851
|
Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. PLANT PHYSIOLOGY 2011; 155:1566-77. [PMID: 21378102 PMCID: PMC3091114 DOI: 10.1104/pp.110.170399] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/26/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department of Biology I, 82152 Martinsried, Germany.
| |
Collapse
|
852
|
Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LACJ, Bailey-Serres J. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. THE NEW PHYTOLOGIST 2011; 190:457-71. [PMID: 21231933 DOI: 10.1111/j.1469-8137.2010.03590.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O(2) partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early darkness, and O(2)-deprivation were evaluated by fuzzy k-means clustering. This identified genes co-regulated at the conditional, developmental or organ-specific level. Mutants for 10 differentially expressed HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes were screened for altered submergence tolerance. • The analysis identified 34 genes that were ubiquitously co-regulated by submergence and O(2) deprivation. The biological functions of these include signaling, transcription, and anaerobic energy metabolism. HUPs comprised 40% of the co-regulated transcripts and mutants of seven of these genes were significantly altered in submergence tolerance. • The results define transcriptomic adjustments in response to submergence in the dark and demonstrate that the manipulation of HUPs can alter submergence tolerance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
853
|
Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 2011; 351:82-9. [PMID: 21185286 PMCID: PMC3041830 DOI: 10.1016/j.ydbio.2010.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the relationship between the sugar signal and seedling meristem establishment, taking advantage of our previous observation that exogenously supplied metabolic sugars can rescue the meristem growth arrest phenotype of the Arabidopsis stip mutant seedlings. Our results show that metabolic sugars reactivate the stip meristems by activating the expression of key cell cycle regulators, and therefore, promoting G2 to M transition in Arabidopsis meristematic tissues. One of the early events in this process is the transcriptional repression of TSS, a genetic suppressor of the stip mutations, by sugar signals, suggesting that TSS may act as an integrator of developmental and nutritional signals in regulating meristematic proliferation. We also present evidence that metabolic sugar signals are required for the activation of mitotic entry during de novo meristem formation from G2 arrested cells. Our observations, together with the recent findings that nutrient deprivation leads to G2 arrest of animal germline stem cells, suggest that carbohydrate availability-regulated G2 to M transition may represent a common mechanism in stem cell division regulation in multicellular organisms.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Frances Sung
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fangxin Hong
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Xuelin Wu
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
854
|
Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:212-31. [PMID: 21205183 DOI: 10.1111/j.1744-7909.2010.01017.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant bZIP transcription factors play crucial roles in multiple biological processes. However, little is known about the sorghum bZIP gene family although the sorghum genome has been completely sequenced. In this study, we have carried out a genome-wide identification and characterization of this gene family in sorghum. Our data show that the genome encodes at least 92 bZIP transcription factors. These bZIP genes have been expanded mainly by segmental duplication. Such an expansion mechanism has also been observed in rice, arabidopsis and many other plant organisms, suggesting a common expansion mode of this gene family in plants. Further investigation shows that most of the bZIP members have been present in the most recent common ancestor of sorghum and rice and the major expansion would occur before the sorghum-rice split era. Although these bZIP genes have been duplicated with a long history, they exhibited limited functional divergence as shown by nonsynonymous substitutions (Ka)/synonymous substitutions (Ks) analyses. Their retention was mainly due to the high percentages of expression divergence. Our data also showed that this gene family might play a role in multiple developmental stages and tissues and might be regarded as important regulators of various abiotic stresses and sugar signaling.
Collapse
Affiliation(s)
- Jizhou Wang
- Institute of Botany and Temasek Life Sciences Laboratory Joint Research & Development Laboratory, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
855
|
Seo PJ, Ryu J, Kang SK, Park CM. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:418-29. [PMID: 21265895 DOI: 10.1111/j.1365-313x.2010.04432.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There has been a long-standing interest in the role played by sugars in flowering. Of particular interest is how sugar-related signals are integrated into flowering genetic pathways. Here, we demonstrate that the INDETERMINATE DOMAIN transcription factor AtIDD8 regulates photoperiodic flowering by modulating sugar transport and metabolism. We found that whereas AtIDD8-deficient idd8 mutants exhibit delayed flowering under long days, AtIDD8-overexpressing plants (35S:IDD8) show early flowering. In addition, the sucrose synthase genes SUS1 and SUS4 were upregulated in 35S:IDD8 plants but downregulated in idd8 mutants, in which endogenous sugar levels were altered. AtIDD8 activates the SUS4 gene by binding directly to its promoter, resulting in promoted flowering in SUS4-overexpressing plants. SUS4 expression also responds to photoperiodic signals. Notably, the AtIDD8 gene is suppressed by sugar deprivation. Therefore, we conclude that AtIDD8 regulation of sugar transport and metabolism is linked to photoperiodic flowering.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
856
|
Prins A, Mukubi JM, Pellny TK, Verrier PJ, Beyene G, Lopes MS, Emami K, Treumann A, Lelarge-Trouverie C, Noctor G, Kunert KJ, Kerchev P, Foyer CH. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. PLANT, CELL & ENVIRONMENT 2011; 34:314-31. [PMID: 21054434 DOI: 10.1111/j.1365-3040.2010.02245.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The responses of C(3) plants to rising atmospheric CO(2) levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C(4) plants to high CO(2) remains controversial because of the absence of CO(2) -dependent effects on photosynthesis. In this study, the effects of atmospheric CO(2) availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zea mays L.) were studied in plants grown under ambient CO(2) conditions (350 +/- 20 µL L(-1) CO(2) ) or with CO(2) enrichment (700 +/- 20 µL L(-1) CO(2) ). Growth at high CO(2) had no effect on photosynthesis, photorespiration, leaf C/N ratios or anthocyanin contents. However, leaf transpiration rates, carbohydrate metabolism and protein carbonyl accumulation were altered at high CO(2) in a leaf-rank specific manner. Although no significant CO(2) -dependent changes in the leaf transcriptome were observed, qPCR analysis revealed that the abundance of transcripts encoding a Bowman-Birk protease inhibitor and a serpin were changed by the growth CO(2) level in a leaf rank specific manner. Moreover, CO(2) -dependent changes in the leaf proteome were most evident in the oldest source leaves. Small changes in water status may be responsible for the observed responses to high CO(2,) particularly in the older leaf ranks.
