851
|
Chang H, Wang D, Xia W, Pan X, Huo W, Xu S, Li Y. Epigenetic disruption and glucose homeostasis changes following low-dose maternal bisphenol A exposure. Toxicol Res (Camb) 2016; 5:1400-1409. [PMID: 30090444 PMCID: PMC6061978 DOI: 10.1039/c6tx00047a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/19/2016] [Indexed: 12/19/2022] Open
Abstract
Developmental exposure to bisphenol A (BPA) has been linked to impaired glucose homeostasis and pancreatic function in adulthood, which has been hypothesized to result from the disruption of pancreatic β-cell development at early life. Here we evaluated whether maternal BPA exposure disrupts β-cell development and glucose tolerance and the role of epigenetic modifications of key regulator in this process. We found that maternal exposure to BPA (10 μg kg-1 d-1) reduced the pancreatic β-cell mass and the expression of pancreatic and duodenal homeobox 1 (Pdx1) at birth, as well as the expression of Pdx1 at gestational day (GD) 15.5. In parallel with the decreased expression of Pdx1, histones H3 and H4 deacetylation, along with demethylation of histone 3 lysine 4 (H3K4) and methylation of histone 3 lysine 9 (H3K9), were found at the promoter of Pdx1, while no significant changes in DNA methylation status were detected at this region. Moreover, these alterations were observed in adult life along with impaired glucose tolerance. We conclude that maternal exposure to BPA reduces pancreatic β-cell mass at birth by reducing PDX1+ progenitors during fetal development through altering the histone modifications of Pdx1, which can be propagated to later life and increase the susceptibility to glucose intolerance.
Collapse
Affiliation(s)
- Huailong Chang
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| | - Danqi Wang
- School of Public Health , Changsha Medical University , Changsha 410219 , China
| | - Wei Xia
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| | - Xinyun Pan
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| | - Wenqian Huo
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| | - Shunqing Xu
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| | - Yuanyuan Li
- Key Laboratory of Environment and Health , Ministry of Education & Ministry of Environmental Protection , and State Key Laboratory of Environmental Health (incubating) , School of Public Health , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China . ; ; ; Tel: +86-27-83693417, 86-27-83657705
| |
Collapse
|
852
|
Hino S, Kohrogi K, Nakao M. Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci 2016; 107:1187-92. [PMID: 27375009 PMCID: PMC5021031 DOI: 10.1111/cas.13004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms underlie the phenotypic plasticity of cells, while aberrant epigenetic regulation through genetic mutations and/or misregulated expression of epigenetic factors leads to aberrant cell fate determination, which provides a foundation for oncogenic transformation. Lysine‐specific demethylase‐1 (LSD1, KDM1A) removes methyl groups from methylated proteins, including histone H3, and is frequently overexpressed in various types of solid tumors and hematopoietic neoplasms. While LSD1 is involved in a wide variety of normal physiological processes, including stem cell maintenance and differentiation, it is also a key player in oncogenic processes, including compromised differentiation, enhanced cell motility and metabolic reprogramming. Here, we present an overview of how LSD1 epigenetically regulates cellular plasticity through distinct molecular mechanisms in different biological contexts. Targeted inhibition of the context‐dependent activities of LSD1 may provide a highly selective means to eliminate cancer cells.
Collapse
Affiliation(s)
- Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
853
|
Gupta J, Johansson E, Bernstein JA, Chakraborty R, Khurana Hershey GK, Rothenberg ME, Mersha TB. Resolving the etiology of atopic disorders by using genetic analysis of racial ancestry. J Allergy Clin Immunol 2016; 138:676-699. [PMID: 27297995 PMCID: PMC5014679 DOI: 10.1016/j.jaci.2016.02.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD), food allergy, allergic rhinitis, and asthma are common atopic disorders of complex etiology. The frequently observed atopic march from early AD to asthma, allergic rhinitis, or both later in life and the extensive comorbidity of atopic disorders suggest common causal mechanisms in addition to distinct ones. Indeed, both disease-specific and shared genomic regions exist for atopic disorders. Their prevalence also varies among races; for example, AD and asthma have a higher prevalence in African Americans when compared with European Americans. Whether this disparity stems from true genetic or race-specific environmental risk factors or both is unknown. Thus far, the majority of the genetic studies on atopic diseases have used populations of European ancestry, limiting their generalizability. Large-cohort initiatives and new analytic methods, such as admixture mapping, are currently being used to address this knowledge gap. Here we discuss the unique and shared genetic risk factors for atopic disorders in the context of ancestry variations and the promise of high-throughput "-omics"-based systems biology approach in providing greater insight to deconstruct their genetic and nongenetic etiologies. Future research will also focus on deep phenotyping and genotyping of diverse racial ancestry, gene-environment, and gene-gene interactions.
Collapse
Affiliation(s)
- Jayanta Gupta
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Elisabet Johansson
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Division of Immunology/Allergy Section, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ranajit Chakraborty
- Center for Computational Genomics, Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Tex
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
854
|
Nivet E. Modifiers of Neural Stem Cells and Aging: Pulling the Trigger of a Neurogenic Decline. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0047-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
855
|
Morales E, Vilahur N, Salas LA, Motta V, Fernandez MF, Murcia M, Llop S, Tardon A, Fernandez-Tardon G, Santa-Marina L, Gallastegui M, Bollati V, Estivill X, Olea N, Sunyer J, Bustamante M. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol 2016; 45:1644-1655. [PMID: 27591263 DOI: 10.1093/ije/dyw196] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. METHODS DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. RESULTS Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. CONCLUSIONS We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome.
Collapse
Affiliation(s)
- Eva Morales
- IMIB-Arrixaca Biomedical Research Institute, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain, .,CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nadia Vilahur
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lucas A Salas
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain.,Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Valeria Motta
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Mariana F Fernandez
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, San Cecilio University Hospital, 18012 Granada, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,FISABIO-Universitat de València-Universitat Jaume I Joint Research Unit of Epidemiology and Environmental Health, 46020 Valencia, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,FISABIO-Universitat de València-Universitat Jaume I Joint Research Unit of Epidemiology and Environmental Health, 46020 Valencia, Spain
| | - Adonina Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Molecular Epidemiology of Cancer Unit, University Institute of Oncology, University of Oviedo, 33003 Oviedo, Spain
| | - Guillermo Fernandez-Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Molecular Epidemiology of Cancer Unit, University Institute of Oncology, University of Oviedo, 33003 Oviedo, Spain
| | - Loreto Santa-Marina
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Subdirección de Salud Pública y Adicciones de Gipuzkoa, 20010 Donostia/San Sebastián, Spain.,Instituto de Investigación Sanitaria BIODONOSTIA, 20014 Donostia/San Sebastián, Spain and
| | - Mara Gallastegui
- Instituto de Investigación Sanitaria BIODONOSTIA, 20014 Donostia/San Sebastián, Spain and.,Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Xavier Estivill
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Nicolas Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, San Cecilio University Hospital, 18012 Granada, Spain
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.,Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain.,Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
856
|
Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 2016; 64:5-17. [PMID: 27582426 DOI: 10.1016/j.semcdb.2016.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
DNA methylation is a fundamental means of epigenetic gene regulation that occurs in virtually all cell types. In many higher organisms, including humans, it plays vital roles in cell differentiation and homeostatic maintenance of cell phenotype. The control of DNA methylation has traditionally been attributed to a highly coordinated, linear process, whose dysregulation has been associated with numerous pathologies including cancer, where it occurs early in, and even prior to, the development of neoplastic tissues. Recent experimental evidence has demonstrated that, contrary to prevailing paradigms, methylation patterns are actually maintained through inexact, dynamic processes. These processes normally result in minor stochastic differences between cells that accumulate with age. However, various factors, including cancer itself, can lead to substantial differences in intercellular methylation patterns, viz. methylation heterogeneity. Advancements in molecular biology techniques are just now beginning to allow insight into how this heterogeneity contributes to clonal evolution and overall cancer heterogeneity. In the current review, we begin by presenting a didactic overview of how the basal bimodal methylome is established and maintained. We then provide a synopsis of some of the factors that lead to the accrual of heterogeneous methylation and how this heterogeneity may lead to gene silencing and impact the development of cancerous phenotypes. Lastly, we highlight currently available methylation assessment techniques and discuss their suitability to the study of heterogeneous methylation.
