlight potential downstream effects of molecule treatment. The database represents a novel knowledge mining and analytical tool that, to be relevant, requires continual updating to evolve alongside other key storage systems and sources of biological knowledge.
Collapse
Affiliation(s)
- Sean Ekins
- Computational Biology, GeneGo, Inc, 500 Renaissance Drive, Suite 106, St. Joseph, MI 49085, USA.
| | | | | | | |
Collapse
|
836
|
Saini SPS, Mu Y, Gong H, Toma D, Uppal H, Ren S, Li S, Poloyac SM, Xie W. Dual role of orphan nuclear receptor pregnane X receptor in bilirubin detoxification in mice. Hepatology 2005; 41:497-505. [PMID: 15726644 DOI: 10.1002/hep.20570] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are implicated in xenobiotic and endobiotic detoxification, including the clearance of toxic bilirubin. Previous studies have suggested both overlapping and preferential regulation of target genes by these receptors, but the mechanism of cross-talk remains elusive. Here we reveal a dual role of PXR in bilirubin detoxification in that both the loss and activation of PXR led to protection from hyperbilirubinemia induced by bilirubin infusion or hemolysis. The increased bilirubin clearance in PXR-null mice was associated with selective upregulation of detoxifying enzymes and transporters, and the pattern of regulation is remarkably similar to that of transgenic mice expressing the activated CAR. Interestingly, the increased bilirubin clearance and associated gene regulation were absent in the CAR-null or double-knockout mice. In cell cultures, ligand-free PXR specifically suppressed the ability of CAR to induce the multidrug resistance associated protein 2 (MRP2), a bilirubin-detoxifying transporter. This suppression was, at least in part, the result of the disruption of ligand-independent recruitment of coactivator by CAR. In conclusion, PXR plays both positive and negative roles in regulating bilirubin homeostasis, and this provides a novel mechanism that may govern receptor cross-talk and the hierarchy of xenobiotic and endobiotic regulation. PXR is a potential therapeutic target for clinical treatment of jaundice. (HEPATOLOGY 2005;41:497-505.).
Collapse
Affiliation(s)
- Simrat P S Saini
- Center for Pharmacogenetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
837
|
Krasowski MD, Yasuda K, Hagey LR, Schuetz EG. Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts. Mol Endocrinol 2005; 19:1720-39. [PMID: 15718292 PMCID: PMC2238640 DOI: 10.1210/me.2004-0427] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pregnane X receptor (PXR) regulates the metabolism and elimination of bile salts, steroids, and xenobiotics. The sequence of the PXR ligand-binding domain diverges extensively between different animals, suggesting interspecies differences in ligands. Of the endogenous ligands known to activate PXR, biliary bile salts vary the most across vertebrate species, ranging from 27-carbon (C27) bile alcohol sulfates (early fish, amphibians) to C24 bile acids (birds, mammals). Using a luciferase-based reporter assay, human PXR was activated by a wide variety of bile salts. In contrast, zebrafish PXR was activated efficiently only by cyprinol sulfate, the major zebrafish bile salt, but not by recent bile acids. Chicken, mouse, rat, and rabbit PXRs were all activated by species-specific bile acids and by early fish bile alcohol sulfates. In addition, phylogenetic analysis using maximum likelihood demonstrated evidence for nonneutral evolution of the PXR ligand-binding domain. PXR activation by bile salts has expanded from narrow specificity for C27 bile alcohol sulfates (early fish) to a broader specificity for recent bile acids (birds, mammals). PXR specificity for bile salts has thus paralleled the increasing complexity of the bile salt synthetic pathway during vertebrate evolution, an unusual example of ligand-receptor coevolution in the nuclear hormone receptor superfamily.
Collapse
Affiliation(s)
- Matthew D Krasowski
- University of Pittsburgh, Department of Pathology, 200 Lothrop, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
838
|
Kliewer SA. Cholesterol detoxification by the nuclear pregnane X receptor. Proc Natl Acad Sci U S A 2005; 102:2675-6. [PMID: 15710871 PMCID: PMC549480 DOI: 10.1073/pnas.0500159102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven A Kliewer
- Departmens of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA.