Collapse
Affiliation(s)
- Anneke Prins
- Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
857
|
Cho YH, Yoo SD. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 2011; 7:e1001263. [PMID: 21253566 PMCID: PMC3017112 DOI: 10.1371/journal.pgen.1001263] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
Sugars are evolutionarily conserved signaling molecules that regulate the growth and development of both unicellular and multicellular organisms. As sugar-producing photosynthetic organisms, plants utilize glucose as one of their major signaling molecules. However, the details of other sugar signaling molecules and their regulatory factors have remained elusive, due to the complexity of the metabolite and hormone interactions that control physiological and developmental programs in plants. We combined information from a gain-of-function cell-based screen and a loss-of-function reverse-genetic analysis to demonstrate that fructose acts as a signaling molecule in Arabidopsis thaliana. Fructose signaling induced seedling developmental arrest and interacted with plant stress hormone signaling in a manner similar to that of glucose. For fructose signaling responses, the plant glucose sensor HEXOKINASE1 (HXK1) was dispensable, while FRUCTOSE INSENSITIVE1 (FINS1), a putative FRUCTOSE-1,6-BISPHOSPHATASE, played a crucial role. Interestingly, FINS1 function in fructose signaling appeared to be independent of its catalytic activity in sugar metabolism. Genetic analysis further indicated that FINS1-dependent fructose signaling may act downstream of the abscisic acid pathway, in spite of the fact that HXK1-dependent glucose signaling works upstream of hormone synthesis. Our findings revealed that multiple layers of controls by fructose, glucose, and abscisic acid finely tune the plant autotrophic transition and modulate early seedling establishment after seed germination.
Collapse
Affiliation(s)
- Young-Hee Cho
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Sang-Dong Yoo
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
858
|
Rounds CM, Winship LJ, Hepler PK. Pollen tube energetics: respiration, fermentation and the race to the ovule. AOB PLANTS 2011; 2011:plr019. [PMID: 22476489 PMCID: PMC3169925 DOI: 10.1093/aobpla/plr019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction. Pollen tubes are easily grown in vitro and have become an excellent model for investigating the contributions of respiration to plant cellular growth and morphogenesis at the molecular, biochemical and physiological levels. SCOPE In recent decades, pollen tube research has become increasingly focused on the molecular mechanisms involved in cellular processes. Yet, effective growth and development requires an intact, integrated set of cellular processes, all supplied with a constant flow of energy. Here we bring together information from the current and historical literature concerning respiration, fermentation and mitochondrial physiology in pollen tubes, and assess the significance of more recent molecular and genetic investigations in a physiological context. CONCLUSIONS The rapid growth of the pollen tube down the style has led to the evolution of high rates of pollen tube respiration. Respiration rates in lily predict a total energy turnover of 40-50 fmol ATP s(-1) per pollen grain. Within this context we examine the energetic requirements of cell wall synthesis, osmoregulation, actin dynamics and cyclosis. At present, we can only estimate the amount of energy required, because data from growing pollen tubes are not available. In addition to respiration, we discuss fermentation and mitochondrial localization. We argue that the molecular pathways need to be examined within the physiological context to understand better the mechanisms that control tip growth in pollen tubes.
Collapse
Affiliation(s)
- Caleb M. Rounds
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
- Corresponding author's e-mail address:
| |
Collapse
|
859
|
Coello P, Hey SJ, Halford NG. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:883-93. [PMID: 20974737 DOI: 10.1093/jxb/erq331] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sucrose non-fermenting-1 (SNF1)-related protein kinases (SnRKs) take their name from their fungal homologue, SNF1, a global regulator of carbon metabolism. The plant family has burgeoned to comprise 38 members which can be subdivided into three sub-families: SnRK1, SnRK2, and SnRK3. There is now good evidence that this has occurred to allow plants to link metabolic and stress signalling in a way that does not occur in other organisms. The role of SnRKs, focusing in particular on abscisic acid-induced signalling pathways, salinity tolerance, responses to nutritional stress and disease, and the regulation of carbon metabolism and, therefore, yield, is reviewed here. The key role that SnRKs play at the interface between metabolic and stress signalling make them potential candidates for manipulation to improve crop performance in extreme environments.
Collapse
Affiliation(s)
- Patricia Coello
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico
| | | | | |
Collapse
|
860
|
Wehner N, Weiste C, Dröge-Laser W. Molecular screening tools to study Arabidopsis transcription factors. FRONTIERS IN PLANT SCIENCE 2011; 2:68. [PMID: 22645547 PMCID: PMC3355788 DOI: 10.3389/fpls.2011.00068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/08/2011] [Indexed: 05/08/2023]
Abstract
In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY(®)-compatible ORF collections. (1) The Arabidopsis thalianaTF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast transactivation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.
Collapse
Affiliation(s)
- Nora Wehner
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
- *Correspondence: Wolfgang Dröge-Laser, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany. e-mail:
| |
Collapse
|
861
|
Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E. Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. MOLECULAR PLANT 2011; 4:97-115. [PMID: 20924027 DOI: 10.1093/mp/ssq058] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley (Hordeum vulgare) seeds, termed caryopses, after 0.5, 3, and 6 h of heat stress exposure; 958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses' early heat stress responses. Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development. Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis. Metadata analysis identified embryo and endosperm as primary locations of heat stress responses, indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis. A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat- and caryopsis-specific stress-responsive genes. Summarized, our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.
Collapse
Affiliation(s)
- Elke Mangelsen
- Department of Plant Biology and Forest Genetics, The Swedish University of Agricultural Sciences (SLU), PO Box 7080, SE-75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
862
|
Lin PC, Pomeranz MC, Jikumaru Y, Kang SG, Hah C, Fujioka S, Kamiya Y, Jang JC. The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:253-68. [PMID: 21223390 DOI: 10.1111/j.1365-313x.2010.04419.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tandem zinc finger (TZF) proteins are characterized by two zinc-binding CCCH motifs arranged in tandem. Human TZFs such as tristetraproline (TTP) bind to and trigger the degradation of mRNAs encoding cytokines and various regulators. Although the molecular functions of plant TZFs are unknown, recent genetic studies have revealed roles in hormone-mediated growth and environmental responses, as well as in the regulation of gene expression. Here we show that expression of AtTZF1 (AtCTH/AtC3H23) mRNA is repressed by a hexokinase-dependent sugar signaling pathway. However, AtTZF1 acts as a positive regulator of ABA/sugar responses and a negative regulator of GA responses, at least in part by modulating gene expression. RNAi of AtTZF1-3 caused early germination and slightly stress-sensitive phenotypes, whereas plants over-expressing AtTZF1 were compact, late flowering and stress-tolerant. The developmental phenotypes of plants over-expressing AtTZF1 were only partially rescued by exogenous application of GA, implying a reduction in the GA response or defects in other mechanisms. Likewise, the enhanced cold and drought tolerance of plants over-expressing AtTZF1 were not associated with increased ABA accumulation, suggesting that it is mainly ABA responses that are affected. Consistent with this notion, microarray analysis showed that over-expression of AtTZF1 mimics the effects of ABA or GA deficiency on gene expression. Notably, a gene network centered on a GA-inducible and ABA/sugar-repressible putative peptide hormone encoded by GASA6 was severely repressed by AtTZF1 over-expression. Hence AtTZF1 may serve as a regulator connecting sugar, ABA, GA and peptide hormone responses.