Collapse
|
857
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
858
|
El Hajj N, Dittrich M, Böck J, Kraus TFJ, Nanda I, Müller T, Seidmann L, Tralau T, Galetzka D, Schneider E, Haaf T. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 2016; 11:563-78. [PMID: 27245352 PMCID: PMC4990229 DOI: 10.1080/15592294.2016.1192736] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11 times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Theo F. J. Kraus
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Larissa Seidmann
- Department of Pathology, University Medical Center, Mainz, Germany
| | - Tim Tralau
- Rehabilitation Clinic for Children and Adolescents, Westerland/Sylt, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
859
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
860
|
Alonso-Magdalena P, Rivera FJ, Guerrero-Bosagna C. Bisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw022. [PMID: 29492299 PMCID: PMC5804535 DOI: 10.1093/eep/dvw022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 05/24/2023]
Abstract
Exposure to environmental toxicants is now accepted as a factor contributing to the increasing incidence of obesity and metabolic diseases around the world. Such environmental compounds are known as 'obesogens'. Among them, bisphenol-A (BPA) is the most widespread and ubiquitous compound affecting humans and animals. Laboratory animal work has provided conclusive evidence that early-life exposure to BPA is particularly effective in predisposing individuals to weight gain. Embryonic exposure to BPA is reported to generate metabolic disturbances later in life, such as obesity and diabetes. When BPA administration is combined with a high-fat diet, there is an exacerbation in the development of metabolic disorders. Remarkably, upon BPA exposure of gestating females, metabolic disturbances have been found both in the offspring and later in life in the mothers themselves. When considering the metabolic effects generated by an early developmental exposure to BPA, one of the questions that arises is the role of precursor cells in the etiology of metabolic disorders. Current evidence shows that BPA and other endocrine disruptors have the ability to alter fat tissue development and growth by affecting the capacity to generate functional adipocytes, as well as their rate of differentiation to specific cell types. Epigenetic mechanisms seem to be involved in the BPA-induced effects related to obesity, as they have been described in both in vitro and in vivo models. Moreover, recent reports also show that developmental exposure to BPA generates abnormalities that can be transmitted to future generations, in a process called as transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
| | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute for Molecular Regenerative Medicine and Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus University, Salzburg, Austria
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
861
|
Karpeta-Kaczmarek J, Kubok M, Dziewięcka M, Sawczyn T, Augustyniak M. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:266-272. [PMID: 27213568 DOI: 10.1016/j.envpol.2016.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured.
Collapse
Affiliation(s)
- Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Magdalena Kubok
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland
| | - Tomasz Sawczyn
- Department of Physiology in Zabrze, Medical University of Silesia, Jordana 19, PL 41-808, Zabrze, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007, Katowice, Poland.
| |
Collapse
|
862
|
Schneider E, Dittrich M, Böck J, Nanda I, Müller T, Seidmann L, Tralau T, Galetzka D, El Hajj N, Haaf T. CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development. Gene 2016; 592:110-118. [PMID: 27468947 DOI: 10.1016/j.gene.2016.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/28/2016] [Accepted: 07/23/2016] [Indexed: 01/03/2023]
Abstract
Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.
Collapse
Affiliation(s)
- Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Larissa Seidmann
- Department of Pathology, University Medical Center, 55131 Mainz, Germany
| | - Tim Tralau
- Department of Pathology, University Medical Center, 55131 Mainz, Germany; Rehabilitation Clinic for Children and Adolescents, 25980 Westerland/Sylt, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiotherapy, University Medical Center, 55131 Mainz, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.
| |
Collapse
|
863
|
Vargas Hernández JE. Nutrigenómica humana: efectos de los alimentos o sus componentes sobre la expresión RNA. REVISTA DE LA FACULTAD DE MEDICINA 2016. [DOI: 10.15446/revfacmed.v64n2.51080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Los resultados del proyecto del genoma humano fueron el punto de partida de grandes avances técnicos, metodológicos y conceptuales en la ciencia de la genética. Hoy en día es claro que el DNA es una molécula compleja que presenta diversas interacciones dinámicas consigo misma y con otros componentes del entorno celular. Asimismo, se sabe que el RNA es una molécula fundamental para el entendimiento de las características del organismo y de la respuesta de este a los estímulos del medioambiente. Además, los mecanismos epigenéticos conjugan todos los eventos moleculares que determinan cuáles serán los rasgos —anatómicos, fisiológicos, metabólicos, etc.— particulares de una entidad biológica definida. Todos los aspectos mencionados antes ofrecen la oportunidad de estudiar el conjunto de interacciones existentes entre el genoma y la dieta, lo cual es muy relevante dado que la ingesta de alimentos —o de los componentes contenidos o derivados de los mismos— es uno de los factores del entorno más importantes a los que está expuesto un individuo a lo largo de su vida, puesto que es capaz de condicionar positiva o negativamente el estado de salud. El presente artículo tiene el propósito de dar un panorama general de los aspectos básicos que integran el concepto nutrigénomica y proporcionar un estado del arte actualizado de algunos de los estudios realizados en este campo in vivo en humanos.</p>
Collapse
|
864
|
Buch ER, Liew SL, Cohen LG. Plasticity of Sensorimotor Networks: Multiple Overlapping Mechanisms. Neuroscientist 2016; 23:185-196. [PMID: 26985069 DOI: 10.1177/1073858416638641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Redundancy is an important feature of the motor system, as abundant degrees of freedom are prominent at every level of organization across the central and peripheral nervous systems, and musculoskeletal system. This basic feature results in a system that is both flexible and robust, and which can be sustainably adapted through plasticity mechanisms in response to intrinsic organismal changes and dynamic environments. While much early work of motor system organization has focused on synaptic-based plasticity processes that are driven via experience, recent investigations of neuron-glia interactions, epigenetic mechanisms and large-scale network dynamics have revealed a plethora of plasticity mechanisms that support motor system organization across multiple, overlapping spatial and temporal scales. Furthermore, an important role of these mechanisms is the regulation of intrinsic variability. Here, we review several of these mechanisms and discuss their potential role in neurorehabilitation.
