801
|
Balasubramaniyan N, Devereaux MW, Orlicky DJ, Sokol RJ, Suchy FJ. Up-regulation of miR-let7a-5p Leads to Decreased Expression of ABCC2 in Obstructive Cholestasis. Hepatol Commun 2019; 3:1674-1686. [PMID: 31832574 PMCID: PMC6887930 DOI: 10.1002/hep4.1433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/07/2019] [Indexed: 01/30/2023] Open
Abstract
Adenosine triphosphate-binding cassette subfamily C member 2 (ABCC2/Abcc2) is critically important to biliary excretion of many endobiotic and xenobiotic compounds, and is a major driving force for bile acid-independent bile flow. Abcc2 expression is reduced at the messenger RNA (mRNA) and protein levels in various forms of experimental cholestasis. In a microRNA (miRNA) screen of mouse liver after biliary obstruction, we found that miRNA let7a-5p was significantly up-regulated approximately 4-fold. Similarly, ABCC2 mRNA was depleted and miRNA let7a-5p was elevated over 4-fold in livers of children with biliary atresia compared with normal livers. In silico analysis predicted that let7a-5p would target the 3' untranslated region (3' UTR) of ABCC2/Abcc2 RNA. The objective of this study was to determine whether let7a-5p contributes to the depletion of ABCC2/Abcc2 in cholestasis. To demonstrate the functional importance of miRNA let7a-5p in regulating the expression of ABCC2, co-transfection of a let7a-5p mimic and an ABCC2-3' UTR luciferase construct into Huh-7 cells led to a marked inhibition of luciferase activity by about 60%-70% compared with controls, which was reversed by a let7a-5p mimic inhibitor. Expression of this mimic led to a significant decrease in endogenous ABCC2 mRNA and protein levels in a Huh-7 liver cell line, which could be blocked by expression of a let7a-5p mimic inhibitor. Injection of a lentivirus let7a-5p inhibitor into normal mouse liver or into mouse liver after common bile duct ligation led to a significant increase in endogenous Abcc2 mRNA and protein levels and a depletion of let7a-5p mRNA levels compared with untreated, saline-injected livers or livers treated with an inactive lentivirus control. Conclusion: These studies demonstrate that miR-let7a-5p is involved in regulating ABCC2/Abcc2 expression, and is aberrantly up-regulated in obstructive cholestasis.
Collapse
Affiliation(s)
| | - Michael W Devereaux
- Department of Pediatrics Digestive Health Institute Children's Hospital Colorado Aurora CO
| | - David J Orlicky
- Department of Pathology University of Colorado School of Medicine Aurora CO
| | - Ronald J Sokol
- Department of Pediatrics Digestive Health Institute Children's Hospital Colorado Aurora CO
| | - Frederick J Suchy
- Department of Pediatrics Digestive Health Institute Children's Hospital Colorado Aurora CO
| |
Collapse
|
802
|
Human osteocyte expression of Nerve Growth Factor: The effect of Pentosan Polysulphate Sodium (PPS) and implications for pain associated with knee osteoarthritis. PLoS One 2019; 14:e0222602. [PMID: 31557169 PMCID: PMC6762051 DOI: 10.1371/journal.pone.0222602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/03/2019] [Indexed: 01/05/2023] Open
Abstract
Pentosan polysulphate sodium (PPS) is a promising therapeutic agent for blocking knee pain in individuals with knee osteoarthritis (KOA). The mode of action of PPS in this context is unknown. We hypothesised that the osteocyte, being the principal cell type in the sub-chondral bone, was capable of expressing the pain mediator Nerve Growth Factor (NGF), and that this may be altered in the presence of PPS. We tested the expression of NGF and the response to PPS in the presence or absence of the proinflammatory cytokine tumour necrosis factor-alpha (TNFα), in human osteocytes. For this we differentiated human primary osteoblasts grown from subchondral bone obtained at primary knee arthroplasty for KOA to an osteocyte-like stage over 28d. We also tested NGF expression in fresh osteocytes obtained by sequential digestion from KOA bone and by immunofluorescence in KOA bone sections. We demonstrate for the first time the production and secretion of NGF/proNGF by this cell type derived from patients with KOA, implicating osteocytes in the pain response in this pathological condition and possibly others. PPS inhibited TNFα-induced levels of proNGF secretion and TNFα induced NGF mRNA expression. Together, this provides evidence that PPS may act to suppress the release of NGF in the subchondral bone to ameliorate pain associated with knee osteoarthritis.
Collapse
|
803
|
Ren Y, Ay A, Gerke TA, Kahveci T. Identification of jointly correlated gene sets. J Bioinform Comput Biol 2019; 16:1840019. [PMID: 30419787 DOI: 10.1142/s021972001840019x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Associations between expressions of genes play a key role in deciphering their functions. Correlation score between pairs of genes is often utilized to associate two genes. However, the relationship between genes is often more complex; multiple genes might collaborate to control the transcription of a gene. In this paper, we introduce the problem of searching pairs of genes, which collectively correlate with another gene. This problem is computationally much harder than the classical problem of identifying pairwise gene associations. Exhaustive search is infeasible for transcriptomic datasets also; since for [Formula: see text] genes, there are [Formula: see text] possible gene combinations. Our method builds three filters to avoid computing the association for a large fraction of the gene combinations, which do not produce high correlation. Our experiments on a synthetic dataset and a prostate cancer dataset demonstrate that our method produces accurate results at the transcriptome level in practical time. Moreover, our method identifies biologically novel results which classical pairwise gene association studies are unlikely to discover.
Collapse
Affiliation(s)
- Yuanfang Ren
- * Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Ay
- † Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | | | - Tamer Kahveci
- * Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
804
|
Maliken BD, Kanisicak O, Karch J, Khalil H, Fu X, Boyer JG, Prasad V, Zheng Y, Molkentin JD. Gata4-Dependent Differentiation of c-Kit +-Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart. Circulation 2019; 138:1012-1024. [PMID: 29666070 PMCID: PMC6125755 DOI: 10.1161/circulationaha.118.033703] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit–expressing cardiac progenitor cells. Methods: Kit allele–dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type–specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele–derived hematopoietic cells versus Kit lineage–dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. Results: Deletion of Gata4 in Kit lineage–derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele–dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. Conclusions: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.
Collapse
Affiliation(s)
- Bryan D Maliken
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Onur Kanisicak
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Jason Karch
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Hadi Khalil
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | | | - Justin G Boyer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.).,Howard Hughes Medical Institute, Cincinnati Children's Hospital Research Foundation, OH (J.G.B., J.D.M)
| | - Vikram Prasad
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.).,Howard Hughes Medical Institute, Cincinnati Children's Hospital Research Foundation, OH (J.G.B., J.D.M)
| |
Collapse
|
805
|
Kim SA, Jang EH, Mun JY, Choi H. Propionic acid induces mitochondrial dysfunction and affects gene expression for mitochondria biogenesis and neuronal differentiation in SH-SY5Y cell line. Neurotoxicology 2019; 75:116-122. [PMID: 31526819 DOI: 10.1016/j.neuro.2019.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
Studies in animal models have shown that the short-chain fatty acid, propionic acid (PPA), interferes with mitochondrial metabolism leading to mitochondrial dysfunction and behavioral abnormalities. The aim of this study was to investigate the effects of PPA on mitochondrial function and gene expression in neuronal cells. SH-SY5Y cells and normal human neural progenitor (NHNP) cells were exposed to 1, 5 mM PPA for 4 or 24 h and we found that the mitochondrial potential measured in SH-SY5Y cells decreased in a dose-dependent manner after PPA treatment. Electron microscopy analysis revealed that the size of the mitochondria was significantly reduced following PPA treatment. A dose-dependent increase in the mitochondrial DNA copy number was observed in the PPA-treated cells. The expression of the mitochondrial biogenesis-related proteins PGC-1α, TFAM, SIRT3, and COX4 was significantly increased after PPA treatment. Transcriptome analysis revealed that mRNA expression in the notch signaling-related genes ASCL1 and LFNG changed after PPA treatment and the positive correlated protein expression changes were also observed. These results revealed that PPA treatment may affect neurodevelopment by altering mitochondrial function and notch signaling-related gene expression.
Collapse
Affiliation(s)
- Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| | - Eun Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyosun Choi
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea; BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, Republic of Korea
| |
Collapse
|
806
|
Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat Commun 2019; 10:3834. [PMID: 31444360 PMCID: PMC6707297 DOI: 10.1038/s41467-019-11874-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the accuracy of transcriptome prediction and increase the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge on biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify compounds that mimic, or reverse, trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.