Collapse
Affiliation(s)
- Pei-Chi Lin
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
863
|
Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Dröge-Laser W. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. THE PLANT CELL 2011; 23:381-95. [PMID: 21278122 PMCID: PMC3051235 DOI: 10.1105/tpc.110.075390] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 12/21/2010] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
Control of energy homeostasis is crucial for plant survival, particularly under biotic or abiotic stress conditions. Energy deprivation induces dramatic reprogramming of transcription, facilitating metabolic adjustment. An in-depth knowledge of the corresponding regulatory networks would provide opportunities for the development of biotechnological strategies. Low energy stress activates the Arabidopsis thaliana group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 by transcriptional and posttranscriptional mechanisms. Gain-of-function approaches define these bZIPs as crucial transcriptional regulators in Pro, Asn, and branched-chain amino acid metabolism. Whereas chromatin immunoprecipitation analyses confirm the direct binding of bZIP1 and bZIP53 to promoters of key metabolic genes, such as ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE, the G-box, C-box, or ACT motifs (ACTCAT) have been defined as regulatory cis-elements in the starvation response. bZIP1 and bZIP53 were shown to specifically heterodimerize with group C bZIPs. Although single loss-of-function mutants did not affect starvation-induced transcription, quadruple mutants of group S1 and C bZIPs displayed a significant impairment. We therefore propose that bZIP1 and bZIP53 transduce low energy signals by heterodimerization with members of the partially redundant C/S1 bZIP factor network to reprogram primary metabolism in the starvation response.
Collapse
Affiliation(s)
- Katrin Dietrich
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Fridtjof Weltmeier
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Andrea Ehlert
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Mark Stahl
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, 72076 Tuebingen, Germany
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, 72076 Tuebingen, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
- Address correspondence to
| |
Collapse
|
864
|
Ponnu J, Wahl V, Schmid M. Trehalose-6-phosphate: connecting plant metabolism and development. FRONTIERS IN PLANT SCIENCE 2011. [PMID: 22639606 DOI: 10.3389/fpls.2011.00070/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beyond their metabolic roles, sugars can also act as messengers in signal transduction. Trehalose, a sugar found in many species of plants and animals, is a non-reducing disaccharide composed of two glucose moieties. Its synthesis in plants is a two-step process, involving the production of trehalose-6-phosphate (T6P) catalyzed by trehalose-6-phosphate synthase (TPS) and its consecutive dephosphorylation to trehalose, catalyzed by trehalose-6-phosphate phosphatase (TPP). T6P has recently emerged as an important signaling metabolite, regulating carbon assimilation and sugar status in plants. In addition, T6P has also been demonstrated to play an essential role in plant development. This review recapitulates the recent advances we have made in understanding the role of T6P in coordinating diverse metabolic and developmental processes.
Collapse
Affiliation(s)
- Jathish Ponnu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology Tübingen, Germany
| | | | | |
Collapse
|
865
|
Abstract
The protoplast transient expression system has become a powerful and popular tool for studying molecular mechanisms underlying various plant signal transduction pathways. Arabidopsis mesophyll protoplasts display intact and active physiological responses and are easy to isolate and transfect, which facilitate high-throughput screening and systematic and genome-wide characterization of gene functions. The system is suitable for most Arabidopsis accessions and mutant plants. Genetic complementation of mutant defective in sensor functions, gene expression, enzymatic activities, protein interactions, and protein trafficking can be easily designed and explored in cell-based assays. Here, we describe the detailed protocols for protoplast isolation, polyethylene glycol-calcium transfection, and different assays for quantifying the output of various signaling pathways.
Collapse
|
866
|
Duque P. A role for SR proteins in plant stress responses. PLANT SIGNALING & BEHAVIOR 2011; 6:49-54. [PMID: 21258207 PMCID: PMC3122005 DOI: 10.4161/psb.6.1.14063] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 10/31/2010] [Indexed: 05/19/2023]
Abstract
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
867
|
Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. PROTOPLASMA 2010; 247:233-56. [PMID: 20734094 DOI: 10.1007/s00709-010-0190-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 07/28/2010] [Indexed: 05/08/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic constituents. The central structures of this pathway are newly formed double-membrane vesicles (autophagosomes) that deliver excess or damaged cell components into the vacuole or lysosome for proteolytic degradation and monomer recycling. Cellular remodeling by autophagy allows organisms to survive extensive phases of nutrient starvation and exposure to abiotic and biotic stress. Autophagy was initially studied by electron microscopy in diverse organisms, followed by molecular and genetic analyses first in yeast and subsequently in mammals and plants. Experimental data demonstrate that the basic principles, mechanisms, and components characterized in yeast are conserved in mammals and plants to a large extent. However, distinct autophagy pathways appear to differ between kingdoms. Even though direct information remains scarce particularly for plants, the picture is emerging that the signal transduction cascades triggering autophagy and the mechanisms of organelle turnover evolved further in higher eukaryotes for optimization of nutrient recycling. Here, we summarize new research data on nitrogen starvation-induced signal transduction and organelle autophagy and integrate this knowledge into plant physiology.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, 4021 Stavanger, Norway.