Collapse
Affiliation(s)
- Ethan R Buch
- 1 National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.,share joint first-authorship
| | - Sook-Lei Liew
- 2 University of Southern California, Los Angeles, CA, USA.,share joint first-authorship
| | - Leonardo G Cohen
- 1 National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| |
Collapse
|
865
|
Toraño EG, Bayón GF, del Real Á, Sierra MI, García MG, Carella A, Belmonte T, Urdinguio RG, Cubillo I, García-Castro J, Delgado-Calle J, Pérez-Campo FM, Riancho JA, Fraga MF, Fernández AF. Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. J Transl Med 2016; 14:207. [PMID: 27393146 PMCID: PMC4938941 DOI: 10.1186/s12967-016-0966-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Age-associated changes in genomic DNA methylation have been primarily attributed to 5-methylcytosine (5mC). However, the recent discovery of 5-hydroxymethylcytosine (5hmC) suggests that this epigenetic mark might also play a role in the process. METHODS Here, we analyzed the genome-wide profile of 5hmc in mesenchymal stem cells (MSCs) obtained from bone-marrow donors, aged 2-89 years. RESULTS We identified 10,685 frequently hydroxymethylated CpG sites in MSCs that were, as in other cell types, significantly associated with low density CpG regions, introns, the histone posttranslational modification H3k4me1 and enhancers. Study of the age-associated changes to 5hmC identified 785 hyper- and 846 hypo-hydroxymethylated CpG sites in the MSCs obtained from older individuals. CONCLUSIONS DNA hyper-hydroxymethylation in the advanced-age group was associated with loss of 5mC, which suggests that, at specific CpG sites, this epigenetic modification might play a role in DNA methylation changes during lifetime. Since bone-marrow MSCs have many clinical applications, and the fact that the epigenomic alterations in this cell type associated with aging identified in this study could have associated functional effects, the age of donors should be taken into account in clinical settings.
Collapse
Affiliation(s)
- Estela G. Toraño
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Gustavo F. Bayón
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Álvaro del Real
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Marta I. Sierra
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - María G. García
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Antonella Carella
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Thalia Belmonte
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Rocío G. Urdinguio
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Isabel Cubillo
- />Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Castro
- />Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Delgado-Calle
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Flor M. Pérez-Campo
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - José A. Riancho
- />Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Mario F. Fraga
- />Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - Agustín F. Fernández
- />Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
866
|
Asymmetric Cancer Hallmarks in Breast Tumors on Different Sides of the Body. PLoS One 2016; 11:e0157416. [PMID: 27383829 PMCID: PMC4934783 DOI: 10.1371/journal.pone.0157416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
During the last decades it has been established that breast cancer arises through the accumulation of genetic and epigenetic alterations in different cancer related genes. These alterations confer the tumor oncogenic abilities, which can be resumed as cancer hallmarks (CH). The purpose of this study was to establish the methylation profile of CpG sites located in cancer genes in breast tumors so as to infer their potential impact on 6 CH: i.e. sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, genome instability and invasion and metastasis. For 51 breast carcinomas, MS-MLPA derived-methylation profiles of 81 CpG sites were converted into 6 CH profiles. CH profiles distribution was tested by different statistical methods and correlated with clinical-pathological data. Unsupervised Hierarchical Cluster Analysis revealed that CH profiles segregate in two main groups (bootstrapping 90–100%), which correlate with breast laterality (p = 0.05). For validating these observations, gene expression data was obtained by RealTime-PCR in a different cohort of 25 tumors and converted into CH profiles. This analyses confirmed the same clustering and a tendency of association with breast laterality (p = 0.15). In silico analyses on gene expression data from TCGA Breast dataset from left and right breast tumors showed that they differed significantly when data was previously converted into CH profiles (p = 0.033). We show here for the first time, that breast carcinomas arising on different sides of the body present differential cancer traits inferred from methylation and expression profiles. Our results indicate that by converting methylation or expression profiles in terms of Cancer Hallmarks, it would allow to uncover veiled associations with clinical features. These results contribute with a new finding to the better understanding of breast tumor behavior, and can moreover serve as proof of principle for other bilateral cancers like lung, testes or kidney.
Collapse
|
867
|
Clinical potential of DNA methylation in organ transplantation. J Heart Lung Transplant 2016; 35:843-50. [DOI: 10.1016/j.healun.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
|
868
|
Lunde ER, Washburn SE, Golding MC, Bake S, Miranda RC, Ramadoss J. Alcohol-Induced Developmental Origins of Adult-Onset Diseases. Alcohol Clin Exp Res 2016; 40:1403-14. [PMID: 27254466 PMCID: PMC5067080 DOI: 10.1111/acer.13114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
Abstract
Fetal alcohol exposure may impair growth, development, and function of multiple organ systems and is encompassed by the term fetal alcohol spectrum disorders (FASD). Research has so far focused on the mechanisms, prevention, and diagnosis of FASD, while the risk for adult-onset chronic diseases in individuals exposed to alcohol in utero is not well explored. David Barker's hypothesis on Developmental Origins of Health and Disease (DOHaD) suggests that insults to the milieu of the developing fetus program it for adult development of chronic diseases. In the 25 years since the introduction of this hypothesis, epidemiological and animal model studies have made significant advancements in identifying in utero developmental origins of chronic adult-onset diseases affecting cardiovascular, endocrine, musculoskeletal, and psychobehavioral systems. Teratogen exposure is an established programming agent for adult diseases, and recent studies suggest that prenatal alcohol exposure correlates with adult onset of neurobehavioral deficits, cardiovascular disease, endocrine dysfunction, and nutrient homeostasis instability, warranting additional investigation of alcohol-induced DOHaD, as well as patient follow-up well into adulthood for affected individuals. In utero epigenetic alterations during critical periods of methylation are a key potential mechanism for programming and susceptibility of adult-onset chronic diseases, with imprinted genes affecting metabolism being critical targets. Additional studies in epidemiology, phenotypic characterization in response to timing, dose, and duration of exposure, as well as elucidation of mechanisms underlying FASD-DOHaD inter relation, are thus needed to clinically define chronic disease associated with prenatal alcohol exposure. These studies are critical to establish interventional strategies that decrease incidence of these adult-onset diseases and promote healthier aging among individuals affected with FASD.