Collapse
|
807
|
Baker SM, Rogerson C, Hayes A, Sharrocks AD, Rattray M. Classifying cells with Scasat, a single-cell ATAC-seq analysis tool. Nucleic Acids Res 2019; 47:e10. [PMID: 30335168 PMCID: PMC6344856 DOI: 10.1093/nar/gky950] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
ATAC-seq is a recently developed method to identify the areas of open chromatin in a cell. These regions usually correspond to active regulatory elements and their location profile is unique to a given cell type. When done at single-cell resolution, ATAC-seq provides an insight into the cell-to-cell variability that emerges from otherwise identical DNA sequences by identifying the variability in the genomic location of open chromatin sites in each of the cells. This paper presents Scasat (single-cell ATAC-seq analysis tool), a complete pipeline to process scATAC-seq data with simple steps. Scasat treats the data as binary and applies statistical methods that are especially suitable for binary data. The pipeline is developed in a Jupyter notebook environment that holds the executable code along with the necessary description and results. It is robust, flexible, interactive and easy to extend. Within Scasat we developed a novel differential accessibility analysis method based on information gain to identify the peaks that are unique to a cell. The results from Scasat showed that open chromatin locations corresponding to potential regulatory elements can account for cellular heterogeneity and can identify regulatory regions that separates cells from a complex population.
Collapse
Affiliation(s)
- Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Connor Rogerson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Andrew Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.,Manchester Academic Health Science Centre (MAHSC), Core Technology Facility, The University of Manchester, Manchester M13 9NT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
808
|
Jiménez-González V, Ogalla-García E, García-Quintanilla M, García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca 2+ Homeostasis and Vesicle Transport. Int J Mol Sci 2019; 20:ijms20164005. [PMID: 31426446 PMCID: PMC6719933 DOI: 10.3390/ijms20164005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023] Open
Abstract
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein–protein interaction network of GRINA.
Collapse
Affiliation(s)
| | - Elena Ogalla-García
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Meritxell García-Quintanilla
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
809
|
El-Athman R, Knezevic D, Fuhr L, Relógio A. A Computational Analysis of Alternative Splicing across Mammalian Tissues Reveals Circadian and Ultradian Rhythms in Splicing Events. Int J Mol Sci 2019; 20:E3977. [PMID: 31443305 PMCID: PMC6721216 DOI: 10.3390/ijms20163977] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence points to a role of the circadian clock in the temporal regulation of post-transcriptional processes in mammals, including alternative splicing (AS). In this study, we carried out a computational analysis of circadian and ultradian rhythms on the transcriptome level to characterise the landscape of rhythmic AS events in published datasets covering 76 tissues from mouse and olive baboon. Splicing-related genes with 24-h rhythmic expression patterns showed a bimodal distribution of peak phases across tissues and species, indicating that they might be controlled by the circadian clock. On the output level, we identified putative oscillating AS events in murine microarray data and pairs of differentially rhythmic splice isoforms of the same gene in baboon RNA-seq data that peaked at opposing times of the day and included oncogenes and tumour suppressors. We further explored these findings using a new circadian RNA-seq dataset of human colorectal cancer cell lines. Rhythmic isoform expression patterns differed between the primary tumour and the metastatic cell line and were associated with cancer-related biological processes, indicating a functional role of rhythmic AS that might be implicated in tumour progression. Our data shows that rhythmic AS events are widespread across mammalian tissues and might contribute to a temporal diversification of the proteome.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Dora Knezevic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
810
|
Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett PJ, Bartos M, Isacson O, Pruszak J. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells 2019; 37:1293-1306. [PMID: 31381839 PMCID: PMC6851846 DOI: 10.1002/stem.3057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Cell state‐, developmental stage‐, and lineage‐specific combinatorial expression of cluster of differentiation (CD) molecules enables the identification of cellular subsets via multicolor flow cytometry. We describe an exhaustive characterization of neural cell types by surface antigens, exploiting human pluripotent stem cell‐derived neural cell systems. Using multiwell screening approaches followed by detailed validation of expression patterns and dynamics, we exemplify a strategy for resolving cellular heterogeneity in stem cell paradigms. In addition to providing a catalog of surface antigens expressed in the neural lineage, we identified the transferrin receptor‐1 (CD71) to be differentially expressed in neural stem cells and differentiated neurons. In this context, we describe a role for N‐Myc proto‐oncogene (MYCN) in maintaining CD71 expression in proliferating neural cells. We report that in vitro human stem cell‐derived neurons lack CD71 surface expression and that the observed differential expression can be used to identify and enrich CD71− neuronal derivatives from heterogeneous cultures. stem cells2019;37:1293–1306
Collapse
Affiliation(s)
- Vishal Menon
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM) and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg iPS Core (FiPS), Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ria Thomas
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM) and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudio Elgueta
- Institute for Physiology I, Cellular and Systemic Neurophysiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Horl
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Teresia Osborn
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Penny J Hallett
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marlene Bartos
- Institute for Physiology I, Cellular and Systemic Neurophysiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ole Isacson
- Neuroregeneration Laboratories, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Pruszak
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg iPS Core (FiPS), Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
811
|
Proteasome Activation to Combat Proteotoxicity. Molecules 2019; 24:molecules24152841. [PMID: 31387243 PMCID: PMC6696185 DOI: 10.3390/molecules24152841] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of proteome fidelity leads to the accumulation of non-native protein aggregates and oxidatively damaged species: hallmarks of an aged cell. These misfolded and aggregated species are often found, and suggested to be the culpable party, in numerous neurodegenerative diseases including Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Diseases (AD). Many strategies for therapeutic intervention in proteotoxic pathologies have been put forth; one of the most promising is bolstering the efficacy of the proteasome to restore normal proteostasis. This strategy is ideal as monomeric precursors and oxidatively damaged proteins, so called "intrinsically disordered proteins" (IDPs), are targeted by the proteasome. This review will provide an overview of disorders in proteins, both intrinsic and acquired, with a focus on susceptibility to proteasomal degradation. We will then examine the proteasome with emphasis on newly published structural data and summarize current known small molecule proteasome activators.
Collapse
|
812
|
Chen G, Sun L, Han J, Shi S, Dai Y, Liu W. RILPL2 regulates breast cancer proliferation, metastasis, and chemoresistance via the TUBB3/PTEN pathway. Am J Cancer Res 2019; 9:1583-1606. [PMID: 31497344 PMCID: PMC6726981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women and is one of the leading causes of cancer-associated deaths. The analysis of data obtained from online databases revealed that RILPL2 expression in BC tissues is lower than that in normal tissues, and that RILPL2 upregulation is correlated with prolonged recurrence-free survival (RFS), overall survival (OS), and distant metastasis-free survival (DMFS). However, the function of RILPL2 in tumor proliferation and metastasis remains unclear. In this study, we demonstrated that RILPL2 had lower expression in BC tissues than in adjacent normal tissues, and that RILPL2 expression was significantly negatively correlated with tumor size, histological grade, and lymph node metastasis. Univariate analysis showed a positive correlation between RILPL2 and estrogen receptor (ER) expression and a negative correlation between RILPL2 and human epidermal growth factor receptor 2 (HER2) expression. Overexpression of RILPL2 inhibited BC cell proliferation and metastasis in vitro and in vivo. In addition, the interaction of exogenous RILPL2 with TUBB3 resulted in the downregulation of BC cell proliferation and migration and upregulation of PTEN expression by promoting destabilization of TUBB3. Furthermore, RILPL2 could reverse BC cell resistance to taxotere-mediated apoptosis by regulating the TUBB3/PTEN/AKT pathway. In conclusion, these results suggest that RILPL2 could be a novel biomarker for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning Province, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning Province, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of EngineeringHandan 056000, Hebei Province, China
| |
Collapse
|
813
|
Comeglio P, Filippi S, Sarchielli E, Morelli A, Cellai I, Corno C, Adorini L, Vannelli GB, Maggi M, Vignozzi L. Therapeutic effects of the selective farnesoid X receptor agonist obeticholic acid in a monocrotaline-induced pulmonary hypertension rat model. J Endocrinol Invest 2019; 42:951-965. [PMID: 30674010 DOI: 10.1007/s40618-019-1009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation of the farnesoid X receptor (FXR), a member of the nuclear receptor steroid superfamily, leads to anti-inflammatory and anti-fibrotic effects in several tissues, including the lung. We have recently demonstrated a protective effect of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) in rat models of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and bleomycin-induced pulmonary fibrosis. The aim of the present study was to investigate whether the positive effects of OCA treatment could be exerted also in established MCT-induced PAH, i.e., starting treatment 2 weeks after MCT administration. METHODS Rats with MCT-induced PAH were treated, 2 weeks after MCT administration, with OCA or tadalafil for two additional weeks. Pulmonary functional tests were performed at week 2 (before treatment) and four (end of treatment). At the same time points, lung morphological features and expression profile of genes related to smooth muscle relaxation/contraction and tissue remodeling were also assessed. RESULTS 2 weeks after MCT-induced injury, the treadmill resistance (a functional parameter related to pulmonary hypertension) was significantly decreased. At the same time point, we observed right ventricular hypertrophy and vascular remodeling, with upregulation of genes related to inflammation. At week 4, we observed a further worsening of the functional and morphological parameters, accompanied by dysregulation of inflammatory and extracellular matrix markers mRNA expression. Administration of OCA (3 or 10 mg/kg/day), starting 2 weeks after MCT-induced injury, significantly improved pulmonary function, effectively normalizing the exercise capacity. OCA also reverted most of the lung alterations, with a significant reduction of lung vascular wall thickness, right ventricular hypertrophy, and restoration of the local balance between relaxant and contractile pathways. Markers of remodeling pathways were also normalized by OCA treatment. Notably, results with OCA treatment were similar, or even superior, to those obtained with tadalafil, a recently approved treatment for pulmonary hypertension. CONCLUSIONS The results of this study demonstrate a significant therapeutic effect of OCA in established MCT-induced PAH, improving exercise capacity associated with reduction of right ventricular hypertrophy and lung vascular remodeling. Thus, OCA dosing in a therapeutic protocol restores the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions in MCT-induced PAH.