| | | | | |
Collapse
|
868
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
869
|
Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. MOLECULAR PLANT 2010; 3:973-96. [PMID: 20926550 DOI: 10.1093/mp/ssq049] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In addition to light and water, CO(2) and mineral elements are required for plant growth and development. Among these factors, nitrogen is critical, since it is needed to synthesize amino acids, which are the building elements of protein, nucleotides, chlorophyll, and numerous other metabolites and cellular components. Therefore, nitrogen is required by plants in higher quantities and this investment in nitrogen supports the use of CO(2), water, and inorganic nitrogen to produce sugars, organic acids, and amino acids, the basic building blocks of biomass accumulation. This system is maintained by complex metabolic machinery, which is regulated at different levels according to environmental factors such as light, CO(2), and nutrient availability. Plants integrate these signals via a signaling network, which involves metabolites as well as nutrient-sensing proteins. Due to its importance, much research effort has been expended to understand how carbon and nitrogen metabolism are integrated and regulated according to the rates of photosynthesis, photorespiration, and respiration. Thus, in this article, we both discuss recent advances in carbon/nitrogen metabolisms as well as sensing and signaling systems in illuminated leaves of C3-plants and provide a perspective of the type of experiments that are now required in order to take our understanding to a higher level.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
870
|
Lambeck I, Chi JC, Krizowski S, Mueller S, Mehlmer N, Teige M, Fischer K, Schwarz G. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry 2010; 49:8177-86. [PMID: 20690630 DOI: 10.1021/bi1003487] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic assimilatory nitrate reductase (NR) is a dimeric multidomain molybdo-heme-flavo protein that catalyzes the first and rate-limiting step in the nitrate assimilation of plants, algae, and fungi. Nitrate reduction takes place at the N-terminal molybdenum cofactor-containing domain. Reducing equivalents are derived from NADH, which reduce the C-terminal FAD domain followed by single-electron transfer steps via the middle heme domain to the molybdenum center. In plants, nitrate reduction is post-translationally inhibited by phosphorylation and subsequent binding of 14-3-3 protein to a conserved phosphoserine located in the surface-exposed hinge between the catalytic and heme domain. Here we investigated Arabidopsis thaliana NR activity upon phosphorylation and 14-3-3 binding by using a fully defined in vitro system with purified proteins. We demonstrate that among different calcium-dependent protein kinases (CPKs), CPK-17 efficiently phosphorylates Ser534 in NR. Out of eight purified Arabidopsis 14-3-3 proteins, isoforms ω, κ, and λ exhibited the strongest inhibition of NR. The kinetic parameters of noninhibited, phosphorylated NR (pNR) and pNR in a complex with 14-3-3 were investigated. An 18-fold reduction in k(cat) and a decrease in the apparent K(M)(nitrate) (from 280 to 141 μM) were observed upon binding of 14-3-3 to pNR, suggesting a noncompetitive inhibition with a preferential binding to the substrate-bound state of the enzyme. Recording partial activities of NR demonstrated that the transfer of electrons to the heme is not affected by 14-3-3 binding. The Ser534Ala variant of NR was not inhibited by 14-3-3 proteins. We propose that 14-3-3 binding to Ser534 blocks the transfer of electrons from heme to nitrate by arresting the domain movement via hinge 1.
Collapse
Affiliation(s)
- Iris Lambeck
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
871
|
Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA. AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:1-13. [PMID: 20659274 DOI: 10.1111/j.1365-313x.2010.04312.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Trehalose and associated metabolites are part of the sugar signalling system in plants and have profound effects on development. Disruption of the TREHALOSE 6-PHOSPHATE SYNTHASE (TPS1) gene in Arabidopsis results in delayed embryo growth, altered cell wall morphology and carbon metabolism and abortion at the torpedo stage. Here we investigate the role of the TPS1 gene in post-embryonic development using two approaches. In the first we use the seed-specific ABI3 promoter to drive the TPS1 cDNA during embryo development, resulting in rescue of the embryo-lethal tps1 phenotype. Lack of expression from the ABI3::TPS1 transgene in post-germinative tps1 seedlings results in severe growth arrest, accumulation of soluble sugars and starch and leads to an increase in expression of genes related to ABA signalling. In the second approach we use TILLING (targeted induced local lesions in genomes) to generate three weaker, non-embryo-lethal, alleles (tps1-11, tps1-12 and tps1-13) and use these to demonstrate that the TPS1 protein plays a key role in modulating trehalose 6-phosphate (T6P) levels in vegetative tissues of Arabidopsis. All three weaker alleles give a consistent phenotype of slow growth and delayed flowering. Germination of tps1-11, tps1-12 and tps1-13 is hypersensitive to ABA with the degree of hypersensitivity correlating with the decrease in T6P levels in the different alleles. Stomatal pore aperture is regulated by ABA, and this was found to be affected in tps1-12. Our results show that the TPS1 gene product plays an essential role in regulating the growth of vegetative as well as embryogenic tissue in a mechanism involving ABA and sugar metabolism.
Collapse
Affiliation(s)
- Leonardo D Gómez
- CNAP, Department of Biology, University of York, Heslington, York YO105DD, UK
| | | | | | | | | |
Collapse
|
872
|
Sheen J. Discover and connect cellular signaling. PLANT PHYSIOLOGY 2010; 154:562-6. [PMID: 20921185 PMCID: PMC2949017 DOI: 10.1104/pp.110.161364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/20/2010] [Indexed: 05/24/2023]
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
873
|
Hernández-López MJ, Prieto JA, Randez-Gil F. Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii. Yeast 2010; 27:1061-9. [PMID: 20824888 DOI: 10.1002/yea.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/25/2010] [Indexed: 11/09/2022] Open
Abstract
We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae snf1Δ mutant strain. DNA sequence analysis revealed that the fragment contained a complete open reading frame (ORF), which shares a high similarity with the S. cerevisiae energy sensor protein kinase Snf1. The cloned TdSNF1 gene was able to restore growth of the S. cerevisiae snf1Δ mutant strain on media containing nonfermentable carbon sources. Furthermore, cells of the Tdsnf1Δ mutant were unable to proliferate under nonfermenting conditions. Finally, protein domain analysis showed that TdSnf1p contains a typical catalytic protein kinase domain (positions 41-293), which is also present in other Snf1p homologues. Within this region we identified a protein kinase ATP-binding region (positions 48-71) and a consensus Ser/Thr protein kinase active site (positions 160-172).
Collapse
Affiliation(s)
- María José Hernández-López
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, PO Box 73, E-46100-Burjassot, Valencia, Spain.
| | | | | |
Collapse
|
874
|
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 2010; 6:e1001102. [PMID: 20838596 PMCID: PMC2936532 DOI: 10.1371/journal.pgen.1001102] [Citation(s) in RCA: 514] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/29/2010] [Indexed: 01/22/2023] Open
Abstract
Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF) has an important role in the control of phosphate (Pi) starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1) mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS) in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like) control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide) corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress. As sessile organisms, plants are often exposed to stress conditions, and have evolved adaptive responses to protect themselves from different types of stress. Some responses are stress type-specific whereas others are common to different stress types. Understanding how these responses are controlled is crucial for rational improvement of stress tolerance, a limiting factor in crop productivity. Here we examined the physiological and molecular responses to phosphate starvation and found that a single transcription factor family, represented by PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1), has a central role in the control of specific and shared phosphate starvation stress responses. In consonance with the importance of PHR1, we found that the PHR1-binding sequence, present in most PHR1 direct targets, is a crucial cis motif for Pi starvation responsiveness. An artificial promoter controlled by PHR1 recapitulates responsiveness to Pi starvation and to modulators of this response, qualifying PHR1 family members as central integrators in Pi starvation signalling. This central integrator system also controls most transcriptional repression responses to Pi starvation, indicating that they are an integral part of the adaptive response, and not a consequence of plant malfunction due to stress.