Collapse
Affiliation(s)
- Emilie R. Lunde
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon E. Washburn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
869
|
Zhu X, Li J, Deng S, Yu K, Liu X, Deng Q, Sun H, Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. Genome-Wide Analysis of DNA Methylation and Cigarette Smoking in a Chinese Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:966-73. [PMID: 26756918 PMCID: PMC4937856 DOI: 10.1289/ehp.1509834] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/22/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Smoking is a risk factor for many human diseases. DNA methylation has been related to smoking, but genome-wide methylation data for smoking in Chinese populations is limited. OBJECTIVES We aimed to investigate epigenome-wide methylation in relation to smoking in a Chinese population. METHODS We measured the methylation levels at > 485,000 CpG sites (CpGs) in DNA from leukocytes using a methylation array and conducted a genome-wide meta-analysis of DNA methylation and smoking in a total of 596 Chinese participants. We further evaluated the associations of smoking-related CpGs with internal polycyclic aromatic hydrocarbon (PAH) biomarkers and their correlations with the expression of corresponding genes. RESULTS We identified 318 CpGs whose methylation levels were associated with smoking at a genome-wide significance level (false discovery rate < 0.05), among which 161 CpGs annotated to 123 genes were not associated with smoking in recent studies of Europeans and African Americans. Of these smoking-related CpGs, methylation levels at 80 CpGs showed significant correlations with the expression of corresponding genes (including RUNX3, IL6R, PTAFR, ANKRD11, CEP135 and CDH23), and methylation at 15 CpGs was significantly associated with urinary 2-hydroxynaphthalene, the most representative internal monohydroxy-PAH biomarker for smoking. CONCLUSION We identified DNA methylation markers associated with smoking in a Chinese population, including some markers that were also correlated with gene expression. Exposure to naphthalene, a byproduct of tobacco smoke, may contribute to smoking-related methylation. CITATION Zhu X, Li J, Deng S, Yu K, Liu X, Deng Q, Sun H, Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. 2016. Genome-wide analysis of DNA methylation and cigarette smoking in Chinese. Environ Health Perspect 124:966-973; http://dx.doi.org/10.1289/ehp.1509834.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Siyun Deng
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhen Sun
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Kuang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosheng He
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Li
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Jiang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhi Zhang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Hu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longxian Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoting Luo
- Department of Cardiology, People’s Hospital of Zhuhai, Zhuhai, China
| | - Wenhua Mei
- Department of Cardiology, People’s Hospital of Zhuhai, Zhuhai, China
| | - Zhiming Zhou
- Department of Cardiology, Bao’an Hospital, Shenzhen, China
| | - Shunchang Sun
- Department of Cardiology, Bao’an Hospital, Shenzhen, China
| | - Liyun Zhang
- Department of Cardiology, Wuhan Central Hospital, Wuhan, China
| | - Chuanyao Liu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Guo
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Zhang
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Frank B. Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health, and
- Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Address correspondence to T. Wu, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, Hubei, China. Telephone: 86-27-83692347. E-mail:
| |
Collapse
|
870
|
Yan C, Chen J, Li M, Xuan W, Su D, You H, Huang Y, Chen N, Liang X. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice. Diabetologia 2016; 59:1524-1532. [PMID: 27003684 DOI: 10.1007/s00125-016-3932-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Abstract
AIM/HYPOTHESIS MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). METHODS MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. RESULTS Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. CONCLUSIONS/INTERPRETATION Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.
Collapse
Affiliation(s)
- Caifeng Yan
- Department of Endocrinology, Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Pathophysiology, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinfeng Chen
- Department of Endocrinology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Min Li
- Department of Pathophysiology, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wenying Xuan
- Center of Pathology and Clinical Laboratory, Mingde Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Mingde Hospital of Nanjing Medical University, Nanjing, China
| | - Hui You
- Department of Pathophysiology, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yujie Huang
- Department of Pathophysiology, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Nuoqi Chen
- Department of Endocrinology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Xiubin Liang
- Department of Pathophysiology, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
871
|
The BLUEPRINT consortium, Bock C, Halbritter F, Carmona FJ, Tierling S, Datlinger P, Assenov Y, Berdasco M, Bergmann AK, Booher K, Busato F, Campan M, Dahl C, Dahmcke CM, Diep D, Fernández AF, Gerhauser C, Haake A, Heilmann K, Holcomb T, Hussmann D, Ito M, Kläver R, Kreutz M, Kulis M, Lopez V, Nair SS, Paul DS, Plongthongkum N, Qu W, Queirós AC, Reinicke F, Sauter G, Schlomm T, Statham A, Stirzaker C, Strogantsev R, Urdinguio RG, Walter K, Weichenhan D, Weisenberger DJ, Beck S, Clark SJ, Esteller M, Ferguson-Smith AC, Fraga MF, Guldberg P, Hansen LL, Laird PW, Martín-Subero JI, Nygren AOH, Peist R, Plass C, Shames DS, Siebert R, Sun X, Tost J, Walter J, Zhang K. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 2016; 34:726-37. [PMID: 27347756 DOI: 10.1038/nbt.3605] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 05/10/2016] [Indexed: 02/08/2023]
Abstract
DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.
Collapse
|
872
|
White SL, Vassoler FM, Schmidt HD, Pierce RC, Wimmer ME. Enhanced anxiety in the male offspring of sires that self-administered cocaine. Addict Biol 2016; 21:802-810. [PMID: 25923597 DOI: 10.1111/adb.12258] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously showed that paternal cocaine exposure reduced the reinforcing efficacy of cocaine in male offspring. Here, we sought to determine whether paternal cocaine experience could also influence anxiety levels in offspring. Male rats were allowed to self-administer cocaine (controls received saline passively) for 60 days and then were bred with naïve females. Measures of anxiety and cocaine-induced anxiogenic effects were assessed in the adult offspring. Cocaine-sired male offspring exhibited increased anxiety-like behaviors, as measured using the novelty-induced hypophagia and defensive burying tasks, relative to saline-sired males. In contrast, sire cocaine experience had no effect on anxiety-like behaviors in female offspring. When challenged with an anxiogenic (but not anorectic) dose of cocaine (2.5 mg/kg, i.p.), anxiety-like behavior was enhanced in all animals to an equal degree regardless of sire drug experience. Since anxiety and depression are often co-morbid, we also assessed measures of depressive-like behavior. Sire cocaine experience had no effect on depression-like behaviors, as measured by the forced swim task, among male offspring. In a separate group of naïve littermates, select neuronal correlates of anxiety were measured. Male offspring of cocaine-experienced sires showed increased mRNA and protein expression of corticotropin-releasing factor receptor 2 in the hippocampus. Together, these results indicate that cocaine-experienced sires produce male progeny that have increased baseline anxiety, which is unaltered by subsequent cocaine exposure.
Collapse
Affiliation(s)
- Samantha L. White
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Fair M. Vassoler
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Heath D. Schmidt
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Mathieu E. Wimmer
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
873
|
Walker CL. Minireview: Epigenomic Plasticity and Vulnerability to EDC Exposures. Mol Endocrinol 2016; 30:848-55. [PMID: 27355193 DOI: 10.1210/me.2016-1086] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The epigenome undergoes significant remodeling during tissue and organ development, which coincides with a period of exquisite sensitivity to environmental exposures. In the case of endocrine-disrupting compounds (EDCs), exposures can reprogram the epigenome of developing tissues to increase susceptibility to diseases later in life, a process termed "developmental reprogramming." Both DNA methylation and histone modifications have been shown to be vulnerable to disruption by EDC exposures, and several mechanisms have been identified by which EDCs can reprogram the epigenome. These include altered methyl donor availability, loss of imprinting control, changes in dioxygenase activity, altered expression of noncoding RNAs, and activation of cell signaling pathways that can phosphorylate, and alter the activity of, histone methyltransferases. This altered epigenomic programming can persist across the life course, and in some instances generations, to alter gene expression in ways that correlate with increased disease susceptibility. Together, these studies on developmental reprogramming of the epigenome by EDCs are providing new insights into epigenomic plasticity that is vulnerable to disruption by environmental exposures.