Collapse
Affiliation(s)
- P Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - I Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Corno
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Adorini
- Intercept Pharmaceuticals, New York, NY, USA
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy
| | - L Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy.
| |
Collapse
|
814
|
Abstract
Differential gene expression (DGE) studies often suffer from poor interpretability of their primary results, i.e., thousands of differentially expressed genes. This has led to the introduction of gene set analysis (GSA) methods that aim at identifying interpretable global effects by grouping genes into sets of common context, such as, molecular pathways, biological function or tissue localization. In practice, GSA often results in hundreds of differentially regulated gene sets. Similar to the genes they contain, gene sets are often regulated in a correlative fashion because they share many of their genes or they describe related processes. Using these kind of neighborhood information to construct networks of gene sets allows to identify highly connected sub-networks as well as poorly connected islands or singletons. We show here how topological information and other network features can be used to filter and prioritize gene sets in routine DGE studies. Community detection in combination with automatic labeling and the network representation of gene set clusters further constitute an appealing and intuitive visualization of GSA results. The RICHNET workflow described here does not require human intervention and can thus be conveniently incorporated in automated analysis pipelines.
Collapse
Affiliation(s)
- Michael Prummer
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
815
|
Wegmann R, Neri M, Schuierer S, Bilican B, Hartkopf H, Nigsch F, Mapa F, Waldt A, Cuttat R, Salick MR, Raymond J, Kaykas A, Roma G, Keller CG. CellSIUS provides sensitive and specific detection of rare cell populations from complex single-cell RNA-seq data. Genome Biol 2019; 20:142. [PMID: 31315641 PMCID: PMC6637521 DOI: 10.1186/s13059-019-1739-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
We develop CellSIUS (Cell Subtype Identification from Upregulated gene Sets) to fill a methodology gap for rare cell population identification for scRNA-seq data. CellSIUS outperforms existing algorithms for specificity and selectivity for rare cell types and their transcriptomic signature identification in synthetic and complex biological data. Characterization of a human pluripotent cell differentiation protocol recapitulating deep-layer corticogenesis using CellSIUS reveals unrecognized complexity in human stem cell-derived cellular populations. CellSIUS enables identification of novel rare cell populations and their signature genes providing the means to study those populations in vitro in light of their role in health and disease.
Collapse
Affiliation(s)
- Rebekka Wegmann
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Present Address: Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Marilisa Neri
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Bilada Bilican
- Novartis Institutes for Biomedical Research, Cambridge, USA
- Present Address: Flagship Pioneering, Cambridge, USA
| | - Huyen Hartkopf
- Novartis Institutes for Biomedical Research, Cambridge, USA
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Felipa Mapa
- Novartis Institutes for Biomedical Research, Cambridge, USA
| | - Annick Waldt
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Max R. Salick
- Novartis Institutes for Biomedical Research, Cambridge, USA
- Present Address: Insitro, San Francisco, USA
| | - Joe Raymond
- Novartis Institutes for Biomedical Research, Cambridge, USA
| | - Ajamete Kaykas
- Novartis Institutes for Biomedical Research, Cambridge, USA
- Present Address: Insitro, San Francisco, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
816
|
Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J Pept Sci 2019; 25:e3196. [DOI: 10.1002/psc.3196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hussin A. Rothan
- Department of Biology, College of Arts and SciencesGeorgia State University Atlanta GA USA
| | - Ammar Yasir Abdulrahman
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Ahmad Suhail Khazali
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Teoh Teow Chong
- Institute of Biological Sciences, Faculty of ScienceUniversity of Malaya Kuala Lumpur Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
817
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
818
|
Oprea TI. Exploring the dark genome: implications for precision medicine. Mamm Genome 2019; 30:192-200. [PMID: 31270560 DOI: 10.1007/s00335-019-09809-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
Abstract
The increase in the number of both patients and healthcare practitioners who grew up using the Internet and computers (so-called "digital natives") is likely to impact the practice of precision medicine, and requires novel platforms for data integration and mining, as well as contextualized information retrieval. The "Illuminating the Druggable Genome Knowledge Management Center" (IDG KMC) quantifies data availability from a wide range of chemical, biological, and clinical resources, and has developed platforms that can be used to navigate understudied proteins (the "dark genome"), and their potential contribution to specific pathologies. Using the "Target Importance and Novelty Explorer" (TIN-X) highlights the role of LRRC10 (a dark gene) in dilated cardiomyopathy. Combining mouse and human phenotype data leads to increased strength of evidence, which is discussed for four additional dark genes: SLX4IP and its role in glucose metabolism, the role of HSF2BP in coronary artery disease, the involvement of ELFN1 in attention-deficit hyperactivity disorder and the role of VPS13D in mouse neural tube development and its confirmed role in childhood onset movement disorders. The workflow and tools described here are aimed at guiding further experimental research, particularly within the context of precision medicine.
Collapse
Affiliation(s)
- Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA. .,UNM Comprehensive Cancer Center, Albuquerque, NM, USA. .,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. .,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
819
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
820
|
Lin W, Baines RA. Myocyte enhancer factor-2 and p300 interact to regulate the expression of homeostatic regulator Pumilio in Drosophila. Eur J Neurosci 2019; 50:1727-1740. [PMID: 30687963 PMCID: PMC6767705 DOI: 10.1111/ejn.14357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/23/2023]
Abstract
Pumilio (Pum), an RNA-binding protein, is a key component of neuron firing-rate homeostasis that likely maintains stability of neural circuit activity in all animals, from flies to mammals. While Pum is ubiquitously expressed, we understand little about how synaptic excitation regulates its expression in the CNS. Here, we characterized the Drosophila dpum promoter and identified multiple myocyte enhancer factor-2 (Mef2)-binding elements. We cloned 12 dmef2 splice variants and used a luciferase-based assay to monitor dpum promoter activity. While all 12 dMef2 splice variants enhance dpum promoter activity, exon 10-containing variants induce greater transactivation. Previous work shows dPum expression increases with synaptic excitation. However, we observe no change in dmef2 transcript in larval CNS, of both sexes, exposed to the proconvulsant picrotoxin. The lack of activity dependence is indicative of additional regulation. We identified p300 as a potential candidate. We show that by binding to dMef2, p300 represses dpum transactivation. Significantly, p300 transcript is downregulated by enhanced synaptic excitation (picrotoxin) which, in turn, increases transcription of dpum through derepression of dMef2. These results advance our understanding of dpum by showing the activity-dependent expression is regulated by an interaction between p300 and dMef2.