Collapse
Affiliation(s)
- Regla Bustos
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Gabriel Castrillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Francisco Linhares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julian Pérez-Pérez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
875
|
Beczner F, Dancs G, Sós-Hegedus A, Antal F, Bánfalvi Z. Interaction between SNF1-related kinases and a cytosolic pyruvate kinase of potato. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1046-1051. [PMID: 20434234 DOI: 10.1016/j.jplph.2010.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
SNF1-related protein kinases (SnRKs) are widely conserved in plants. Previous studies have shown that members of the SnRK1 subfamily phosphorylate and inactivate at least four important plant metabolic enzymes: 3-hydroxy-3-methylglutaryl-CoA reductase, sucrose phosphate synthase, nitrate reductase, and trehalose phosphate synthase 5. In this paper, we demonstrate that two SnRK1 proteins of potato, PKIN1 and StubSNF1, interact with a cytosolic pyruvate kinase (PK(c)) of potato in a yeast two-hybrid assay. The interacting domain of PK(c) is located in its C-terminal region and contains the putative SnRK1 recognition motif ALHRIGS(500)ASVI. Our results indicate that both SnRK1s influence PK(c) activity in vivo. Antisense repression of SnRK1s alters the intensity and light/dark periodicity of PK activity in leaves. However, the differences between PK activity curves in antisense PKIN1 and antisense StubSNF1 lines indicated that the function of the two kinases is not identical in potato.
Collapse
Affiliation(s)
- Farkas Beczner
- Agricultural Biotechnology Center, H-2101 Gödöllo, P.O. Box 411, Hungary
| | | | | | | | | |
Collapse
|
876
|
Graham LE, Kim E, Arancibia-Avila P, Graham JM, Wilcox LW. Evolutionary and ecophysiological significance of sugar utilization by the peat moss Sphagnum compactum (Sphagnaceae) and the common charophycean associates Cylindrocystis brebissonii and Mougeotia sp. (Zygnemataceae). AMERICAN JOURNAL OF BOTANY 2010; 97:1485-91. [PMID: 21616902 DOI: 10.3732/ajb.0900341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY The goal of this study was to illuminate the evolutionary history and ecological importance of plant mixotrophy-the uptake and utilization of exogenous organic compounds. • METHODS We quantitatively assessed the effect of sugar amendments on laboratory growth of Sphagnum compactum as a representative emergent peat moss and two species of ecologically associated zygnematalean algae, Cylindrocystis brebissonii and Mougeotia sp. • KEY RESULTS Together with observations published elsewhere, our results suggest that under carbon or light limitation, the uptake of exogenous sugars by cells of charophycean algae and peat mosses may help these organisms maintain positive carbon balance. Utilization of 1% glucose by aquatic-grown algae helped to relieve dissolved inorganic carbon limitation, enhancing photoautotrophic growth by factors of 9.0 and 1.7, respectively. After an 8-wk growth period, amendments of 1% and 2% glucose enhanced air-grown moss biomass by 28 and 39 times, respectively, that of controls lacking sugar amendments. After 9 wk, 1% fructose enhanced biomass by 21 times, and 2% sucrose enhanced biomass by 31 times. • CONCLUSION Our results indicate that plant mixotrophy is an early-evolved trait. The results also indicate that quantitative differences in sugar utilization by bryophytes and charophycean algae correlate with relative investments in protective cell-wall polyphenolics measured in previous studies, suggesting that sugar utilization may subsidize the cost of producing phenolic wall compounds in bryophytes.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin, Madison, Wisconsin, USA 53706-1381
| | | | | | | | | |
Collapse
|
877
|
Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:35-41. [PMID: 20712619 DOI: 10.1111/j.1438-8677.2010.00383.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis sugar transporter (AtSTP) family is one of the best characterised families within the monosaccharide transporter (MST)-like genes. However, several aspects are still poorly investigated or not yet addressed experimentally, such as post-translational modifications and other factors affecting transport activity. This mini-review summarises recent advances in the AtSTP family as well as objectives for future studies.
Collapse
Affiliation(s)
- M Büttner
- University Heidelberg, Institute for Plant Science (HIP), Heidelberg, Germany.
| |
Collapse
|
878
|
Meier M, Lucchetta EM, Ismagilov RF. Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. LAB ON A CHIP 2010; 10:2147-53. [PMID: 20544086 PMCID: PMC2912432 DOI: 10.1039/c004629a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this article, we developed a "plant on a chip" microfluidic platform that can control the local chemical environment around live roots of Arabidopsis thaliana with high spatial resolution using multi-laminar flow. We characterized the flow profile around the Arabidopsis root, and verified that the shear forces within the device ( approximately 10 dyne cm(-2)) did not impede growth of the roots. Our platform was able to deliver stimuli to the root at a spatial resolution of 10-800 microm. Further, the platform was validated by exposing desired regions of the root with a synthetic auxin derivative, 2,4-dichlorophenoxyacetic acid (2,4-D), and its inhibitor N-1-naphthylphthalamic acid (NPA). The response to the stimuli was observed using a DR5::GFP Arabidopsis line, where GFP expression is coupled to the auxin response regulator DR5. GFP expression in the root matched the position of the flow-focused stream containing 2,4-D. When the regions around the 2,4-D stimulus were exposed to the auxin transport inhibitor NPA, the active and passive transport mechanisms of auxin could be differentiated, as NPA blocks active cell-to-cell transport of auxin. Finally, we demonstrated that local 2,4-D stimulation in a approximately 10 microm root segment enhanced morphological changes such as epidermal hair growth. These experiments were proof-of-concept and agreed with the results expected based on known root biology, demonstrating that this "root on a chip" platform can be used to test how root development is affected by any chemical component of interest, including nitrogen, phosphate, salts, and other plant hormones.
Collapse
|
879
|
Obertello M, Krouk G, Katari MS, Runko SJ, Coruzzi GM. Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis. BMC SYSTEMS BIOLOGY 2010; 4:111. [PMID: 20704717 PMCID: PMC2933594 DOI: 10.1186/1752-0509-4-111] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 08/12/2010] [Indexed: 01/05/2023]
Abstract
Background Nitrogen and light are two major regulators of plant metabolism and development. While genes involved in the control of each of these signals have begun to be identified, regulators that integrate gene responses to nitrogen and light signals have yet to be determined. Here, we evaluate the role of bZIP1, a transcription factor involved in light and nitrogen sensing, by exposing wild-type (WT) and bZIP1 T-DNA null mutant plants to a combinatorial space of nitrogen (N) and light (L) treatment conditions and performing transcriptome analysis. We use ANOVA analysis combined with clustering and Boolean modeling, to evaluate the role of bZIP1 in mediating L and N signaling genome-wide. Results This transcriptome analysis demonstrates that a mutation in the bZIP1 gene can alter the L and/or N-regulation of several gene clusters. More surprisingly, the bZIP1 mutation can also trigger N and/or L regulation of genes that are not normally controlled by these signals in WT plants. This analysis also reveals that bZIP1 can, to a large extent, invert gene regulation (e.g., several genes induced by N in WT plants are repressed by N in the bZIP1 mutant). Conclusion These findings demonstrate that the bZIP1 mutation triggers a genome-wide de-regulation in response to L and/or N signals that range from i) a reduction of the L signal effect, to ii) unlocking gene regulation in response to L and N combinations. This systems biology approach demonstrates that bZIP1 tunes L and N signaling relationships genome-wide, and can suppress regulatory mechanisms hypothesized to be needed at different developmental stages and/or environmental conditions.