Collapse
Affiliation(s)
- Cheryl Lyn Walker
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030
| |
Collapse
|
874
|
Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, Barhdadi A, Provost S, Lemieux-Perreault LP, Cynader MS, Chudley AE, Dubé MP, Reynolds JN, Pavlidis P, Kobor MS. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin 2016; 9:25. [PMID: 27358653 PMCID: PMC4926300 DOI: 10.1186/s13072-016-0074-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol’s effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date. Methods Genome-wide DNA methylation patterns of buccal epithelial cells (BECs) were analyzed using the Illumina HumanMethylation450 array in a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was performed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip. Results After correcting for the effects of genetic background, we found 658 significantly differentially methylated sites between FASD cases and controls, with 41 displaying differences in percent methylation change >5 %. Furthermore, 101 differentially methylated regions containing two or more CpGs were also identified, overlapping with 95 different genes. The majority of differentially methylated genes were highly expressed at the level of mRNA in brain samples from the Allen Brain Atlas, and independent DNA methylation data from cortical brain samples showed high correlations with BEC DNA methylation patterns. Finally, overrepresentation analysis of genes with up-methylated CpGs revealed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, and autism spectrum disorders. Conclusions These findings suggested that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0074-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Meaghan J Jones
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Rachel D Edgar
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Sarah M Mah
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Amina Barhdadi
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada
| | - Sylvie Provost
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada
| | | | - Max S Cynader
- Brain Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, MB Canada.,Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Marie-Pierre Dubé
- Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Université de Montréal, Montreal, QC Canada.,Faculty of Medicine, Université de Montréal, Montreal, QC Canada
| | - James N Reynolds
- Centre for Neuroscience Studies, Queen's University, Kingston, ON Canada
| | - Paul Pavlidis
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC Canada.,Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
875
|
Bentz AB, Sirman AE, Wada H, Navara KJ, Hood WR. Relationship between maternal environment and DNA methylation patterns of estrogen receptor alpha in wild Eastern Bluebird (Sialia sialis) nestlings: a pilot study. Ecol Evol 2016; 6:4741-52. [PMID: 27547309 PMCID: PMC4979703 DOI: 10.1002/ece3.2162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
There is mounting evidence that, across taxa, females breeding in competitive environments tend to allocate more testosterone to their offspring prenatally and these offspring typically have more aggressive and faster‐growing phenotypes. To date, no study has determined the mechanisms mediating this maternal effect's influence on offspring phenotype. However, levels of estrogen receptor alpha (ERα) gene expression are linked to differences in early growth and aggression; thus, maternal hormones may alter gene regulation, perhaps via DNA methylation, of ERα in offspring during prenatal development. We performed a pilot study to examine natural variation in testosterone allocation to offspring through egg yolks in wild Eastern Bluebirds (Sialia sialis) in varying breeding densities and percent DNA methylation of CG dinucleotides in the ERα promoter in offspring brain regions associated with growth and behavior. We hypothesized that breeding density would be positively correlated with yolk testosterone, and prenatal exposure to maternal‐derived yolk testosterone would be associated with greater offspring growth and decreased ERα promoter methylation. Yolk testosterone concentration was positively correlated with breeding density, nestling growth rate, and percent DNA methylation of one out of five investigated CpG sites (site 3) in the diencephalon ERα promoter, but none in the telencephalon (n = 10). Percent DNA methylation of diencephalon CpG site 3 was positively correlated with growth rate. These data suggest a possible role for epigenetics in mediating the effects of the maternal environment on offspring phenotype. Experimentally examining this mechanism with a larger sample size in future studies may help elucidate a prominent way in which animals respond to their environment. Further, by determining the mechanisms that mediate maternal effects, we can begin to understand the potential for the heritability of these mechanisms and the impact that maternal effects are capable of producing at an evolutionary scale.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Aubrey E Sirman
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Haruka Wada
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Kristen J Navara
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Wendy R Hood
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| |
Collapse
|
876
|
Liu WB, Han F, Jiang X, Chen HQ, Zhao H, Liu Y, Li YH, Huang C, Cao J, Liu JY. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget 2016; 6:21225-39. [PMID: 26056045 PMCID: PMC4673261 DOI: 10.18632/oncotarget.4237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of tumour suppressors contributes to the development and progression of lung cancer. We recently found that TMEM196 was hypermethylated in lung cancer. This study aimed to clarify its epigenetic regulation, possible roles and clinical significance. TMEM196 methylation correlated with loss of protein expression in chemical-induced rat lung pathologic lesions and human lung cancer tissues and cell lines. 5-aza-2′-deoxycytidine restored TMEM196 expression. Moreover, TMEM196 hypermethylation was detected in 61.2% of primary lung tumours and found to be associated with poor differentiation and pathological stage of lung cancer. Functional studies showed that ectopic re-expression of TMEM196 in lung cancer cells inhibited cell proliferation, clonogenicity, cell motility and tumour formation. However, TMEM196 knockdown increased cell proliferation and inhibited apoptosis and cell-cycle arrest. These effects were associated with upregulation of p21 and Bax, and downregulation of cyclin D1, c-myc, CD44 and β-catenin. Kaplan–Meier survival curves showed that TMEM196 downregulation was significantly associated with shortened survival in lung cancer patients. Multivariate analysis showed that patients with TMEM196 expression had a better overall survival. Our results revealed for the first time that TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is an independent prognostic factor of lung cancer.
Collapse
Affiliation(s)
- Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Hong-qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Huan Zhao
- Department of Internal Neurology, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yong Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Yong-hong Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
877
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
878
|
Urdinguio RG, Torró MI, Bayón GF, Álvarez-Pitti J, Fernández AF, Redon P, Fraga MF, Lurbe E. Longitudinal study of DNA methylation during the first 5 years of life. J Transl Med 2016; 14:160. [PMID: 27259700 PMCID: PMC4891837 DOI: 10.1186/s12967-016-0913-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. METHODS The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina(®) Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. RESULTS DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. CONCLUSIONS Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain.,Nanomaterials and Nanotechnology Research Center (CINN)-Spanish Council for Scientific Research (CSIC), (CINN-CSIC), Avenida de la Vega 4-6, 33940, El Entrego, Spain
| | - María Isabel Torró
- Servicio de Pediatría, Consorcio Hospital General Universitario, Universidad de Valencia, Avda. Tres Cruces s/n, 46014, Valencia, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo F Bayón
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Julio Álvarez-Pitti
- Servicio de Pediatría, Consorcio Hospital General Universitario, Universidad de Valencia, Avda. Tres Cruces s/n, 46014, Valencia, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Pau Redon
- Servicio de Pediatría, Consorcio Hospital General Universitario, Universidad de Valencia, Avda. Tres Cruces s/n, 46014, Valencia, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain. .,Nanomaterials and Nanotechnology Research Center (CINN)-Spanish Council for Scientific Research (CSIC), (CINN-CSIC), Avenida de la Vega 4-6, 33940, El Entrego, Spain.
| | - Empar Lurbe
- Servicio de Pediatría, Consorcio Hospital General Universitario, Universidad de Valencia, Avda. Tres Cruces s/n, 46014, Valencia, Spain. .,CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
879
|
Bormann F, Rodríguez‐Paredes M, Hagemann S, Manchanda H, Kristof B, Gutekunst J, Raddatz G, Haas R, Terstegen L, Wenck H, Kaderali L, Winnefeld M, Lyko F. Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell 2016; 15:563-71. [PMID: 27004597 PMCID: PMC4854925 DOI: 10.1111/acel.12470] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2016] [Indexed: 11/28/2022] Open
Abstract
Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age‐related changes in DNA methylation at the genome scale have been termed ‘epigenetic drift’, but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age‐related epigenetic changes because of its substantial cell‐type homogeneity and its well‐known age‐related phenotype. We have now generated and analyzed the currently largest set of human epidermis methylomes (N = 108) using array‐based profiling of 450 000 methylation marks in various age groups. Data analysis confirmed that age‐related methylation differences are locally restricted and characterized by relatively small effect sizes. Nevertheless, methylation data could be used to predict the chronological age of sample donors with high accuracy. We also identified discontinuous methylation changes as a novel feature of the aging methylome. Finally, our analysis uncovered an age‐related erosion of DNA methylation patterns that is characterized by a reduced dynamic range and increased heterogeneity of global methylation patterns. These changes in methylation variability were accompanied by a reduced connectivity of transcriptional networks. Our findings thus define the loss of epigenetic regulatory fidelity as a key feature of the aging epigenome.