Collapse
Affiliation(s)
- Wei‐Hsiang Lin
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterUK
| | - Richard A. Baines
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
821
|
Liu Q, Wu J, Lu T, Fang Z, Huang Z, Lu S, Dai C, Li M. Positive expression of basic transcription factor 3 predicts poor survival of colorectal cancer patients: possible mechanisms involved. Cell Death Dis 2019; 10:509. [PMID: 31263147 PMCID: PMC6603001 DOI: 10.1038/s41419-019-1747-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Basic transcription factor 3 (BTF3) is associated with the development of several cancers. The aim of our study was to elucidate the role of BTF3 in colorectal cancer (CRC) tissues. CRC tissues or their paired adjacent noncancerous (ANCT) tissues were obtained from 90 patients who underwent operations in our hospital from November 2011 to December 2016, and then we implemented a gene microarray assay for detecting significant changes in gene expression and confirmed expression in tissues using immunohistochemistry and real-time PCR. We transfected or injected the silencing BTF3 (BTF3-siRNA) plasmid into cells and nude mice, and measured the tumorigenicity of CRC cells with flow cytometry and studied the expression level of BTF3 downstream genes (MAD2L2, MCM3 and PLK1) in CRC cells. BTF3 expression level was not only significantly higher in CRC tissue than in ANCT tissue (2.61 ± 0.07 vs 1.90 ± 0.03, P < 0.001) but BTF3-siRNA decreased tumor formation in a nude mice model. Furthermore, based on the data of gene microarray analysis, MAD2L2, MCM3 and PLK1 were detected as the downstream target genes of BTF3 and their expressions were positive related with BTF3 expression. Also, through transfecting BTF3-siRNA into HCT116 cells, we found that BTF3-siRNA could decrease cell viability and induced cell apoptosis and blocking the cell cycle. In conclusion, BTF3 is positively related to CRC and BTF3-siRNA attenuated the tumorigenicity of colorectal cancer cells via MAD2L2, MCM3 and PLK1 activity reduction.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
| | - Junjie Wu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Tailiang Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zhixue Fang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zixuan Huang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Shanzheng Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chen Dai
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Mengqian Li
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
822
|
Sen M, Wang X, Hamdan FH, Rapp J, Eggert J, Kosinsky RL, Wegwitz F, Kutschat AP, Younesi FS, Gaedcke J, Grade M, Hessmann E, Papantonis A, Strӧbel P, Johnsen SA. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenetics 2019; 11:92. [PMID: 31217031 PMCID: PMC6585056 DOI: 10.1186/s13148-019-0690-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND ARID1A (AT-rich interactive domain-containing protein 1A) is a subunit of the BAF chromatin remodeling complex and plays roles in transcriptional regulation and DNA damage response. Mutations in ARID1A that lead to inactivation or loss of expression are frequent and widespread across many cancer types including colorectal cancer (CRC). A tumor suppressor role of ARID1A has been established in a number of tumor types including CRC where the genetic inactivation of Arid1a alone led to the formation of invasive colorectal adenocarcinomas in mice. Mechanistically, ARID1A has been described to largely function through the regulation of enhancer activity. METHODS To mimic ARID1A-deficient colorectal cancer, we used CRISPR/Cas9-mediated gene editing to inactivate the ARID1A gene in established colorectal cancer cell lines. We integrated gene expression analyses with genome-wide ARID1A occupancy and epigenomic mapping data to decipher ARID1A-dependent transcriptional regulatory mechanisms. RESULTS Interestingly, we found that CRC cell lines harboring KRAS mutations are critically dependent on ARID1A function. In the absence of ARID1A, proliferation of these cell lines is severely impaired, suggesting an essential role for ARID1A in this context. Mechanistically, we showed that ARID1A acts as a co-factor at enhancers occupied by AP1 transcription factors acting downstream of the MEK/ERK pathway. Consistently, loss of ARID1A led to a disruption of KRAS/AP1-dependent enhancer activity, accompanied by a downregulation of expression of the associated target genes. CONCLUSIONS We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS-mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS-mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.
Collapse
Affiliation(s)
- Madhobi Sen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jacobe Rapp
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jessica Eggert
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Fereshteh S Younesi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology & Gastrointestinal Oncology, University Medical Center Gӧttingen, 37075, Göttingen, Germany
| | - Argyris Papantonis
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Philipp Strӧbel
- Department of Pathology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Gastroenterology Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
823
|
Dang JW, Tiwari SK, Qin Y, Rana TM. Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell Rep 2019; 27:3618-3628.e5. [PMID: 31216479 PMCID: PMC6687627 DOI: 10.1016/j.celrep.2019.05.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) infection is implicated in severe fetal developmental disorders, including microcephaly. MicroRNAs (miRNAs) post-transcriptionally regulate numerous processes associated with viral infection and neurodegeneration, but their contribution to ZIKV pathogenesis is unclear. We analyzed the mRNA and miRNA transcriptomes of human neuronal stem cells (hNSCs) during infection with ZIKV MR766 and Paraiba strains. Integration of the miRNA and mRNA expression data into regulatory interaction networks showed that ZIKV infection resulted in miRNA-mediated repression of genes regulating the cell cycle, stem cell maintenance, and neurogenesis. Bioinformatics analysis of Argonaute-bound RNAs in ZIKV-infected hNSCs identified a number of miRNAs with predicted involvement in microcephaly, including miR-124-3p, which dysregulates NSC maintenance through repression of the transferrin receptor (TFRC). Consistent with this, ZIKV infection upregulated miR-124-3p and downregulated TFRC mRNA in ZIKV-infected hNSCs and mouse brain tissue. These data provide insights into the roles of miRNAs in ZIKV pathogenesis, particularly the microcephaly phenotype.
Collapse
Affiliation(s)
- Jason W Dang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA
| | - Yue Qin
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology, University of California, San Diego, 9500 Gilman Drive, MC 0419, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Program in Immunology, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA.
| |
Collapse
|
824
|
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 199:1517-1536. [PMID: 30554520 PMCID: PMC6580683 DOI: 10.1164/rccm.201712-2410oc] [Citation(s) in RCA: 750] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2019] [Indexed: 11/30/2022] Open
Abstract
Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Stephen Chiu
- Division of Thoracic Surgery, Department of Surgery
| | | | | | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Rohan Verma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Annette S. Flozak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | | | - Cara L. Hrusch
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Robert D. Guzy
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Catherine A. Bonham
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Anne I. Sperling
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Remzi Bag
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Robert B. Hamanaka
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and
| | | | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | | | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - A. Christine Argento
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Thoracic Surgery, Department of Surgery
| | - Colin T. Gillespie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Thoracic Surgery, Department of Surgery
| | - Jane Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Anna P. Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery
| | | | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | |
Collapse
|
825
|
Manzo E, Lorenzini I, Barrameda D, O'Conner AG, Barrows JM, Starr A, Kovalik T, Rabichow BE, Lehmkuhl EM, Shreiner DD, Joardar A, Liévens JC, Bowser R, Sattler R, Zarnescu DC. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 2019; 8:45114. [PMID: 31180318 PMCID: PMC6557627 DOI: 10.7554/elife.45114] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), is a fatal neurodegenerative disorder, with TDP-43 inclusions as a major pathological hallmark. Using a Drosophila model of TDP-43 proteinopathy we found significant alterations in glucose metabolism including increased pyruvate, suggesting that modulating glycolysis may be neuroprotective. Indeed, a high sugar diet improves locomotor and lifespan defects caused by TDP-43 proteinopathy in motor neurons or glia, but not muscle, suggesting that metabolic dysregulation occurs in the nervous system. Overexpressing human glucose transporter GLUT-3 in motor neurons mitigates TDP-43 dependent defects in synaptic vesicle recycling and improves locomotion. Furthermore, PFK mRNA, a key indicator of glycolysis, is upregulated in flies and patient derived iPSC motor neurons with TDP-43 pathology. Surprisingly, PFK overexpression rescues TDP-43 induced locomotor deficits. These findings from multiple ALS models show that mechanistically, glycolysis is upregulated in degenerating motor neurons as a compensatory mechanism and suggest that increased glucose availability is protective.