| |
Collapse
|
839
|
Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci 2005; 97:177-83. [PMID: 15725701 DOI: 10.1254/jphs.fmj04008x4] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Nuclear receptors are ligand-dependent transcription factors that recently have been shown to play important roles in the metabolism of cholesterol and bile acids. Cholesterol homeostasis is maintained by de novo synthesis, absorption from diet, catabolism to bile acids and other steroids, and excretion into bile. Dysregulation of this mechanism leads to atherosclerosis and its life-threatening coronary and cerebrovascular sequelae. Conversion of cholesterol to bile acids in the liver is positively regulated by liver X receptor (LXR) alpha, a nuclear receptor for oxysterols. LXRalpha and LXRbeta, a second oxysterol receptor, regulate intestinal absorption and biliary excretion of cholesterol by inducing target gene expression. LXRs stimulate reverse cholesterol transport from peripheral tissues and exhibit antiatherogenic activity. Farnesoid X receptor (FXR), a bile acid receptor, represses bile acid synthesis and import in hepatocytes, stimulates bile acid export from cells, and protects hepatocytes from bile acid toxicity. Pregnane X receptor (PXR) and vitamin D receptor (VDR) respond to secondary bile acids and induce their catabolism. Thus, nuclear receptors play important roles in regulation of cholesterol and bile acid metabolism.
Collapse
Affiliation(s)
- Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
840
|
Handschin C, Gnerre C, Fraser DJ, Martinez-Jimenez C, Jover R, Meyer UA. Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids. Arch Biochem Biophys 2005; 434:75-85. [PMID: 15629111 DOI: 10.1016/j.abb.2004.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/06/2004] [Indexed: 01/29/2023]
Abstract
The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated in order to control intrahepatic cholesterol and bile acid levels. Ligands of the xenobiotic-sensing pregnane X receptor inhibit CYP7A1 expression. To retrace the evolution of the molecular mechanisms underlying CYP7A1 inhibition, we used a chicken hepatoma cell system that retains the ability to be induced by phenobarbital and other drugs. Whereas bile acids regulate CYP7A1 via small heterodimer partner and liver receptor homolog-1, mRNA expression of these nuclear receptors is unchanged by xenobiotics. Instead, drugs repress chicken hepatic nuclear factor 4alpha (HNF4alpha) transcript levels concomitant with a reduction in CYP7A1 expression. Importantly, no reduction of HNF4alpha levels is found in mouse liver in vivo and in human primary hepatocyte cultures, respectively. Thus, besides the importance of HNF4alpha in CYP7A1 regulation in all species, birds and mammals use different signaling pathways to adjust CYP7A1 levels after exposure to xenobiotics.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Bile Acids and Salts/pharmacology
- Cells, Cultured
- Chickens
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocyte Nuclear Factor 4
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- In Vitro Techniques
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Phenobarbital/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Pregnane X Receptor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/deficiency
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Species Specificity
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Christoph Handschin
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
841
|
Pascussi JM, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, Pineau T, Saric J, Navarro F, Maurel P, Vilarem MJ. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest 2005; 115:177-86. [PMID: 15630458 PMCID: PMC539191 DOI: 10.1172/jci21867] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 10/26/2004] [Indexed: 11/17/2022] Open
Abstract
Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16alpha-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16alpha-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D(3). Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between -326 and -142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D-responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D(3) hormonal activity and calcium homeostasis through the activation of PXR.
Collapse
|
842
|
Benoit G, Malewicz M, Perlmann T. Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. Trends Cell Biol 2005; 14:369-76. [PMID: 15246430 DOI: 10.1016/j.tcb.2004.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nuclear receptors comprise a large family of proteins that shares a common structure and mechanism of action. Members of this family, first cloned 20 years ago, are regulated by small lipophilic signaling molecules such as steroid hormones, retinoids and thyroid hormone. More recently, the characterization of proteins that resemble nuclear receptors (referred to as orphan receptors) has resulted in the determination of novel signaling pathways. However, many orphan-receptor ligands remain unidentified, and recent structural studies of the binding domains for orphan-receptor ligands suggest that not all of these receptors use ligand binding in a classical way. Notably, it is now evident that some orphan receptors lack the capacity for ligand binding, which suggests that they are regulated by alternative, ligand-independent mechanisms.