Collapse
Affiliation(s)
- Felix Bormann
- Division of Epigenetics DKFZ‐ZMBH Alliance German Cancer Research Center Heidelberg Germany
| | - Manuel Rodríguez‐Paredes
- Division of Epigenetics DKFZ‐ZMBH Alliance German Cancer Research Center Heidelberg Germany
- University Tumor Center Düsseldorf University of Düsseldorf Düsseldorf Germany
| | | | - Himanshu Manchanda
- Institute for Bioinformatics University Medicine Greifswald Greifswald Germany
| | - Boris Kristof
- Research and Development Beiersdorf AG Hamburg Germany
| | - Julian Gutekunst
- Division of Epigenetics DKFZ‐ZMBH Alliance German Cancer Research Center Heidelberg Germany
| | - Günter Raddatz
- Division of Epigenetics DKFZ‐ZMBH Alliance German Cancer Research Center Heidelberg Germany
| | - Rainer Haas
- University Tumor Center Düsseldorf University of Düsseldorf Düsseldorf Germany
| | | | - Horst Wenck
- Research and Development Beiersdorf AG Hamburg Germany
| | - Lars Kaderali
- Institute for Bioinformatics University Medicine Greifswald Greifswald Germany
| | | | - Frank Lyko
- Division of Epigenetics DKFZ‐ZMBH Alliance German Cancer Research Center Heidelberg Germany
| |
Collapse
|
880
|
Mastroeni D, Chouliaras L, Van den Hove DL, Nolz J, Rutten BP, Delvaux E, Coleman. PD. Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
881
|
Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 2016; 5:13546. [PMID: 27242129 PMCID: PMC4887212 DOI: 10.7554/elife.13546] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.
Collapse
Affiliation(s)
- Anjar Wibowo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gianpiero Marconi
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Julius Durr
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Price
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ranjith Papareddy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hadi Putra
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorge Kageyama
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jorg Becker
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
882
|
Wang Q, Trevino LS, Wong RLY, Medvedovic M, Chen J, Ho SM, Shen J, Foulds CE, Coarfa C, O'Malley BW, Shilatifard A, Walker CL. Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk. Mol Endocrinol 2016; 30:856-71. [PMID: 27219490 DOI: 10.1210/me.2015-1310] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue and organ development is a time of exquisite sensitivity to environmental exposures, which can reprogram developing tissues to increase susceptibility to adult diseases, including cancer. In the developing prostate, even brief exposure to endocrine-disrupting chemicals (EDCs) can increase risk for developing cancer in adulthood, with disruption of the epigenome thought to play a key role in this developmental reprogramming. We find that EDC-induced nongenomic phosphoinositide 3-kinase; (PI3K) signaling engages the histone methyltransferase mixed-lineage leukemia 1 (MLL1), responsible for the histone H3 lysine 4 trimethylation (H3K4me3) active epigenetic mark, to increase cleavage and formation of active MLL1 dimers. In the developing prostate, EDC-induced MLL1 activation increased H3K4me3 at genes associated with prostate cancer, with increased H3K4me3 and elevated basal and hormone-induced expression of reprogrammed genes persisting into adulthood. These data identify a mechanism for MLL1 activation that is vulnerable to disruption by environmental exposures, and link MLL1 activation by EDCs to developmental reprogramming of genes involved in prostate cancer.
Collapse
Affiliation(s)
- Quan Wang
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Lindsey S Trevino
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Rebecca Lee Yean Wong
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mario Medvedovic
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jing Chen
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Shuk-Mei Ho
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jianjun Shen
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Charles E Foulds
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Cristian Coarfa
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Bert W O'Malley
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ali Shilatifard
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Cheryl L Walker
- Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
883
|
Scott WR, Zhang W, Loh M, Tan ST, Lehne B, Afzal U, Peralta J, Saxena R, Ralhan S, Wander GS, Bozaoglu K, Sanghera DK, Elliott P, Scott J, Chambers JC, Kooner JS. Investigation of Genetic Variation Underlying Central Obesity amongst South Asians. PLoS One 2016; 11:e0155478. [PMID: 27195708 PMCID: PMC4873263 DOI: 10.1371/journal.pone.0155478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
South Asians are 1/4 of the world's population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10-6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.
Collapse
Affiliation(s)
- William R. Scott
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London, United Kingdom
- * E-mail:
| | - Weihua Zhang
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Marie Loh
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Sian-Tsung Tan
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Benjamin Lehne
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Uzma Afzal
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Juan Peralta
- Genomics Computer Centre, South Texas Diabetes and Obesity Institute, University of Texas at the Rio Grande Valley, Brownsville, Texas, United States of America
| | - Richa Saxena
- Broad Institute of Massachusetts Institute of Technology and Harvard, Massachusetts General Hospital, Cambridge, MA, United States of America
| | - Sarju Ralhan
- Hero DMC Heart Institute, Ludhiana, Punjab, India
| | | | - Kiymet Bozaoglu
- Genomics and Systems Biology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC Australia
| | - Dharambir K. Sanghera
- Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Paul Elliott
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College London, Norfolk Place, London, United Kingdom
| | - James Scott
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London, United Kingdom
- Imperial College Healthcare NHS Trust, Du Cane Road, London, United Kingdom
| | - John C. Chambers
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College London, Norfolk Place, London, United Kingdom
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, Du Cane Road, London, United Kingdom
| |
Collapse
|
884
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
885
|
The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Sci Rep 2016; 6:25929. [PMID: 27181905 PMCID: PMC4867433 DOI: 10.1038/srep25929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.
Collapse
|
886
|
How to interpret epigenetic association studies: a guide for clinicians. BONEKEY REPORTS 2016; 5:797. [PMID: 27195108 DOI: 10.1038/bonekey.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 01/23/2023]
Abstract
Epigenetic mechanisms are able to alter gene expression, without altering DNA sequence, in a stable manner through cell divisions. They include, among others, the methylation of DNA cytosines and microRNAs and allow the cells to adapt to changing environmental conditions. In recent years, epigenetic association studies are providing new insights into the pathogenesis of complex disorders including prevalent skeletal disorders. Unlike the genome, the epigenome is cell and tissue specific and may change with age and a number of acquired factors. This poses particular difficulties for the design and interpretation of epigenetic studies, particularly those exploring the association of genome-wide epigenetic marks with disease phenotypes. In this report, we propose a framework to help in the critical appraisal of epigenetic association studies. In line with previous suggestions, we focus on the questions critical to appraise the validity of the study, to interpret the results and to assess the generalizability and relevance of the information.
Collapse
|
887
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
888
|
Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, Barrdahl M, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Naska A, Palli D, Krogh V, Polidoro S, Tumino R, Panico S, Bueno-de-Mesquita B, Peeters PH, Quirós JR, Navarro C, Ardanaz E, Dorronsoro M, Key T, Vineis P, Murphy N, Riboli E, Romieu I, Herceg Z. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 2016; 8:599-618. [PMID: 26864933 DOI: 10.2217/epi-2016-0001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Epigenetic changes may occur in response to environmental stressors, and an altered epigenome pattern may represent a stable signature of environmental exposure. MATERIALS & METHODS Here, we examined the potential of DNA methylation changes in 910 prediagnostic peripheral blood samples as a marker of exposure to tobacco smoke in a large multinational cohort. RESULTS We identified 748 CpG sites that were differentially methylated between smokers and nonsmokers, among which we identified novel regionally clustered CpGs associated with active smoking. Importantly, we found a marked reversibility of methylation changes after smoking cessation, although specific genes remained differentially methylated up to 22 years after cessation. CONCLUSION Our study has comprehensively cataloged the smoking-associated DNA methylation alterations and showed that these alterations are reversible after smoking cessation.