Collapse
Affiliation(s)
- Ernesto Manzo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Ileana Lorenzini
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Dianne Barrameda
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Abigail G O'Conner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Jordan M Barrows
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Alexander Starr
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Tina Kovalik
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Benjamin E Rabichow
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Dakotah D Shreiner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Archi Joardar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | | | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Rita Sattler
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States.,Department of Neuroscience, University of Arizona, Tucson, United States.,Department of Neurobiology, University of Arizona, Tucson, United States
| |
Collapse
|
826
|
Elemam NM, Al-Jaderi Z, Hachim MY, Maghazachi AA. HCT-116 colorectal cancer cells secrete chemokines which induce chemoattraction and intracellular calcium mobilization in NK92 cells. Cancer Immunol Immunother 2019; 68:883-895. [PMID: 30847498 PMCID: PMC11028293 DOI: 10.1007/s00262-019-02319-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We recently reported that pretreatment of IL-2 activated human natural killer (NK) cells with the drugs dimethyl fumarate (DMF) and monomethyl fumarate (MMF) upregulated the expression of surface chemokine receptor CCR10. Ligands for CCR10, namely CCL27 and CCL28, induced the chemotaxis of these cells. Here, we performed a bioinformatics analysis to see which chemokines might be expressed by the human HCT-116 colorectal cancer cells. We observed that, in addition to CCL27 and CCL28, HCT-116 colorectal cancer cells profoundly express CXCL16 which binds CXCR6. Consequently, NK92 cells were treated with DMF and MMF for 24 h to investigate in vitro chemotaxis towards CXCL16, CCL27, and CCL28. Furthermore, supernatants collected from HCT-116 cells after 24 or 48 h incubation induced the chemotaxis of NK92 cells. Similar to their effects on human IL-2-activated NK cells, MMF and DMF enhanced the expression of CCR10 and CXCR6 in NK92 cells. Neutralizing anti-CXCL16 or anti-CCL28 inhibited the chemotactic effects of 24 and 48 supernatants, whereas anti-CCL27 only inhibited the 48 h supernatant activity, suggesting that 24 h supernatant contains CXCL16 and CCL28, whereas HCT-116 secretes all three chemokines after 48 h in vitro cultures. CXCL16, CCL27, and CCL28, as well as the supernatants collected from HCT-116, induced the mobilization of (Ca)2+ in NK92 cells. Cross-desensitization experiments confirmed the results of the chemotaxis experiments. Finally, incubation of NK92 cells with HCT-116 induced the lysis of the tumor cells. In summary, these results might have important implications in directing the anti-tumor effectors NK cells towards tumor growth sites.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mahmood Yaseen Hachim
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and The Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
827
|
Lara-Lemus R. On The Role of Myelin and Lymphocyte Protein (MAL) In Cancer: A Puzzle With Two Faces. J Cancer 2019; 10:2312-2318. [PMID: 31258734 PMCID: PMC6584422 DOI: 10.7150/jca.30376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Myelin and lymphocyte protein (MAL) is an integral membrane protein constituent of lipid rafts, and it is implicated in apical transport of proteins in polarized epithelial cells. However, beyond the involvement of MAL in apical sorting and as its function as a raft stabilizer, it is still not totally clear how MAL participates in cell proliferating processes. More controversial and interesting is the fact that MAL has been implicated in carcinogenesis in two opposite ways. First, this protein is overexpressed in ovarian cancer and some kinds of lymphomas where it seems to favor cancer progression. Conversely, it has been reported that downregulation of the MAL gene by promoter hypermethylation is a hallmark of several adenocarcinomas. So far, there is not enough experimental evidence to help us understand this phenomenon, and no MAL mutations or MAL isoforms have been associated with these opposite functions. This review provides an updated summary of the structure and functions of MAL, and we will discuss the possible mechanisms underlying its roles as a tumor suppressor and a tumor progression factor.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Department of Research in Biochemistry, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, 14080. Mexico
| |
Collapse
|
828
|
Kulski JK. Long Noncoding RNA HCP5, a Hybrid HLA Class I Endogenous Retroviral Gene: Structure, Expression, and Disease Associations. Cells 2019; 8:cells8050480. [PMID: 31137555 PMCID: PMC6562477 DOI: 10.3390/cells8050480] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The HCP5 RNA gene (NCBI ID: 10866) is located centromeric of the HLA-B gene and between the MICA and MICB genes within the major histocompatibility complex (MHC) class I region. It is a human species-specific gene that codes for a long noncoding RNA (lncRNA), composed mostly of an ancient ancestral endogenous antisense 3′ long terminal repeat (LTR, and part of the internal pol antisense sequence of endogenous retrovirus (ERV) type 16 linked to a human leukocyte antigen (HLA) class I promoter and leader sequence at the 5′-end. Since its discovery in 1993, many disease association and gene expression studies have shown that HCP5 is a regulatory lncRNA involved in adaptive and innate immune responses and associated with the promotion of some autoimmune diseases and cancers. The gene sequence acts as a genomic anchor point for binding transcription factors, enhancers, and chromatin remodeling enzymes in the regulation of transcription and chromatin folding. The HCP5 antisense retroviral transcript also interacts with regulatory microRNA and immune and cellular checkpoints in cancers suggesting its potential as a drug target for novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia.
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan.
| |
Collapse
|
829
|
Jung SY, Papp JC, Sobel EM, Yu H, Zhang ZF. Breast Cancer Risk and Insulin Resistance: Post Genome-Wide Gene-Environment Interaction Study Using a Random Survival Forest. Cancer Res 2019; 79:2784-2794. [PMID: 30936085 PMCID: PMC6522308 DOI: 10.1158/0008-5472.can-18-3688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
Abstract
Obesity-insulin connections have been considered potential risk factors for postmenopausal breast cancer, and the association between insulin resistance (IR) genotypes and phenotypes can be modified by obesity-lifestyle factors, affecting breast cancer risk. In this study, we explored the role of IR in those pathways at the genome-wide level. We identified IR-genetic factors and selected lifestyles to generate risk profiles for postmenopausal breast cancer. Using large-scale cohort data from postmenopausal women in the Women's Health Initiative Database for Genotypes and Phenotypes Study, our previous genome-wide association gene-behavior interaction study identified 58 loci for associations with IR phenotypes (homeostatic model assessment-IR, hyperglycemia, and hyperinsulinemia). We evaluated those single-nucleotide polymorphisms (SNP) and additional 31 lifestyles in relation to breast cancer risk by conducting a two-stage multimodal random survival forest analysis. We identified the most predictive genetic and lifestyle variables in overall and subgroup analyses [stratified by body mass index (BMI), exercise, and dietary fat intake]. Two SNPs (LINC00460 rs17254590 and MKLN1 rs117911989), exogenous factors related to lifetime cumulative exposure to estrogen, BMI, and dietary alcohol consumption were the most common influential factors across the analyses. Individual SNPs did not have significant associations with breast cancer, but SNPs and lifestyles combined synergistically increased the risk of breast cancer in a gene-behavior, dose-dependent manner. These findings may contribute to more accurate predictions of breast cancer and suggest potential intervention strategies for women with specific genetic and lifestyle factors to reduce their breast cancer risk. SIGNIFICANCE: These findings identify insulin resistance SNPs in combination with lifestyle as synergistic factors for breast cancer risk, suggesting lifestyle changes can prevent breast cancer in women who carry the risk genotypes.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, California.
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
830
|
Walter JM, Ren Z, Yacoub T, Reyfman PA, Shah RD, Abdala-Valencia H, Nam K, Morgan VK, Anekalla KR, Joshi N, McQuattie-Pimentel AC, Chen CI, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Aillon RP, Watanabe S, Williams KJN, Lu Z, Paonessa J, Hountras P, Breganio M, Borkowski N, Donnelly HK, Allen JP, Amaral LA, Bharat A, Misharin AV, Bagheri N, Hauser AR, Budinger GRS, Wunderink RG. Multidimensional Assessment of the Host Response in Mechanically Ventilated Patients with Suspected Pneumonia. Am J Respir Crit Care Med 2019; 199:1225-1237. [PMID: 30398927 PMCID: PMC6519857 DOI: 10.1164/rccm.201804-0650oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Rationale: The identification of informative elements of the host response to infection may improve the diagnosis and management of bacterial pneumonia. Objectives: To determine whether the absence of alveolar neutrophilia can exclude bacterial pneumonia in critically ill patients with suspected infection and to test whether signatures of bacterial pneumonia can be identified in the alveolar macrophage transcriptome. Methods: We determined the test characteristics of alveolar neutrophilia for the diagnosis of bacterial pneumonia in three cohorts of mechanically ventilated patients. In one cohort, we also isolated macrophages from alveolar lavage fluid and used the transcriptome to identify signatures of bacterial pneumonia. Finally, we developed a humanized mouse model of Pseudomonas aeruginosa pneumonia to determine if pathogen-specific signatures can be identified in human alveolar macrophages. Measurements and Main Results: An alveolar neutrophil percentage less than 50% had a negative predictive value of greater than 90% for bacterial pneumonia in both the retrospective (n = 851) and validation cohorts (n = 76 and n = 79). A transcriptional signature of bacterial pneumonia was present in both resident and recruited macrophages. Gene signatures from both cell types identified patients with bacterial pneumonia with test characteristics similar to alveolar neutrophilia. Conclusions: The absence of alveolar neutrophilia has a high negative predictive value for bacterial pneumonia in critically ill patients with suspected infection. Macrophages can be isolated from alveolar lavage fluid obtained during routine care and used for RNA-Seq analysis. This novel approach may facilitate a longitudinal and multidimensional assessment of the host response to bacterial pneumonia.
Collapse
Affiliation(s)
- James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Tyrone Yacoub
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raj D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Vince K. Morgan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Kishore R. Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raul P. Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Joseph Paonessa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Peter Hountras
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Madonna Breganio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nicole Borkowski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Helen K. Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jonathan P. Allen
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | - Luis A. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, and
| | | | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Alan R. Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | | | | |
Collapse
|
831
|
Lim H, Xie L. Target Gene Prediction of Transcription Factor Using a New Neighborhood-regularized Tri-factorization One-class Collaborative Filtering Algorithm. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2018:1-10. [PMID: 31061989 DOI: 10.1145/3233547.3233551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Identifying the target genes of transcription factors (TFs) is one of the key factors to understand transcriptional regulation. However, our understanding of genome-wide TF targeting profile is limited due to the cost of large scale experiments and intrinsic complexity. Thus, computational prediction methods are useful to predict the unobserved associations. Here, we developed a new one-class collaborative filtering algorithm tREMAP that is based on regularized, weighted nonnegative matrix tri-factorization. The algorithm predicts unobserved target genes for TFs using known gene-TF associations and protein-protein interaction network. Our benchmark study shows that tREMAP significantly outperforms its counterpart REMAP, a bi-factorization-based algorithm, for transcription factor target gene prediction in all four performance metrics AUC, MAP, MPR, and HLU. When evaluated by independent data sets, the prediction accuracy is 37.8% on the top 495 predicted associations, an enrichment factor of 4.19 compared with the random guess. Furthermore, many of the predicted novel associations by tREMAP are supported by evidence from literature. Although we only use canonical TF-target gene interaction data in this study, tREMAP can be directly applied to tissue-specific data sets. tREMAP provides a framework to integrate multiple omics data for the further improvement of TF target gene prediction. Thus, tREMAP is a potentially useful tool in studying gene regulatory networks. The benchmark data set and the source code of tREMAP are freely available at https://github.com/hansaimlim/REMAP/tree/master/TriFacREMAP.