Collapse
Affiliation(s)
- Gérard Benoit
- Ludwig Institute for Cancer Research, Karolinska Institute, Box 240, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
843
|
Balasubramaniyan N, Shahid M, Suchy FJ, Ananthanarayanan M. Multiple mechanisms of ontogenic regulation of nuclear receptors during rat liver development. Am J Physiol Gastrointest Liver Physiol 2005; 288:G251-60. [PMID: 15388488 DOI: 10.1152/ajpgi.00351.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nuclear receptors (NRs) play pivotal roles in the regulation of genes contributing to hepatobiliary cholesterol and bile acid homeostasis. We have previously shown that transporters involved in bile formation are developmentally regulated and are poorly developed during the fetal stage, but their expression reached gradual maturity during the postnatal period. To define the molecular mechanisms underlying this regulation and the role that class II NRs and associated members [liver receptor homolog-1 (LRH-1) and short heterodimer partner (SHP)] play, we have analyzed the ontogeny of NR expression during liver development. Real-time PCR analysis of hepatic NR expression from fetal day 17 through adult revealed that steady-state mRNA levels for all NRs were very low during the embryonic period. However, mRNA levels peaked close to that of adult rats (>6 wk-old rats) by 4 wk of age for farnesoid X receptor (FXR), pregnane X receptor (PXR), liver X receptor-alpha (LXRalpha), peroxisome proliferator-activated receptor-alpha (PPARalpha), retinoid acid receptor-alpha (RARalpha), LRH-1, and SHP, whereas RXRalpha mRNA lagged behind. FXR, PXR, LXRalpha, RARalpha, and PPARalpha functional activity in liver nuclear extracts assayed by gel EMSA demonstrated that the activity attained adult levels by 4 wk of age, exhibiting a strict correlation with mRNA levels. Surprisingly, PPARalpha activity was delayed as seen by EMSA assay. Protein levels for NRs also corresponded to the mRNA and functional activity except for RXRalpha. RXRalpha protein levels were higher than message levels, suggesting increased protein stability. We conclude that expression of NRs during rat liver development is primarily regulated by transcriptional mechanisms, which in turn, control the regulation of bile acid and cholesterol metabolic pathways.
Collapse
Affiliation(s)
- N Balasubramaniyan
- Laboratory of Developmental and Molecular Hepatology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
844
|
Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther 2005; 312:841-8. [PMID: 15456840 DOI: 10.1124/jpet.104.076141] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation and proinflammatory cytokines suppress the expression of several hepatic transporters and metabolic enzymes, often resulting in cholestatic liver disease. However, mechanism(s) of this down-regulation have not been fully elucidated. As the pregnane X receptor (PXR) is involved in inducing many of these hepatic proteins, it is possible that PXR is also involved in their down-regulation during inflammation. Thus, we compared the effect of inflammation on hepatic gene regulation in wild-type (PXR(+/+)) versus PXR-null (PXR(-/-)) mice. Treatment of PXR(+/+) but not PXR(-/-) mice with the PXR activators 5-pregnen-3beta-ol-20-one-16alpha-carbonitrile (PCN) or 17beta-hydroxy-11beta-[4-dimethylamino phenyl]-17alpha-[1-propynyl] estra-4,9-dien-3-one (RU486) resulted in increased mRNA levels of bsep, mdr1a, mrp2, mrp3, oatp2, and cyp3a11, indicating involvement of PXR in their regulation. Significantly lower mRNA levels of bsep, mdr2, mrp2, mrp3, ntcp, oatp2, and cyp3a11 were found in endotoxin-treated PXR(+/+) mice. In endotoxin-treated PXR(-/-) mice, the extent of mrp2 suppression was significantly diminished. Changes in MRP2 expression were supported by Western blot analysis. Although interleukin (IL)-6 imposed significant decreases in the expression of bsep, mrp2, and cyp3a11 in PXR(+/+) mice, this was not observed in PXR(-/-) mice. Of note, significantly lower levels of PXR mRNA and protein were detected in endotoxin- and IL-6-treated PXR(+/+) mice. In addition, endotoxin and IL-6 were also able to suppress PCN-mediated induction of bsep, mrp2, cyp3a11, and PXR. Taken together, our results suggest that PXR plays a role in the down-regulation of several hepatic proteins during inflammation.