Collapse
Affiliation(s)
| | - Cyrille Cuenin
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Akram Ghantous
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Domenico Palli
- Molecular & Nutritional Epidemiology Unit, Cancer Research & Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology & Prevention Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | - Rosario Tumino
- Cancer Registry & Histopathology Unit, 'Civic MP Arezzo' Hospital, ASP Ragusa, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Bas Bueno-de-Mesquita
- Department of Determinants of Chronic Diseases (DCD), National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology & Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology & Biostatistics, The School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra Hm Peeters
- Department of Epidemiology, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | | | - Carmen Navarro
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Health & Social Sciences, Universidad de Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Public Health Institute of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain
| | - Tim Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK
| | - Neil Murphy
- School of Public Health, Imperial College London, London, UK
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Isabelle Romieu
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
889
|
Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease. Mucosal Immunol 2016; 9:647-58. [PMID: 26376367 PMCID: PMC4854977 DOI: 10.1038/mi.2015.88] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/27/2015] [Indexed: 02/04/2023]
Abstract
DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD.
Collapse
|
890
|
Brückmann C, Di Santo A, Karle KN, Batra A, Nieratschker V. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics 2016; 11:456-63. [PMID: 27128683 DOI: 10.1080/15592294.2016.1179411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alcohol dependence is a severe disorder contributing substantially to the global burden of disease. Despite the detrimental consequences of chronic alcohol abuse and dependence, effective prevention strategies as well as treatment options are largely missing to date. Accumulating evidence suggests that gene-environment interactions, including epigenetic mechanisms, play a role in the etiology of alcohol dependence. A recent epigenome-wide study reported widespread alterations of DNA methylation patterns in alcohol dependent patients compared to control individuals. In the present study, we validate and replicate one of the top findings from this previous investigation in an independent cohort: the hypomethylation of GDAP1 in patients. To our knowledge, this is the first independent replication of an epigenome-wide finding in alcohol dependence. Furthermore, the AUDIT as well as the GSI score were negatively associated with GDAP1 methylation and we found a trend toward a negative association between GDAP1 methylation and the years of alcohol dependency, pointing toward a potential role of GDAP1 hypomethylation as biomarker for disease severity. In addition, we show that the hypomethylation of GDAP1 in patients reverses during a short-term alcohol treatment program, suggesting that GDAP1 DNA methylation could also serve as a potential biomarker for treatment outcome. Our data add to the growing body of knowledge on epigenetic effects in alcohol dependence and support GDAP1 as a novel candidate gene implicated in this disorder. As the role of GDAP1 in alcohol dependence is unknown, this novel candidate gene should be followed up in future studies.
Collapse
Affiliation(s)
- Christof Brückmann
- a Department of Psychiatry and Psychotherapy , University Hospital of Tuebingen , Tuebingen , Germany
| | - Adriana Di Santo
- a Department of Psychiatry and Psychotherapy , University Hospital of Tuebingen , Tuebingen , Germany
| | - Kathrin Nora Karle
- a Department of Psychiatry and Psychotherapy , University Hospital of Tuebingen , Tuebingen , Germany
| | - Anil Batra
- b Section for Addiction Medicine and Addiction Research, Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen , Tuebingen , Germany
| | - Vanessa Nieratschker
- a Department of Psychiatry and Psychotherapy , University Hospital of Tuebingen , Tuebingen , Germany
| |
Collapse
|
891
|
Kammel A, Saussenthaler S, Jähnert M, Jonas W, Stirm L, Hoeflich A, Staiger H, Fritsche A, Häring HU, Joost HG, Schürmann A, Schwenk RW. Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice. Hum Mol Genet 2016; 25:2588-2599. [PMID: 27126637 PMCID: PMC5181631 DOI: 10.1093/hmg/ddw121] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Obesity and ectopic fat disposition are risk factors for metabolic disease. Recent data indicate that IGFBP2 expression in liver is epigenetically inhibited during hepatic steatosis. The aim of this study was to investigate if epigenetic de-regulation of hepatic Igfbp2 occurs already early in life and is associated with increased risk for diet-induced obesity (DIO) during adolescence. Male C57BL/6J mice received a high-fat diet. After 3 weeks on this diet (age of 6 weeks), DIO-susceptible (responder, Resp) and DIO-resistant (non-responder, nResp) mice were identified by early weight gain. At the age of 6 weeks, Resp mice exhibited elevated blood glucose (p < 0.05), plasma insulin (p < 0.01), HOMA-IR and leptin/adiponectin ratio, whereas liver triglycerides were identical but significantly increased (p < 0.01) in Resp mice at 20 weeks of age. Igfbp2 expression was reduced in young Resp compared with nResp mice (p < 0.01), an effect that correlated with elevated DNA methylation of intronic CpG2605 (p < 0.01). The epigenetic inhibition of Igfbp2 was stable over time and preceded DIO and hepatosteatosis in adult mice. In vitro studies demonstrated that selective methylation of CpG2605 significantly reduced reporter activity by ∼85%, indicating that Igfbp2 expression is modulated by methylation. In human whole blood cells, methylation of IGFBP2 at the homologous CpG site was increased in obese men with impaired glucose tolerance. In conclusion, our data show that increased methylation of hepatic Igfbp2 during infancy predicts the development of fatty liver later in life and is linked to deterioration of glucose metabolism.
Collapse
Affiliation(s)
- Anne Kammel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sophie Saussenthaler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Laura Stirm
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Robert W Schwenk
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
892
|
Cittaro D, Lampis V, Luchetti A, Coccurello R, Guffanti A, Felsani A, Moles A, Stupka E, D' Amato FR, Battaglia M. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes. Sci Rep 2016; 6:25131. [PMID: 27121911 PMCID: PMC4848503 DOI: 10.1038/srep25131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice’s respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.