Collapse
Affiliation(s)
- Hansaim Lim
- PhD program in Biochemistry, Graduate Center of the City University of New York NY 10016 United States
| | - Lei Xie
- Department of Computer Science, Hunter College and Graduate Center, the City University of New York NY 10065 United States
| |
Collapse
|
832
|
Gažová I, Lengeling A, Summers KM. Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Mol Genet Metab 2019; 127:31-44. [PMID: 31097364 DOI: 10.1016/j.ymgme.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.
Collapse
Affiliation(s)
- Iveta Gažová
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andreas Lengeling
- Max Planck Society, Administrative Headquarters, Hofgartenstrasse 8, 80539 Munich, Germany
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
833
|
Wahlang B, Jin J, Hardesty JE, Head KZ, Shi H, Falkner KC, Prough RA, Klinge CM, Cave MC. Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food Chem Toxicol 2019; 129:64-76. [PMID: 31026535 DOI: 10.1016/j.fct.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/24/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Exposures to persistent environmental pollutants like polychlorinated biphenyls (PCBs) has been associated with liver diseases such as toxicant-associated steatohepatitis (TASH). However, previously published PCB hepatotoxicity studies evaluated mostly male animal models. Moreover, epidemiologic studies on PCB-exposed cohorts evaluating sex differences are scarce. Therefore, the objective of this study was to examine hepato-toxicological responses of PCB exposures in the context of sex-dependent outcomes. Male and female C57Bl/6 mice were exposed to Aroclor 1260 (20 mg/kg), and PCB126 (20 μg/kg), by gavage for two weeks. Female mice appeared to be more sensitive to PCB-induced hepatotoxic effects as manifested by increased liver injury markers, namely, hepatic Serpine1 expression. Additionally, compared to their male counterparts, PCB-exposed females exhibited dysregulated hepatic gene expression favoring lipid accumulation rather than lipid breakdown; accompanied by dyslipidemia. Sex differences were also observed in the expression and activation of PCB targets such as the epidermal growth factor receptor (EGFR) while PCB-induced pancreatic toxicity was similar in both sexes. Importantly, PCB exposure appeared to cause pro-androgenic, anti-estrogenic along with sex-dependent thyroid hormone effects. The overall findings demonstrated that the observed PCB-mediated hepatotoxicity was sex-dependent; confirming the existence of sex differences in environmental exposure-induced markers of TASH and warrants further investigation.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; UofL Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kimberly Z Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Hongxue Shi
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; UofL Superfund Research Center, University of Louisville, Louisville, KY, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
834
|
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Homeodomain Proteins Homeobrain, Empty Spiracles, and Muscle Segment Homeobox. Int J Mol Sci 2019; 20:ijms20081931. [PMID: 31010135 PMCID: PMC6515119 DOI: 10.3390/ijms20081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
The Drosophila homeodomain-interacting protein kinase (Hipk) is the fly representative of the well-conserved group of HIPKs in vertebrates. It was initially found through its characteristic interactions with homeodomain proteins. Hipk is involved in a variety of important developmental processes, such as the development of the eye or the nervous system. In the present study, we set Hipk and the Drosophila homeodomain proteins Homeobrain (Hbn), Empty spiracles (Ems), and Muscle segment homeobox (Msh) in an enzyme-substrate relationship. These homeoproteins are transcription factors that function during Drosophila neurogenesis and are, at least in part, conserved in vertebrates. We reveal a physical interaction between Hipk and the three homeodomain proteins in vivo using bimolecular fluorescence complementation (BiFC). In the course of in vitro phosphorylation analysis and subsequent mutational analysis we mapped several Hipk phosphorylation sites of Hbn, Ems, and Msh. The phosphorylation of Hbn, Ems, and Msh may provide further insight into the function of Hipk during development of the Drosophila nervous system.
Collapse
|
835
|
Kayser BD, Lhomme M, Prifti E, Cunha CD, Marquet F, Chain F, Naas I, Pelloux V, Dao M, Kontush A, Rizkalla SW, Aron‐Wisnewsky J, Bermúdez‐Humarán LG, Oakley F, Langella P, Clément K, Dugail I. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB J 2019; 33:4741-4754. [PMID: 30608881 PMCID: PMC8793811 DOI: 10.1096/fj.201801897r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/03/2018] [Indexed: 01/26/2023]
Abstract
Lipidomic techniques can improve our understanding of complex lipid interactions that regulate metabolic diseases. Here, a serum phospholipidomics analysis identified associations between phosphatidylglycerols (PGs) and gut microbiota dysbiosis. Compared with the other phospholipids, serum PGs were the most elevated in patients with low microbiota gene richness, which were normalized after a dietary intervention that restored gut microbial diversity. Serum PG levels were positively correlated with metagenomic functional capacities for bacterial LPS synthesis and host markers of low-grade inflammation; transcriptome databases identified PG synthase, the first committed enzyme in PG synthesis, as a potential mediator. Experiments in mice and cultured human-derived macrophages demonstrated that LPS induces PG release. Acute PG treatment in mice altered adipose tissue gene expression toward remodeling and inhibited ex vivo lipolysis in adipose tissue, suggesting that PGs favor lipid storage. Indeed, several PG species were associated with the severity of obesity in mice and humans. Finally, despite enrichment in PGs in bacterial membranes, experiments employing gnotobiotic mice colonized with recombinant PG overproducing Lactococcus lactis showed limited direct contribution of microbial PGs to the host. In summary, PGs are inflammation-responsive lipids indirectly regulated by the gut microbiota via endotoxins and regulate adipose tissue homeostasis in obesity.-Kayser, B. D., Lhomme, M., Prifti, E., Da Cunha, C., Marquet, F., Chain, F., Naas, I., Pelloux, V., Dao, M.-C., Kontush, A., Rizkalla, S. W., Aron-Wisnewsky, J., Bermúdez-Humarán, L. G., Oakley, F., Langella, P., Clément, K., Dugail, I. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity.
Collapse
Affiliation(s)
| | - Marie Lhomme
- ICANalytics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
- Integromics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
| | - Edi Prifti
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- ICANalytics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
- Integromics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
| | - Carla Da Cunha
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
| | | | - Florian Chain
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Isabelle Naas
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | | | | | - Anatol Kontush
- Integrative Biology of Atherosclerosis TeamINSERMUnité 1166—Sorbonne UniversitéParisFrance
| | | | - Judith Aron‐Wisnewsky
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- Nutrition DepartmentCentre de Recherche en Nutrition Humaine (CRNH)—Ile de FrancePitié‐Salpêtrière HospitalAssistance Publique—Hôpitaux de Paris (AP—HP)ParisFrance
| | - Luis G. Bermúdez‐Humarán
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Fiona Oakley
- Newcastle Fibrosis Research GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Philippe Langella
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Karine Clément
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- Nutrition DepartmentCentre de Recherche en Nutrition Humaine (CRNH)—Ile de FrancePitié‐Salpêtrière HospitalAssistance Publique—Hôpitaux de Paris (AP—HP)ParisFrance
| | | |
Collapse
|
836
|
Myosin Va interacts with the exosomal protein spermine synthase. Biosci Rep 2019; 39:BSR20182189. [PMID: 30733278 PMCID: PMC6395372 DOI: 10.1042/bsr20182189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS). The interaction between the GTD of MyoVa and SMS was further validated in vitro and displayed a Kd in the low micromolar range (3.5 ± 0.5 µM). SMS localized together with MyoVa in cytoplasmic vesicles of breast cancer MCF-7 and neuroblastoma SH-SY5Y cell lines, known to produce exosomes. Moreover, MYO5A knockdown decreased the expression of SMS gene and rendered the distribution of SMS protein diffuse, supporting a role for MyoVa in SMS expression and targeting.
Collapse
|
837
|
Dietrich P, Hellerbrand C, Bosserhoff A. The Delta Subunit of Rod-Specific Photoreceptor cGMP Phosphodiesterase (PDE6D) Contributes to Hepatocellular Carcinoma Progression. Cancers (Basel) 2019; 11:cancers11030398. [PMID: 30901922 PMCID: PMC6468542 DOI: 10.3390/cancers11030398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence reveals crucial roles of wild type RAS in liver cancer. The delta subunit of rod-specific photoreceptor cGMP phosphodiesterase (PDE6D) regulates the trafficking of RAS proteins to the plasma membrane and thereby contributes to RAS activation. However, the expression and specific function of PDE6D in hepatocellular carcinoma (HCC) were completely unknown. In this study, PDE6D was newly found to be markedly upregulated in HCC tissues and cell lines. Overexpression of PDE6D in HCC correlated with enhanced tumor stages, tumor grading, and ERK activation. PDE6D depletion significantly reduced proliferation, clonogenicity, and migration of HCC cells. Moreover, PDE6D was induced by TGF-β1, the mediator of stemness, epithelial-mesenchymal transition (EMT), and chemoresistance. In non-resistant cells, overexpression of PDE6D conferred resistance to sorafenib-induced toxicity. Further, PDE6D was overexpressed in sorafenib resistance, and inhibition of PDE6D reduced proliferation and migration in sorafenib-resistant HCC cells. Together, PDE6D was found to be overexpressed in liver cancer and correlated with tumor stages, grading, and ERK activation. Moreover, PDE6D contributed to migration, proliferation, and sorafenib resistance in HCC cells, therefore representing a potential novel therapeutic target.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany.