Collapse
Affiliation(s)
- Mariana Obertello
- Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Main Building, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
880
|
Angeles-Núñez JG, Tiessen A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. PLANTA 2010; 232:701-18. [PMID: 20559653 DOI: 10.1007/s00425-010-1207-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/01/2010] [Indexed: 05/20/2023]
Abstract
Two genes encoding sucrose synthase (SUS), namely SUS2 (At5g49190) and SUS3 (At4g02280), are strongly and differentially expressed in Arabidopsis seed. Detailed biochemical analysis was carried out in developing seeds 9-21 days after flowering (DAF) of wild type and two knockouts. SUS2 and SUS3 are not redundant genes since single knockouts show a phenotype in developing seeds. The mutants had 30-50% less SUS activity and therefore accumulated 40% more sucrose and 50% less fructose at 15 DAF. This did not affect the hexose-P pool, but led to 30-70% less starch in embryo and seed coat. Lipids were 55% higher in both mutants at 9-15 DAF. It seems that sucrolysis via SUS is not required for oil or protein synthesis but rather for channeling carbon toward ADP-glucose and starch in seeds. Metabolite profiling with GC-TOF revealed specific downstream changes in primary metabolism as a consequence of signaling or regulatory fine-tuning. While sucrose increased, hexoses and specific amino acids decreased reciprocally. There was a developmental shift regarding an earlier timing of dry weight accumulation, germinative maturity, oil deposition, sugar levels, transient starch buildup, and protein storage. Nevertheless, final seed size and composition were unaltered due to an earlier cessation of growth, thus giving rise to an apparent silent phenotype of mature mutant seeds. We conclude that SUS is important for metabolite homeostasis and timing of seed development, and propose that an altered sucrose/hexose ratio can modify carbon partitioning and the pattern of storage compounds in Arabidopsis.
Collapse
|
881
|
Poschet G, Hannich B, Büttner M. Identification and Characterization of AtSTP14, a Novel Galactose Transporter from Arabidopsis. ACTA ACUST UNITED AC 2010; 51:1571-80. [DOI: 10.1093/pcp/pcq100] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
882
|
Singh P, Wu CC, Zimmerli L. β-aminobutyric acid priming by stress imprinting. PLANT SIGNALING & BEHAVIOR 2010; 5:878-80. [PMID: 20484986 PMCID: PMC3115037 DOI: 10.4161/psb.5.7.11903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The priming agent beta-aminobutyric acid (BABA) enhances Arabidopsis resistance to microbial pathogens and abiotic stresses through potentiation of the Arabidopsis defense responses. We have previously shown that BABA provokes a stress-induced morphogenic response, reduces vegetative growth and induces accumulation of anthocyanin. It was also found that L-Glutamine restores all tested BABA-induced phenotypes. Here we show that BABA induced transcripts accumulation of the two stress-responsive energy sensor protein kinases KIN10 and KIN11 and L-Glutamine inhibited this effect. It was also postulated that BABA induces a general amino acid stress response. BABA effect on Arabidopsis free amino acids content was thus analyzed. The amino acid balance was found to be altered by BABA treatment. Together these new data further suggest that BABA primes by stress imprinting.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
883
|
Iven T, Strathmann A, Böttner S, Zwafink T, Heinekamp T, Guivarc'h A, Roitsch T, Dröge-Laser W. Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:155-66. [PMID: 20409000 DOI: 10.1111/j.1365-313x.2010.04230.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression of BZI-1 Delta N, a dominant-negative form of the tobacco (Nicotiana tabacum) basic leucine zipper (bZIP) transcription factor BZI-1 leads to severe defects in pollen development which coincides with reduced transcript abundance of the stamen specific invertase gene NIN88 and decreased extracellular invertase enzymatic activity. This finding suggests a function of BZI-1 in regulating carbohydrate supply of the developing pollen. BZI-1 heterodimerises with the bZIP factors BZI-2, BZI-3 and BZI-4 in vitro and in planta. Whereas BZI-1 exhibits only weak activation properties, BZI-1/BZI-2 heterodimers strongly activate transcription. Consistently, approaches leading to reduced levels of functional BZI-1 or BZI-2 both significantly interfere with pollen development, auxin responsiveness and carbohydrate partitioning. In situ hybridisation studies for BZI-1 and BZI-2 confirmed temporal and spatial overlapping expression patterns in tapetum and pollen supporting functional cooperation of these factors during pollen development. Plants over-expressing BZI-4 produce significantly reduced amounts of intact pollen and are also impaired in NIN88 transcription and enzymatic activity. BZI-4 homodimer efficiently binds to a G-box located in the NIN88 promoter but exhibits almost no transcriptional activation capacity. As BZI-4 does not actively repress transcription, we propose that its homodimer blocks G-box mediated transcription. In summary, these data support a regulatory model in which BZI-4 homodimers and BZI-1/BZI-2 heterodimers perform opposing functions as negative or positive transcriptional regulators during pollen development.
Collapse
Affiliation(s)
- Tim Iven
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
884
|
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. ANNALS OF BOTANY 2010; 105:1141-57. [PMID: 20299346 PMCID: PMC2887065 DOI: 10.1093/aob/mcq028] [Citation(s) in RCA: 723] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. SCOPE An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. CONCLUSIONS This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
Collapse
|
885
|
Angra S, Kaur S, Singh K, Pathania D, Kaur N, Sharma S, Nayyar H. Water-Deficit Stress During Seed Filling in Contrasting Soybean Genotypes: Association of Stress Sensitivity with Profiles of Osmolytes and Antioxidants. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijar.2010.328.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
886
|
Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J 2010; 277:2022-37. [PMID: 20412056 DOI: 10.1111/j.1742-4658.2010.07633.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds. As a new concept, it can be hypothesized that the synergistic interaction of sugars (or sugar-like compounds) and phenolic compounds forms part of an integrated redox system, quenching ROS and contributing to stress tolerance, especially in tissues or organelles with high soluble sugar concentrations.
Collapse
|
887
|
Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:99-113. [PMID: 20200070 PMCID: PMC2862418 DOI: 10.1104/pp.109.150789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.