Collapse
Affiliation(s)
- Shirley Teng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario, Canada, M5S 2S2
| | | |
Collapse
|
845
|
Song X, Li Y, Liu J, Mukundan M, Yan B. Simultaneous substitution of phenylalanine-305 and aspartate-318 of rat pregnane X receptor with the corresponding human residues abolishes the ability to transactivate the CYP3A23 promoter. J Pharmacol Exp Ther 2005; 312:571-82. [PMID: 15367577 DOI: 10.1124/jpet.104.074971] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pregnane X receptor (PXR) is a key regulator on the expression of genes involved in the elimination of chemicals. As one of the most divergent members in the nuclear receptor family, PXR is activated in a highly species-dependent manner by certain chemicals. Pregnenolone 16alpha-carbonitrile (PCN), a glucocorticoid antagonist, efficaciously activates rodent but not human PXR. This study was undertaken to investigate the structural basis for PCN-mediated activation of rat PXR. A series of rat-human chimeric PXRs were prepared to gradually replace the ligand-binding domain of human PXR with the corresponding rat sequence at an increasing length of 20 residues. Cotransfection experiments established that region(306-326) acted as a transitional conjunction from none to full PCN responsive status. Site-directed mutagenesis study identified two residues (Phe-305 and Asp-318) that were critical in supporting PCN-mediated activation, and simultaneous substitution of both residues abolished the ability of rat PXR to transactivate the CYP3A23 promoter. In addition, substitutions on Phe-305, Asp-318, or both markedly reduced the basal transcriptional activity, and the reduction occurred with the CYP3A4 but not CYP3A23 promoter. Further study with CYP3A4 and CYP3A23 hybrid reporters demonstrated that the region harboring the distal PXR element in the CYP3A4 promoter mediated the repressive activity. PXR has been shown to interact with corepressors in the absence of ligand. The decreased responsiveness toward PCN and reduced basal transcriptional activity suggest that Phe-305 and Asp-318 are involved in both ligand-binding and corepressor interactions.
Collapse
Affiliation(s)
- Xiulong Song
- Department of Biomedical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
846
|
Ding X, Staudinger JL. Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway. J Pharmacol Exp Ther 2005; 312:849-56. [PMID: 15459237 DOI: 10.1124/jpet.104.076331] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An extract of the plant Coleus forskohlii has been used for centuries in Ayurvedic medicine to treat various diseases such as hypothyroidism, heart disease, and respiratory disorders. Additionally, complex herbal mixtures containing this extract are gaining popularity in United States for their putative "fat-burning" properties. The active ingredient in C. forskohlii extract is the diterpene compound forskolin. Forskolin is a widely used biochemical tool that activates adenyl cyclase, thereby increasing intracellular concentration of cAMP and thus activating the protein kinase A (PKA) signal transduction pathway. We show herein that both forskolin and its nonadenyl cyclase-activating analog 1,9 dideoxyforskolin induce CYP3A gene expression in primary hepatocytes by functioning as agonists of the pregnane X receptor (PXR). We show that activation of PKA signaling potentiates PXR-mediated induction of CYP3A gene expression in cultured hepatocytes and increases the strength of PXR-coactivator protein-protein interaction in cell-based assays. Kinase assays show that PXR can serve as a substrate for catalytically active PKA in vitro. Our data provide important insights into the molecular mechanism of both the PKA-dependent and -independent effects of forskolin on the expression of drug-metabolizing enzymes in liver. Finally, our data suggest that herbal therapy with C. forskohlii extract should be approached cautiously due to the potential for herb-drug interactions in patients on combination therapy.