Collapse
Affiliation(s)
- Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Lampis
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Genomnia srl, Lainate, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D' Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, University Of Toronto, Toronto, Canada.,Division of Child and Youth Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
893
|
Oh G, Ebrahimi S, Wang SC, Cortese R, Kaminsky ZA, Gottesman II, Burke JR, Plassman BL, Petronis A. Epigenetic assimilation in the aging human brain. Genome Biol 2016; 17:76. [PMID: 27122015 PMCID: PMC4848814 DOI: 10.1186/s13059-016-0946-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Background Epigenetic drift progressively increases variation in DNA modification profiles of aging cells, but the finale of such divergence remains elusive. In this study, we explored the dynamics of DNA modification and transcription in the later stages of human life. Results We find that brain tissues of older individuals (>75 years) become more similar to each other, both epigenetically and transcriptionally, compared with younger individuals. Inter-individual epigenetic assimilation is concurrent with increasing similarity between the cerebral cortex and the cerebellum, which points to potential brain cell dedifferentiation. DNA modification analysis of twins affected with Alzheimer’s disease reveals a potential for accelerated epigenetic assimilation in neurodegenerative disease. We also observe loss of boundaries and merging of neighboring DNA modification and transcriptomic domains over time. Conclusions Age-dependent epigenetic divergence, paradoxically, changes to convergence in the later stages of life. The newly described phenomena of epigenetic assimilation and tissue dedifferentiation may help us better understand the molecular mechanisms of aging and the origins of diseases for which age is a risk factor. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0946-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Oh
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada
| | - Sasha Ebrahimi
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada
| | - Sun-Chong Wang
- Institute of Systems Biology and Bioinformatics, National Central University, Chungli, 320, Taiwan
| | - Rene Cortese
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada.,Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, USA
| | - Zachary A Kaminsky
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Irving I Gottesman
- Departments of Psychology and Psychiatry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - James R Burke
- Duke University Medical Center, Duke University, Box 2900, Durham, North Carolina, 27701, USA
| | - Brenda L Plassman
- Duke University Medical Center, Duke University, Box 41, Durham, North Carolina, 27701, USA
| | - Art Petronis
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
894
|
Asselman J, De Coninck DIM, Pfrender ME, De Schamphelaere KAC. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size. Genome Biol Evol 2016; 8:1185-96. [PMID: 27017526 PMCID: PMC4860698 DOI: 10.1093/gbe/evw069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium Department of Biological Sciences, University of Notre Dame
| | - Dieter I M De Coninck
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium Laboratory of Pharmaceutical Biotechnology (labFBT), Ghent University, Ghent, Belgium
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame Environmental Change Initiative, University of Notre Dame
| | - Karel A C De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium
| |
Collapse
|
895
|
Zheng SC, Widschwendter M, Teschendorff AE. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 2016; 8:705-19. [PMID: 27104983 DOI: 10.2217/epi-2015-0017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.
Collapse
Affiliation(s)
- Shijie C Zheng
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK.,Statistical Cancer Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
896
|
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology 2016; 86:340-8. [PMID: 27142489 DOI: 10.1016/j.theriogenology.2016.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential.
Collapse
Affiliation(s)
- Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michelle Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane E Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
897
|
Gould NJ, Davidson KL, Nwokolo CU, Arasaradnam RP. A systematic review of the role of DNA methylation on inflammatory genes in ulcerative colitis. Epigenomics 2016; 8:667-84. [PMID: 27096966 DOI: 10.2217/epi-2016-0006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an idiopathic disease of the large intestine with evidence pointing to the role of epigenetic changes. METHODS Searches were performed in three databases (EMBASE, MEDLINE and Web of Science), following PRISMA protocol. DNA methylation was the only epigenetic mechanism affecting genes linked to inflammatory response in UC. RESULTS A total of 25 differentially methylated inflammatory genes were identified. Hypermethylation of miR-1247 significantly correlates (p = 0.0006) with refractory UC while PAR2 hypermethylation correlates (p = 0.007) with corticosteroid dependence. CONCLUSION Evidence points to a step-wise increase in methylation status of the genome between a healthy colon, quiescent UC and when inflamed. Inflammatory genes (which are aberrantly methylated), have also been implicated in cancer development in UC.
Collapse
Affiliation(s)
| | | | - Chuka U Nwokolo
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, CV2 2DX, UK
| | - Ramesh P Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, CV2 2DX, UK.,Clinical Sciences Research Institute, University Hospital Coventry & Warwickshire, CV2 2DX, UK
| |
Collapse
|
898
|
Zhao Z, Wang L, Di L. Compartmentation of metabolites in regulating epigenome of cancer. Mol Med 2016; 22:349-360. [PMID: 27258652 DOI: 10.2119/molmed.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
899
|
Rey O, Danchin E, Mirouze M, Loot C, Blanchet S. Adaptation to Global Change: A Transposable Element-Epigenetics Perspective. Trends Ecol Evol 2016; 31:514-526. [PMID: 27080578 DOI: 10.1016/j.tree.2016.03.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Understanding how organisms cope with global change is a major scientific challenge. The molecular pathways underlying rapid adaptive phenotypic responses to global change remain poorly understood. Here, we highlight the relevance of two environment-sensitive molecular elements: transposable elements (TEs) and epigenetic components (ECs). We first outline the sensitivity of these elements to global change stressors and review how they interact with each other. We then propose an integrative molecular engine coupling TEs and ECs and allowing organisms to fine-tune phenotypes in a real-time fashion, adjust the production of phenotypic and genetic variation, and produce heritable phenotypes with different levels of transmission fidelity. We finally discuss the implications of this molecular engine in the context of global change.
Collapse
Affiliation(s)
- Olivier Rey
- CNRS, UPS, Station d'Écologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France; Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Etienne Danchin
- CNRS, UPS, ENFA, Évolution & Diversité Biologique (EDB) UMR 5174, 118 Route de Narbonne, 31062 Toulouse, Cedex 9, France; Université Paul Sabatier, Évolution & Diversité Biologique (EDB), 31062 Toulouse, Cedex 9, France
| | - Marie Mirouze
- Institut de Recherche pour le Développement, UMR232 DIADE Diversité Adaptation et Développement des Plantes, Laboratoire Génome et Développement des Plantes, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Céline Loot
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France; CNRS UMR3525, Paris, France
| | - Simon Blanchet
- CNRS, UPS, Station d'Écologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France; CNRS, UPS, ENFA, Évolution & Diversité Biologique (EDB) UMR 5174, 118 Route de Narbonne, 31062 Toulouse, Cedex 9, France.
| |
Collapse
|
900
|
Qian Y, Wang XL, Lv ZL, Tysklind M, Guo C, Liang B, Wu JB, Yang YJ, Yang YS, Wang FF, Duan XL, Ma J, Wei YJ, Wang CH, Yang LX, Zhang JL, Shi XM, Wang XL. Quantification for total demethylation potential of environmental samples utilizing the EGFP reporter gene. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:278-285. [PMID: 26774982 DOI: 10.1016/j.jhazmat.2015.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The demethylation potential of pollutants is arguably an innate component of their toxicity in environmental samples. A method was developed for determining the total demethylation potential of food samples (TDQ). The demethylation epigenetic toxicity was determined using the Hep G2 cell line transfected with pEGFP-C3 plasmids containing a methylated promoter of the EGFP reporter gene. The total demethylation potential of the sample extracts (the 5-AZA-CdR demethylation toxic equivalency) can be quantified within one week by using a standard curve of the 5-AZA-CdR demethylation agent. To explore the applicability of TDQ for environmental samples, 17 groundwater samples were collected from heavy polluted Kuihe river and the total demethylation potentials of the sample extracts were measured successfully. Meaningful demethylation toxic equivalencies ranging from 0.00050 to 0.01747μM were found in all groundwater sample extracts. Among 19 kinds of inorganic substance, As and Cd played important roles for individual contribution to the total demethylation epigenetic toxicity. The TDQ assay is reliable and fast for quantifying the DNA demethylation potential of environmental sample extracts, which may improve epigenetic toxicity evaluations for human risk assessment, and the consistent consuming of groundwater alongside the Kuihe river pose unexpected epigenetic health risk to the local residents.
Collapse
Affiliation(s)
- Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Li Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Zhan-Lu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bao Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jia-Bing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yong-Jian Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yi-Shu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Fei-Fei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Li Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yong-Jie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chun-Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li-Xin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin-Liang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Ming Shi
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xian-Liang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|