Collapse
Affiliation(s)
- Zhifu Zheng
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
888
|
Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. PLANTA 2010; 231:991-1001. [PMID: 20135324 DOI: 10.1007/s00425-010-1104-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 05/03/2023]
Abstract
Salt and alkali stress are two of the main environmental factors limiting rice production. Thus, understanding the mechanisms of salinity and alkali stress tolerance is necessary to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are approximately 21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. In plants, miRNAs constitute one of five classes of small RNAs that function primarily as negative regulators for gene expression at the posttranscriptional level. Several plant miRNAs, such as miR396, play vital roles in plant growth, development and resistance to stresses. In this study, we identified osa-MIR396c, which shows dramatic transcript change under salt and alkali stress conditions in Oryza sativa. We designed an experiment to detect miRNA-target interaction and demonstrated that several transcription factors related to growth, development, and stress tolerance are targeted by osa-MIR396c. Transgenic rice and Arabidopsis thaliana plants constitutively over-expressing osa-MIR396c showed reduced salt and alkali stress tolerance compared to that of wild-type plants. Overall, this study further established a link between salt and alkali stress and osa-MIR396c in rice.
Collapse
Affiliation(s)
- Peng Gao
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
889
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PLANT, CELL & ENVIRONMENT 2010; 33:453-67. [PMID: 19712065 DOI: 10.1111/j.1365-3040.2009.02041.x] [Citation(s) in RCA: 1826] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
Collapse
Affiliation(s)
- Gad Miller
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
890
|
Padilla-Chacón D, Cordoba E, Olivera T, Sánchez S, Coello P, León P, Tiessen A, Martínez-Barajas E. Heterologous expression of yeast Hxt2 in Arabidopsis thaliana alters sugar uptake, carbon metabolism and gene expression leading to glucose tolerance of germinating seedlings. PLANT MOLECULAR BIOLOGY 2010; 72:631-41. [PMID: 20101436 DOI: 10.1007/s11103-010-9602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/13/2010] [Indexed: 05/25/2023]
Abstract
The hexose transporter 2 gene (Hxt2) from Saccharomyces cerevisiae was expressed in Arabidopsis thaliana under control of the 35S promoter. Several independent transgenic lines were selected after confirming single gene insertion by southern blot analysis in the T4 generation. Northern blots revealed the presence of heterologous transcript. Radiolabeling experiments revealed an increased rate of incorporation of the non-metabolizable analog 3-O-methyl-[U-14C]-glucose. This confirmed that the yeast Hxt2 transporter was functional in Arabidopsis. No phenotypic changes at the vegetative and reproductive stages could be detected in the transgenic lines when compared to wild type plants. Shortly after germination some differences in development and glucose signaling were observed. Transgenic seedlings cultivated in liquid medium or on solid agar plates were able to grow with 3% glucose (producing bigger plants and longer roots), while development of wild type plants was delayed under those conditions. Metabolite analysis revealed that the Hxt2 transgenic lines had higher rates of sugar utilization. Transcriptional profiling showed that particular genes were significantly up- or down-regulated. Some transcription factors like At1g27000 were repressed, while others, such as At3g58780, were induced. The mRNA from classical sugar signaling genes such as STP1, Hxk1, and ApL3 behaved similarly in transgenic lines and wild type lines. Results suggest that the Hxt2 transgene altered some developmental processes related to the perception of high carbon availability after the germination stage. We conclude that the developmental arrest of wild type plants at 3% glucose not only depends on Hxk1 as the only sugar sensor but might also be influenced by the route of hexose transport across the plasma membrane.
Collapse
Affiliation(s)
- Daniel Padilla-Chacón
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
891
|
Hannah MA, Caldana C, Steinhauser D, Balbo I, Fernie AR, Willmitzer L. Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression. PLANT PHYSIOLOGY 2010; 152:2120-9. [PMID: 20190096 PMCID: PMC2850026 DOI: 10.1104/pp.109.147306] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/12/2010] [Indexed: 05/19/2023]
Abstract
Regulation of metabolism at the level of transcription and its corollary metabolite-mediated regulation of transcription are well-documented mechanisms by which plants adapt to circumstance. That said the function of only a minority of transcription factor networks are fully understood and it seems likely that we have only identified a subset of the metabolites that play a mediator function in the regulation of transcription. Here we describe an integrated genomics approach in which we perform combined transcript and metabolite profiling on Arabidopsis (Arabidopsis thaliana) plants challenged by various environmental extremes. We chose this approach to generate a large variance in the levels of all parameters recorded. The data was then statistically evaluated to identify metabolites whose level robustly correlated with those of a particularly large number of transcripts. Since correlation alone provides no proof of causality we subsequently attempted to validate these putative mediators of gene expression via a combination of statistical analysis of data available in publicly available databases and iterative experimental evaluation. Data presented here suggest that, on adoption of appropriate caution, the approach can be used for the identification of metabolite mediators of gene expression. As an exemplary case study we document that in plants, as in yeast (Saccharomyces cerevisiae) and mammals, leucine plays an important role as a regulator of gene expression and provide a leucine response gene regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
892
|
Contento AL, Bassham DC. Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:232-8. [PMID: 20138775 DOI: 10.1016/j.plaphy.2010.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 05/15/2023]
Abstract
Periods of carbohydrate deprivation are commonly encountered by plant cells. Plants respond to this nutrient stress by the mobilization of stored carbohydrates and the reallocation of other cellular macromolecules to degradative pathways. Previously we identified a number of metabolic genes that are upregulated in Arabidopsis thaliana cells during sucrose starvation. One of the genes identified encodes acyl-CoA oxidase-4 (ACX4, EC 1.3.3.6), a peroxisomal acyl-CoA oxidase that is unique to plants and involved in beta-oxidation of short-chain fatty acids. Here we demonstrate that ACX4 activity increases during sucrose starvation, indicating a shift to a catabolic breakdown of fatty acids as a source of available carbon. This suggests a role for degradation of short-chain fatty acids in the response to sucrose starvation, leading in turn to the production of toxic H2O2. Catalase-3 (CAT3, EC 1.11.1.6) activity also increases during starvation as a direct response to the increase in oxidative stress caused by the rapid activation of alternative catabolic pathways, including a specific increase in ACX4 activity. Any disruption in ACX4 expression or in beta-oxidation of fatty acids in general prevents this increase in catalase activity and expression. We hypothesize that CAT3 activity increases to remove the H2O2 produced by alternative catabolic processes induced during the carbohydrate shortages caused by extended periods of low-light conditions.