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany.
| |
Collapse
|
838
|
Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, Warren AY, Stewart GD, Eisen T, Bihary D, Samarajiwa SA, Vanharanta S. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun 2019; 10:1152. [PMID: 30858363 PMCID: PMC6411998 DOI: 10.1038/s41467-019-09116-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
Collapse
Affiliation(s)
- Saiful E Syafruddin
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Erika Vojtasova
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - M Nazhif Zaini
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Johanna Burge
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim Eisen
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Health Partners, Cambridge, CB2 0QQ, UK
- Oncology Early Clinical Development, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Dóra Bihary
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
839
|
Utnes P, Løkke C, Flægstad T, Einvik C. Clinically Relevant Biomarker Discovery in High-Risk Recurrent Neuroblastoma. Cancer Inform 2019; 18:1176935119832910. [PMID: 30886518 PMCID: PMC6413431 DOI: 10.1177/1176935119832910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system.
High-risk neuroblastoma patients typically undergo an initial remission in
response to treatment, followed by recurrence of aggressive tumors that have
become refractory to further treatment. The need for biomarkers that can select
patients not responding well to therapy in an early phase is therefore needed.
In this study, we used next generation sequencing technology to determine the
expression profiles in high-risk neuroblastoma cell lines established before and
after therapy. Using partial least squares-discriminant analysis (PLS-DA) with
least absolute shrinkage and selection operator (LASSO) and leave-one-out
cross-validation, we identified a panel of 55 messenger RNAs and 17 long
non-coding RNAs (lncRNAs) which were significantly altered in the expression
between cell lines isolated from primary and recurrent tumors. From a
neuroblastoma patient cohort, we found 20 of the 55 protein-coding genes to be
differentially expressed in patients with unfavorable compared with favorable
outcome. We further found a twofold increase or decrease in hazard ratios in
these genes when comparing patients with unfavorable and favorable outcome. Gene
set enrichment analysis (GSEA) revealed that these genes were involved in
proliferation, differentiation and regulated by Polycomb group (PcG) proteins.
Of the 17 lncRNAs, 3 upregulated (NEAT1, SH3BP5-AS1, NORAD) and
3 downregulated lncRNAs (DUBR, MEG3, DHRS4-AS1) were also found
to be differentially expressed in favorable compared with unfavorable outcome.
Moreover, using expression profiles on both miRNAs and mRNAs in the same cohort
of cell lines, we found 13 downregulated and 18 upregulated experimentally
observed miRNA target genes targeted by miR-21, -424 and
-30e, -29b, -138, -494, -181a, -34a, -29b,
respectively. The advantage of analyzing biomarkers in a clinically relevant
neuroblastoma model system enables further studies on the effect of individual
genes upon gene perturbation. In summary, this study identified several genes,
which may aid in the prediction of response to therapy and tumor recurrence.
Collapse
Affiliation(s)
- Peter Utnes
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway
| | - Cecilie Løkke
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| | - Trond Flægstad
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway.,Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| | - Christer Einvik
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, Tromsø, Norway.,Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, Tromsø, Norway
| |
Collapse
|
840
|
Lutz MW, Casanova R, Saldana S, Kuchibhatla M, Plassman BL, Hayden KM. Analysis of pleiotropic genetic effects on cognitive impairment, systemic inflammation, and plasma lipids in the Health and Retirement Study. Neurobiol Aging 2019; 80:173-186. [PMID: 31201950 DOI: 10.1016/j.neurobiolaging.2018.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/11/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023]
Abstract
Variants associated with modulation of c-reactive protein (CRP) and plasma lipids have been investigated for polygenic overlap with Alzheimer's disease risk variants. We examined pleiotropic genetic effects on cognitive impairment conditioned on genetic variants (SNPs) associated with systemic inflammation as measured by CRP and with plasma lipids using data from the Health and Retirement Study. SNP enrichment was observed for cognitive impairment conditioned on the secondary phenotypes of plasma CRP and lipids. Fold enrichment of 100%-800% was observed for increasingly stringent p-value thresholds for SNPs associated with cognitive impairment conditional on plasma CRP, 80%-800% for low-density lipoprotein, and 80%-600% for total cholesterol. Significant associations (false discovery rate Q ≤ 0.05) between cognitive impairment, conditional with either CRP, low-density lipoprotein, or total cholesterol, were found for the locus on chromosome 19 that contains the APOE, TOMM40, APOC1, and PVRL2 genes. Relative numbers of significant SNPs in each of the genes differed by the conditional associations with the secondary phenotypes. Biological interpretation of both the genetic pleiotropy results and the individual genome-wide association results showed that the variants and proximal genes identified are involved in multiple pathological processes including cholesterol metabolism, inflammation, and mitochondrial transport. These findings are potentially important for Alzheimer's disease risk prediction and development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Santiago Saldana
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Winston-Salem, NC, USA
| | - Brenda L Plassman
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Kathleen M Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
841
|
Ganguly K, Saha T, Saha A, Dutta T, Banerjee S, Sengupta D, Bhattacharya S, Ghosh S, Sengupta M. Meta-analysis and prioritization of human skin pigmentation-associated GWAS-SNPs using ENCODE data-based web-tools. Arch Dermatol Res 2019; 311:163-171. [PMID: 30756169 DOI: 10.1007/s00403-019-01891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/26/2018] [Accepted: 02/09/2019] [Indexed: 12/30/2022]
Abstract
Skin pigmentation in human is a complex trait, which varies widely, both within and between human populations. The exact players governing the trait of skin pigmentation remain elusive till date. Various Genome Wide Association Studies (GWAS) have shown the association of different genomic variants with normal human skin pigmentation, often indicating genes with no direct implications in melanin biosynthesis or distribution. Little has been explained in terms of the functionality of the associated Single-Nucleotide Polymorphisms (SNPs) with respect to modulating the skin pigmentation phenotype. In the present study, which, to our knowledge, is the first of its kind, we tried to analyze and prioritize 519 non-coding SNPs and 24 3'UTR SNPs emerging from 14 different human skin pigmentation-related GWAS, primarily using several ENCODE-based web-tools like rSNPBase, RegulomeDB, HaploReg, etc., most of which incorporate experimentally validated evidences in their predictions. Using this comprehensive, in-silico, analytical approach, we successfully prioritized all the pigmentation-associated GWAS-SNPs and tried to annotate pigmentation-related functionality to them, which would pave the way for deeper understanding of the molecular basis of human skin pigmentation variations.
Collapse
Affiliation(s)
- Kausik Ganguly
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Tania Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | | | | | - Sampurna Ghosh
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India.
| |
Collapse
|
842
|
Hohmann T, Feese K, Ghadban C, Dehghani F, Grabiec U. On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PLoS One 2019; 14:e0212037. [PMID: 30753211 PMCID: PMC6372232 DOI: 10.1371/journal.pone.0212037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory activity of tumor cells are only partially understood. Previous studies demonstrated that cannabinoids altered the organization of the actin cytoskeleton in various cell types. As actin is one of the main contributors to cell motility and is postulated to be linked to tumor invasion, we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid receptor dependent manner? 2) Are these alterations associated with reorganizations in the actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms? Three different glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and antagonists. Afterwards, we measured changes in cell motility using live cell imaging and alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphorylated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and phosphorylated FAK (pFAK) over time were measured. Cannabinoids induced changes in cell motility, morphology and actin organization in a receptor and cell line dependent manner. No significant changes were observed in the analyzed signaling molecules. Cannabinoids can principally induce changes in the actin cytoskeleton and motility of glioblastoma cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology. Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK pathways.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kerstin Feese
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Grabiec
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
843
|
Perna-Barrull D, Rodriguez-Fernandez S, Pujol-Autonell I, Gieras A, Ampudia-Carrasco RM, Villalba A, Glau L, Tolosa E, Vives-Pi M. Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes. Sci Rep 2019; 9:1235. [PMID: 30718757 PMCID: PMC6362293 DOI: 10.1038/s41598-018-37878-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone –a synthetic glucocorticoid given to women at risk of preterm delivery– may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M Ampudia-Carrasco
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain. .,CIBERDEM, Barcelona, Spain.
| |
Collapse
|
844
|
Abstract
Differential gene expression (DGE) studies often suffer from poor interpretability of their primary results, i.e., thousands of differentially expressed genes. This has led to the introduction of gene set analysis (GSA) methods that aim at identifying interpretable global effects by grouping genes into sets of common context, such as, molecular pathways, biological function or tissue localization. In practice, GSA often results in hundreds of differentially regulated gene sets. Similar to the genes they contain, gene sets are often regulated in a correlative fashion because they share many of their genes or they describe related processes. Using these kind of neighborhood information to construct networks of gene sets allows to identify highly connected sub-networks as well as poorly connected islands or singletons. We show here how topological information and other network features can be used to filter and prioritize gene sets in routine DGE studies. Community detection in combination with automatic labeling and the network representation of gene set clusters further constitute an appealing and intuitive visualization of GSA results. The RICHNET workflow described here does not require human intervention and can thus be conveniently incorporated in automated analysis pipelines.