Collapse
Affiliation(s)
- Xunshan Ding
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., 5046 Malott Hall, Lawrence, KS 66045, USA
| | | |
Collapse
|
847
|
Miyata M, Tozawa A, Otsuka H, Nakamura T, Nagata K, Gonzalez FJ, Yamazoe Y. Role of farnesoid X receptor in the enhancement of canalicular bile acid output and excretion of unconjugated bile acids: a mechanism for protection against cholic acid-induced liver toxicity. J Pharmacol Exp Ther 2005; 312:759-66. [PMID: 15466244 DOI: 10.1124/jpet.104.076158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mice lacking the farnesoid X receptor (FXR) involved in the maintenance of hepatic bile acid levels are highly sensitive to cholic acid-induced liver toxicity. Serum aspartate aminotransferase (AST) activity was elevated 15.7-fold after feeding a 0.25% cholic acid diet, whereas only slight increases in serum AST (1.7- and 2.5-fold) were observed in wild-type mice fed 0.25 and 1% cholic acid diet, respectively. Bile salt export pump mRNA and protein levels were increased in wild-type mice fed 1% cholic acid diet (2.1- and 3.0-fold) but were decreased in FXR-null mice fed 0.25% cholic acid diet. The bile acid output rate was 2.0- and 3.7-fold higher after feeding of 0.25 and 1.0% cholic acid diet in wild-type mice, respectively. On the other hand, no significant increase in bile acid output rate was observed in FXR-null mice fed 0.25% cholic acid diet in contrast to a significant decrease observed in mice fed a 1.0% cholic acid diet in spite of the markedly higher levels of hepatic tauro-conjugated bile acids. Unconjugated cholic acid was not detected in the bile of wild-type mice fed a control diet, but it was readily detected in wild-type mice fed 1% cholic acid diet. The ratio of biliary unconjugated cholic acid to total cholic acid (unconjugated cholic acid and tauro-conjugated cholic acid) reached 30% under conditions of hepatic taurine depletion. These results suggest that the cholic acid-induced enhancement of canalicular bile acid output rates and excretion of unconjugated bile acids are involved in adaptive responses for prevention of cholic acid-induced toxicity.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
848
|
Stedman CAM, Liddle C, Coulter SA, Sonoda J, Alvarez JGA, Moore DD, Evans RM, Downes M. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 2005; 102:2063-8. [PMID: 15684063 PMCID: PMC548592 DOI: 10.1073/pnas.0409794102] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Bile Acids and Salts/metabolism
- Bile Ducts/surgery
- Cholestasis/metabolism
- Cholestasis/pathology
- Cholesterol/metabolism
- Constitutive Androstane Receptor
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Lipid Metabolism
- Liver/cytology
- Liver/metabolism
- Liver/pathology
- Liver-Specific Organic Anion Transporter 1/genetics
- Liver-Specific Organic Anion Transporter 1/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Pregnane X Receptor
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Catherine A M Stedman
- Department of Clinical Pharmacology, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
849
|
Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433:397-412. [PMID: 15581596 DOI: 10.1016/j.abb.2004.09.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 09/13/2004] [Indexed: 02/08/2023]
Abstract
Drugs and bile acids are taken up into hepatocytes by specialized transport proteins localized at the basolateral membrane, e.g., organic anion transporting polypeptides . Following intracellular metabolism by cytochrome P450 (CYP) enzymes, drug metabolites are excreted into bile or urine via ATP-dependent multidrug resistance proteins (MDR1 and MRPs). Bile acids are excreted mainly via the bile salt export pump (BSEP, ABCB11). The genes coding for drug and bile acid transporters and CYP enzymes are regulated by a complex network of transcriptional cascades, notably by the ligand-activated nuclear receptors FXR, PXR, and CAR and by the ligand-independent nuclear receptor HNF-4alpha. The bile acid synthesizing enzymes CYP7A1, CYP8B1, and CYP27A1 are subject to negative feedback regulation by bile acids, which is partly mediated through the transcriptional repressor SHP. The role of transcriptional cofactors, such as SRC-1 and PGC-1, in mediating the gene-specific effects of individual nuclear receptors is becoming increasingly evident.
Collapse
Affiliation(s)
- Jyrki J Eloranta
- Laboratory of Molecular Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital, CH-8091 Zurich, Switzerland
| | | |
Collapse
|
850
|
Sonoda J, Chong LW, Downes M, Barish GD, Coulter S, Liddle C, Lee CH, Evans RM. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci U S A 2005; 102:2198-203. [PMID: 15671183 PMCID: PMC548561 DOI: 10.1073/pnas.0409481102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Efficient detoxification and clearance of cholesterol metabolites such as oxysterols, bile alcohols, and bile acids are critical for survival because they can promote liver and cardiovascular disease. We report here that loss of the nuclear xenobiotic receptor PXR (pregnane X receptor), a regulator of enterohepatic drug metabolism and clearance, results in an unexpected acute lethality associated with signs of severe hepatorenal failure when mice are fed with a diet that elicits accumulation of cholesterol and its metabolites. Induction of a distinct drug clearance program by a high-affinity ligand for the related nuclear receptor, the constitutive androstane receptor, does not overcome the lethality, indicating the unique requirement of PXR for detoxification. We propose that the PXR signaling pathway protects the body from toxic dietary cholesterol metabolites, and, by extension, PXR ligands may ameliorate human diseases such as cholestatic liver diseases and the associating acute renal failure.
Collapse
Affiliation(s)
- Junichiro Sonoda
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|