Collapse
Affiliation(s)
- Anthony L Contento
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
893
|
Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A. Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate. PLANT SIGNALING & BEHAVIOR 2010; 5:386-92. [PMID: 20139731 PMCID: PMC2958589 DOI: 10.4161/psb.5.4.10792] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 05/17/2023]
Abstract
Trehalose 6-phosphate (T6P), the precursor of trehalose, is a signaling molecule in plants with strong effects on metabolism, growth and development. We recently showed that in growing tissues T6P is an inhibitor of SnRK1 of the SNF1-related group of protein kinases. SnRK1 acts as transcriptional integrator in response to carbon and energy supply. In microarray experiments on seedlings of transgenic Arabidopsis with elevated T6P content we found that expression of SnRK1 marker genes was affected in a manner to be predicted by inhibition of SnRK1 by T6P in vivo. A large number of genes involved in reactions that utilize carbon, e.g., UDP-glucose dehydrogenase genes involved in cell wall synthesis, were upregulated. T6P was also found to affect developmental signaling pathways, probably in a SnRK1-independent manner. This includes upregulation of genes encoding UDP-glycosyltransferases that are involved in the glycosylation of hormones. In addition, genes involved in auxin response and light signaling were affected. Many of these genes belong to pathways that link the circadian clock to plant growth and development. The overall pattern of changes in gene expression supports a role for T6P in coordinating carbon supply with biosynthetic process involved in growth and development.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | | | | | | | | | |
Collapse
|
894
|
Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J. Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 2010; 464:418-22. [PMID: 20164835 PMCID: PMC2841715 DOI: 10.1038/nature08794] [Citation(s) in RCA: 611] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/05/2010] [Indexed: 12/24/2022]
Abstract
Innate immunity represents the first line of inducible defence against microbial infection in plants and animals. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively), such as flagellin, initiates convergent signalling pathways involving mitogen-activated protein kinase (MAPK) cascades and global transcriptional changes to boost immunity. Although Ca(2+) has long been recognized as an essential and conserved primary mediator in plant defence responses, how Ca(2+) signals are sensed and relayed into early MAMP signalling is unknown. Using a functional genomic screen and genome-wide gene expression profiling, here we show that four calcium-dependent protein kinases (CDPKs) are Ca(2+)-sensor protein kinases critical for transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in the synthesis of defence peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by the 22-amino-acid peptide flg22, as well as compromised pathogen defence. In contrast to negative roles of calmodulin and a calmodulin-activated transcription factor in plant defence, the present study reveals Ca(2+) signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.
Collapse
Affiliation(s)
- Marie Boudsocq
- Department of Genetics, Harvard Medical School, Center for Computational and Integrative Biology, Massachusetts General Hospital, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
895
|
Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1041-52. [PMID: 20409277 DOI: 10.1111/j.1365-313x.2010.04124.x] [Citation(s) in RCA: 631] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Understanding abiotic stress responses in plants is an important and challenging topic in plant research. Physiological and molecular biological analyses have allowed us to draw a picture of abiotic stress responses in various plants, and determination of the Arabidopsis genome sequence has had a great impact on this research field. The availability of the complete genome sequence has facilitated access to essential information for all genes, e.g. gene products and their function, transcript levels, putative cis-regulatory elements, and alternative splicing patterns. These data have been obtained from comprehensive transcriptome analyses and studies using full-length cDNA collections and T-DNA- or transposon-tagged mutant lines, which were also enhanced by genome sequence information. Moreover, studies on novel regulatory mechanisms involving use of small RNA molecules, chromatin modulation and genomic DNA modification have enabled us to recognize that plants have evolved complicated and sophisticated systems in response to complex abiotic stresses. Integrated data obtained with various 'omics' approaches have provided a more comprehensive picture of abiotic stress responses. In addition, research on stress responses in various plant species other than Arabidopsis has increased our knowledge regarding the mechanisms of plant stress tolerance in nature. Based on this progress, improvements in crop stress tolerance have been attempted by means of gene transfer and marker-assisted breeding. In this review, we summarize recent progress in abiotic stress studies, especially in the post-genomic era, and offer new perspectives on research directions for the next decade.
Collapse
|
896
|
Kang SG, Price J, Lin PC, Hong JC, Jang JC. The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. MOLECULAR PLANT 2010; 3:361-73. [PMID: 20080816 DOI: 10.1093/mp/ssp115] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZIP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis S1-group bZIP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell. 16, 2128-2150). In this report, we show that the expression of AtbZIP1 is repressed by sugars in a fast, sensitive, and reversible way. The sugar repression of AtbZIP1 is affected by a conserved sugar signaling component, hexokinase. Besides being a sugar-regulated gene, AtbZIP1 can mediate sugar signaling and affect gene expression, plant growth, and development. When carbon nutrients are limited, gain or loss of function of AtbZIP1 causes changes in the rates of early seedling establishment. Results of phenotypic analyses indicate that AtbZIP1 acts as a negative regulator of early seedling growth. Using gain- and loss-of-function plants in a microarray analysis, two sets of putative AtbZIP1-regulated genes have been identified. Among them, sugar-responsive genes are highly over-represented, implicating a role of AtbZIP1 in sugar-mediated gene expression. Using yeast two-hybrid (Y-2-H) screens and bimolecular fluorescence complementation (BiFC) analyses, we are able to recapitulate extensive C/S1 AtbZIP protein interacting network in living cells. Finally, we show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZIP1 and the C-group AtbZIPs, including AtbZIP10 and AtbZIP63.
Collapse
Affiliation(s)
- Shin Gene Kang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
897
|
Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. MOLECULAR PLANT 2010; 3:406-19. [PMID: 20100798 DOI: 10.1093/mp/ssp114] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.
Collapse
Affiliation(s)
- Lies Vandesteene
- Laboratory of Functional Biology, Plant Metabolic Signaling Group, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31-bus 2438, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
898
|
Stitt M, Lunn J, Usadel B. Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1067-91. [PMID: 20409279 DOI: 10.1111/j.1365-313x.2010.04142.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Historically speaking, Arabidopsis was not the plant of choice for investigating photosynthesis, with physiologists and biochemists favouring other species such as Chlorella, spinach and pea. However, its inherent advantages for forward genetics rapidly led to its adoption for photosynthesis research. In the last ten years, the availability of the Arabidopsis genome sequence - still the gold-standard for plant genomes - and the rapid expansion of genetic and genomic resources have further increased its importance. Research in Arabidopsis has not only provided comprehensive information about the enzymes and other proteins involved in photosynthesis, but has also allowed transcriptional responses, protein levels and compartmentation to be analysed at a global level for the first time. Emerging technical and theoretical advances offer another leap forward in our understanding of post-translational regulation and the control of metabolism. To illustrate the impact of Arabidopsis, we provide a historical review of research in primary photosynthetic metabolism, highlighting the role of Arabidopsis in elucidation of the pathway of photorespiration and the regulation of RubisCO, as well as elucidation of the pathways of starch turnover and studies of the significance of starch for plant growth.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
899
|
Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. PLANT PHYSIOLOGY 2010; 152:1484-500. [PMID: 20097791 PMCID: PMC2832244 DOI: 10.1104/pp.109.151845] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 05/17/2023]
Abstract
High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.
Collapse
|
900
|
Baena-González E. Energy signaling in the regulation of gene expression during stress. MOLECULAR PLANT 2010; 3:300-13. [PMID: 20080814 DOI: 10.1093/mp/ssp113] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|