Collapse
Affiliation(s)
- Michael Prummer
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
845
|
Urotensin-related gene transcripts mark developmental emergence of the male forebrain vocal control system in songbirds. Sci Rep 2019; 9:816. [PMID: 30692609 PMCID: PMC6349858 DOI: 10.1038/s41598-018-37057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to other brain regions via diffusion or transduction through other receptor systems. Urotensins have not previously been implicated in vocal control, but we find an annotation in Allen Human Brain Atlas of increased UTS2B expression within portions of human inferior frontal cortex implicated in human speech and singing. Thus UTS2B (URP) is a novel neural marker that may have conserved functions for vocal communication.
Collapse
|
846
|
Paczkowska J, Soloch N, Bodnar M, Kiwerska K, Janiszewska J, Vogt J, Domanowska E, Martin-Subero JI, Ammerpohl O, Klapper W, Marszalek A, Siebert R, Giefing M. Expression of ELF1, a lymphoid ETS domain-containing transcription factor, is recurrently lost in classical Hodgkin lymphoma. Br J Haematol 2019; 185:79-88. [PMID: 30681722 DOI: 10.1111/bjh.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
Loss of B cell-specific transcription factors (TFs) and the resulting loss of B-cell phenotype of Hodgkin and Reed-Sternberg (HRS) cells is a hallmark of classical Hodgkin lymphoma (cHL). Here we have analysed two members of ETS domain containing TFs, ELF1 and ELF2, regarding (epi)genomic changes as well as gene and protein expression. We observed absence or lower levels of ELF1 protein in HRS cells of 31/35 (89%) cases compared to the bystander cells and significant (P < 0·01) downregulation of the gene on mRNA as well as protein level in cHL compared to non-cHL cell lines. However, no recurrent loss of ELF2 protein was observed. Moreover, ELF1 was targeted by heterozygous deletions combined with hypermethylation of the remaining allele(s) in 4/7 (57%) cell lines. Indeed, DNA hypermethylation (range 95-99%, mean 98%) detected in the vicinity of the ELF1 transcription start site was found in all 7/7 (100%) cHL cell lines. Similarly, 5/18 (28%) analysed primary biopsies carried heterozygous deletions of the gene. We demonstrate that expression of ELF1 is impaired in cHL through genetic and epigenetic alterations, and thus, it may represent an additional member of a TF network whose downregulation contributes to the loss of B-cell phenotype of HRS cells.
Collapse
Affiliation(s)
- Julia Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Soloch
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Science, Poznan, Poland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumour Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Julia Vogt
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany
| | - Ewa Domanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - José I Martin-Subero
- Insitut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andrzej Marszalek
- Department of Tumour Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Centre, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
847
|
Zhang Z, Parker MP, Graw S, Novikova LV, Fedosyuk H, Fontes JD, Koestler DC, Peterson KR, Slawson C. O-GlcNAc homeostasis contributes to cell fate decisions during hematopoiesis. J Biol Chem 2019; 294:1363-1379. [PMID: 30523150 PMCID: PMC6349094 DOI: 10.1074/jbc.ra118.005993] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The addition of a single β-d-GlcNAc sugar (O-GlcNAc) by O-GlcNAc-transferase (OGT) and O-GlcNAc removal by O-GlcNAcase (OGA) maintain homeostatic O-GlcNAc levels on cellular proteins. Changes in protein O-GlcNAcylation regulate cellular differentiation and cell fate decisions, but how these changes affect erythropoiesis, an essential process in blood cell formation, remains unclear. Here, we investigated the role of O-GlcNAcylation in erythropoiesis by using G1E-ER4 cells, which carry the erythroid-specific transcription factor GATA-binding protein 1 (GATA-1) fused to the estrogen receptor (GATA-1-ER) and therefore undergo erythropoiesis after β-estradiol (E2) addition. We observed that during G1E-ER4 differentiation, overall O-GlcNAc levels decrease, and physical interactions of GATA-1 with both OGT and OGA increase. RNA-Seq-based transcriptome analysis of G1E-ER4 cells differentiated in the presence of the OGA inhibitor Thiamet-G (TMG) revealed changes in expression of 433 GATA-1 target genes. ChIP results indicated that the TMG treatment decreases the occupancy of GATA-1, OGT, and OGA at the GATA-binding site of the lysosomal protein transmembrane 5 (Laptm5) gene promoter. TMG also reduced the expression of genes involved in differentiation of NB4 and HL60 human myeloid leukemia cells, suggesting that O-GlcNAcylation is involved in the regulation of hematopoietic differentiation. Sustained treatment of G1E-ER4 cells with TMG before differentiation reduced hemoglobin-positive cells and increased stem/progenitor cell surface markers. Our results show that alterations in O-GlcNAcylation disrupt transcriptional programs controlling erythropoietic lineage commitment, suggesting a role for O-GlcNAcylation in regulating hematopoietic cell fate.
Collapse
Affiliation(s)
- Zhen Zhang
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Matthew P Parker
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | | | - Lesya V Novikova
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Halyna Fedosyuk
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Joseph D Fontes
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Devin C Koestler
- Biostatistics, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kenneth R Peterson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160; Anatomy and Cell Biology, Kansas City, Kansas 66160.
| | - Chad Slawson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
848
|
Kosack L, Wingelhofer B, Popa A, Orlova A, Agerer B, Vilagos B, Majek P, Parapatics K, Lercher A, Ringler A, Klughammer J, Smyth M, Khamina K, Baazim H, de Araujo ED, Rosa DA, Park J, Tin G, Ahmar S, Gunning PT, Bock C, Siddle HV, Woods GM, Kubicek S, Murchison EP, Bennett KL, Moriggl R, Bergthaler A. The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease. Cancer Cell 2019; 35:125-139.e9. [PMID: 30645971 PMCID: PMC6335503 DOI: 10.1016/j.ccell.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/05/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharmacological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 prevented tumor growth in xenograft models and restored MHC class I expression. This link between the hyperactive ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Peter Majek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anna Ringler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - David A Rosa
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Jisung Park
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Gary Tin
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Siawash Ahmar
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Hannah V Siddle
- Department of Biological Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
849
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
850
|
Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQDA, Heinecke JW, Lusis AJ. Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 2019; 60:594-608. [PMID: 30622162 PMCID: PMC6399512 DOI: 10.1194/jlr.m090555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
HDLs are nanoparticles with more than 80 associated proteins, phospholipids, cholesterol, and cholesteryl esters. The potential inverse relation of HDL to coronary artery disease (CAD) and the effects of HDL on myriad other inflammatory conditions warrant a better understanding of the genetic basis of the HDL proteome. We conducted a comprehensive genetic analysis of the regulation of the proteome of HDL isolated from a panel of 100 diverse inbred strains of mice (the hybrid mouse diversity panel) and examined protein composition and efflux capacity to identify novel factors that affect the HDL proteome. Genetic analysis revealed widely varied HDL protein levels across the strains. Some of this variation was explained by local cis-acting regulation, termed cis-protein quantitative trait loci (QTLs). Variations in apoA-II and apoC-3 affected the abundance of multiple HDL proteins, indicating a coordinated regulation. We identified modules of covarying proteins and defined a protein-protein interaction network that describes the protein composition of the naturally occurring subspecies of HDL in mice. Sterol efflux capacity varied up to 3-fold across the strains, and HDL proteins displayed distinct correlation patterns with macrophage and ABCA1-specific cholesterol efflux capacity and cholesterol exchange, suggesting that subspecies of HDL participate in discrete functions. The baseline and stimulated sterol efflux capacity phenotypes were associated with distinct QTLs with smaller effect size, suggesting a multigenetic regulation. Our results highlight the complexity of HDL particles by revealing the high degree of heterogeneity and intercorrelation, some of which is associated with functional variation, and support the concept that HDL-cholesterol alone is not an accurate measure of HDL’s properties, such as protection against CAD.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | - Calvin Pan
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| | - Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR
| | | | - Chongren Tang
- Department of Medicine University of Washington, Seattle, WA
| | - Jake Wimberger
- Department of Medicine University of Washington, Seattle, WA
| | - Angela Irwin
- Department of Medicine University of Washington, Seattle, WA
| | | | - Jay W Heinecke
- Department of Medicine University of Washington, Seattle, WA
| | - Aldons J Lusis
- Departments of Genetics University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|